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Abstract. Machine learning has significantly improved inverse modeling for groundwater systems. One promising 

development is the tandem neural network architecture (TNNA), which integrates surrogate modeling and reverse mapping 

for efficient forward simulations and data assimilation. Although TNNA has shown success in groundwater inverse modeling, 15 

its application scenarios remain limited, and its advantages over conventional methods have not been fully explored. This 

paper aims to address these gaps by comparing the TNNA method with four conventional metaheuristic algorithms: Particle 

Swarm Optimization, Genetic Algorithm, Simulated Annealing, and Differential Evolution. Two synthetic solute transport 

numerical cases are designed, with aquifer parameters characterized by low- and high-dimensional scenarios, respectively. 

The surrogate model is constructed using a deep residual convolutional neural network (ResNet), selected based on a 20 

comparative evaluation against three other popular machine learning models. Inversion performance is evaluated based on the 

accuracy of calibrated hydraulic heads, solute concentrations, and parameter estimation errors. The results demonstrate that 

the TNNA algorithm yields more reliable inversion results and significantly reduces computational burden across both low- 

and high-dimensional cases, effectively balancing exploration and exploitation in global optimization. This study highlights 

the significant advantages of machine learning in advancing groundwater system inversions. 25 

 

Machine learning has significantly advanced inverse modeling in groundwater systems. The tandem neural network 

architecture (TNNA) represents a novel approach for estimating uncertain parameters by constructing inverse mappings. 

However, its reliability has only been validated in limited research scenarios, and its advantages over conventional methods 

remain underexplored. This study systematically compares the performance of the TNNA algorithm with four traditional 30 

metaheuristic algorithms across three heterogeneity scenarios, each employing a specific inversion framework: (i) a surrogate 

model coupled with an optimization algorithm for cases with eight homogeneous parameter zones, (ii) Karhunen-Loève 
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Expansion (KLE)-based dimensionality reduction combined with a surrogate model and an optimization algorithm for a high-

dimensional Gaussian random fields, and (iii) generative machine learning-based dimensionality reduction integrated with a 

surrogate model and an optimization algorithm for a high-dimensional non-Gaussian random fields. Additionally, we evaluate 35 

algorithm performance under both low (1%)- and high (10%) -noise conditions for each casethe non-Gaussian random field 

scenario, which exhibitscontains the most complex parameter characteristics among the three scenarios.. The results 

demonstrate that both the TNNA algorithm and the metaheuristic algorithms can deliverachieve inversion results that satisfy 

the convergence accuracy within these machine learning- based inversion frameworks. Moreover, under the 10% high-noise 

condition in the non-Gaussian random field, the inversion results remain robust when sufficient constraints are 40 

constructedimposed. Compared to metaheuristic approaches, In comparison, the TNNA method yields more reliable inversion 

results with significantly higher computational efficiency. , underscoreshighlightsing the considerable advantages of machine 

learning in advancing groundwater system inversions. 

 

 45 

1 Introduction 

Numerical models are essential for quantifying flow and mass transport dynamics within aquifers, providing significant 

insights into hydrological and biogeochemical processes (Steefel et al., 2005; Sanchez-Vila et al., 2010; Sternagel et al., 2021; 

Xu et al., 2022). However, directly measuring aquifer parameters, such as permeability fields, remains challenging due to 

limitations in current hydrogeological exploration techniques and budgetary constraints (Dai and Samper, 2004; Castaings et 50 

al., 2009; Chen et al., 2021). Inverse modeling has become a key approach for estimating these uncertain model parameters, 

improving the accuracy of numerical simulations (Zhou et al., 2014; Bandai and Ghezzehei, 2022; Abbas et al., 2024). 

Inverse modeling within Bayesian theorem-based data assimilation frameworks has garnered significant attention from 

the hydrogeological community over the past few decades (Scharnagl et al., 2011; Chen et al., 2013; Zhang et al., 2018; Xia 

et al., 2021). Among available algorithms, deterministic inversion methods are a significant category, where model parameters 55 

are estimated through maximizing the posterior distribution probability using optimization techniques (Tsai et al., 2003; Sun, 

2013; Vrugt, 2016). One type is local optimization algorithms, which update model parameters from initial guesses towards 

optimal solutions according to gradient directions, such as the Gaussian-Newton method (Dragonetti et al., 2018; Qin et al., 

2022) and the Levenberg-Marquardt method (Schneider-Zapp et al., 2010; Nhu, 2022). These methods are highly efficient but 

may converge to local optima when dealing with nonconvex inversion problems. Another category is to achieve global optima 60 

solutions through metaheuristic searches, which typically incorporate processes of exploration (to search the entire parameter 

space for a diverse range of estimates) and exploitation (to leverage local information to refine estimates). Popular 

metaheuristic algorithms include the Genetic Algorithm (GA) (Ines and Droogers, 2002; Lindsay et al., 2016), Simulated 

Annealing (SA) (Kirkpatrick et al., 1983; Jaumann and Roth, 2018), Differential Evolution (DE) (Li, 2019; Yan et al., 2023), 
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and Particle Swarm Optimization (PSO) (Rafiei et al., 2022; Travaš et al., 2023). Nevertheless, their computational efficiency 65 

may be reduced by extensive exploration and exploitation processes in achieving globally optimal inversion results. Accurate 

and efficient estimation of uncertain model parameters across various scenarios remains one of the most significant challenges 

for developing inversion frameworks. 

In recent years, machine learning has experienced rapid developments and demonstrated significant performance in 

addressing complex problems characterized by high dimensionality and nonlinearity (Hinton and Salakhutdinov, 2006; Lecun 70 

et al., 2015; Bentivoglio et al., 2022; Shen et al., 2023). Integrating conventional inversion methods with cutting-edge machine 

learning techniques has become increasingly popular in addressing the challenges of inversion studies. One effective strategy 

is constructing surrogate models to accelerate forward simulations, ensuring that inversion algorithms perform comprehensive 

searches across the entire parameter space more efficiently (Razavi et al., 2012). For instance, Zhan et al. (2021) identified 

lithofacies structures by utilizing a deep octave convolution residual network to construct a surrogate model for predicting 75 

solute concentrations and hydraulic heads in heterogeneous aquifers. Wang et al. (2021) constructed a subsurface flow 

surrogate model under heterogeneous conditions through physically informed neural network methods, specifically for 

uncertainty quantification and parameter inversion. Liu et al. (2023) constructed a CNN surrogate model to combine with a 

hierarchical homogenization method to estimate effective permeability of digital rocks. More related studies can also be found 

in recent reviews (Yu and Ma, 2021; Luo et al., 2023b; Zhan et al., 2023).  80 

In addition to surrogate models, parameter optimization through machine learning-based reverse mapping represents 

another significant advancement in inversion techniques. Previous studies have outlined at least two strategies to achieve 

reverse mapping models. The first strategy is the data-driven approach, where reverse regressions are trained using datasets 

that comprise pairs of model outputs and inputs. For example, Sun (2018) developed a regression model from hydraulic heads 

to heterogeneous conductivity fields using a CNN-based generative adversarial network (GAN) approach. Kuang et al. (2021) 85 

succeeded in real-time identification of earthquake focal mechanisms by training a DNN regression on seismic waveform data. 

Yang et al. (2022) established the relationship between gravity data and CO2 plumes to perform real-time inversion for geologic 

carbon sequestration. Another strategy is to train a reverse network within the tandem neural network architecture (TNNA) 

integrated with a pre-trained surrogate model (i.e., forward network). The TNNA method was introduced with the advent of 

deep learning and has been successfully applied in computed tomography reconstruction (Adler and Öktem, 2017), 90 

nanophotonic structure inverse design (Liu et al., 2018; Yeung et al., 2021), and photonic topological state inverse design 

(Long et al., 2019). Our previous research expanded the application of the TNNA algorithm within groundwater science, 

evaluating its performance in reactive transport inverse modeling and improving inversion results by incorporating an adaptive 

update strategy to reduce local predictive errors of surrogate models. The findings indicated that accurate surrogate model 

predictive results around the actual parameter values yield dependable TNNA inversion outcomes (Chen et al., 2021).  95 

The TNNA algorithm demonstrates a fundamental advantage by requiring only a single forward simulation for to update 

parameters in each iterationparameter updates, . Iin contrast to, conventional metaheuristic algorithms  that typically necessitate 

multiple forward simulations. DespiteThe advantage of the TNNA algorithm is that it requires only one forward simulation 
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per parameter update, whereas conventional metaheuristic algorithms necessitate multiple forward simulations. the innovation 

of this approach, its applicability in more general groundwater numerical scenarios and its performance compared to 100 

conventional metaheuristic algorithms remain uncertain.  Despite this approach is innovative, the application of TNNA is 

primarily limited to low-dimensional parameter settings, leaving its advantages over conventional optimization algorithms 

uncertain. This study designs three case scenarios with different heterogeneity characteristics to conduct a comparisoncompare 

the performance study betweenof the TNNA algorithm with four conventional metaheuristic algorithms. In scenario 1,  

focuswiththe domain is was divided into a finite number of homogeneous zones. The other two scenarios considerfocus on 105 

high-dimensional parameter fields based on the spatial variability of the aquifer. These two scenarios are usefulessential for 

revealing the dynamic behaviors of the groundwater system at the discrete grid scale. BasedDepending on the differences in 

the spatial variability of the aquifer structure, the two high-dimensional numerical scenarios characterize the heterogeneity of 

aquifer parameters using a Gaussian random field (i.e., Scenario 2) and a non-Gaussian random field (i.e., Scenario 3), 

respectively. Specifically, athe Gaussian random field is suitableed for aquifers with a single lithofacies and relatively uniform 110 

physical structures, where the parameter values transition smoothly inacross space. In contrast, athe non-Gaussian random 

field typically accounts for the existence of a nugget effect in the aquifer structure, such as when the aquiferit contains two or 

moremultiple lithofacies with differingvarying hydraulic properties (Mariethoz and Caers, 2014). When conductingFor 

comparative researchstudy of on the above three scenarios, surrogate models will be used to accelerate forward simulation. 

