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Abstract. Tandem neural network architecture (TNNA) is a machine learning algorithm which has been recently proposed for 

estimating uncertain parameters with inverse mappings. However, its reliability has only been validated in limited research 

scenarios, and its advantages over conventional methods remain underexplored. This study systematically compares the 15 

performance of the TNNA algorithm with four traditional metaheuristic algorithms across three heterogeneity scenarios, each 

employing a specific inversion framework: (i) a surrogate model coupled with an optimization algorithm for cases with eight 

homogeneous parameter zones, (ii) Karhunen-Loève Expansion (KLE)-based dimensionality reduction combined with a 

surrogate model and an optimization algorithm for a high-dimensional Gaussian random field, and (iii) generative machine 

learning-based dimensionality reduction integrated with a surrogate model and an optimization algorithm for a high-20 

dimensional non-Gaussian random field. Additionally, we evaluate algorithm performance under two different noise level 

conditions (multiplicative Gaussian noise with standard deviations of 1% and 10%) for normalized hydraulic head and solute 

concentration data in the non-Gaussian random field scenario, which exhibits the most complex parameter characteristics. The 

results demonstrate that both the TNNA algorithm and the metaheuristic algorithms achieve inversion results that satisfy the 

convergence accuracy within these machine learning- based inversion frameworks. Moreover, under the 10% high-noise 25 

condition in the non-Gaussian random field, the inversion results remain robust when sufficient constraints are imposed. 

Compared to metaheuristic approaches, the TNNA method yields more reliable inversion results with significantly higher 

computational efficiency, highlighting the considerable advantages of machine learning in advancing groundwater system 

inversions. 
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1 Introduction 

Numerical models are essential for quantifying flow and mass transport dynamics within aquifers, providing significant 

insights into hydrological and biogeochemical processes (Steefel et al., 2005; Sanchez-Vila et al., 2010; Sternagel et al., 2021; 

Xu et al., 2022). However, directly measuring aquifer parameters, such as permeability fields, remains challenging due to 

limitations in current hydrogeological exploration techniques and budgetary constraints (Yeh, 1986; Kool et al., 1987; Beven 35 

and Binley, 1992; Mclaughlin and Townley, 1996; Dai and Samper, 2004; Castaings et al., 2009; Chen et al., 2021). Inverse 

modeling has become a key approach for estimating these uncertain model parameters, improving the accuracy of numerical 

simulations (Ginn and Cushman, 1990; Carrera and Glorioso, 1991; Hopmans et al., 2002; Zheng and Samper, 2004; Zhou et 

al., 2014; Bandai and Ghezzehei, 2022; Abbas et al., 2024; Giudici, 2024). 

Inverse modeling within Bayesian theorem-based data assimilation frameworks has garnered significant attention from 40 

the hydrogeological community over the past few decades (Scharnagl et al., 2011; Chen et al., 2013; Zhang et al., 2018; Xia 

et al., 2021). Methods based on the minimization of objective functions or the maximization of posterior distributions require 

the application of optimization techniquesAmong available algorithms, methods based on objective functions established from 

maximum a posteriori estimation and solved by optimization techniques represent a significant category (Tsai et al., 2003; 

Blasone et al., 2007; Sun, 2013; Vrugt, 2016). One type is local optimization algorithms, which update model parameters from 45 

initial guesses towards optimal solutions according to gradient directions, such as the Gaussian-Newton method (Dragonetti 

et al., 2018; Qin et al., 2022) and the Levenberg-Marquardt method (Schneider-Zapp et al., 2010; Nhu, 2022).  These methods 

are highly efficient but may converge to local optima when dealing with nonconvex inversion problems. (Plessix, 2006)s. 

Another category is to achieve global optima solutions through metaheuristic searches, which typically incorporate processes 

of exploration (to search the entire parameter space for a diverse range of estimates) and exploitation (to leverage local 50 

information to refine estimates). Popular metaheuristic algorithms include the Genetic Algorithm (GA) (Ines and Droogers, 

2002; Lindsay et al., 2016), Simulated Annealing (SA) (Kirkpatrick et al., 1983; Jaumann and Roth, 2018), Differential 

Evolution (DE) (Li, 2019; Yan et al., 2023), and Particle Swarm Optimization (PSO) (Rafiei et al., 2022; Travaš et al., 2023). 

Nevertheless, their computational efficiency may be reduced by extensive exploration and exploitation processes in achieving 

globally optimal inversion results. Accurate and efficient estimation of uncertain model parameters across various scenarios 55 

remains one of the most significant challenges for developing inversion frameworks.The efficiency of optimization algorithms 

can be enhanced by integrating them with adjoint methods, particularly when extended to high-dimensional parameter spaces. 

Adjoint methods are capable of efficiently computing gradients for all parameters simultaneously through solving adjoint 

equations derived from the original forward model (Plessix, 2006). This gradient information can directly accelerate local 

optimization algorithms (Epp et al., 2023) and facilitate gradient-enhanced global optimization methods (Kapsoulis et al., 60 

2018), significantly improving efficiency in complex inverse problems. However, practical implementation of adjoint methods 

remains challenging due to the overwhelming programming effort and the complexity associated with deriving adjoint 

equations, especially for highly nonlinear system models (Xiao et al., 2021; Ghelichkhan et al., 2024). Accurate and efficient 
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estimation of uncertain model parameters across various scenarios remains one of the most significant challenges for 

developing inversion frameworks. 65 

In recent years, machine learning has experienced rapid developments and demonstrated significant performance in 

addressing complex problems characterized by high dimensionality and nonlinearity (Hinton and Salakhutdinov, 2006; Lecun 

et al., 2015; Bentivoglio et al., 2022; Shen et al., 2023). Integrating conventional inversion methods with cutting-edge machine 

learning techniques has become increasingly popular in addressing the challenges of inversion studies. One effective strategy 

is constructing surrogate models to accelerate forward simulations, ensuring that inversion algorithms perform comprehensive 70 

searches across the entire parameter space more efficiently (Razavi et al., 2012). For instance, Zhan et al. (2021) identified 

lithofacies structures by utilizing a deep octave convolution residual network to construct a surrogate model for predicting 

solute concentrations and hydraulic heads in heterogeneous aquifers. Wang et al. (2021) constructed a subsurface flow 

surrogate model under heterogeneous conditions through physically informed neural network methods, specifically for 

uncertainty quantification and parameter inversion. Liu et al. (2023) constructed a convolutional neural network (CNN) 75 

surrogate model to combine with a hierarchical homogenization method to estimate effective permeability of digital rocks. 

More related studies can also be found in recent reviews (Yu and Ma, 2021; Luo et al., 2023; Zhan et al., 2023). Additionally, 

due to their inherent differentiability and continuity, DNN-based surrogate models can be integrated with adjoint equations,  

Specifically, inversion approaches based on objective function minimization can also benefit from adjoint methods (Plessix, 

2006). Integrating adjoint methods with machine learning-based surrogate models enablesing efficient gradient computations, 80 

and significantly facilitating their practical implementation in high-dimensional and complex scenariosin high-dimensional 

and complex scenarios, making their practical implementation tractable (Xiao et al., 2021).  

In addition to surrogate models, parameter optimization through machine learning-based reverse mapping represents 

another significant advancement in inversion techniques. Previous studies have outlined at least two strategies to achieve 

reverse mapping models. The first strategy is the data-driven approach, where reverse regressions are trained using datasets 85 

that comprise pairs of model outputs and inputs. For example, Sun (2018) developed a regression model from hydraulic heads 

to heterogeneous conductivity fields using a CNN-based generative adversarial network (GAN) approach. Kuang et al. (2021) 

succeeded in real-time identification of earthquake focal mechanisms by training a deep neural network (DNN) regression on 

seismic waveform data. Yang et al. (2022) established the relationship between gravity data and CO2 plumes to perform real-

time inversion for geologic carbon sequestration. Another strategy is to train a reverse network within the tandem neural 90 

network architecture (TNNA) integrated with a pre-trained surrogate model (i.e., forward network). The TNNA method was 

introduced with the advent of deep learning and has been successfully applied in computed tomography reconstruction (Adler 

and Öktem, 2017), nanophotonic structure inverse design (Liu et al., 2018; Yeung et al., 2021), and photonic topological state 

inverse design (Long et al., 2019). Our previous research expanded the application of the TNNA algorithm within groundwater 

science, evaluating its performance in reactive transport inverse modeling and improving inversion results by incorporating an 95 

adaptive update strategy to reduce local predictive errors of surrogate models. The findings indicated that accurate surrogate 

model predictive results around the actual parameter values yield dependable TNNA inversion outcomes (Chen et al., 2021).  
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The TNNA algorithm demonstrates a fundamental advantage by requiring only a single forward simulation to update 

parameters in each iteration. In contrast, conventional metaheuristic algorithms typically necessitate multiple forward 

simulations. Despite the innovation of this approach, its applicability in more general groundwater numerical scenarios and its 100 

performance compared to conventional metaheuristic algorithms remain uncertain. This study considers three cases with 

different heterogeneity characteristics to compare the performance of the TNNA algorithm with four conventional 

metaheuristic algorithms. In Case 1, the domain is divided into a finite number of homogeneous zones. The other two Cases 

focus on high-dimensional parameter fields based on the spatial variability of the aquifer. These two cases are essential for 

revealing the dynamic behaviors of the groundwater system at the discrete grid scale. Depending on the spatial variability of 105 

the aquifer structure, the two high-dimensional numerical cases characterize the heterogeneity of aquifer parameters using a 

Gaussian random field (i.e., Case 2) and a non-Gaussian random field (i.e., Case 3), respectively. The Gaussian random field 

is suited for aquifers with a single lithofacies and relatively uniform physical structures, where the spatial variation of parameter 

values is quite smooth. In contrast, the non-Gaussian random field accounts for the existence of a nugget effect in the aquifer 

structure, such as when it contains multiple lithofacies with varying hydraulic properties (Mariethoz and Caers, 2014). For 110 

comparative study of the three Cases, surrogate models will be used to accelerate forward simulation. Additionally, 

dimensionality reduction techniques are necessary for the two high-dimensional cases to reduce computational complexity 

associated with high-dimensional parameter spaces. Specifically, the Karhunen-Loève Expansion (KLE) method is feasible 

for Gaussian random fields. It reconstructs the Gaussian random field through a linear combination of orthogonal basis 

functions, achieving dimensionality reduction by retaining the dominant modes corresponding to the largest eigenvalues 115 

(Loève, 1955; Zhang and Lu, 2004; Mariethoz and Caers, 2014). However, the second-order statistics relied upon by KLE are 

insufficient to fully represent complex characteristics for non-Gaussian random fields. In recent years, generative machine 

learning methods have demonstrated outstanding performance in parameter field reconstruction (Mo et al., 2020; Zhan et al., 

2021; Guo et al., 2023). These methods can establish relationships between low-dimensional standard distributions (e.g., 

uniform distribution) and high-dimensional distributions, effectively representing non-Gaussian random fields as low-120 

dimensional latent vectors (i.e., parameters after dimensionality reduction). Thus, extending the TNNA framework by 

integrating KLE and generative machine learning methods, respectively, is a potentially feasible approach for solving the high-

dimensional heterogeneous aquifer parameter inversion problems presented in Case 2 and Case 3. In summary, the primary 

contributions of this study are as follows: 

(1) Proposed a novel inversion framework that integrates the TNNA algorithm with dimensionality reduction techniques, 125 

including KLE for Gaussian stochastic processes and generative machine learning methods for non-Gaussian stochastic 

processes, thereby extending its applicability to high-dimensional heterogeneous fields characterized by Gaussian and non-

Gaussian stochastic processes, respectively.  

