## **Supporting Information for**

## **Enhancing Inverse Modeling in Groundwater Systems through Machine Learning: A Comprehensive Comparative Study**

Junjun Chen<sup>1,2</sup>, Zhenxue Dai<sup>2,3</sup>, Shangxian Yin<sup>4</sup>, Mingkun Zhang<sup>5</sup>, Mohamad Reza Soltanian<sup>6</sup>

<sup>1</sup> National and Local Joint Engineering Laboratory of Internet Application Technology on Mine, China University of Mining and Technology, Xuzhou, 221008, China

<sup>2</sup> College of Construction Engineering, Jilin University, Changchun, 130026, China

<sup>3</sup> School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 273400, China

<sup>4</sup> College of Safety Engineering, North China Institute of Science and Technology, Langfang, 065201, China

<sup>5</sup> Shandong Rui Yi technology development Co., Ltd., Jinan, 250000, China

<sup>6</sup> Departments of Geosciences and Environmental Engineering, University of Cincinnati, OH, 45220, USA

Correspondence to: Zhenxue Dai (dzx@jlu.edu.cn), Shangxian Yin (vinshx03@126.com)

## **Contents of this file**

Table S1 to Table S3 Figures S1 to S44

## Introduction

Table S1 is the optimal hyperparameters for MSVR by four metaheuristic algorithms

**Table S2** and **S3** are RMSE<sub>(All)</sub> and  $R^2_{All}$  values of FC-DNN with different number of hidden layers

**Table S4** is the RMSE values of estimated log-permeability fields for the four metaheuristic algorithms and the TNNA algorithm under Scenario 1-4.

Fig.S1. to Fig.S2 are detail architectures of LeNet and ResNet.

Fig.S3. to Fig.S6. are pair-wise comparisons for four surrogate modeling methods.

**Fig.S7.** to **Fig.S10.** are spatial distributions of log-permeability field estimation results and absolute errors by four metaheuristic algorithms for Scenarios 1~4

**Fig.S11.** to **Fig.S14.** are spatial distributions of log-permeability field estimation results and absolute errors by the TNNA method for Scenarios 1~4

**Fig.S15.** to **Fig.S44.** are spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations using the TNNA algorithm and four metaheuristic algorithms (from day 2 to day 60 recorded every two days).

| Training data number | <b>Optimal algorithms</b> | С      | Е          | σ     | MSE        |
|----------------------|---------------------------|--------|------------|-------|------------|
|                      | GA                        | 18.640 | 6.0117E-03 | 0.398 | 6.2652E-02 |
| 200                  | DE                        | 27.526 | 4.8503E-03 | 0.391 | 6.2498E-02 |
| 200                  | PSO                       | 27.526 | 4.8503E-03 | 0.391 | 6.2498E-02 |
|                      | SA                        | 35.533 | 8.3451E-06 | 0.334 | 6.2499E-02 |
|                      | GA                        | 54.278 | 4.9071E-03 | 0.509 | 4.9246E-02 |
| 500                  | DE                        | 39.979 | 3.0950E-03 | 0.867 | 4.9729E-02 |
| 300                  | PSO                       | 48.596 | 3.5939E-03 | 0.706 | 4.9215E-02 |
|                      | SA                        | 32.241 | 5.5964E-03 | 0.615 | 4.8987E-02 |
|                      | GA                        | 23.296 | 4.2424E-03 | 0.724 | 4.3391E-02 |
| 1000                 | DE                        | 40.680 | 3.9406E-03 | 0.585 | 4.3556E-02 |
| 1000                 | PSO                       | 25.317 | 6.1069E-03 | 0.820 | 4.3510E-02 |
|                      | SA                        | 71.104 | 4.0023E-05 | 0.561 | 4.3777E-02 |
|                      | GA                        | 61.888 | 1.1828E-03 | 0.918 | 3.5188E-02 |
| 2000                 | DE                        | 53.579 | 1.6516E-03 | 0.964 | 3.5137E-02 |
| 2000                 | PSO                       | 50.431 | 9.4148E-04 | 0.921 | 3.5120E-02 |
|                      | SA                        | 50.307 | 9.0781E-03 | 1.033 | 3.5265E-02 |

Table S1 Optimal hyperparameters for MSVR by four metaheuristic algorithms

Note: The rows in bold represent the optimal hyperparameter configurations corresponding to the smallest MSE values.