Additionally, dimensionality reduction techniques are necessary for the two high-dimensional scenarios to reduce the 115 

parameter size and mitigate the curse of dimensionalityAdditionally, for the two high-dimensional model scenarios, 

dimensionality reduction methods are required to reduce inversion parameter size and avoid the curse of dimensionality. 

Specifically, the Karhunen-Loève expansion (KLE) will be applied for dimensionality reduction in Scenario 2 (Gaussian 

random field), while a generative machine learning method will be used for Scenario 3 (non-Gaussian random field). and a 

generative machine learning method will be used for dimensionality reduction in the Gaussian random field of Scenario 2 and 120 

the non-Gaussian random field of Scenario 3, respectively. The abovese comparisons are beneficial forwill help clarifying the 

applicability of the TNNA algorithm in thefor inverse estimation of non-homogeneous parameters with different spatial 

variability characteristics, as well as highlight its advantages over conventional metaheuristic optimization algorithms in these 

common model scenarios.This study aims to comprehensively compare the TNNA method with four conventional 

metaheuristic algorithms across both low-dimensional and high-dimensional parameter settings. Major contributions of this 125 

study include (1) systematically improving and applying the TNNA algorithm to high-dimensional heterogeneous aquifer 

parameter inversion, thereby filling a significant research gap in the field, and (2) quantitatively evaluating the advantages and 

limitations of the TNNA method in comparison to conventional deterministic inversion methods. The inversion accuracy of 

the TNNA algorithm depends on the predictive accuracy of the surrogate models. Based on a comparative analysis of four 

machine learning models, the most accurate DNN for forward simulation will be chosen to build the surrogate model. 130 

Additionally, this study also assesses the effectiveness of integrating KLE or generative machine learning with the TNNA 

algorithm for high-dimensional parameter inversion tasks. With advances advancements in artificial intelligence, the intended 
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research anticipated outcomes  are anticipatedof this study are expected to significantly enhance the development of 

appropriate frameworks for novel inversion algorithms, providing freshoffering new insights for future inversion studies. 

This paper is structured as follows: Section 2 introduces the fundamental principles of the methodology involved in this 135 

study. Section 3 provides detailed information on numerical models for low- and high-dimensionalthe three case scenarios. 

Section 4 presents the results and discussions. Finally, Section 5 presents a summary and conclusions drawn from this research, 

along with recommendations for future investigations. 

 

2 Methodology 140 

2. Methodology 

The inversion framework based on nonlinear optimization theory When conducting inversion simulations based on 

nonlinear optimization theory, the design of the inversion framework generally involvesconsists of two key aspects: (1) 

constructing nonlinear constraints for the optimization of uncertain model parameters, and (2) establishing optimization 

algorithms to search for the model parameters that satisfy these constraints. The general form of the nonlinear optimization 145 

model in this paper is as follows:  

The nonlinear inversion optimization model of this study is formulated as follows: 

m*=min෍
1
𝜎௜
ቂyobs

ሾiሿ െ yොሾiሿቃ
2

Nobs

i=1

൜
yො=FHF(m) ൎ FForwardሺm,θForwardሻ

mL≤m≤mU

ሺ1ሻ 

Wwhere  𝐲obs ∈ ℝNobs×1 and yො ∈ ℝNobs×1 represent the observed data vector and the corresponding model simulation output 

vector, respectively. yobs
ሾiሿ and yොሾiሿ refer to the ith element of the observed and simulated vectors, respectively, and 𝜎௜ 150 

denotes the standard deviation of the ith observed data. mL and mU are the vectors representing the lower and upper limit 

values of the model parameters, respectively. FHF(∙) represent the high-fidelity numerical model.  

        In this study, three different inversion frameworks are developed for comparingto compare the TNNA algorithms andwith 

four metaheuristic algorithms. In low-dimensional parameter scenario, a surrogate model FForward(∙)  is constructed to 

approximate high-fidelity numerical prediction outputs. Therefore, the objective function of the inversion framework 155 

integrated with a surrogate model is as follows:  

m*=min෍
1
𝜎௜
ቂyobs

ሾiሿ െ FForward(m)ሾiሿቃ
2

Nobs

i=1

ሺ2ሻ 
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In high-dimensional parameter scenarios, in addition to employing surrogate models, dimensionality reduction algorithms 

are also integrated in inversion frameworks. Let m=G(z) represent an operator for parameter dimensionality reduction. 

Specifically, the Karhunen-Loève Expansion (KLE) and the Octave Convolution Adversarial Autoencoder (OCAAE) are 160 

respectively employedused for the representationrepresenting of Gaussian random fields and non-Gaussian random fields, 

respectively. The high-dimensional parameter m is optimized indirectly by estimating the low-dimensional vector z： 

z*=min෍
1
𝜎௜
ቂyobs

ሾiሿ െ FForward(G(z))ሾiሿቃ
2

Nobs

i=1

m* ൌ G(z*) ሺ3ሻ

 

The basic mathematical theories of surrogate models, dimensionality reduction techniques, and optimization algorithms 

are introduced in Section 2.1 ~to 2.3, respectively.  165 

 FHF(∙) and FForward(∙) represent the high-fidelity numerical model and the surrogate model, respectively. θForward represents 

the trainable parameters of the surrogate model (Lykkegaard et al., 2021; Luo et al., 2023a).  

The uncertain model parameters m are estimated through optimization algorithms, subject to the constraints defined in 

the nonlinear optimization model. Specifically, the high-fidelity forward model output FHF(m)  is approximated by the 

surrogate model FForwardሺm,θForwardሻ, ensuring computational efficiency. Detailed information about for surrogate modelling 170 

methods and optimization algorithms is provide in Sections 2.1 and 2.2, respectively. 

2.1 Surrogate modeling methods 

As shown in Figure 1, surrogate models are developed using a data-driven strategy. The process begins by sampling 

model parameters from prior distributions and calculating their responses using high-fidelity numerical models. A training 

dataset of paired model parameters and responses is then obtained, which is used to construct surrogate models via supervised 175 

machine learning. Specifically, four popular machine learning models are evaluated for surrogate modeling: multi-output 

support vector regression (MSVR), fully connected deep neural network (FC-DNN), convolutional neural network (LeNet), 

and deep residual convolutional neural network (ResNet). Each model represents a distinct period in the development of 

machine learning. Despite rapid advancements in artificial intelligence, these four methods remain broadly applicable for 

constructing surrogate models in most groundwater modeling scenarios. 180 

The detailed principles of MSVR and the three deep learning-based methods are illustrated in the following two sub-

sections. The surrogate model for inversion will be constructed using the most accurate among them. Before constructing 

surrogate models, the training datasets are normalized to ensure that the values for different simulation components fall within 

the range of [0,1].  
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 185 

Figure 1. The framework for data-driven based surrogate model construction and the machine learning models employed.  

2.1.1 MSVR 

MSVR is developed from the original support vector machine (SVM) for realizing multivariate regression (Pérez-Cruz et 

al., 2002; Tuia et al., 2011). The mathematical expression is given as follows: 

𝑦 ൌ Fሺxሻ=φሺxሻTW+B ሺ24ሻ 190 

where 𝜑ሺ𝑥ሻ is a nonlinear regression function. W and B are regression coefficients determined by minimizing the structural 

risk, as outlined in Eq.(35)~(6): 

𝑊,𝐵 ൌ 𝑎𝑟𝑔𝑚𝑖𝑛𝐿ሺ𝑊,𝐵ሻ ൌ
1
2
෍ฮ𝑤௝ฮ

ଶ
ே೚್ೞ

௝ୀଵ

൅ 𝐶 ෍ 𝐿ሺ𝑢௜ሻ

ே೟ೝೌ೔೙

௝ୀଵ

ሺ35ሻ 

where Ntrain is the sample size of the training dataset; C is a penalty parameter; and L(u) is a quadratic ε-insensitive loss function, 

expressed as: 195 

𝐿ሺ𝑢ሻ ൌ ൜
0,                                𝑢 ൏ 𝜀
𝑢ଶ െ 2𝑢𝜀 ൅ 𝜀ଶ,         𝑢 ൒  𝜀

ሺ46ሻ 

where 𝑢௜ ൌ ‖𝑒௜‖ ൌ ඥ𝑒௜
்𝑒௜;  𝑒௜

் ൌ 𝑦௜
் െ 𝜑்ሺ𝑥௜ሻ𝑊 െ 𝐵்; ɛ in L(u) is the radius of the insensitive tube. For ɛ=0, this problem is 

equivalent to an independent regularized kernel least square regression for each component. For ɛ≠0, it becomes feasible to 

develop individual regression functions for each dimension based on the model outputs and to generate their corresponding 

support vectors. Solving the optimization problem directly is challenging, and the desired solutions for W and B are determined 200 
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using an iterative reweighted least squares (IRWLS) procedure, employing the quasi-Newton approach. During the IRWLS 

process, the term L(u) in Eq.(35) is first transformed into a discrete first-order Taylor expansion, and the corresponding 

quadratic programming approximation is constructed. Meanwhile, a linear expression is derived based on the principle that 

the first-order derivatives of the objective function with respect to W and B are zero. Finally, the optimal values of W and B 

are obtained through a line search. Further details on the IRWLS procedure can be found in (Sanchez-Fernandez et al., 2004). 205 

The performance of the MSVR model is influenced by three hyperparameters: the penalty parameter C, the kernel function 

parameter 𝜎 and ɛ (Ma et al., 2022). This study optimizes these hyperparameters by minimizing the root mean square error 

(RMSE) using the four metaheuristic algorithms introduced in this study. 