(2) Conducted a comprehensive comparative analysis between the TNNA algorithm and four conventional metaheuristic 

algorithms across three case scenarios, highlighting the advantages of DNN-based machine learning reverse mapping over 130 

metaheuristic stochastic search strategies in for inverse estimation under different heterogeneous conditions. 
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With advancements in artificial intelligence, the anticipated outcomes of this study are expected to significantly enhance 

the development of novel inversion algorithms, offering new insights for future studies. The following sections of this paper 

are structured as follows: Section 2 introduces the fundamental principles of the methodology involved in this study. Section 

3 provides detailed information on numerical models for the three cases. Section 4 presents the results and discussions. Finally, 135 

Section 5 presents a summary and conclusions derived from this research, along with recommendations for future studies. 

2. Methodology 

The inversion framework based on nonlinear optimization theory generally consists of two aspects: (1) constructing 

nonlinear constraints for the optimization of uncertain model parameters, and (2) establishing optimization algorithms to search 

for the model parameters that satisfy these constraints. The general form of the nonlinear optimization model in this paper is 140 

as follows:  

m*=min ∑
1

𝜎𝑖

[y
obs

[i] − ŷ[i]]
2

Nobs

i=1

{
ŷ=FHF(m)

mL≤m≤mU

(1) 

where 𝐲obs ∈ ℝNobs×1 and ŷ ∈ ℝNobs×1  represent the observed data vector and the corresponding model simulation output 

vector, respectively. y
obs

[i] and ŷ[i] refer to the i-th element of the observed and simulated vectors, respectively, and 𝜎𝑖 

denotes the standard deviation of the i-th observed data. m represents the vector of model parameters to be optimized, m* 145 

denotes the optimal parameter vector obtained through optimization; mL and mU are the vectors representing the lower and 

upper limit values of the model parameters, respectively. FHF(∙) represent the high-fidelity numerical model.  

        In this study, three different inversion frameworks are developed to compare the TNNA algorithms with four 

metaheuristic algorithms. In low-dimensional parameter scenario, a surrogate model FForward(∙) is constructed to approximate 

high-fidelity numerical prediction outputs. Therefore, the objective function of the inversion framework integrated with a 150 

surrogate model is as follows:  

m*=min ∑
1

𝜎𝑖

[y
obs

[i] − FForward(m)[i]]
2

Nobs

i=1

(2) 

In high-dimensional parameter scenarios, directly optimizing the model parameter m can lead to computational 

difficulties due to its high dimensionality. To mitigate this issue, in addition to constructing a surrogate model FForward(∙) to 

improve the computational efficiency of forward simulations, dimensionality reduction algorithms are also integrated into 155 

inversion frameworks. Let m=G(z) represent an operator for parameter dimensionality reduction, where z is a low-dimensional 

vector whose parameter space is commonly defined as an easily sampled probability distribution (e.g., standard Gaussian or 

uniform distribution). in addition to employing surrogate models, dimensionality reduction algorithms are also integrated in 
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inversion frameworks. Let m=G(z) represent an operator for parameter dimensionality reduction. Specifically, the Karhunen-

Loève Expansion (KLE) and the Octave Convolution Adversarial Autoencoder (OCAAE) are used for representing Gaussian 160 

random fields and non-Gaussian random fields, respectively. Once the low-dimensional vector representation of the high-

dimensional parameter is obtained, the high-dimensional parameter m can be indirectlyThe high-dimensional parameter m is 

optimized indirectly by estimating the low-dimensional vector z： 

z*=min ∑
1

𝜎𝑖

[y
obs

[i] − FForward(G(z))[i]]
2

Nobs

i=1

m* = G(z*) (3)

 

The basic mathematical theories of surrogate models, dimensionality reduction techniques, and optimization algorithms 165 

are introduced in Section 2.1 to 2.3, respectively.  

2.1 Surrogate modeling methods 

In this study, surrogate models FForward(∙) are developed using a data-driven strategy as shown in Figure 1. The process 

begins by sampling model parameters from prior distributions. The corresponding system responses for these parameter 

samples are simulated using a high-fidelity numerical model. Then, a and calculating their responses using high-fidelity 170 

numerical models. A training dataset consisting of paired model parameters and responses is then obtained, which is 

subsequently used to construct surrogate models via supervised machine learning. Specifically, four popular machine learning 

models with distinct architectural differences are evaluated for surrogate modeling. These are: multi-output support vector 

regression (MSVR), a kernel-based architecture for data mapping; fully connected deep neural network (FC-DNN), composed 

of stacked fully connected layers; LeNet, a classical convolutional neural network (CNN) architecture; and deep residual 175 

convolutional neural network (ResNet), which incorporates residual connections into the CNN structure.  

The detailed principles of MSVR and the three deep learning-based methods are illustrated in the following two sub-

sections. The predictive accuracy of four surrogate modeling approaches will be compared in this study, and the best-

performing approach among them will subsequently be selected for inversion computations. Before constructing surrogate 

models, the training datasets are normalized separately for each simulation component using Min-Max Normalization, in which 180 

each component is scaled independently based on its minimum and maximum values, ensuring that all normalized values fall 

within the range [0, 1]. Details regarding the specific formulation and implementation of normalization in groundwater models 

involving multiple simulated components can be found in  (Goodfellow et al., 2016); Chen et al. (2021).  
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Figure 1. The framework for data-driven based surrogate model construction and the machine learning models employed. 185 

Note that for CNN-based surrogate models, the initial processing module is activated only for low-dimensional scenarios, 

whereas in high-dimensional scenarios, the parameter matrix (1×NCell×NCell) is directly input into the CNN architecture.  

2.1.1 MSVR 

MSVR is developed from the original support vector machine (SVM) for realizing multivariate regression (Pérez-Cruz et 

al., 2002; Tuia et al., 2011). The mathematical expression is given as follows: 190 

ŷ = FMSVR(m)=φ(m)TW+B (4) 

where FMSVR(∙) denotes the dataset regression model operator constructed based on MSVR; 𝜑(m) is a nonlinear regression 

function that implicitly maps the input vector 𝑚 into a high-dimensional feature space. Its inner product defines the kernel 

function K(m, m𝑖) (here, we use the Gaussian radial basis function (RBF) kernel with a bandwidth parameter 𝜎: K(m, m𝑖) =

𝜑(𝒎)𝑇𝜑(𝒎𝑖) = exp(−0.5 ∥ 𝒎 − 𝒎𝑖 ∥2/𝜎2), m𝑖 denotes the ith model parameter vector from the surrogate model training 195 

dataset). Assuming Nsamples  denotes the number of surrogate model training samples, the regression coefficients 

W=[w1,…,wNobs]
T
∈ℝNobs×Nsamples  and B=[b

1
,…,b

Nobs]
T
∈ℝNobs×1 are determined by minimizing the structural risk, as outlined 

in equations (5) and (6): 

𝑊, 𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿(𝑊, 𝐵) =
1

2
∑ ‖𝑤𝑗‖

2

𝑁𝑜𝑏𝑠

𝑗=1

+ 𝐶 ∑ 𝐿(𝑢𝑖)

Nsamples

𝑗=1

(5) 

where C is a penalty parameter; and L(u) is a quadratic ε-insensitive loss function, expressed as: 200 

𝐿(𝑢) = {
0,                      𝑢 < 𝜀
(𝑢 − 𝜀)2,         𝑢 ≥  𝜀

(6) 



8 

 

where 𝑢𝑖 = ‖𝑒𝑖‖ = √𝑒𝑖
𝑇𝑒𝑖; 𝑒𝑖

𝑇 = 𝑦𝑖
𝑇 − 𝜑𝑇(m𝑖)𝑊 − 𝐵𝑇 . For ɛ=0, this problem is equivalent to an independent regularized 

kernel least square regression for each component. For ɛ≠0, it becomes feasible to develop individual regression functions 

for each dimension based on the model outputs and to generate their corresponding support vectors. Solving the optimization 

problem directly is challenging, and the desired solutions for W and B are determined using an iterative reweighted least 205 

squares (IRWLS) procedure, employing the quasi-Newton approach. During the IRWLS process, the term L(u) in equation (5) 

is first transformed into a discrete first-order Taylor expansion, and the corresponding quadratic programming approximation 

is constructed. Meanwhile, a linear expression is derived based on the principle that the first-order derivatives of the objective 

function with respect to W and B are zero. Finally, the optimal values of W and B are obtained through a line search. Further 

details on the IRWLS procedure can be found in (Sanchez-Fernandez et al., 2004). 210 

The performance of the MSVR model is influenced by three hyperparameters: C, 𝜎  and ɛ (Ma et al., 2022). This study 

optimizes these hyperparameters by minimizing the root mean square error (RMSE) using the four metaheuristic algorithms 

introduced in this study.  

2.1.2 Deep learning based surrogate models 

(1) DNN architectures 215 

The three DNN models are all feedforward neural networks, which are generally constructed by stacking multiple hidden 

layers. The structure can be expressed as FDNN(m,θDNN) = f
LNN

(…f
l
(…f

1
(m))). Specifically, FDNN(∙) and θDNN represent the 

DNN-based surrogate model operator and the corresponding trainable parameters, respectively; f
l
(∙) denote the nonlinear 

transformation function of the l-th layer, and LNN indicates the total number of neural network layers. In DNN model 

construction, various neural network layers can yield diverse DNN models, resulting in different predictive performances 220 

(Lecun et al., 2015). For the DNN models adopted in this study, the involved neural network types are the fully connected 

layer, the convolutional layer, and the residual block layer.  