 $\underline{Table \ S2 \ RMSE_{(All)} \ values \ of \ FC-DNN \ with \ different \ number \ of \ hidden \ layers}$ 

| Training data number | Hidden layer number |         |         |         |         |         |         |  |
|----------------------|---------------------|---------|---------|---------|---------|---------|---------|--|
|                      | 1                   | 2       | 3       | 4       | 5       | 6       | 7       |  |
| 200                  | 0.07588             | 0.05882 | 0.06870 | 0.17916 | 0.16125 | 0.13690 | 0.13340 |  |
| 500                  | 0.07050             | 0.04308 | 0.03788 | 0.03786 | 0.05824 | 0.09567 | 0.10229 |  |
| 1000                 | 0.05118             | 0.03571 | 0.02703 | 0.02732 | 0.02866 | 0.04213 | 0.07825 |  |
| 2000                 | 0.03936             | 0.02944 | 0.02090 | 0.02168 | 0.02580 | 0.03064 | 0.06887 |  |

Note: The bold values represent the smallest MSE values among the considered seven hidden layer numbers.

Table S3  $R_{AII}^2$  values of FC-DNN with different number of hidden layers

| Training data | Hidden layer number |         |         |         |         |         |         |
|---------------|---------------------|---------|---------|---------|---------|---------|---------|
| number        | 1                   | 2       | 3       | 4       | 5       | 6       | 7       |
| 200           | 0.94140             | 0.96479 | 0.95197 | 0.67332 | 0.73539 | 0.80926 | 0.81890 |
| 500           | 0.94942             | 0.98111 | 0.98540 | 0.98541 | 0.96548 | 0.90685 | 0.89351 |
| 1000          | 0.97334             | 0.98703 | 0.99256 | 0.99240 | 0.99164 | 0.98194 | 0.93768 |
| 2000          | 0.98424             | 0.99118 | 0.99555 | 0.99522 | 0.99323 | 0.99045 | 0.95173 |

Note: The bold values represent the largest  $R_{All}^2$  values among the considered seven hidden layer numbers.

| Scenarios - |                     | Metahe |        |        |        |                 |        |
|-------------|---------------------|--------|--------|--------|--------|-----------------|--------|
|             |                     | GA     | DE     | PSO    | SA     | I ININ <i>P</i> | 1      |
| Scenario 1  | $N_{\rm PC} = 100$  | 0.7844 | 0.5984 | 0.9423 | 0.7720 | epoch=200       | 0.4895 |
|             | $N_{\rm PC} = 500$  | 0.8246 | 0.7639 | 0.6379 | 0.8980 | epoch=1000      | 0.4748 |
|             | $N_{\rm PC} = 1000$ | 0.6659 | 0.6391 | 0.7127 | 0.8012 |                 |        |
| Scenario 2  | $N_{\rm PC}=100$    | 0.9554 | 0.5223 | 0.8785 | 0.6987 | epoch=200       | 0.4317 |
|             | $N_{\rm PC} = 500$  | 0.6164 | 0.4925 | 1.0293 | 1.1549 | epoch=1000      | 0.4271 |
|             | $N_{\rm PC} = 1000$ | 0.5389 | 0.5322 | 0.9686 | 0.6288 |                 |        |
| Scenario 3  | $N_{\rm PC} = 100$  | 0.5386 | 0.3892 | 0.5486 | 0.5647 | epoch=200       | 0.3161 |
|             | $N_{\rm PC} = 500$  | 0.4339 | 0.4271 | 0.5762 | 0.5714 | epoch=1000      | 0.2970 |
|             | $N_{\rm PC} = 1000$ | 0.4060 | 0.5042 | 0.6295 | 0.5558 |                 |        |
| Scenario 4  | $N_{\rm PC} = 100$  | 0.4436 | 0.3841 | 0.5723 | 0.6459 | epoch=200       | 0.2749 |
|             | $N_{\rm PC} = 500$  | 0.4265 | 0.3971 | 0.3770 | 0.5654 | epoch=1000      | 0.2328 |
|             | $N_{\rm PC} = 1000$ | 0.3653 | 0.3459 | 0.5367 | 0.5033 |                 |        |

**Table S4.** RMSE values of estimated log-permeability fields for the four metaheuristic algorithms and the TNNA algorithm under Scenario 1-4.



**Fig.S1.** Detailed architecture of a LeNet based CNN. The input matrix data are obtained according to Figure 2(c) and subjected to feature extraction through a sequence of two convolutional and pooling layers, subsequently connected to the output layer using a flatten layer and two fully connected layers.