2.1.2 Deep learning based surrogate models 

(1) DNN architectures 210 

The three DNN models are all feedforward neural networks. In DNN model construction, various neural network layers 

can yield diverse DNN models, resulting in different predictive performances (Lecun et al., 2015). For the DNN models 

adopted in this study, the involved neural network types are the fully connected layer, the convolutional layer, and the residual 

block layer.  

In fully connected layers, both input and output layers are in vector forms. Assume Xinput∈ℝn×1 is the input vector and  215 

Xoutput∈ℝm×1 is the output vector. The transformation in a fully connected layer is expressed as: 

Xoutput=σ൫W×Xinput+B൯ ሺ57ሻ 

where σ(∙) is a non-linear active function; W∈ℝm×n is the weight matrix; and B∈ℝm×1 is the bias vector.  

In a convolutional layer, both the input and output are in matrix forms. A convolutional layer transfers information through 

sparse connections by several convolution kernels, essentially small matrices. The mathematical formula of a convolutional 220 

layer is as follows (Wang et al., 2019; Jardani et al., 2022): 

hu,v
q (xu,v)=σ൮෍෍wi,j

q xu+i,v+j+b

kj
'

j=1

ki
'

i=1

൲ ሺ68ሻ 

where xu,v is the pixel value at position (u, v) of the input matrix; hu,v
q (xu,v) is the output feature hu,v

q (xu,v) calculated by employing 

the qth (q=1,…,Nout) convolutional kernel filter wq∈ℝki
'ൈkj

'
. In a convolutional layer with Nout filters, the output matrix contains 

Nout feature layers. The output size (Sout) of each convolutional layer is determined by the input size (Sin) and the 225 

hyperparameters (i.e., zero padding p, kernel size k′ and stride s). A pooling layer is often used after a convolutional layer to 

remove redundant information from the extracted features and improve the efficiency of model training (Chen et al., 2021). 

The residual block is a fundamental component of residual networks (ResNets). It is designed to mitigate the vanishing 

and exploding gradients commonly encountered in the training of deep neural networks. In a residual block, an intermediate 

layer is designed to learn a residual mapping, F(x)=H(x)-x (or H(x)-G(x), where G(x) represents another transformation of x). 230 
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Here, x is the input to the block. The output of the block is then computed as F(x)+x, which is intended to approximate 𝐻(𝑥). 

This design ensures that the output of the module at least replicates the input, thus avoiding overcoming the challenges posed 

by vanishing gradients. The mathematical formula of a residual block is expressed as follows: 

𝑦௟ ൌ 𝐹ሺ𝑥௟ ,𝑊௟ሻ ൅ 𝑥௟ ሺ79ሻ 

𝑥௟ାଵ ൌ 𝑓ሺ𝑦௟ሻ ሺ810ሻ 235 

where xl and Wl are the input data and the connection weight matrix for the l-th residual block, respectively. F(·) is the 

residual function. Within this framework, the function f(ꞏ) is configured as an identity map, such that 𝑥௟ାଵ=𝑦௟ . Then, the 

relationship between the L-th residual block in a deeper layer and the l-th residual block is expresses as follows (He et al., 

2016): 

𝑥௅ ൌ 𝑥௟ ൅෍𝐹ሺ𝑥௜ ,𝑊௜ሻ
௅ିଵ

௜ୀଵ

ሺ911ሻ 240 

According to the chain rule in derivatives, the gradient of the loss function ɛ with respect to xi can be expressed as: 

𝜕𝜀
𝜕𝑥௟

ൌ
𝜕𝜀
𝜕𝑥௅

𝜕𝑥௅
𝜕𝑥௟

ൌ
𝜕𝜀
𝜕𝑥௅

൭1 ൅
𝜕
𝜕𝑥௟

෍𝐹ሺ𝑥௜ ,𝜔௜ሻ
௅ିଵ

௜ୀଵ

൱ ሺ1012ሻ 

This formulation highlights two key properties of the residual network. First, the gradient does not vanish during network 

training processes because the term  
డ

డ௫೗
∑ 𝐹ሺ𝑥௜ ,𝜔௜ሻ
௅ିଵ
௜ୀଵ  is never equal to -1. Second, the gradient of the deepest residual block 

డఌ

డ௫ಽ
 can directly affect all preceding layers, ensuring effectively transmission of gradients throughout the network (Chang et 245 

al., 2022). 

The FC-DNN of this study is constructed using fully connected layers, and each hidden layer consists of 512 neurons. 

The activation function for the output layer is Sigmoid, and the other hidden layers use Swish. The number of hidden layers n 

is determined by comparing the model prediction accuracy with different configurations, where n varies from 1 to 7. For the 

LeNet and ResNet models, the initial processing maps the input vector to a fixed matrix shaped 1×80×80 using a combination 250 

of a fully connected layer and a reshaped layer, as shown in Figure 1(b). Specifically, LeNet consists of two convolutional 

blocks and two fully connected layers. Each convolutional block consists of a convolutional layer followed by a max-pooling 

layer. The fully connected layers have 1024 and 512 neurons, respectively. ResNet consists of four stages and two different 

Res blocks are adopted. The first stage includes two residual units without down-sampling, while the remaining three stages 

each have one residual unit with down-sampling and one residual unit without down-sampling. Activation functions in all 255 

layers are Rectified Linear Units (ReLUs), except for the output layer, where Sigmoid activation is used. Detailed architecture 

information for LeNet and ResNet is provided in Figure S1 and Figure S2, respectively.  

(2) DNN model training 

The purpose of a surrogate model is to minimize the difference between the predicted outputs 𝑦ො௜ ൌ 𝑓஽ேேሺ𝑚௜ ,𝜃஽ேேሻ and 

the numerical modeling outputs yi. Consequently, the loss function is formulated with L1 norm constraints: 260 
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θDNN=argmin 
1

N
෍|FDNN(mi,θDNN)-𝑦௜|

N

i=1

൅
𝑤ௗ
2
𝜃஽ேே
் 𝜃஽ேே (1113) 

where 𝑤ௗ is the weight decay to avoid overfitting, referred to as the regularization coefficient. This study implemented the 

DNN models using PyTorch (https://pytorch.org/), a widely used machine learning framework. The neural network weights 

were initialized using the default initialization method of PyTorch and optimized using the stochastic gradient descent method 

via the Adam algorithm. 265 

2.2 Dimensionality reduction methods 

2.2.1 Karhunen-Loève Expansion for Gaussian random field 

Let G(s)~N(m, C(∙,∙)) represent a Gaussian random field, where m denotes the mean of the random field, and C(∙,∙) 

represents the covariance exponential covariance function between two arbitrary two spatial points s=(sx,sy) and 𝒔'ൌ(𝒔𝒙' ,𝒔𝒚' ).  

When using L2-based covariance exponential function, The covariance function for these two spatial locations is given by: 270 

𝐶 ቀ𝒔, 𝒔′ቁ ൌ 𝜎ீ
ଶexpቌെඨ൬

𝑠௫ െ 𝑠௫ᇱ

𝜆௫
൰
ଶ

െ ቆ
𝑠௬ െ 𝑠௬ᇱ

𝜆௬
ቇ
ଶ

ቍ , (14) 

where  σG
2  is the variance, λx and λy are the correlation lengths along the x and y directions, respectively. Since the covariance 

matrix is symmetric and positive definite, the exponential covariance function in Eq. (14) can be decomposed into an 

eigenvalue-eigenfunction representation. By solving the second-kind Fredholm integral equation and performing eigenvalue 

decomposition, the Gaussian random field can be expressed usingthrough the the Gaussian random field can be expressed 275 

using the Karhunen-Loève Expansion (KLE) as follows: 

𝑮ሺ𝒔ሻ ൌ 𝒎ሺ𝒔ሻ ൅෍𝜉௜ඥ𝜆௜𝜙௜ሺ𝒔ሻ
ஶ

௜ୀଵ

ሺ1215ሻ 

where 𝜉௜ represents a random variable following a Gaussian distribution of 𝜉௜~𝑁ሺ0, 1ሻ, also known as a KL term; 𝜙௜ሺ𝒔ሻ and 

𝜆௜ denote the eigenfunction and eigenvalue, respectively. For discretized numerical models, the index i takes values from 1 to 

n, which represents the number of discrete grid points (i.e., in Eq.(15), ∞ is replaced by n). Dimensionality reduction via KLE 280 

is achieved through a truncated expansion. For example, if the dimensionality of the reduced parameter space is nn′, the first 

n n′ KL terms corresponding to the largest 𝜆௜ are used to represent the reduced-dimensional parameters (Zhang and Lu, 2004).  