In fully connected layers, both input and output layers are in vector forms. Assume Xinput∈ℝn×1 is the input vector and  

Xoutput∈ℝm×1 is the output vector of the l-th fully connected layer f
l
(∙). The transformation in this fully connected layer is 

expressed as: 225 

Xoutput=f
l
(Xinput, 𝜃𝑙) = 𝑓σ-l(𝑊𝐷𝑁𝑁Xinput+𝐵𝐷𝑁𝑁) (7) 

where 𝑓σ-l(∙) is a non-linear active function; 𝑊𝐷𝑁𝑁∈ℝm×n is the weight matrix; and 𝐵𝐷𝑁𝑁∈ℝm×1 is the bias vector.  

In a convolutional layer, both the input and output are in matrix forms. A convolutional layer transfers information through 

sparse connections by several convolution kernels, essentially small matrices. The mathematical formula of a convolutional 

layer is as follows (Wang et al., 2019; Jardani et al., 2022): 230 
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hu,v
q

(xu,v)=𝑓σ-l (∑ ∑ wi,j

q
xu+i,v+j+b

kj
'

j=1

ki
'

i=1

) (8) 

where xu,v is the pixel value at position (u, v) of the input matrix; hu,v
q

(xu,v) is the output feature calculated by employing the qth 

(q=1,…,Nout) convolutional kernel filter wq∈ℝkI
’×kj

’

. In a convolutional layer with Nout filters, the output matrix contains Nout 

feature layers. The output size (Sout) of each convolutional layer is determined by the input size (Sin) and the hyperparameters 

(i.e., zero padding p, kernel size k′ and stride s). A pooling layer is often used after a convolutional layer to remove redundant 235 

information from the extracted features and improve the efficiency of model training (Chen et al., 2021). 

The residual block is a fundamental component of residual networks (ResNets), designed primarily to mitigate the 

vanishing and exploding gradient problems commonly encountered during DNN training. A residual block learns a residual 

mapping defined as: 

R(Xinput,θR)=H(Xinput)-T(Xinput) (9) 240 

where θR represent the trainable parameters of a residual block; R(·) is the residual function; H(·) denotes the target mapping 

of the residual block aims to approximate; and T(·) is chosen as an identity transformation (i.e., T(Xinput) = Xinput), or another 

suitable transformation depending on network architecture; The output of the residual block is computed as: 

Xoutput = 𝑓σ-R(R(Xinput,θR) + T(Xinput)) (10) 

Where 𝑓σ-R(·) is the activation function of ReLU. Such design ensures that the output of the residual block at least approximates 245 

the input, effectively addressing the vanishing gradient problem. When stacking multiple residual blocks, the relationship 

between the L-th residual block in a deeper layer and the l-th residual block is expressed as follows (He et al., 2016): 

Xoutput(L) = Xinput(𝑙) + ∑ R(Xoutput(i),θR(i))

𝐿−1

𝑖=𝑙

(11) 

where Xinput(𝑖)  and θR(i)  denote the input data and trainable parameters of the i-th residual block, respectively; Xoutput(L) 

represents the output from the L-th residual block. According to the chain rule in derivatives, the gradient of the loss function 250 

JRes with respect to Xinput(l) can be given by: 

𝜕JRes

𝜕Xinput(𝑙)

=
𝜕JRes

𝜕Xoutput(L)

(1 +
𝜕

𝜕Xinput(𝑙)

∑ R(Xoutput(i), θR(i))

𝐿−1

𝑖=𝑙

) (12) 

This formulation highlights two key properties of the residual network. First, the gradient does not vanish during network 

training processes because the term  
𝜕

𝜕Xinput(𝑙)

∑ 𝐹(Xinput(i), θR(i))
𝐿−1
𝑖=𝑙  is never equal to -1. Second, the gradient of the deepest 

residual block 
𝜕JRes

𝜕Xoutput(L)
 can directly affect all preceding layers, ensuring effective transmission of gradients throughout the 255 

network (Chang et al., 2022). 
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Based on the three unique network layer structures described above, the FC-DNN, LeNet and ResNet models are 

constructed. The FC-DNN of this study is constructed using fully connected layers, and each hidden layer consists of 512 

neurons. The activation function for the output layer is the Sigmoid function to constrain outputs within the range of 0 to 1. 

Note that other activation functions whose outputs ranges include [0, 1] as a subset, such as the hyperbolic tangent (-1 to 1) 260 

and ReLU (0 to +∞), could also be adopted. However, we specifically selected the Sigmoid function to strictly constrain initial 

model outputs within the target range (0 to 1), thereby reducing the risk of occasional extreme or anomalous predictions, 

particularly in the early stages of training.  For hidden layers, the Swish activation function is adopted due to its smooth form 

with non-monotonic and continuously differentiable properties, which helps improve the DNN training procedures (Elfwing 

et al., 2018). The performance of the FC-DNN is sensitive to the number of hidden layers, whose optimal value is determined 265 

based on specific case studies presented in the application section. For the LeNet and ResNet models, when dealing with low-

dimensional scenarios, an initial processing module consisting of a fully connected layer followed by a reshaping operation is 

added to convert the input vector into a fixed-size matrix. In contrast, for high-dimensional parameter scenarios, the discrete 

grid matrix of the parameter field is directly input into the CNN architecture (see Figure 1 (b)). Specifically, LeNet consists of 

two convolutional blocks and two fully connected layers. Each convolutional block consists of a convolutional layer followed 270 

by a max-pooling layer. The fully connected layers have 1024 and 512 neurons, respectively. ResNet consists of four stages 

and two different Res blocks are adopted. The first stage includes two residual units without down-sampling, while the 

remaining three stages each have one residual unit with down-sampling and one residual unit without down-sampling. 

Activation functions in all layers are Rectified Linear Units (ReLUs), except for the output layer, where Sigmoid activation is 

used. Detailed architecture information for LeNet and ResNet is provided in Figure S1 and Figure S2, respectively.  275 

(2) DNN model training 

The surrogate models are trained by minimizing the difference between the predicted outputs 𝐲̂𝑖 = FDNN(𝒎𝑖 , 𝜃DNN) and 

the corresponding numerical model outputs yi in training datasets (i=1,…, Nsamples). Following prior researches studies (Mo et 

al., 2019, 2020; Chen et al., 2021), the L1 norm-based loss function is adopted and formulated with as: 

 L1 norm constraints: 280 

θDNN
∗  = argmin 

1

Nsamples

∑ |FDNN(mi,θDNN)-𝑦𝑖|

Nsamples

i=1

+
𝑤𝑑

2
𝜃DNN

𝑇 𝜃DNN (13) 

where 𝑤𝑑 is the weight decay to avoid overfitting, referred to as the regularization coefficient. It should be note that the L2 

norm can also be employed as a loss function in constructing surrogate model tasks. Due to its squared-error formulation, the 

L2 norm provides smoother gradients and more stable parameter updates near convergence compared to the L1 norm; however, 

this formulation also makes it more sensitive to extreme outliers. When the sampled parameters sparsely cover the parameter 285 

space, adopting the L1 norm loss function can improve the robustness of surrogate model predictions.  This study implemented 

the DNN models using PyTorch (https://pytorch.org/). The neural network weights were initialized using the default 

initialization method of PyTorch and optimized using the stochastic gradient descent method via the Adam algorithm. 
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Specifically, the hyperparameter of weight decay can be set directly in the Adam optimizer without including it explicitly in 

the loss function.  290 

When conducting DNN training, hyperparameter selection primarily influences the update process of trainable parameters. 

Besides the weight decay mentioned above, learning rate and the number of epochs are two other crucial hyperparameters 

directly affecting training stability and convergence speed. A larger learning rate accelerates initial convergence but may lead 

to oscillations near the optimal solution, whereas a smaller learning rate tends to improve final accuracy but requires more 

epochs to achieve convergence. In this study, we first set a relatively large number of epochs to ensure that the trainable 295 

parameters are adequately updated. Subsequently, appropriate learning rates and weight decay values for different scenarios 

are determined through a trail-and-error approach.  

 

2.2 Dimensionality reduction methods 

2.2.1 Karhunen-Loève Expansion for Gaussian random field 300 

Let 𝒀𝑮(s)~N(𝝁𝑮(𝒔), C(∙,∙)) represent a Gaussian random field, where 𝝁𝑮 denotes the mean of the random field, and C(∙,∙) 

represents the exponential covariance function between two arbitrary spatial points s=(sx,sy) and 𝒔’=(𝒔𝒙
’ ,𝒔𝒚

’ ).  The covariance 

function for these two spatial locations is given by: 

𝑪 (𝒔, 𝒔′) = 𝜎𝐺
2exp (−√(

𝑠𝑥 − 𝑠𝑥
′

𝜆𝑥

)
2

+ (
𝑠𝑦 − 𝑠𝑦

′

𝜆𝑦

)

2

) , (14) 

where  σG
2  is the variance, λx and λy are the correlation lengths along the x and y directions, respectively. Since the covariance 305 

matrix is symmetric and positive definite, the exponential covariance function in equation (14) can be decomposed into an 

eigenvalue-eigenfunction representation. By solving the second-kind Fredholm integral equation and performing eigenvalue 

decomposition, the Gaussian random field can be expressed through the Karhunen-Loève Expansion (KLE) as follows: 

𝒀𝑮(𝒔) = 𝝁𝑮(𝒔) + ∑ z𝑖√𝜆𝑖𝜙𝑖(𝒔)

∞

𝑖=1

(15) 

where z𝑖 represents a random variable following a Gaussian distribution of z𝑖~𝑁(0, 1), also known as a KL term; 𝜙𝑖(𝒔) and 310 

𝜆𝑖  denote the eigenfunction and eigenvalue, respectively. For discretized numerical models, the index i takes values from 1 to 

n, which represents the number of discrete grid points (i.e., in equation (15), ∞ is replaced by n). Dimensionality reduction via 

KLE is achieved through a truncated expansion (Loève, 1955; Zhang and Lu, 2004; Mariethoz and Caers, 2014).  