**Fig.S2.** Detailed architecture of a ResNet based CNN. The input matrix data are obtained according to Figure 2(c). "Res Block-1" and "Res Block-2" are two different types of residual blocks used in this ResNet. Eight residual blocks in four stages are designed in this ResNet. "Stage i (j)" represents the jth residual block used in stage i.



**Fig.S3.** Performance of MSVR based surrogate models for the solute concentration and hydraulic head prediction. (a~d) are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples, respectively.



**Fig.S4.** Performance of FC-DNN based surrogate models for the solute concentration and hydraulic head prediction. (a~d) are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples, respectively.



**Fig.S5.** Performance of LeNet CNN based surrogate models for the solute concentration and hydraulic head prediction. (a~d) are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples, respectively.



**Fig.S6.** Performance of ResNet CNN based surrogate models for the solute concentration and hydraulic head prediction. (a~d) are pair-wise comparisons based on surrogate models trained by 200, 500, 1000, and 2000 training samples, respectively.



**Fig.S7** Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for  $N_{PC}$ =100, 500, and 1000, respectively) and absolute errors (row 2, 4, and 6 for  $N_{PC}$ =100, 500, and 1000, respectively) for Scenario 1, achieved by four metaheuristic algorithms.



**Fig.S8** Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for  $N_{PC}$ =100, 500, and 1000, respectively) and absolute errors (row 2, 4, and 6 for  $N_{PC}$ =100, 500, and 1000, respectively) for Scenario 2, achieved by four metaheuristic algorithms.



**Fig.S9** Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for  $N_{PC}$ =100, 500, and 1000, respectively) and absolute errors (row 2, 4, and 6 for  $N_{PC}$ =100, 500, and 1000, respectively) for Scenario 3, achieved by four metaheuristic algorithms.



**Fig.S10** Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for  $N_{PC}$ =100, 500, and 1000, respectively) and absolute errors (row 2, 4, and 6 for  $N_{PC}$ =100, 500, and 1000, respectively) for Scenario 4, achieved by four metaheuristic algorithms.



Fig.S11. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 1, achieved by the TNNA inversion algorithm.



**Fig.S12.** Spatial distributions log-permeability field estimation results and absolute errors for Scenario 2, achieved by the TNNA inversion algorithm.



**Fig.S13.** Spatial distributions log-permeability field estimation results and absolute errors for Scenario 3, achieved by the TNNA inversion algorithm.



**Fig.S14.** Spatial distributions log-permeability field estimation results and absolute errors for Scenario 4, achieved by the TNNA inversion algorithm.



**Fig.S15.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=2 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S16.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=4 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S17.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=6 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S18.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=8 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S19.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=10 day) using the TNNA algorithm and four metaheuristic algorithms.



distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=12 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S21.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=14 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S22** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=16 day) using the TNNA algorithm and four metaheuristic algorithms. (a) Calibrated simulation results for solute concentrations (t=18 day)



**Fig.S23** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=18 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S24** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=20 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S25.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=22 day) using the TNNA algorithm and four metaheuristic algorithms. (a) Calibrated simulation results for solute concentrations (t=24 day)



**Fig.S26.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=24 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S27.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=26 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S28.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=28 day) using the TNNA algorithm and four metaheuristic algorithms. (a) Calibrated simulation results for solute concentrations (t=30 day)



**Fig.S29.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=30 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S30.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=32 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S31.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=34 day) using the TNNA algorithm and four metaheuristic algorithms. (a) Calibrated simulation results for solute concentrations (t=36 day)



**Fig.S32.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=36 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S33.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=38 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S34.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=40 day) using the TNNA algorithm and four metaheuristic algorithms. (a) Calibrated simulation results for solute concentrations (*t*=42 day)



**Fig.S35.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=42 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S36.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=44 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S37.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=46 day) using the TNNA algorithm and four metaheuristic algorithms. (a) Calibrated simulation results for solute concentrations (*t*=48 day)



**Fig.S38.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=48 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S39.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=50 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S40.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=52 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S41.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=54 day) using the TNNA algorithm and four metaheuristic algorithms.





**Fig.S42.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (*t*=56 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S43.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=58 day) using the TNNA algorithm and four metaheuristic algorithms.



**Fig.S44.** Spatial distributions of calibrated numerical simulation results and absolute errors for solute concentrations (t=60 day) using the TNNA algorithm and four metaheuristic algorithms.