2.2.2 Octave Convolution Adversarial Autoencoder for Non-Gaussian random field 

The Octave Convolutional Adversarial Autoencoder (OCAAE) is a generative machine learning approach that combines 

the Variational Autoencoder (VAE) with adversarial learning,using leveragingutilizing Octave Convolution Neural Networks 285 

(Zhan et al., 2021). The OCAAEIt consists of three main components: an encoder, a decoder, and a discriminator.  
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The encoder maps high-dimensional parameter fields X to a low-dimensional latent vector space z~q(z) z:. Specifically, 

the encoder outputs two low-dimensional vectors: the mean vector  

𝜇 and the log-variance vector ln(𝜎2) of the latent vector z. Then, a vector z′ is randomly drawn from a standard normal 

distribution N(0, I), and the latent vector is produced as z= μ+σൈ z'. The decoder reconstructs the high-dimensional parameter 290 

field X෩ by taking the latent vector z as input. The discriminator enforces adversarial training, ensuring that the encoded latent 

vector distribution z~q(z) approximates a prior Gaussian distribution z~p(z). It receives input from the latent vectors generated 

by the encoder z~q(z) or from the prior distribution z~p(z), and discriminates which distribution the input latent vector 

originates from(Mo et al., 2020)*Zhan, 2021 #2236$. 

between which distribution the input latent vector originates from. 295 

,where d 表示降维后的维度。The decoder reconstructs the high-dimensional parameter field 𝑋෨ from the latent vector 

z:.The discriminator is designed for adversarial training, enforcing the distribution of the encoded latent vector z~q(z) to 

approximate a prior Gaussian distribution z~ ln N(0, I). This adversarial framework  improvesenhances the generative 

capabilitiescapability and ensures smooth interpolationtransitions between different field realizations of the channel field.  

In the adversarial autoencoder method, the encoder G(ꞏ) (which also acts as the generator of the adversarial network), 300 

decoder, and discriminator D(ꞏ) are trained jointly in two phases forduring each iteration: the reconstruction phase and the 

regularization phase.  

 In the reconstruction phase, the encoder and decoder are updated using the following loss function: 

ℒா஽ ൌ
1
𝑁
෍ฮ𝑋௜ െ 𝑋෨௜ฮଵ

ே

௜ୀଵ

െ 𝑤൭
1
𝑁
෍ logሼ𝐷ሾ𝐺ሺ𝑋௜ሻሿሽ
ே

௜ୀଵ

൱ ൝
1
𝑁
෍ logሼ𝐷ሾ𝐺ሺ𝑋௜ሻሿሽ
ே

௜ୀଵ

ൡ ሺ1316ሻ 

Here,where w is a weight factor balancing the reconstruction and adversarial losses (set to 0.01 in this study); two losses and 305 

a value of w = 0.01 is used; 𝑋෨௜ is the reconstructioned of sample of 𝑋௜; and N is the number of training samples.  

In the regularization phase, the discriminator is updatedtrained to distinguish real latent vectors from the prior distribution 

based on the loss function: 

ℒா஽ ൌ െ
1
𝑁
෍ሼlogሾ𝐷ሺ𝑧௜ሻሿ ൅ log ሾ1 െ 𝐷ሾ𝐺ሺ𝑋௜ሻሿሽ log

ே

௜ୀଵ

ሺ1417ሻ 

This loss function helps the discriminator distinguish between the latent vector zi (from the true distribution p(z)) and the fake 310 

latent vector produced by the encoder 𝐺ሺ𝑋௜ሻ.  

The constraint loss functions in the adversarial autoencoder framework ensure that the reconstructed high-dimensional 

parameter field X෩ closely matches the original field X, while also making sure that the distribution of the low-dimensional 

latent vector z approximates a predefined standard normal distribution p(z). After finishing the training process, it is possible 

to sample from the low-dimensional space of p(z) and use the decoder to generate corresponding high-dimensional parameter 315 

fields. Then, the high-dimensional parameter field can be reconstructed by indirectly estimating the low-dimensional latent 
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vectors (Makhzani et al., 2015; Mo et al., 2020). to distinguish the real sample from p(z) (i.e. zi) from the fake sample 　(xi) 

produced by the generator. 

 

2.2 3 Optimization algorithms 320 

2.23.1 Metaheuristic algorithms 

(1) Particle swarm optimization algorithm 

Particle swarm optimization (PSO) is a population-based intelligent optimization algorithm inspired by the foraging 

behavior of birds (Eberhart and Kennedy, 1995). It is realized through the following steps: 

Step 1: Initialize a population with n particles of a m-dimensional space X=(X1,X2,…,Xn). For an arbitrary particle (i), 325 

denote its position, velocity and best position at the kth iteration as Xi
k=(xi1

k ,…,xim
k ), Vi

k=(vi1
k ,…,vim

k ), and Pi
k=(pi1

k ,…,pim
k ), 

respectively.  

Step 2: Calculate the best solution for each particle (Xpbesti
k) according to Eq.(1218): 

Xpbesti
k=ቐ

Xpbesti
k-1,           f(Xi

k)≥f(Xpbesti
k-1)

Xi
k,                       f(Xi

k)<f(Xpbesti
k-1)

ሺ128ሻ 

where f(ꞏ) is the objective function, also known as the fitness function. 330 

Step 3: Calculate the best position of the population (Xgbesti
k) according to Eq.(1319). 

Xgbesti
k=min{ f(X1

k),…, f(Xn
k)} ሺ1319ሻ 

Step 4: Updated the velocity and position for each particle (i) according to Eq.(1420) and Eq.(1521): 

Vi
k+1=wiVi

k+r1c1(Xpbesti
k-Xi

k)+r2c2(Xgbesti
k-Xi

k)  ሺ1420ሻ 

Xi
k+1=Xi

k+Vi
k+1  ሺ1521ሻ 335 

where c1 and c2 are learning parameters, generally taken as two equal non-negative constants and are set to 0.5 and 0.1 here; 

r1 and r2 are two random values within the range of [0, 1]; wi is the inertia weight and set to 0.8 for this study. 

(2) Genetic algorithm 

Genetic algorithm (GA) is initially introduced by Holland John (1975). It draws inspiration from natural evolution and 

genetics, where individuals within a population are selected or eliminated based on their adaptability to the environment. The 340 

GA is realized through the following steps: 

Step 1: Generate an initial population X=(X1,X2,…,Xn) randomly. 

Step 2: Perform binary encoding on all individuals in the population X to obtain their respective binary symbol strings. 

These binary symbol strings are called chromosomes, and each value (“0” or “1”) on a symbol string is called a gene.  
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Step 3: Crossover: Perform crossover operations on randomly paired combinations of individuals in X. The essence of 345 

crossover is to exchange some values in the symbol strings of a pair of individuals.  

Step 4: Mutation: Perform mutation operations on some random individuals in X by changing some values of their symbol 

strings.  

Step 5: Selection: Perform selection operations based on the fitness values of each individual (Xi) to generate the next 

generation population. This step is realized through the roulette wheel selection method, where individuals with higher fitness 350 

values are more likely to be selected.  

Step 6: Determine whether the current results satisfy the iteration termination condition. If not, return to step (2); 

otherwise, output the optimal individual in the current population as the final result. 

(3) Simulated Annealing 

The SA method is a Monte Carlo-based stochastic optimization algorithm proposed by Metropolis et al. (1953) and 355 

initially applied to combinational optimization problems by Kirkpatrick et al. (1983). The realization steps for SA method are 

as follows: 

Step 1: Set the starting temperature as T0 and draw an initial optimal solution as Xi.  

Step 2: Generate a new solution Xj from the neighborhood of the current solution Xi.  

Step 3: Calculate the objective function values f(Xi) and f(Xj). If f(Xi) ≥f(Xj), then Xj becomes the current solution Xi; 360 

otherwise, Xj becomes the current solution Xi with a probability calculated as: 

P(Xi→Xj)= exp (
 f(Xi)-f(Xj)

atT0
) (1622) 

where t is the current time and a is the temperature decay constant. 

Step 4: Under the current temperature conditions, repeat steps (2) and (3) until reaching the predetermined number of 

internal iterations. Then, update the temperature and time as follows: set t=t+1 and Tt=atT0, then proceed to the next step. 365 

Step 5: Return to step (2) and continue the iteration according to the new temperature (Tt) and time (t) until the termination 

conditions are met. The iterations in this step can be considered outer iterations, distinguished from step (4). 

(4) Differential evolution 

DE is another evolutionary algorithm proposed by Storn and Price (1997). Similar to GA, DE also employs mutation, 

crossover and selection operators, but they update uncertain model parameters in different ways (Tran et al., 2022). The 370 

detailed steps for realizing DE are as follows: 

Step 1: Generate the initial population X=(X1,X2,…,Xn) randomly. 

Step 2: Perform encoding for each individual in X. The encoding method used in DE is floating-point real encoding, 

rather than binary encoding used in GA.  

Step 3: Mutation: After completing individual encoding, DE performs mutation operations to generate new individuals 375 

according to Eq. (1723): 

xperturbed(g+1)=xrand1
(g)+FDE×(xrand2

(g)-xrand3
(g)) (1723) 
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where xrand1
, xrand2

 and xrand3
 are randomly selected individuals among the candidate solutions of the current population and 

must be different from each other. FDE is a scaling parameter within the range of [0,1], controlling differential variations. g 

represents the sequence number of iterations.  380 

Step 4: Crossover: Perform crossover operations to generate the trial vector by combining the mutant and target vectors. 

The formula for this step is as follows: 

uj(g+1)= ቊ
xperturbed

j (g+1)   if  𝑃௝≤CR

xj(g)                  if   𝑃௝>CR
ሺ1824ሻ 

where Pj is a random number in the range of [0,1], CR is the crossover rate. If some variables of the trial vector have the same 

values, keep one of them and reset the others with random integer numbers in the range [1, 𝐷].  385 

Step 5: Selection: Perform selection operations to determine whether the new generated trial vector uj(g+1) can survive 

the next generation, xj(g+1). Therefore, a candidate solution replaces the parent only if it has better objective function value. 