2.2.2 Octave Convolution Adversarial Autoencoder for Non-Gaussian random field 

The Octave Convolutional Adversarial Autoencoder (OCAAE) is a generative machine learning approach that combines 315 

the Variational Autoencoder (VAE) with adversarial learning, leveraging Octave Convolution Neural Networks (Zhan et al., 
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2021). It consists of three main components: an encoder, a decoder, and a discriminator. The encoder maps a high-dimensional 

parameter field mI to a low-dimensional latent vector zi. The distribution of the latent vectors {z1,…, zN}, obtained by mapping 

the N prior model parameter samples {m1,…, mN}, is denoted as z~q(z). Specifically, the encoder outputs two low-dimensional 

vectors: the mean vector μ
z
 and the log-variance vector ln(σz

2) of the latent vector z. Then, a vector z′ is randomly drawn from 320 

a standard normal distribution N(0, I), and the latent vector is produced as z= μ
z
+σz× z’. The decoder reconstructs the high-

dimensional parameter field m̃ by taking the latent vector z as input. The discriminator enforces adversarial training, ensuring 

that the encoded latent vector distribution z~q(z) approximates a prior Gaussian distribution z~p(z). It receives input from the 

latent vectors generated by the encoder z~q(z) or from the prior distribution z~p(z), and discriminates which distribution the 

input latent vector originates from. 325 

This adversarial framework enhances the generative capability and ensures smooth transitions between different field 

realizations. In the adversarial autoencoder method, the encoder 𝒢"𝐺" ((·) (which also acts as the generator of the adversarial 

network), decoder, and discriminator D(·) are trained jointly in two phases during each iteration: the reconstruction phase and 

the regularization phase.  

In the reconstruction phase, the encoder and decoder are updated using the following loss function: 330 

ℒ𝐸𝐷 =
1

𝑁
∑‖𝒎𝑖 − 𝒎̃𝑖‖1

𝑁

𝑖=1

− 𝑤𝑎𝑑𝑣 (
1

𝑁
∑ log{𝐷[𝒢𝐺(𝒎𝑖)]}

𝑁

𝑖=1

) (16) 

where 𝑤𝑎𝑑𝑣 is a weight balancing the reconstruction and adversarial losses (set to 0.01 in this study); 𝒎̃𝑖 is the reconstructed 

sample of 𝒎𝑖; and N is the number of training samples.  

In the regularization phase, the discriminator is trained to distinguish real latent vectors from the prior distribution based 

on the loss function: 335 

ℒ𝐷 = −
1

𝑁
∑{log[𝐷(𝒛𝑖)] + log [1 − 𝐷[𝒢𝐺(𝒎𝑖)]}

𝑁

𝑖=1

(17) 

This loss function helps the discriminator distinguish between the latent vector zi (from the true distribution p(z)) and the fake 

latent vector produced by the encoder 𝒢𝐺(𝒎𝑖).  

The constraint loss functions in the adversarial autoencoder framework ensure that the reconstructed high-dimensional 

parameter field m̃ closely matches the original field m, while also making sure that the distribution of the low-dimensional 340 

latent vector z approximates a predefined standard normal distribution p(z). After finishing the training process, it is possible 

to sample from the low-dimensional space of p(z) and use the decoder to generate corresponding high-dimensional parameter 

fields. Then, the high-dimensional parameter field can be reconstructed by indirectly estimating the low-dimensional latent 

vectors (Makhzani et al., 2015; Mo et al., 2020).  
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2.3 Optimization algorithms 345 

2.3.1 Metaheuristic algorithms 

The four metaheuristic algorithms used in this paper essentially update model parameters through distinct heuristic 

stochastic search strategies. Specifically, particle swarm optimization (PSO) updates model parameters m  based on the 

personal best position of particles and the global best position of the swarm (Eberhart and Kennedy, 1995). Genetic algorithm 

(GA) encodes the initial model parameter samples using binary encoding, then iteratively updates them through crossover 350 

(combining portions of encoded solutions to generate new candidate solutions), mutation (randomly altering encoded 

information to introduce diversity), and selection (choosing candidate solutions based on objective function evaluations) 

(Holland John, 1975). Differential Evolution (DE) initializes a population of real-valued parameter vectors and iteratively 

updates them through differential mutation (generating trial solutions based on vector differences among population members), 

crossover (probabilistically combining components from original and mutated vectors), and greedy selection (retaining 355 

solutions with better objective function values) (Storn and Price, 1997; Tran et al., 2022). Simulated Annealing (SA) starts 

from a random initial solution and iteratively explores neighbouring solutions, accepting them probabilistically based on the 

Metropolis criterion, while gradually decreasing temperature parameter until convergence (Metropolis et al., 1953; Kirkpatrick 

et al., 1983).  

A common characteristic of all the methods described above is that each iterative update of model parameters requires 360 

multiple evaluations of the objective function, and sufficient iterations are necessary to balance local exploitation and global 

exploration. Detailed implementation procedures and theoretical foundations of these methods are provided in the 

supplementary materials. The metaheuristic algorithms used in this study were implemented using the open-source Python 

package scikit-opt (https://scikit-opt.github.io/ ).  

2.3.2 TNNA algorithm 365 

The TNNA algorithm aims to obtain a reverse network FReverse(·) that maps the observation vector to model parameters, 

as shown in equation (18).  

m=FReverse(𝐲obs, θReverse) (18) 

where θReverse are the trainable parameters of FReverse. Since m also serves as the input to the established surrogate model 

FForward(·), by substituting the parameter m in the inversion objective function of equation (2) with the expression from 370 

equation (18), we obtain the objective function constraint for  θReverse (i.e., the loss function for training FReverse): 

θReverse
* = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑

1

𝜎𝑖

𝑁𝑜𝑏𝑠

𝑖=1

[y
obs

[i] − FForward(FReverse(𝐲obs, θReverse))[i]]
2

(19) 

After obtaining the optimal trainable parameters θReverse
*

 through backpropagation based stochastic gradient descent within the 

pytorch framework, the final inversion results for the model parameters can be computed by m∗=FReverse(𝐲obs, θReverse
* ). The 

https://scikit-opt.github.io/)来实现的
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required training data here are the normalized observation data. Specifically, the reverse network for this study is designed 375 

using an FC-DNN with three hidden layers, each containing 512 neurons.  

During reverse network training processes, each iteration of updating the trainable parameters θReverse involves two main 

steps: First, the observation vector y
obs

 is input into the reverse network FReverse to obtain the parameter prediction vetcorvector 

𝒎̃. Next, the predicted parameter 𝒎̃  is input into the forward network FForward to generate corresponding forward prediction 

results. Subsequently, the trainable parameters θReverse  of the reverse network are updated through standard DNN model 380 

training based on the error feedback from the loss function in equation (19). This process demonstrates that FReverse and FForward 

are integrated through a tandem connection, which is why this method is named TNNA. Upon completing the training of 

FReverse, the final optimal parameters are predicted by inputting observation data into FReverse. Further details on TNNA can be 

found in (Chen et al., 2021). 

In the above process, each backpropagation step involves only a single forward calculation of the loss function. After 385 

establishing the computational graph, gradients of the trainable parameters θReverse are computed through backpropagation 

combined with automatic differentiation. These gradients are then used to update the trainable parameters θReverse. Thus, only 

one forward simulation is executed during each epoch of the reverse network FReverse training procedure. This presents a marked 

computational advantage of TNNA compared to the four selected metaheuristic algorithms, which require numerous forward 

simulations for parameter updates at each iteration. 390 

 

3. Case Study 

This study considers three synthetic cases based on previous research, covering different model sizes and hydraulic 

gradient combinations (Jose et al., 2004; Zhang et al., 2018; Mo et al., 2019) to evaluate the performance of the TNNA 

algorithm against conventional metaheuristic algorithms. Both Case 1 and Case 2 are approximately tens of meters in size, 395 

with simulation time measured in days of 60 days. Their hydraulic gradients are 0.05 and 0.1, respectively. These scenarios 

are typically found in large sand tank experiments, aquifers with natural slopes, or in-situ experimental areas where flow 

conditions are enhanced through pumping wells. Case 3 simulates contaminant plume migration, has a size of approximately 

one kilometre, and simulation time measured in yearsof several years (up to 30 years). It uses a hydraulic gradient of 0.00625, 

representing a smaller natural gradient typically found in alluvial aquifers. Regarding the differences in heterogeneity 400 

conditions among these cases, Case 1 features a low-dimensional zoned permeability field scenario; Case 2 involves a high-

dimensional Gaussian random permeability field parameterized via the Karhunen-Loève expansion (KLE); and Case 3 uses a 

high-dimensional non-Gaussian binary random permeability field parameterized by a decoder trained with OCAAE. The 

numerical models of the three cases are established using TOUGHREACT, which employs an integral finite difference method 

with sequential iteration procedures and adaptive time stepping to solve the flow and transport equations. In all the three cases, 405 

the relative error tolerance for the conservation equations was uniformly set to 10-5, ensuring that the maximum imbalance of 
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conserved quantities within each discrete grid cell remains below one part in 100,000 of the total quantity in that cell. 

Dispersion effects are inherently incorporated through molecular diffusion and numerical dispersion induced by upstream 

weighting and grid discretization (Xu et al., 2011).  

After developing numerical models for the three scenarios, we first evaluate four surrogate models in Case 1, and the 410 

optimal surrogate model will be integrated into the inversion framework. Subsequently, hypothetical observation scenarios are 

used to systematically compare the inversion accuracy of TNNA against four metaheuristic algorithms across the three cases. 

The observation data (hydraulic heads and solute concentrations) for model parameter inversion are generated by adding 

Gaussian noise perturbations to the numerical model simulation results. Specifically, observational noise is introduced by 

multiplying the min-max normalized simulated data by a random noise factor ϵ~N(1, 𝜎2), where 𝜎 represents the ratio of 415 

observational noise to the observed values. In this study, we conduct a comparative analysis of inversion performance across 

the three cases under a noise level of σ=0.01. Additionally, our previous study (Chen et al., 2021) examined the effects of 

higher observational noise levels (σ=0.05 and 0.1) and real-world noise conditions on inversion accuracy in low-dimensional 

parameter scenarios. To further investigate the impact of increased observational noise on inversion performance in high-

dimensional parameter scenarios, we conducted an extended analysis on Case 3—the most complex scenario—by increasing 420 

the noise level to 10% (σ=0.1). This analysis also provides insights into the stability of the TNNA algorithm when integrated 

with a generative machine learning-based inversion framework for high-dimensional parameter estimation. Here we applied 

the multiplicative noise is intended to ensure that all perturbed observation values remain non-negative, which is particularly 

important in regions near plume boundaries where concentrations are close to zero. Generally, observation errors are assumed 

to be independent of the measured values, whereas the multiplicative noise model introduces value-proportional perturbations, 425 

resulting in a positive correlation between the standard deviation of observation noise and the true values. This type of error 

dependence may also exist in real-world studies when certain measurement techniques are used. For example, in hydraulic 

head monitoring, pressure transducers may exhibit drift (i.e., a persistent deviation in output not caused by actual pressure 

changes) due to aging and fatigue of components such as the diaphragm or strain gauge, leading to reduced measurement 

accuracy (Sorensen and Butcher, 2011). Variation in hydraulic pressure can lead to different levels of drift among transducers, 430 

with those installed at higher pressure (i.e., higher hydraulic head) environments tending to experience more significant drift 

and thus being more prone to elevated observation noise. For the analysis of solute concentrations in laboratory settings, when 

the concentrations of water samples exceed the detection range of the instrument, a common approach is to dilute these samples 

prior to measurement. While analytical instruments may introduce additive errors at a relatively fixed level, the rescaling 

process following dilution (i.e., multiplying the measured value by the dilution factor) amplifies these errors. As a result, the 435 

final measurement error becomes approximately proportional to the original solute concentration (Kabala and Skaggs, 1998). 