Step 6: Return to step 3 until the convergence criteria are met. 

2.23.2 TNNA algorithm 

The TNNA algorithm aims to obtain a reverse network that maps the observation vector to model parameters, as shown 390 

in Eq. (1925).  

m=FReverse൫y෤obs,θReverse൯ (1925) 

where θReverse are the trainable parameters of FReverse. The training of the reverse network is guided by the constraints of the 

nonlinear optimization model defined in Eq. (1). The loss function for training is expressed as follows: 

𝜃ோ௘௩௘௥௦௘ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛 ෍
1
𝜎௜

ே೚್ೞ

௜ୀଵ

ൣ𝑦ො௢௕௦ሾ𝑖ሿ െ 𝐹ி௢௥௪௔௥ௗ
௜ ሺ𝐹ோ௘௩௘௥௦௘ሺ𝑦ො௢௕௦,𝜃ோ௘௩௘௥௦௘ሻ,𝜃ி௢௥௪௔௥ௗሻ൧

ଶ
                                             ሺ206ሻ 395 

The FReverse is also trained within the pytorch framework. The required training data here are the normalized observation 

data. Specifically, the reverse network for this study is designed using an FC-DNN with three hidden layers, each containing 

512 neurons.  

During reverse network training processes, each iteration of updating the trainable parameters θForward involves two steps: 

First, the vector 𝑦ො௢௕௦ is input into the reverse network FReverse to obtain the parameter prediction 𝑚෥ . This predicted parameter 400 

𝑚෥   is then input into the forward network FForward to generate the corresponding forward prediction results. Subsequently, the 

trainable parameters θReverse of the reverse network are updated based on the error feedback from the loss function in Eq. (2026) 

through DNN model training. This process demonstrates that FReverse and FForward are connected in a TNNA, wherein the forward 

simulation realization is executed once during each epoch to update the trainable parameters of θReverse. This is a marked 

difference from the four selected metaheuristic algorithms, which require numerous forward simulations for each update of 405 

estimated model parameters. Upon completion of FReverse training, the final optimal parameters are predicted by inputting 

observation data into FReverse. Further details on TNNA can be found in (Chen et al., 2021). 
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3. Case Study 

3. Case Study 

This study designed three synthetic cases based on previous research, covering different model scales and hydraulic 410 

gradient combinations (Jose et al., 2004; Zhang et al., 2018; Mo et al., 2019) to evaluate the performance of the TNNA 

algorithm against conventional metaheuristic algorithms. Both Case 1 and Case 2 are both small-scale scenarios, with 

simulation time measured in days. Their hydraulic gradients are 0.05 and 0.1, respectively. These scenarios are typically found 

in large sand tank experiments, aquifers with natural slopes, or in-situ experimental areas where flow conditions are enhanced 

through pumping wells. Case 3 simulates contaminant plume migration at a sub-regional scale (approximately 1 km), with 415 

simulation time measured in years. It uses a hydraulic gradient of 0.00625, representing a smaller natural gradient typically 

found in plain aquifers. Regarding the differences in heterogeneity conditions among these cases, Case 1 features a low-

dimensional zoned permeability field scenario; Case 2 involves a high-dimensional Gaussian random permeability field 

parameterized via the Karhunen-Loève expansion (KLE); and Case 3 uses a high-dimensional non-Gaussian binary random 

permeability field parameterized by a decoder trained bywith OCAAE.  420 

After developing the numerical models for the three scenarios, we will first evaluate four surrogate models in Case 1, and 

the optimal surrogate model will be integrated into the inversion framework. Subsequently, hypothetical observation scenarios 

will beare used to systematically compare the inversion accuracy of TNNA withagainst four metaheuristic algorithms across 

the three cases. The observation data for model parameter inversion are generated by adding Gaussian noise perturbations to 

the numerical model simulation results. Specifically, observational noise is introduced by multiplying the simulated data by a 425 

random noise factor ε~N(1, 𝜎2), where 𝜎 represents the ratio of observational noise to the observed values. In this study, we 

conduct a comparative analysis of inversion performance across the three cases under a noise level of σ=0.01. Additionally, 

our previous study (Chen et al., 2021) examined the effects of higher observational noise levels (σ=0.05 and 0.1) and real-

world noise conditions on inversion accuracy in low-dimensional parameter scenarios. To further investigate the impact of 

increased observational noise on inversion performance in high-dimensional parameter scenarios, we conducted an extended 430 

analysis on Case 3—the most complex scenario—by increasing the noise level to 10% (σ=0.1). This analysis also provides 

insights into the stability of the TNNA algorithm when integrated with a generative machine learning-based inversion 

framework for high-dimensional parameter estimation. (Chen et al., 2021)The details of these three cases are provided in 

Sections 3.1~3.3.  

 435 

 

We introduce two numerical cases to compare the TNNA algorithm with conventional metaheuristic algorithms: one with 

low-dimensional parameters and the other with high-dimensional parameters. Initially, four surrogate models will be assessed 

using the low-dimensional parameter case, and the model with the highest accuracy will be integrated into the inversion 
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framework. Based on hypothetical observation scenarios, we will compare the inversion performance of the TNNA method 440 

and the four metaheuristic algorithms in low- and high-dimensional cases. 

3.1 Case 1: Low-dimensional zoned permeability field scenario 

As shown in Figure 2, the numerical model for the low-dimensional scenario focuses on conservative solute transport 

within a zoned permeability field. The model domain is a two-dimensional rectangular area measuring 10m×20m. The left and 

right boundaries are Dirichlet boundary conditions, with a hydraulic head difference of 1 m. The heterogeneous permeability 445 

is divided into eight homogeneous permeability zones, denoted as k1 to k8. The prior range for these eight permeabilities is 

from 1×10-12 to 9.9×10-12 m2. The contaminant source is located at the left boundary with a fixed release concentration ranging 

from 1×10-3 to 1 mol/L. The simulation area is uniformly discretized into 3,200 (40×80) meshes, and the simulation time is set 

to 20 days.  

 450 

 

Figure 2. Flow domain of the solute transport model for the low-dimensional scenario.  
According to these model conditions, there are nine uncertain model parameters to be estimated: eight permeability 

parameters (k1 to k8) and the source release concentration. As shown in Figure 2, these parameters will be estimated using the 

observation data of hydraulic heads and solute concentrations collected from 25 locations, denoted by black pentagrams. 455 

Additionally, observation data from another 24 locations, denoted by orange hexagons, will be used to validate the prediction 

accuracy of the calibrated numerical model.  

3.2 Case 2: High-dimensional gaussian random permeability field scenario 

The numerical model for the high-dimensional scenario features a domain size of 10m×10m, with impervious upper and 

lower boundaries and constant head boundaries at the left (1m) and right (0m) sides. The domain is discretized into 4,096 (64460 

×64) grids. The log-permeability field follows a Gaussian distribution, and the permeability value of the i-th mesh is defined 

as follows: 
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𝑘௜=𝛼௜𝑘௥௘௙ ሺ267ሻ 

where kref is the reference permeability, set to 2 × 10−13m2. The heterogeneity of 𝑘௜  is controlled by the modifier αi. The 

geostatistical parameters for this Gaussian field are as: m = 0, σG
2 ൌ 2, and λx =λy = 2.5 m. Under this heterogeneous condition,  465 

The modifier α for the logarithmic Gaussian random field satisfies the following formula: 

αሺ𝒔ሻ ൌ exp൫𝐺ሺ𝒔ሻ൯,𝐺ሺ∙ሻ ∼ 𝑁൫𝑚,𝐶ሺ∙,∙ሻ൯, (27) 

where m = 0 is the constant mean and L2 exponentiated quadratic covariance function for two arbitrary spatial locations, 𝒔 ൌ

ሺ𝑠௫, 𝑠௬ሻ 
and 𝒔ᇱ ൌ ሺ𝑠௫ᇱ , 𝑠௫ᇱ ሻ: 

𝐶 ቀ𝒔, 𝒔′ቁ ൌ 𝜎ீ
ଶexpቌെඨ൬

𝑠௫ െ 𝑠௫ᇱ

𝜆௫
൰
ଶ

െ ቆ
𝑠௬ െ 𝑠௬ᇱ

𝜆௬
ቇ
ଶ

ቍ , (28) 470 

where  σG
2 ൌ 2 is the variance and λx =λy = 2.5 m are the correlation lengths along the x and y directions, respectively.  

The Karhunen-Loève expansion (KLE) is utilized to parameterize the permeability field (Zhang and Lu, 2004). In this case, 

100 KLE terms are used to preserve more than 92.67% of the field variance. Consequently, estimating the permeability field 

is equivalent to identifying these 100 KLE terms.  

The observational data used for inverse modeling include hydraulic heads from a stable flow field and solute 475 

concentrations measured every two days over 40 days, starting from the 2nd day to the 40th day (day: t= 2i, i=1,…,20). To 

mitigate inversion errors arising from equifinality, actual permeability values at observed locations are included as 

regularization constraints. The standard deviation of Gaussian noise for the normalized observations is set to 0.01.  

As the degrees of freedom significantly increase in high-dimensional models, the influence of observation data on 

inversion results becomes increasingly significant. Five scenarios with different monitoring networks are considered to 480 

comprehensively evaluate the performance of different inversion algorithms using various observations. Figure 3 displays the 

monitoring station locations for each scenario. 
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Figure 3. The reference log-permeability field and locations of observation stations for five scenarios. The observation stations 
are represented by black pentagrams. 485 

3.3 Case 3: High-dimensional non-gaussian random permeability field scenario 

 

 (Bao et al., 2020)The numerical model for the high-dimensional non-gaussian scenario features a domain size of 

800m×800m, with impervious upper and lower boundaries and constant head boundaries at the left (5m) and right (0m) sides. 