Given that the goal of this study is to evaluate the robustness of five inversion algorithms under different noise levels, both 

additive and multiplicative noise models are suitable for representing observational uncertainty. Prior work by Neupauer et al. 

(2000) demonstrated that the choice between these two noise types has minimal influence on the comparative performance of 

inversion methods. Almeida et al. (2020) The details of these three cases are provided in Sections 3.1 to 3.3.  440 
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3.1 Case 1: Low-dimensional zoned permeability field scenario 

As shown in Figure 2, the numerical model for the low-dimensional scenario focuses on conservative solute transport 

within a zoned permeability field. The model domain is a two-dimensional rectangular area measuring 10m×20m. The left and 

right boundaries are Dirichlet boundary conditions, with a hydraulic head difference of 1 m. The heterogeneous permeability 

is divided into eight homogeneous permeability zones, denoted as k1 to k8. The prior range for these eight permeabilities is 445 

from 1×10-12 to 9.9×10-12 m2. The contaminant source is located at the left boundary with a fixed release concentration ranging 

from 1×10-3 to 1 mol/L. The simulation area is uniformly discretized into 3,200 (40×80) cells, and the simulation time is set 

to 20 days.  

 

Figure 2. Flow domain of the solute transport model for the low-dimensional scenario.  450 

According to these model conditions, there are nine model parameters to be estimated: eight permeability parameters (k1 

to k8) and the source release concentration. As shown in Figure 2, these parameters will be estimated using the observation 

data of hydraulic heads and solute concentrations collected from 25 locations, denoted by black pentagrams. Additionally, 

observation data from another 24 locations, denoted by orange hexagons and not included in the calibration process, will be 

used to evaluate the prediction accuracy of the calibrated numerical model.  455 

3.2 Case 2: High-dimensional gaussian random permeability field scenario 

The numerical model for the high-dimensional scenario features a domain size of 10m×10m, with impervious upper and 

lower boundaries and constant head boundaries at the left (1m) and right (0m) sides. The domain is discretized into 4,096 (64

×64) cells. The log-permeability field follows a Gaussian distribution, and the permeability value of the i-th mesh is defined 

as follows: 460 
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𝑘𝑖=𝛼𝑖𝑘𝑟𝑒𝑓 (20) 

where kref is the reference permeability, set to 2 × 10−13m2. The heterogeneity of 𝑘𝑖  is controlled by the modifier αi. The 

geostatistical parameters for this Gaussian field are: m = 0, σG
2 = 2, and λx =λy = 2.5 m. Under this heterogeneous condition, 

100 KLE terms are used to preserve more than 92.67% of the field variance. Consequently, estimating the permeability field 

is equivalent to identifying these 100 KLE terms.  465 

The observational data used for inverse modeling include hydraulic heads from a stationary flow field and solute 

concentrations measured every two days over 40 days, starting from the 2nd day to the 40th day (day: t= 2i, i=1,…,20). It should 

be noted that in high-dimensional parameter scenarios, the increased degrees of freedom typically result in greater parameter 

uncertainty. Insufficient observational information may fail to effectively constrain parameter estimation, resulting in potential 

uncertainty and equifinality (Beven and Binley, 1992; Mclaughlin and Townley, 1996; Zhang et al., 2015; Cao et al., 2025). 470 

Therefore, this study includes actual permeability values at observed locations as regularization constraints to mitigate 

inversion errors arising from equifinality. Since identical regularization conditions are uniformly applied across all algorithms, 

introducing these constraints ensures the stability and robustness of the inversion outcomes without affecting the inherent 

performance characteristics of the five optimization algorithms compared in this study. 

As the degrees of freedom significantly increase in high-dimensional models, the influence of observation data on 475 

inversion results becomes increasingly significant. Five scenarios with different monitoring networks are considered to 

comprehensively evaluate the performance of different inversion algorithms using various observations. Figure 3 displays the 

monitoring station locations for each scenario.  

 

Figure 3. The reference log-permeability field and locations of observation stations for five scenarios. The observation stations 480 
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are represented by black pentagrams. 

3.3 Case 3: High-dimensional non-gaussian random permeability field scenario 

 This case focuses on an estimation of a binary non-Gaussian permeability field. The numerical model features a 

domain size of 800m×800m, with impervious upper and lower boundaries and constant head boundaries at the left (5m) and 

right (0m) sides. The domain is discretized into 6400 (80×80) cells. The permeability field is a channelized random field 485 

composed of two lithofacies, with permeability values of 1.0×10-13m2 and 5.46×10-12m2 for the two media, respectively. The 

reference field (Figure 4b) is generated from a training image (Figure 4a) using the direct sampling (DS) method proposed by 

Mariethoz et al. (2010). The contaminant release source is located at the entire left boundary, with a concentration of 1 mol/L. 

The observational data used for inversion are generated through numerical simulation, including steady-state hydraulic head 

data and solute concentration data at 12 time points (from 2 years to 24 years, with 2-year intervals). This case focuses on a 490 

high-dimensional binary inverse problem aimed at identifying the lithofacies type of each discrete grid cell within the domain. 

Note that the permeability values of the two lithofacies are fixed in this case.  

 

Figure 4. (a) The training image used to generate random realizations of permeability field; (b) The reference field of the 

synthetic case (white symbols indicate observation locations). 495 

To achieve low-dimensional representation of permeability fields, a training dataset comprising 2000 stochastic 

realizations is generated using multi-point statistics (MPS). Then, an Octave convolution-based Adversarial Autoencoder 

(OCAAE) is developed, where the decoder network learns a nonlinear mapping from 100-dimensional Gaussian latent vectors 

to 6400-dimensional binary non-Gaussian permeability fields. Thus, the non-Gaussian permeability field is indirectly 

reconstructed by estimating the 100-dimensional latent vector.   500 
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4. Results and discussion 

4.1 Surrogate model evaluations 

Surrogate models were first compared using the Case 1 with low-dimensional parameter. For this scenario, the input 

parameters for the surrogate models consist of a 9-dimensional vector, including 8 permeability parameters and the 

contaminant source release concentration. The output consists of the simulated hydraulic heads and solute concentrations at 505 

25 observation points. Four training datasets Dtrain={Mtrain,Ytrain} with 200, 500, 1000, and 2000 samples (represented as Dtrain-

200, D train-500, D train-1000 and D train-2000, respectively) and a testing dataset Dtest={Mtest,Ytest} with 100 samples (represented as 

Dtest-100) are prepared. These datasets were generated using Latin hypercube sampling (LHS) and numerical simulations. The 

predictive accuracy of surrogate models was quantitatively evaluated using root mean square error (RMSE) and determination 

coefficient (R²) metrics (Chen et al., 2022).  510 

For solute transport inverse modeling problems, it is crucial to consider observations of both hydraulic heads and solute 

concentrations simultaneously. Therefore, the surrogate model within an inversion framework should have accurate predictive 

capabilities for hydraulic heads and solute concentrations. This study calculates RMSE and R2 values separately for hydraulic 

heads, solute concentrations, and all model response data, resulting in the following evaluation criteria: RMSEALL and 𝑅𝐴𝐿𝐿
2  for 

overall data, RMSEH and 𝑅𝐻
2  for hydraulic heads, and RMSEC and 𝑅𝐶

2 for solute concentrations. Additionally, it should be noted 515 

that the above RMSE and R2 metrics are computed based on the normalized hydraulic head and solute concentration data.  

Figure 5 and Figure 6 display the RMSE and R2 values of each surrogate model, and Figures S3 to S6 in the supplementary 

material present the pairwise comparison results. The optimal values for C, 𝜎, and 𝜀 in the MSVR method are provided in 

Table S1. For the FC-DNN, the optimal number of hidden layers was separately determined for each of the four datasets. The 

candidate range for the number was set from 1 to 7. According to the RMSEAll and RAll
2  values in Table S2 and Table S3, 520 

optimal number of hidden layers for in the FC-DNN for Dtrain-200, D train-500, D train-1000 and D train-2000 are 2, 4, 3, and 3, 

respectively. When training the FC-DNN, LeNet, and ResNet for Case 1, the hyperparameters for batch size and learning rate 

were consistently set to 50 and 1×10-4, respectively. The weight decay values for LeNet and ResNet were both set to 1×10-5, 

while FC-DNN used a weight decay of 0. The number of training epochs was uniformly set to 500 for all three models.  

 525 

According to the performance criteria in Figure 5 and Figure 6, the prediction accuracy of each surrogate model 

significantly improves with an increasing number of training samples. Based on RMSEAll and RAll
2  values, their performance 

ranks as follows: ResNet, LeNet, FC-DNN, and MSVR. The MSVR method accurately predicts hydraulic heads but performs 

the worst in predicting solute concentration. Training MSVR with the four prepared datasets, the RMSEH values are below 

0.02, and 𝑅𝐻
2  values are near 1. Notably, with a training sample size of 200, the prediction accuracy of MSVR for hydraulic 530 

heads is higher than that of FC-DNN and LeNet, as indicated by their RMSEH and 𝑅𝐻
2  values, closely matching that of ResNet. 

However, when using 200 training samples, the RMSEC value for MSVR exceeds 0.08, and the 𝑅𝐶
2 value falls below 0.85. 

Even with a dataset size of 2000, the enhancement in the MSVR-based surrogate model is limited, as the RMSEC value remains 
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around 0.05, and the 𝑅𝐶
2 value stays below 0.95. FC-DNN demonstrates a significant advantage over MSVR in predicting 

solute concentration, particularly with larger training sample sizes of 1000 or 2000. However, there are still some obvious 535 

biases between some surrogate modeling results and their numerical modeling results (see Figure S2(d)). When adopting CNN-

based surrogate models (LeNet and ResNet), the prediction accuracy for solute concentrations significantly improves (see 

Figure 5(b) and Figure 6(b)). With training datasets of 2000 samples, LeNet and ResNet achieve RMSE values below 0.02 and 

R² values close to 1. It is worth noting that the ResNet performs well even with smaller sample sizes. For example, with 200 

training samples, the RMSEC and 𝑅𝐶
2 values for LeNet are around 0.06 and 0.9, respectively, while these criteria values for 540 

ResNet are around 0.04 and 0.95 (see Figure 5(b) and Figure 6(b)). As the number of training samples increases, the advantages 

of ResNet become more apparent. According to Figure S4(d), when the training sample size reaches 2000, the prediction 

results of ResNet are closely consistent with the numerical simulation results for both hydraulic heads and solute concentrations. 