The domain is discretized into 6400 (80×80) grids. The permeability field is a channelized random field composed of two 490 

lithofacies, with permeability values of 5.9×10-13m2 and 2.71×10-12m2 for the two media, respectively. Dimensionality 

reduction of binary face permeability fields is achieved using an Octave Convolution-based Adversarial Autoencoder 

(OCAAE). This generative machine learning method establishes a bidirectional mapping between the high-dimensional 

permeability field and a low-dimensional standard latent vector. Thus, the estimation of high-dimensional permeability field 

can be indirectly realized by constructing an inversion framework for the low-dimensional latent vector. In this case scenario, 495 

the dataset used for OCAAE training consists of 15000 samples generated based on multi-point geostatistical methods. The 

training image for geostatistical modeling is shown as Figure 1.   

 This case focuses on an estimation of a binary non-Gaussian permeability field. The numerical model features a 

domain size of 800m×800m, with impervious upper and lower boundaries and constant head boundaries at the left (5m) and 

right (0m) sides. The domain is discretized into 6400 (80×80) grids. The permeability field is a channelized random field 500 

composed of two lithofacies, with permeability values of 1.0×10-13m2 and 5.46×10-12m2 for the two media, respectively. The 
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reference field (Figure 4b) is generated from a training image (Figure 4a) using the direct sampling (DS) method proposed by 

Mariethoz et al. (2010)Mariethoz et al. (2010). The contaminant release source is located at the wholeentire left boundary, 

with a concentration of 1 mol/L. The observational data used for inversion are generated through numerical simulation, 

including steady-state hydraulic head data and solute concentration data at 12 time points (t=2~24 years, with 2-year intervals). 505 

Two different observational noise levels are considered in this case, with standardized noise standard deviations of 0.01 and 

0.1, respectively. 

 

Figure 4. (a) The training image used to generate random realizations of permeability field; (b) The reference field of the 

synthetic case (white symbols indicate observation locations). 510 

To achieve low-dimensional representation of permeability fields, a training datasets  comprising 2000 stochastic 

realizations are is generated using multi-point statistics (MPS). Then, an Octave convolution-based Adversarial Autoencoder 

(OCAAE) is developed, where the decoder network learns a nonlinear mapping from 100-dimensional Gaussian latent vectors 

to 6400-dimensional binary non-Gaussian permeability fields. Thus, the non-Gaussian permeability field is indirectly 

reconstructed by estimating the 100-dimensional latent vector.   515 

 

 

 

 The contaminant release source is located at the whole left boundary, with a concentration of 1 mol/L. The simulation 

duration is 12 years, with observation data collected at six time points (t = 2, 4, 6, 8, 10, and 12 years).  520 
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4. Results and discussion 525 

4.1 Surrogate model evaluations 

Surrogate models were first compared using the low-dimensional parameter case. Four training datasets 

Dtrain={Mtrain,Ytrain} with 200, 500, 1000, and 2000 samples (represented as Dtrain-200, D train-500, D train-1000 and D train-2000, 

respectively) and a testing dataset Dtest={Mtest,Ytest} with 100 samples (represented as Dtest-100) are prepared. These datasets 

were generated using Latin hypercube sampling (LHS) and numerical simulations. The predictive accuracy of surrogate models 530 

was quantitatively evaluated using root mean square error (RMSE) and determination coefficient (R²) metrics (Chen et al., 

2022). 

For solute transport inverse modeling problems, it is crucial to consider observations of both hydraulic heads and solute 

concentrations simultaneously. Therefore, the surrogate model within an inversion framework should have accurate predictive 

capabilities for hydraulic heads and solute concentrations. This study calculates RMSE and R2 values separately for hydraulic 535 

heads, solute concentrations, and all model response data, resulting in the following evaluation criteria: RMSEALL and 𝑅஺௅௅
ଶ  for 

overall data, RMSEH and 𝑅ு
ଶ  for hydraulic heads, and RMSEC and 𝑅஼

ଶ for solute concentrations.  

Figure 4 5 and Figure 5 6 display the RMSE and R2 values of each surrogate model, and Figure S3~Figure S6 present the 

pairwise comparison results. The optimal values for C, 𝜎, and 𝜀 in the MSVR method are provided in Table S1. Moreover, the 

optimal number of hidden layers in the FC-DNN for Dtrain-200, D train-500, D train-1000 and D train-2000 are 2, 4, 3, and 3, respectively, 540 

as determined by the corresponding RMSEAll and RAll
2  values in Table S2 and Table S3.   

According to the performance criteria in Figure 4 5 and Figure 56, the prediction accuracy of each surrogate model 

significantly improves with an increasing number of training samples. Based on RMSEAll and RAll
2  values, their performance 

ranks as follows: ResNet, LeNet, FC-DNN, and MSVR. The MSVR method accurately predicts hydraulic heads but performs 

the worst in predicting solute concentration. Training MSVR with the four prepared datasets, the RMSEH values are below 545 

0.02, and 𝑅ு
ଶ  values are near 1. Notably, with a training sample size of 200, the prediction accuracy of MSVR for hydraulic 

heads is higher than that of FC-DNN and LeNet, as indicated by their RMSEH and 𝑅ு
ଶ  values, closely matching that of ResNet. 

However, when using 200 training samples, the RMSEC value for MSVR exceeds 0.08, and the 𝑅஼
ଶ value falls below 0.85. 

Even with a dataset size of 2000, the enhancement in the MSVR-based surrogate model is limited, as the RMSEC value remains 

around 0.05, and the 𝑅஼
ଶ value stays below 0.95. FC-DNN demonstrates a significant advantage over MSVR in predicting 550 

solute concentration, particularly with larger training sample sizes of 1000 or 2000. However, there are still some obvious 

biases between some surrogate modeling results and their numerical modeling results (see Figure S2(d)). When adopting CNN-

based surrogate models (LeNet and ResNet), the prediction accuracy for solute concentrations significantly improves (see 

Figure 45(b) and Figure 56(b)). With training datasets of 2000 samples, LeNet and ResNet achieve RMSE values below 0.02 

and R² values close to 1. It is worth noting that the ResNet performs well even with smaller sample sizes. For example, with 555 

200 training samples, the RMSEC and 𝑅஼
ଶ values for LeNet are around 0.06 and 0.9, respectively, while these criteria values 
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for ResNet are around 0.04 and 0.95 (see Figure 45(b) and Figure 56(b)). As the number of training samples increases, the 

advantages of ResNet become more apparent. According to Figure S4(d), when the training sample size reaches 2000, the 

prediction results of ResNet are closely consistent with the numerical simulation results for both hydraulic heads and solute 

concentrations. 560 

 

Figure 45. The RMSE results of surrogate model predictions. (a)~(c) are respectively the RMSE values of hydraulic heads, 
solute concentrations and all model outputs.  

 

Figure 56. The R2 results of surrogate model predictions. (a)~(c) are respectively the R2 values of hydraulic heads, solute 565 
concentrations and all model outputs.  

The comparison results of the surrogate models reflect a trend of enhanced robustness attributable to advancements in 

machine learning methodologies. Different machine learning approaches employ distinct strategies for achieving nonlinear 

mappings in developing surrogate models. Generally, deeper or larger models contain more trainable parameters, resulting in 

higher degrees of freedom to capture more robust nonlinear relationships. The essence of machine learning development lies 570 

in addressing the challenge of training these complex DNNs. Current state-of-the-art machine learning techniques have 

demonstrated proficiency in training each of the four selected surrogate modeling methods. With sufficient training samples, 

a surrogate model of greater complexity exhibits enhanced capability in representing higher levels of non-linearity (Lecun et 

al., 2015; He et al., 2016). This also explains why, despite having a sufficient number of training samples, the improvement in 

prediction accuracy of the MSVR for solute concentration is limited. In CNNs, sparse connections and weight-sharing in 575 

convolutional layers reduce redundant weight parameters in DNNs, enhancing the feature extraction of hidden layers. 
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Consequently, LeNet demonstrates better performance than FC-DNN. The ResNet, which employs residual blocks in 

conjunction with convolutional layers, effectively addresses the issues of gradient vanishing and exploding, making the 

successful training of deeper CNNs possible.  

According to Chen et al. (2021), a more globally accurate surrogate model can enhance the performance of TNNA 580 

inversion results. Thus, we selected the ResNet trained with 2000 samples for the subsequent inversion procedure. In the low-

dimensional scenario, its RMSE values for hydraulic head and solute concentration data are less than 0.02, with R² values 

greater than 0.99. We further extended the ResNet for the surrogate model construction of both Gaussian and non-Gaussian 

random field scenarios, with training and testing datasets consisting of 2000 and 500 samples, respectively. The RMSE values 

for hydraulic head and solute concentration data range from approximately 0.01 to 0.03, and the R2 values exceed 0.99, as 585 

shown in Table 1. This level of accuracy indicates that the surrogate model meets the predictive accuracy requirements for 

inversion simulations in both of the designed Gaussian and non-Gaussian random field cases. 

 

 

 590 

 

 

Table 1. The RMSE and R2 values for surrogate model predictions in designed five high-dimensional scenarios. 

 RMSE R2 
 RMSEH RMSEC RMSEAll 𝑅ு

ଶ  𝑅஼
ଶ RAll

2  
Scenario Gaussian Scenario-1 0.0108 0.0174 0.0172 0.9990 0.9980 0.9982 
Gaussian Scenario-Scenario 2 0.0102 0.0138 0.0136 0.9995 0.9989 0.9990 
Gaussian Scenario-Scenario 3 0.0120 0.0165 0.0163 0.9991 0.9981 0.9983 
Gaussian Scenario-Scenario 4 0.0123 0.0161 0.0159 0.9990 0.9984 0.9985 
Gaussian Scenario-Scenario 5 0.0137 0.0156 0.0155 0.9989 0.9985 0.9986 

Non-Gaussian Scenario 0.0181 0.0280 0.0273 0.9952 0.9931 0.9932 

4.2 Parameter inversion method comparison results 

4.2.1 Inversion results of the low-dimensional parameter scenario 595 

For the low-dimensional parameter scenario, the performance of optimization algorithms is thoroughly evaluated across 

100 parameter scenarios using the Monte Carlo strategy. The observation data for these scenarios are derived from the testing 

dataset after adding Gaussian random noise ε~N(0,0.01). The population sizes of GA, DE, and PSO, along with the chain 

length in SA, are set in four distinct scenarios: 20, 40, 60 and 80 (these population size or chain length values are represented 

as NPC in subsequent discussions). These settings determine the number of forward modeling calls required for each iteration, 600 

significantly influencing the convergence rate and computational efficiency of optimization procedures. Maximum iterations 
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for these four metaheuristic algorithms are set to 200. The learning rate, epoch number and weight decay for the TNNA 

algorithm are set to  6×10-5,1000, and 1×10-6, respectively. 

The performance of the five optimization algorithms is evaluated according to three aspects: average convergence 

efficiency and accuracy in inversion procedures, predictive accuracy of calibration models for hydraulic heads and solute 605 

concentrations, and statistical analysis of the estimated errors for each model parameter. Figure 6 7 presents the logarithmic 

average convergence curves of four metaheuristic algorithms and the TNNA algorithm throughout 100 parameter scenarios. 

Specifically, sub-figures (a)~(d) represent the NPC values for metaheuristic algorithms set at 20, 40, 60, and 80, respectively. 

These figures clearly illustrate the average convergence speed and accuracy of five optimization algorithms. Figure 7 8 displays 

the comparison of calibration and validation between the simulation results and the observed values across all 100 parameter 610 

scenarios. Sub-figures (a) and (b) illustrate the comparative prediction fit at the 25 observation locations used for model 

calibration, whereas sub-figures (c) and (d) display the comparative prediction fit at the 24 observation locations. In this figure, 

distinct symbols are used to represent the five optimization algorithms. It should be noted that the NPC values for the four 

metaheuristic algorithms are uniformly set to 80 during this comparison. Figure 8 9 illustrates the probability density curves 

of the estimation errors for nine model parameters across 100 parameter scenarios, with different colours representing the five 615 

optimization algorithms.  

The results in Figure 6 7 demonstrate that the TNNA algorithm achieves the best convergence accuracy, with its 

convergence logarithmic objective function value (i.e., approximately -4.4) being smaller than those of the other four 

metaheuristic algorithms across these NPC settings. The influence of NPC on the convergence speeds of these four metaheuristic 

algorithms is not significant, exhibiting a distinct transition from rapid to slower convergence around the 75th iteration. As 620 

NPC increased from 20 to 80, each metaheuristic algorithm showed distinct improvements in the accuracy of the final objective 

function. The DE algorithm showed the least improvement in final convergence accuracy as the NPC value increased from 20 

to 80, with the logarithmic value of its objective function dropping from just above -4.0 to slightly below -4.0. The SA 

algorithm also showed limited improvement, with its logarithmic average convergence value increasing from around -4.1 at 

NPC=20 to slightly below -4.3 at NPC=80, close to that of the TNNA algorithm. Among the four metaheuristic algorithms, SA 625 

exhibited the highest average convergence accuracy. Contrary to the SA and DE algorithms, the PSO and GA algorithms 

significantly enhanced average convergence accuracy as NPC increased. Specifically, as NPC increased from 20 to 80, the 

logarithmic convergence values of PSO and GA decreased by more than 0.5. While increasing NPC values may help 

metaheuristic algorithms reduce the gap in average convergence accuracy compared to the TNNA algorithm, larger NPC 

settings also require additional computational burdens. The above results indicate that the TNNA algorithm has a significant 630 

efficiency advantage over the four metaheuristic algorithms in parameter optimization. For instance, the DE algorithm requires 

32,000 forward model realizations (80×2×200) when NPC is set to 80, while the other three metaheuristic algorithms (PSO, 

GA, and SA) each require 16,000 realizations (80×200). In significant contrast, the TNNA algorithm requires only one forward 

model realization per iteration, resulting in 200 realizations. These comparisons illustrated that the TNNA method is more 

effective than the other four metaheuristic algorithms in achieving robust convergence results. 635 
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Figure 67. Comparative convergence trends of five optimization algorithms (Markers indicate convergence values at every 10 
steps to indicate convergence values; for TNNA, only the first 200 out of 1000 iterations are presented). 

The results presented in Figure 7 8 indicate that, among the five optimization algorithms, the TNNA algorithm achieves 

the smallest RMSE values and R2 values closest to 1.0 for both hydraulic heads and solute concentration during model 640 

calibration and validation. Furthermore, the distribution of comparison points demonstrates that the calibrated and validated 

modeling results of the TNNA algorithm are more accurately matched with their actual values than the other four metaheuristic 

algorithms, particularly for solute concentrations. Among the four metaheuristic algorithms, SA and DE outperform GA and 

PSO regarding RMSE and R2 values. During model calibration and validation, PSO exhibits the worst predictive accuracy, 

recording the highest RMSE and R2 values for both hydraulic heads and solute concentrations. It is noteworthy that the RMSE 645 

and R2 values for SA during hydraulic head calibration are 0.0085 and 0.9992, respectively, while those for DE during solute 

concentration calibration are 0.0112 and 0.9969. These values are almost equal to those of the TNNA algorithm. The robustness 

of an inversion algorithm is determined by its accuracy in both calibration and validation for hydraulic heads and solute 

concentrations. However, DE and SA demonstrate appropriate calibration accuracy only for one of the two simulation 

components. Overall, the TNNA algorithm provides more robust model calibration and validation results than the other four 650 

metaheuristic algorithms. 

Figure 8 9 indicates that the estimated error distributions for the nine model parameters derived from the TNNA algorithm 

are more concentrated than those obtained from the four metaheuristic algorithms. The mean estimated error values for the 

nine numerical model parameters using the TNNA algorithm are also the lowest. These results highlight the high accuracy and 

reliability of the TNNA inversion algorithm. Among the four metaheuristic algorithms, DE and SA outperform GA and PSO. 655 
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This is because the probability density curves of estimation errors for the nine parameters using DE and SA are more 

concentrated around zero, with mean values lower than those of GA and PSO. The DE algorithm shows a more concentrated 

distribution around zero for the overall estimation errors of parameters K1 to K8. In contrast, the SA reveals reduced estimation 

errors for the C0 parameter in most cases, ranking just behind the TNNA algorithm. GA outperforms PSO in estimation 

accuracy for seven of the nine model parameters, with PSO matching its probability density curves to that of GA only for 660 

parameters K2 and K4. As a whole, the statistical results of the estimated model parameter errors illustrate that the machine 

learning-based TNNA algorithm exhibits enhanced inversion performance compared to the four metaheuristic optimization 

algorithms. However, the findings also reveal that none of the five algorithms consistently offers completely reliable inversion 

solutions across all scenarios. For example, the TNNA algorithm, despite its generally better performance, demonstrates 

estimation errors as high as 0.4 for parameters K4 and K6 in some scenarios. Such results are likely because the provided 665 

observational data cannot ensure equifinality in some scenarios. In these cases, it is essential to introduce additional 

regularization constraints to attenuate the equifinality (Wang and Chen, 2013; Arsenault and Brissette, 2014). These findings 

emphasize the importance of employing the Monte Carlo method in comparative studies of inversion algorithms to ensure 

comprehensive evaluations and avoid misleading conclusions. 

 670 

Figure 78. Comparison of calibrated and validated model predictive accuracy for hydraulic heads and solute concentrations 
by the four metaheuristic algorithms and the TNNA method. 
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Figure 89. Probability density curves of estimation errors for nine model parameters using five optimization methods. 

The above comparison results indicated that the machine learning-based TNNA algorithm outperforms the other four 675 

metaheuristic algorithms in both inversion accuracy and computational efficiency. The primary advantage of the TNNA 

algorithm over the four metaheuristic algorithms is its highly deterministic updating direction of model parameters, guided by 

the loss function, which serves as the objective function for inverse modeling. Research on machine learning applications 

indicates that DNNs can approximate continuous functions by adjusting weights and biases (Lecun et al., 2015; Goodfellow 

et al., 2016). The TNNA algorithm leverages this capability by transforming the model parameter inversion issue into the 680 

training of a reverse network to achieve reverse mappings. By establishing a loss function based on inversion constraints from 

the Bayesian theorem, the TNNA algorithm ensures that training the reverse network brings each parameter update closer to 

the optimal solution during each epoch, thereby improving accuracy and convergence speed. In contrast, the four metaheuristic 

algorithms require numerous forward simulations for each parameter update. The optimization direction for model parameters 

is determined by evaluating the objective function. This process is governed by the exploration and exploitation strategies 685 

inherent in metaheuristic algorithms. However, these approaches introduce randomness in the direction of model parameter 

updates, making it challenging to ensure that updates move towards the direction of fastest convergence under specific 

hyperparameter settings. This also explains why the TNNA algorithm can update model parameters more efficiently and 

achieve higher convergence accuracy despite requiring only one forward realization in each training epoch. 
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4.2.2 Inversion results of the high-dimensional parameter Gaussian scenario 690 

For estimating the permeability field under five designed observational scenarios, the iteration number for the four 

metaheuristic algorithms was set at 200, with NPC values of 100, 500, and 1000. The learning rate and weight decay for training 

reverse networks within the TNNA framework were set to 1×10-3 and 1×10-4, respectively.  