 

Figure 5. The RMSE results of surrogate model predictions. Plots (a) to (c) show respectively the RMSE values of hydraulic 545 

heads, solute concentrations and all model outputs.  

 

Figure 6. The R2 results of surrogate model predictions. Plots (a) to (c) show respectively the R2 values of hydraulic heads, 

solute concentrations and all model outputs.  

The comparison results of the surrogate models reflect a trend of enhanced robustness attributable to advancements in 550 

machine learning methodologies. Different machine learning approaches employ distinct strategies for achieving nonlinear 

mappings in developing surrogate models. Generally, deeper or larger models contain more trainable parameters, resulting in 

higher degrees of freedom to capture more robust nonlinear relationships. The essence of machine learning development lies 
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in addressing the challenge of training these complex DNNs. Current state-of-the-art machine learning techniques have 

demonstrated proficiency in training each of the four selected surrogate modeling methods. With sufficient training samples, 555 

a surrogate model of greater complexity exhibits enhanced capability in representing higher levels of non-linearity (Lecun et 

al., 2015; He et al., 2016). This also explains why, despite having a sufficient number of training samples, the improvement in 

prediction accuracy of the MSVR for solute concentration is limited. In CNNs, sparse connections and weight-sharing in 

convolutional layers reduce redundant weight parameters in DNNs, enhancing the feature extraction of hidden layers. 

Consequently, LeNet demonstrates better performance than FC-DNN. The ResNet, which employs residual blocks in 560 

conjunction with convolutional layers, effectively addresses the issues of gradient vanishing and exploding, making the 

successful training of deeper CNNs possible.  

According to Chen et al. (2021), a more globally accurate surrogate model can enhance the performance of TNNA 

inversion results. Thus, we selected the ResNet trained with 2000 samples for the subsequent inversion procedure. In the low-

dimensional scenario, its RMSE values for hydraulic head and solute concentration data are less than 0.02, with R² values 565 

greater than 0.99. We further extended the ResNet for the surrogate model construction of both Gaussian and non-Gaussian 

random field scenarios. In the two high-dimensional scenarios, the input parameters for the surrogate models are single-channel 

matrix data representing the heterogeneous parameter field, while the output consists of vector formed by flattening the multi-

channel matrix data, representing the simulated hydraulic heads and solute concentrations at predefined time steps within the 

simulation domain. The training and testing datasets for these two case scenarios consist of 2000 and 500 samples, respectively. 570 

For ResNet training in Case 2 (Gaussian random field), the hyperparameters were set as follows: batch size =100, learning rate 

=1×10-4, and weight decay =1×10-6. For Case 3 (non-Gaussian random field), the corresponding values were batch size = 50, 

learning rate = 1×10-3, and weight decay= 1×10-8. In both cases, the number of training epochs was also set to 500.  The RMSE 

values for hydraulic head and solute concentration data range from approximately 0.01 to 0.03, and the R2 values exceed 0.99, 

as shown in Table 1. This level of accuracy indicates that the surrogate model meets the predictive accuracy requirements for 575 

inversion simulations in both of the designed Gaussian and non-Gaussian random field cases. 

Table 1. The RMSE and R2 values for surrogate model predictions in designed five high-dimensional scenarios. 

 RMSE R2 
 RMSEH RMSEC RMSEAll 𝑅𝐻

2  𝑅𝐶
2 RAll

2  

Gaussian Scenario-1 0.0108 0.0174 0.0172 0.9990 0.9980 0.9982 

Gaussian Scenario-2 0.0102 0.0138 0.0136 0.9995 0.9989 0.9990 

Gaussian Scenario-3 0.0120 0.0165 0.0163 0.9991 0.9981 0.9983 

Gaussian Scenario-4 0.0123 0.0161 0.0159 0.9990 0.9984 0.9985 

Gaussian Scenario-5 0.0137 0.0156 0.0155 0.9989 0.9985 0.9986 

Non-Gaussian Scenario 0.0181 0.0280 0.0273 0.9952 0.9931 0.9932 
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4.2 Parameter inversion method comparison results 

4.2.1 Inversion results of the low-dimensional parameter scenario 

For the low-dimensional parameter scenario, the performance of optimization algorithms is thoroughly evaluated across 580 

100 parameter scenarios using the Monte Carlo strategy. The observation data for these scenarios are derived from the testing 

dataset after adding multiplicative Gaussian random noise ϵ~N(1,0.01). The population sizes of GA, DE, and PSO, along with 

the chain length in SA, are set in four distinct scenarios: 20, 40, 60 and 80 (these population size or chain length values are 

represented as NPC in subsequent discussions). These settings determine the number of forward modeling calls required for 

each iteration, significantly influencing the convergence rate and computational efficiency of optimization procedures. 585 

Maximum iterations for these four metaheuristic algorithms are set to 200. The learning rate, epoch number and weight decay 

for the TNNA algorithm are set to 6×10-5,1000, and 1×10-6, respectively. 

The performance of the five optimization algorithms is evaluated according to three aspects: average convergence 

efficiency and accuracy in inversion procedures, predictive accuracy of calibration models for hydraulic heads and solute 

concentrations, and statistical analysis of the estimated errors for each model parameter. Figure 7 presents the logarithmic 590 

average convergence curves (i.e., log10 of the average objective value during as a function of the inversion iterations) of four 

metaheuristic algorithms and the TNNA algorithm throughout 100 parameter scenarios. Specifically, sub-figures (a) to (d) 

represent the NPC values for metaheuristic algorithms set at 20, 40, 60, and 80, respectively. These figures clearly illustrate the 

average convergence speed and accuracy of five optimization algorithms. Figure 8 displays the comparison between simulated 

and observed values across all 100 parameter scenarios for both calibration and spatial predictive evaluation. Sub-figures (a) 595 

and (b) illustrate the comparative prediction fit at the 25 observation locations used for model calibration, whereas sub-figures 

(c) and (d) display the comparative prediction fit at the 24 independent observation locations. In this figure, distinct symbols 

are used to represent the five optimization algorithms. It should be noted that the NPC values for the four metaheuristic 

algorithms are uniformly set to 80 during this comparison. Figure 9 illustrates the probability density curves of the estimation 

errors for nine model parameters across 100 parameter scenarios, with different colours representing the five optimization 600 

algorithms.  

The results in Figure 7 demonstrate that the TNNA algorithm achieves the best convergence accuracy, with its 

convergence logarithmic objective function value (i.e., approximately -4.4) being smaller than those of the other four 

metaheuristic algorithms across these NPC settings. The influence of NPC on the convergence speeds of these four metaheuristic 

algorithms is not significant, exhibiting a distinct transition from rapid to slower convergence around the 75th iteration. As 605 

NPC increased from 20 to 80, each metaheuristic algorithm showed distinct improvements in the accuracy of the final objective 

function. The DE algorithm showed the least improvement in final convergence accuracy as the NPC value increased from 20 

to 80, with the logarithmic value of its objective function dropping from just above -4.0 to slightly below -4.0. The SA 

algorithm also showed limited improvement, with its logarithmic average convergence value increasing from around -4.1 at 

NPC=20 to slightly below -4.3 at NPC=80, close to that of the TNNA algorithm. Among the four metaheuristic algorithms, SA 610 
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exhibited the highest average convergence accuracy. Contrary to the SA and DE algorithms, the PSO and GA algorithms 

significantly enhanced average convergence accuracy as NPC increased. Specifically, as NPC increased from 20 to 80, the 

logarithmic convergence values of PSO and GA decreased by more than 0.5. While increasing NPC values may help 

metaheuristic algorithms reduce the gap in average convergence accuracy compared to the TNNA algorithm, larger NPC 

settings also require additional computational burdens. The above results indicate that the TNNA algorithm has a significant 615 

efficiency advantage over the four metaheuristic algorithms in parameter optimization. For instance, when conducting 

optimization procedure based on scikit-opt, the DE algorithm requires 32,000 forward model realizations (80×2×200) when 

NPC is set to 80, while the other three metaheuristic algorithms (PSO, GA, and SA) each require 16,000 realizations (80×200). 

In significant contrast, the TNNA algorithm requires only one forward model realization per iteration, resulting in 200 

realizations. These comparisons illustrated that the TNNA method is more effective than the other four metaheuristic 620 

algorithms in achieving robust convergence results. It is worth noting that the five optimization algorithms rely on stochastic 

processes for parameter updates. Therefore, the objective function values are not guaranteed to decrease monotonically with 

each iteration. According to Figure 7, the DE algorithm exhibits more noticeable fluctuations compared to other algorithms. 

Nevertheless, these fluctuations remain within a reasonable range. For example, at NPC=80, the objective function values after 

150 iterations range between 9.05×10-5~1.32×10-4 (corresponding to logarithmic values of -4.04~-3.88 in Figure 7(d)). 625 

Fluctuations between consecutive iterations typically remain within 1×10-5 (mostly around 3×10-6), which is considered 

reasonable for optimization algorithms.  

 

Figure 7. Comparative convergence trends (log10 of the average objective value) of five optimization algorithms on 100 

parameter scenarios. Plot (a) to (d) compare the four metaheuristic algorithms and TNNA under NPC=20, 40, 60, and 80, 630 

respectively; TNNA was executed only once on the same 100 parameter scenarios, and its curve is identical across all plots; 

Markers indicate convergence values every 10 iterations.  

The results presented in Figure 8 indicate that, among the five optimization algorithms, the TNNA algorithm achieves the 

smallest RMSE values and R2 values closest to 1.0 for both hydraulic heads and solute concentration during model calibration 
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and spatial predictive evaluation. Furthermore, the distribution of comparison points demonstrates that the modeling results 635 

obtained from both calibration and independent prediction using the TNNA algorithm match the observed values more 

accurately than those of the other four metaheuristic algorithms, particularly for solute concentrations. Among the four 

metaheuristic algorithms, SA and DE outperform GA and PSO regarding RMSE and R2 values. During model calibration and 

predictive evaluation, PSO exhibits the worst predictive accuracy, recording the highest RMSE and R2 values for both hydraulic 

heads and solute concentrations. It is noteworthy that the RMSE and R2 values for SA during hydraulic head calibration are 640 

0.0085 and 0.9992, respectively, while those for DE during solute concentration calibration are 0.0112 and 0.9969. These 

values are almost equal to those of the TNNA algorithm. The robustness of an inversion algorithm is determined by its accuracy 

in both calibration and predictive evaluation for hydraulic heads and solute concentrations. However, DE and SA demonstrate 

appropriate calibration accuracy only for one of the two simulation components. Overall, the TNNA algorithm provides more 

robust model calibration and predictive evaluation results than the other four metaheuristic algorithms. 645 

Figure 9 indicates that the estimated error distributions for the nine model parameters derived from the TNNA algorithm 

are more concentrated than those obtained from the four metaheuristic algorithms. The mean estimated error values for the 

nine numerical model parameters using the TNNA algorithm are also the lowest. These results highlight the high accuracy and 

reliability of the TNNA inversion algorithm. Among the four metaheuristic algorithms, DE and SA outperform GA and PSO. 

This is because the probability density curves of estimation errors for the nine parameters using DE and SA are more 650 

concentrated around zero, with mean values lower than those of GA and PSO. The DE algorithm shows a more concentrated 

distribution around zero for the overall estimation errors of parameters k1 to k8. In contrast, the SA reveals reduced estimation 

errors for the C0 parameter in most cases, ranking just behind the TNNA algorithm. GA outperforms PSO in estimation 

accuracy for seven of the nine model parameters, with PSO matching its probability density curves to that of GA only for 

parameters k2 and k4. As a whole, the statistical results of the estimated model parameter errors illustrate that the machine 655 

learning-based TNNA algorithm exhibits enhanced inversion performance compared to the four metaheuristic optimization 

algorithms. However, the findings also reveal that none of the five algorithms consistently offers completely reliable inversion 

solutions across all scenarios. For example, the TNNA algorithm, despite its generally better performance, demonstrates 

estimation errors as high as 0.4 for parameters k4 and k6 in some scenarios. Such results are likely because the provided 

observational data cannot ensure equifinality in some scenarios. In these cases, it is essential to introduce additional 660 

regularization constraints to attenuate the equifinality (Wang and Chen, 2013; Arsenault and Brissette, 2014). These findings 

emphasize the importance of employing the Monte Carlo method in comparative studies of inversion algorithms to ensure 

comprehensive evaluations and avoid misleading conclusions. 
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Figure 8. Comparison of predictive accuracy for hydraulic heads and solute concentrations simulated using parameters 665 

estimated by the four metaheuristic inversion algorithms (DE, SA, GA, PSO) and the TNNA method. Sub-figures (a) and (b) 

show predictive comparisons at the 25 observation locations used for model calibration; sub-figures (c) and (d) show predictive 

comparisons at the other 24 independent observation locations. 

 
Figure 9. Probability density curves of estimation errors for nine model parameters using five optimization methods. Each 670 

curve represents the distribution of estimation errors across 100 parameter scenarios, with their mean error values indicated 

in the legends. 

The above comparison results indicated that the machine learning-based TNNA algorithm outperforms the other four 
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metaheuristic algorithms in both inversion accuracy and computational efficiency. The primary advantage of the TNNA 

algorithm over the four metaheuristic algorithms is its well-defined updating direction of model parameters, guided by the loss 675 

function, which serves as the objective function for inverse modeling. Research on machine learning applications indicates 

that DNNs can approximate continuous functions by adjusting weights and biases (Lecun et al., 2015; Goodfellow et al., 2016). 

The TNNA algorithm leverages this capability by transforming the model parameter inversion issue into the training of a 

reverse network to achieve reverse mappings. By establishing a loss function based on inversion constraints from the Bayesian 

theorem, the TNNA algorithm ensures that training the reverse network brings each parameter update closer to the optimal 680 

solution during each epoch, thereby improving accuracy and convergence speed. In contrast, the four metaheuristic algorithms 

require numerous forward simulations for each parameter update. The optimization direction for model parameters is 

determined by evaluating the objective function. This process is governed by the exploration and exploitation strategies 

inherent in metaheuristic algorithms. However, these approaches introduce randomness in the direction of model parameter 

updates, making it challenging to ensure that updates move towards the direction of fastest convergence under specific 685 

hyperparameter settings. This also explains why the TNNA algorithm can update model parameters more efficiently and 

achieve higher convergence accuracy despite requiring only one forward realization in each training epoch. 

4.2.2 Inversion results of the high-dimensional Gaussian scenario 

For estimating the permeability field under five designed observational scenarios, the iteration number for the four 

metaheuristic algorithms was set at 200, with NPC values of 100, 500, and 1000. The learning rate and weight decay for training 690 

reverse networks within the TNNA framework were set to 1×10-3 and 1×10-4, respectively.  

Figure 10 and Figure 11 illustrate the log-permeability field estimation results and error distributions for the four 

metaheuristic algorithms and the TNNA algorithm under the most densely observed scenario (i.e., Scenario 5). The 

corresponding results for Scenarios 1-4 are presented in Figure S7-S14. Figure 12 compares the RMSE values for the log-

permeability fields estimated by the four metaheuristic algorithms and the TNNA algorithm across all five scenarios. These 695 

detailed RMSE values can be found in Table 2 (Scenario 5) and Table S4 (Scenarios 1-4). For Scenario 5, the accuracy of 

permeability estimations by each metaheuristic algorithm improves as the NPC value increases (see Figure 10 and Table 2). 

Notably, the GA achieves the best results with an NPC of 1000, recording an RMSE of 0.1057. The DE and SA algorithms yield 

their most accurate permeability estimations with RMSE values of 0.1597 (NPC=100) and 0.1549 (NPC=1000), respectively. 

The PSO method is the least effective, achieving an RMSE of 0.3334 at NPC =1000. As shown in Figure 11 and Table 2, the 700 

TNNA algorithm provides inversion results with an RMSE of 0.1063 after training the reverse network for 200 epochs. This 

suggests that the TNNA algorithm can estimate high-dimensional permeability fields with accuracy comparable to that of the 

GA method (NPC=1000) with significantly fewer forward model realizations (200 compared to 200,000), reducing the 

computational burden by 99.9% and improving inversion efficiency by a factor of 1000. Increasing the training epochs of the 

reverse network to 1000 further reduces the RMSE of the TNNA method to 0.0595, demonstrating its advantages over the four 705 

metaheuristic algorithms in this scenario. Across all scenarios, the accuracy of the estimated permeability fields correlates 
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positively with the density of observation wells, and estimation errors are generally higher in areas not covered by monitoring 

wells (see Figure S7-S14). Figure 12 further demonstrates that the RMSE values for permeability estimation using the TNNA 

algorithm are consistently lower than those of the four metaheuristic algorithms across Scenarios 1-4, indicating that the TNNA 

algorithm exhibits greater robustness compared to the metaheuristic algorithms in all five scenarios. 710 

 

Figure 10. Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for NPC=100, 500, and 1000, respectively) and 

absolute errors (row 2, 4, and 6 for NPC=100, 500, and 1000, respectively) for Scenario 5, achieved by four metaheuristic algorithms (plots 

(a) to (d) correspond to GA, DE, PSO and SA, respectively).  

 715 

Figure 11. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 5, achieved by the TNNA. Plots 

(a) and (c) show the log-permeability fields estimated using 1000 (TNNA-1000) and 200 (TNNA-200) training samples, respectively; plots 

(b) and (d) present the corresponding absolute error distributions.  

Table 2. RMSE values of estimated log-permeability fields for the four metaheuristic algorithms and the TNNA algorithm 

under Scenario 5. 720 
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Metaheuristic algorithms 
TNNA 

 GA DE PSO SA 

NPC=100 0.1940 0.1597 0.5399 0.2071 epoch=200 0.1063 

NPC=500 0.1142 0.1904 0.3810 0.1781 epoch=1000 0.0595 

NPC=1000 0.1057 0.1748 0.3334 0.1549   

 

 

Figure 12. Comparison of RMSE in estimating log-permeability fields using four metaheuristic algorithms and the TNNA 

algorithm across five scenarios (S-1 to S-5).  

To evaluate the predictive performance of the numerical model calibrated by various inversion methods, simulations of 725 

hydraulic heads and solute concentrations were conducted over 60 days, starting on the 2nd day with recordings every two days, 

using the permeability fields with the lowest RMSE values identified by each inversion method. Observation data from the 2nd 

day to the 40th day were used for model calibration, while additional data from the 42nd to the 60th day were employed to 

evaluate the future predictions of the calibrated numerical models. The RMSE values for the calibrated hydraulic heads and 

time series solute concentrations are presented in Table 3 and Figure 13. Figure 14 displays the spatial distribution of the 730 

calibrated numerical simulation results and errors for hydraulic heads and solute concentration simulation results at three 

specific times (t=4th, 20th, and 52nd days). Results for the entire 60-day period are presented in Figure S15-S44. Note that in 

Figure 14, ŷ
H

 and ŷ
C

 represent the simulated spatial distributions of hydraulic heads and solute concentrations based on the 

estimated permeability fields through inverse modeling, while y
H

 and y
C

 represent those simulated using the true permeability 

field.  735 

According to Figure 14(a), the calibrated simulation errors for hydraulic heads did not exceed 0.02 meters for the TNNA 

method and three of the four considered metaheuristic algorithms, except PSO method, which exhibited hydraulic head errors 

larger than 0.06 meters in certain areas. Among the four metaheuristic algorithms, the GA method achieved the lowest RMSE 

in hydraulic head simulations, with a value of 7.4837×10-4. For solute concentrations, the GA algorithm consistently has the 

highest prediction accuracy among the metaheuristic algorithms, with RMSE values generally around 0.005 (Figure 13). The 740 

TNNA algorithm achieved a similar level of accuracy to GA in the calibrated numerical model predictions. Specifically, during 

the initial 10 days and from the 41st day to the 60th day, the TNNA algorithm showed slightly higher prediction accuracy than 
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the GA-calibrated model. However, during the intermediate period from the 10th day to the 40th day, the GA-calibrated model 

had a slight advantage over the TNNA algorithm. The normalized absolute errors in the solute transport simulation results 

obtained using the TNNA algorithm remained consistently below 0.02 throughout the simulation period (Figure 14(b to c)). 745 

These results indicate that in high-dimensional settings, the TNNA algorithm provides inversion outcomes that enable the 

calibrated model to deliver simulation results comparable to those of the best-performing metaheuristic algorithm. Overall, 

the TNNA method also demonstrates advantages over the four metaheuristic optimization algorithms in the designed high-

dimensional scenarios, excelling in both inversion efficiency and accuracy.  

Table 3. RMSE values of calibrated hydraulic heads for the four metaheuristic algorithms and the TNNA algorithm. 750 

 TNNA DE GA PSO SA 

RMSE 6.8537×10-4 1.2181×10-3 7.4837×10-4 2.1683×10-3 1.0316×10-3 

 

Figure 13. RMSE values of calibrated solute concentrations over 60 days for the four metaheuristic algorithms and the TNNA 

algorithm.  
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Figure 14. Spatial distributions of calibrated numerical simulation results and absolute errors for hydraulic heads and solute 755 
concentrations at three dynamic times (t=4, 20, and 50 day) using the TNNA algorithm and four metaheuristic algorithms. 
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4.2.3 Inversion results of the high-dimensional non-Gaussian scenario 

In this scenario, the iteration number for the four metaheuristic algorithms was set at 200, with NPC values of 1000. For 

the TNNA method, the reverse network is trained for 1000 epochs. Thus, each metaheuristic algorithm spent 100 times more 

forward model evaluations than the TNNA algorithm. Figure 14 and Figure 15 show the permeability fields estimated by the 760 

five optimization algorithms and their error distributions compared to the true field (i.e., the error fields). Figure 16(a) and 

Figure 17(a) present the comparison between calibrated simulations and hydraulic head observations, as well as solute 

concentration observations. Figure 16(b) and Figure 17(b) compare the solute concentration simulations for the 26 th, 28th, and 

30th years based on the estimated parameter field and the designed true field.  

According to Figures 15 and 16, the binary channel fields reconstructed by each inversion algorithm are highly consistent 765 

with their corresponding true fields, with the estimated errors primarily concentrated at the interfaces between high-

permeability channels and low-permeability regions. It is found that increasing the observation noise level from 1% to 10% 

does not lead to noticeable increase in the number of grid cells exhibiting differences between the estimated parameter fields 

and the true field. One potential reason for this is that the least-squares objective function used in the inversion framework of 

this study is based on the assumption that the observation noise follows a zero-mean Gaussian distribution. With adequate 770 

regularization constraints, such as the dense monitoring network design used in this study, the model responses corresponding 

to the optimal parameter estimates obtained through global optimization algorithms statistically converge to the mean of the 

observed data. It can also be evaluated by the calibration simulations. Specifically, the pairwise scatter plots in Figure 17(a) 

and Figure 18(a) indicate that the calibrated simulation results from different methods are closely distributed around the 

reference diagonal. This suggests that even with increased observational noise, the inversion-derived calibration results do not 775 

exhibit noticeable bias. Furthermore, the predictions based on inversion results remain highly consistent with those of the true 

permeability field (Figure 17(b) and Figure 18(b)). The RMSEAll and RAll
2  values for the predictions beyond the observational 

period range from 0.018 to 0.044 and 0.962 to 0.994, respectively. This indicates that even under relatively high Gaussian 

noise conditions, the nonlinear inversion framework used in this study can reliably reconstruct the non-Gaussian permeability 

field, ensuring high predictive accuracy. Nevertheless, it is important to note that while the inversion accuracy under a 10% 780 

noise level remains comparable to that in the 1% noise scenario, increasing observational noise inevitably raises the 

convergence value of the least-squares loss function. This trend is evident from the RMSE values in Figures 17(a) and 18(a). 

Moreover, since the observational noise here is assumed to follow a Gaussian distribution, real-world scenarios with more 

complex noise characteristics may further exacerbate equifinality in the inversion results. In such cases, incorporating 

additional system information as regularization constraints is essential to enhance the robustness of the objective function and 785 

mitigate ill-posedness.  

Compared to the four metaheuristic algorithms, TNNA demonstrates advantages in computational efficiency and accuracy 

for non-Gaussian random field inversion. In the low noise level scenario, TNNA achieves an inversion convergence accuracy 

with an RMSEAll of 0.021 and an  RAll
2  of 0.996 (Figure 17(a)). In contrast, the two best-performing metaheuristic methods, GA 
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and SA, yield RMSEAll values of 0.027 and 0.029, with RAll
2   values of 0.994 and 0.993, respectively (Figure 17(a)). Moreover, 790 

TNNA achieves the highest fitting accuracy for predictive results among the five optimization algorithms, with an RMSE of 

0.018 and an R2 of 0.994 (Figure 17(b)). Even in high-noise scenarios, TNNA continues to exhibit an advantage over the four 

metaheuristic algorithms in both inversion convergence accuracy (Figure 18(a)) and predictive accuracy (Figure 18(b)). 

Additionally, considering the number of forward simulation calls required by each inversion algorithm, TNNA proves to be a 

more efficient approach in this case study. 795 

 

Figure 15. Reconstructed non-Gaussian binary channelized fields and their error distributions (1% observation noise) 

 

Figure 16. Reconstructed non-Gaussian binary channelized fields and their error distributions (10% observation noise) 
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 800 

Figure 17. pair-wise comparison between the calibrated simulation results with the observational data (a); and the true parameter 

based predictions (1% observation noise).  

 

Figure 18. pair-wise comparison between the calibrated simulation results with the observational data (a); and the true parameter 

based predictions (10% observation noise).  805 

4.3 Parameter inversion method comparison results 

        This study evaluates the computational efficiency and inversion reliability of the TNNA algorithm under three different 

heterogeneous conditions. In optimization-based inversion studies, the primary challenge is to establish nonlinear inversion 

constraints and design efficient algorithms to find optimal parameter solutions. The main difference between cases lies in how 

the constraint conditions are formulated, while the optimization algorithm itself remains generally applicable across different 810 

optimization tasks if these conditions are properly defined. Therefore, the fundamental challenge in applying well-performing 
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inversion methods to real-world cases lies in whether robust nonlinear optimization constraints can be effectively established 

for inversion tasks. Given the complexities of subsurface systems, three key aspects should be considered to extend the TNNA 

method to real-world applications: 1) Representation of complex heterogeneous model parameter fields; 2) Maximizing the 

effective observational information while optimizing monitoring costs; and 3) Integrating multi-source data and accounting 815 

for uncertainties in model process to better address complex observational noise scenarios and uncertainties in physical 

mechanisms. Detailed considerations for these issues are as follows:. 

⚫ Heterogeneity in aquifer parameter structures: . This study developed a dimensionality-reduction framework using the 

OCAAE for high-dimensional parameter field inversion. Generative machine learning methods (, including state-of-the-

art variants) , also have the potential to characterize more complex non-Gaussian fields. However, obtaining 820 

representative parameter field datasets that accurately capture the spatial variability and heterogeneous geostatistical 

characteristics of the target aquifer remains challenging in practical research. For instance, spatial variations in non-

stationary stochastic aquifer systems may result in significant discrepancies in geostatistical parameters across sampling 

windows (Mariethoz and Caers, 2014). Therefore, developing appropriate generator training strategies is essential for 

these practical scenarios. 825 

⚫ Monitoring network optimization: . The inversion performance of the TNNA and four metaheuristic algorithms is 

evaluated based on a nonlinear optimization model with dense distributed monitoring networks. This monitoring strategy 

is commonly employed in the evaluation of inversion algorithms to ensure sufficient observational information, thereby 

reducing non-uniqueness in parameter inversion results (Bao et al., 2020; Mo et al., 2020; Zhang et al., 2024). Such 

monitoring strategies for comparing inversion methods also aim to minimize external interferences, ensuring that 830 

differences in performance are primarily determined by inversion algorithms themselves. However, the number and 

locations of monitoring stations are constrained by financial budgets. Thus, optimizing monitoring network design to 

minimize monitoring costs without compromising constraint information quality is indispensable for practical 

applications (Keum et al., 2018; Chen et al., 2022; Cao et al., 2025). 

⚫ Considering multi-source data and uncertainties in model processes: . This study considers only hydraulic head and solute 835 

concentration data, assuming ideal white Gaussian noises. However, in real-world scenarios, observational noise is often 

more complex and may exhibit non-Gaussian characteristics. For instance, some solute concentrations cannot be 

measured in situ, and unavoidable perturbations may be included during sample collection and laboratory analysis. 

Similarly, hydraulic head data measurements may be influenced by other factors, including meteorological conditions, 

human groundwater extraction, and engineering disturbances, among othersmeteorological factors. Moreover, all 840 

observational data in this study are constrained by a single predetermined process model. However, if significant 

uncertainties exist in the actual aquifer model processes or if the conceptual model deviates substantially from real-world 

conditions, even an advanced optimization algorithm may produce incorrect inversion results. Therefore, it is crucial to 

integrate multi-source data (e.g., geophysical measurements or isotope data) and develop multi-process coupled models 

to establish more robust inversion frameworks (Dai and Samper, 2006; Botto et al., 2018; Chang and Zhang, 2019). 845 
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Specifically, parameterizing model process uncertainties to enable the simultaneous identification of both model 

processes and unknown parameters could be a promising direction for real-world studies.  

5. Summary and conclusions 

This study systematically evaluates the performance of the Tandem Neural Network Architecture (TNNA) in comparison 

to four widely used metaheuristic algorithms (GA, PSO, DE, and SA) across three inversion frameworks designed for different 850 

heterogeneous groundwater conditions. The results demonstrate that TNNA consistently outperforms the four conventional 

metaheuristic algorithms across the designed scenarios, covering both low-dimensional and high-dimensional cases. It 

provides more accurate inversion results while significantly reducing computational costs. Moreover, it has been verified that 

the TNNA algorithm consistently delivers reliable inversion results with just a single forward simulation per iteration step in 

scenarios featuring various complex and uncertain model parameters. This characteristic offers a practical approach to 855 

balancing exploration and exploitation with a reduced computational burden, contrasting with conventional metaheuristic 

algorithms that require increasing forward simulations as the inversion problem grows more complex. Furthermore, this study 

introduces a novel framework that integrates TNNA, along with optimization algorithms, with generative machine learning-

based parameterization methods for dimensionality reduction in complex heterogeneous parameter fields.  

In summary, training reverse network through TNNA method provides significant advantages over conventional 860 

metaheuristic algorithms. The proposed integrated framework, which combines the TNNA method with dimensionality 

reduction techniques, further enhances its applicability and demonstrates strong potential for high-dimensional inversion 

problems. Developing specialized inversion algorithm frameworks based on state-of-the-art machine learning methods tailored 

to specific problem scenarios represents a promising research direction. Furthermore, hyperparameters can significantly 

influence neural network performance in certain scenarios. It is necessary for future research to explore hyperparameter 865 

optimization and sensitivity analysis to identify the optimal neural network structures and training strategies, ultimately 

enhancing model performance across diverse hydrological conditions. 
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