Figure 9 10 and Figure 10 11 illustrate the log-permeability field estimation results and error distributions for the four 

metaheuristic algorithms and the TNNA algorithm under the most densely observed scenario (i.e., Scenario 5). The 695 

corresponding results for Scenarios 1-4 are presented in Figure S7-S14. Figure 11 12 compares the RMSE values for the log-

permeability fields estimated by the four metaheuristic algorithms and the TNNA algorithm across all five scenarios. These 

detailed RMSE values can be found in Table 2 (Scenario 5) and Table S4 (Scenarios 1-4). For Scenario 5, the accuracy of 

permeability estimations by each metaheuristic algorithm improves as the NPC value increases (see Figure 9 10 and Table 2). 

Notably, the GA achieves the best results with an NPC of 1000, recording an RMSE of 0.1057. The DE and SA algorithms 700 

yield their most accurate permeability estimations with RMSE values of 0.1597 (NPC=100) and 0.1549 (NPC=1000), 

respectively. The PSO method is the least effective, achieving an RMSE of 0.3334 at NPC =1000. As shown in Figure 10 11 

and Table 2, the TNNA algorithm provides inversion results with an RMSE of 0.1063 after training the reverse network for 

200 epochs. This suggests that the TNNA algorithm can estimate high-dimensional permeability fields with accuracy 

comparable to that of the GA method (NPC=1000) with significantly fewer forward model realizations (200 compared to 705 

200,000), reducing the computational burden by 99.9% and improving inversion efficiency by a factor of 1000. Increasing the 

training epochs of the reverse network to 1000 further reduces the RMSE of the TNNA method to 0.0595, demonstrating its 

advantages over the four metaheuristic algorithms in this scenario. Across all scenarios, the accuracy of the estimated 

permeability fields correlates positively with the density of observation wells, and estimation errors are generally higher in 

areas not covered by monitoring wells (see Figure S7-S14). Figure 11 12 further demonstrates that the RMSE values for 710 

permeability estimation using the TNNA algorithm are consistently lower than those of the four metaheuristic algorithms 

across Scenarios 1-4, indicating that the TNNA algorithm exhibits greater robustness compared to the metaheuristic algorithms 

in all five scenarios. 
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Figure 910. Spatial distributions of log-permeability field estimation results (row 1, 3, and 5 for NPC=100, 500, and 1000, respectively) and 715 
absolute errors (row 2, 4, and 6 for NPC=100, 500, and 1000, respectively) for Scenario 5, achieved by four metaheuristic algorithms.  

 

Figure 1011. Spatial distributions log-permeability field estimation results and absolute errors for Scenario 5, achieved by the TNNA. 

 

Table 2. RMSE values of estimated log-permeability fields for the four metaheuristic algorithms and the TNNA algorithm 720 
under Scenario 5. 

Metaheuristic algorithms 
TNNA 

 GA DE PSO SA 
NPC=100 0.1940 0.1597 0.5399 0.2071 epoch=200 0.1063 
NPC=500 0.1142 0.1904 0.3810 0.1781 epoch=1000 0.0595 
NPC=1000 0.1057 0.1748 0.3334 0.1549   
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Figure 1112. Comparison of RMSE in estimating log-permeability fields using four metaheuristic algorithms and the TNNA 
algorithm across five scenarios (S-1 to S-5).  725 

To evaluate the predictive performance of the numerical model calibrated by various inversion methods, simulations of 

hydraulic heads and solute concentrations were conducted over 60 days, starting on the 2nd day with bi-daily recordings, using 

the permeability fields with the lowest RMSE values identified by each inversion method. Observation data from the 2nd day 

to the 40th day were used for model calibration, while additional data from the 42nd to the 60th day were employed to evaluate 

the future predictions of the calibrated numerical models. The RMSE values for the calibrated hydraulic heads and time series 730 

solute concentrations are presented in Table 3 and Figure 1213. Figure 13 14 displays the spatial distribution of the calibrated 

numerical simulation results and errors for hydraulic heads and solute concentration simulation results at three specific times 

(t=4th, 20th, and 52nd days). Results for the entire 60-day period are presented in Figure S15-S44.  

According to Figure 1314(a), the calibrated simulation errors for hydraulic heads did not exceed 0.02 meters for the 

TNNA method and three of the four considered metaheuristic algorithms, except PSO method, which exhibited hydraulic head 735 

errors larger than 0.06 meters in certain areas. Among the four metaheuristic algorithms, the GA method achieved the lowest 

RMSE in hydraulic head simulations, with a value of 7.4837×10-4. For solute concentrations, the GA algorithm consistently 

has the highest prediction accuracy among the metaheuristic algorithms, with RMSE values generally around 0.005 (Figure 

1213). The TNNA algorithm achieved a similar level of accuracy to GA in the calibrated numerical model predictions. 

Specifically, during the initial 10 days and from the 41st day to the 60th day, the TNNA algorithm showed slightly higher 740 

prediction accuracy than the GA-calibrated model. However, during the intermediate period from the 10th day to the 40th day, 

the GA-calibrated model had a slight advantage over the TNNA algorithm. The normalized absolute errors in the solute 

transport simulation results obtained using the TNNA algorithm remained consistently below 0.02 throughout the simulation 

period (Figure 1314(b~c)). These results indicate that in high-dimensional settings, the TNNA algorithm provides inversion 

outcomes that enable the calibrated model to deliver simulation results comparable to those of the best-performing 745 

metaheuristic algorithm. Overall, the TNNA method also demonstrates advantages over the four metaheuristic optimization 

algorithms in the designed high-dimensional scenarios, excelling in both inversion efficiency and accuracy.  
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Table 3. RMSE values of calibrated hydraulic heads for the four metaheuristic algorithms and the TNNA algorithm. 

 TNNA DE GA PSO SA 
RMSE 6.8537×10-4 1.2181×10-3 7.4837×10-4 2.1683×10-3 1.0316×10-3 

 

Figure 1213. RMSE values of calibrated solute concentrations over 60 days for the four metaheuristic algorithms and the TNNA 750 
algorithm.  
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Figure 1314. Spatial distributions of calibrated numerical simulation results and absolute errors for hydraulic heads and solute 
concentrations at three dynamic times (t=4, 20, and 50 day) using the TNNA algorithm and four metaheuristic algorithms. 
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4.2.3 Inversion results of the high-dimensional non-Gaussian scenario 755 

In this scenario, the iteration number for the four metaheuristic algorithms was set at 200, with NPC values of 1000. For 

the TNNA method, the reverse network is trained for 1000 epochs. Thus, each metaheuristic algorithm spendedt 100 times 

more forward model evaluations than the TNNA algorithm. Figure 14 and Figure 15 show the permeability fields estimated 

by the five optimization algorithms and their error distributions compared to the true field (i.e., the error fields). Figure 16(a) 

and Figure 17(a) present the comparison between calibrated simulations and hydraulic head observations, as well as solute 760 

concentration observations. Figure 16(b) and Figure 17(b) compare the solute concentration simulations for the 26th, 28th, and 

30th years based on the estimated parameter field and the designed true field.  

According to Figure 1415-1516, the binary channel fields reconstructed by each inversion algorithm are highly consistent 

with their corresponding true fields, with the estimated errors primarily concentrated at the interfaces between high-

permeability channels and low-permeability regions. It is found that the increasing the observation noise level from 1% to 10% 765 

does not lead to noticeable increase in the number of grid cells exhibiting differences between the estimated parameter fields 

and the true field. One potential reason for this is that the least-squares objective function used in the inversion framework of 

this study is based on the assumption that the observation noise follows a zero-mean Gaussian distribution. With adequate 

regularization constraints, such as the dense monitoring network design used in this study, the model responses corresponding 

to the optimal parameter estimates obtained through global optimization algorithms statistically converge to the mean of the 770 

observed data. The iteration number and NPC values for the four metaheuristic algorithms 与 

It can also be validated by the calibration simulations. Specifically, the pairwise scatter plots in Figure 167(a) and Figure 

178(a) indicate that the calibrated simulation results from different methods are closely distributed around the reference 

diagonal. This suggests that even with increased observational noise, the inversion-derived calibration results do not exhibit 

noticeable bias. Furthermore, Figures 16(b) and 17(b) demonstrate that the inversion based-predictions remain highly 775 

consistent with the true permeability field. Furthermore, the predictions based on inversion results remain highly consistent 

with those of the true permeability field (Figure 17(b) and Figure 18(b)). The RMSEAll and RAll
2  values for the predictions 

beyond the observational period range from 0.018 to 0.044 and 0.962 to 0.994, respectively. This indicates that, even under 

relatively high Gaussian noise conditions, the nonlinear inversion framework used in this study can reliably reconstruct thise 

non-Gauissian permeability field, ensuring high predictive accuracy. Nevertheless, it is important to note that althoughwhile 780 

the inversion accuracy under a 10% noise level remains comparable to that in the 1% noise scenarios, increasing observational 

noise inevitably raises the convergence value of the least-squares loss function. This trend is evident from the RMSE values 

in Figures 167(a) and 178(a). Moreover, since the observational noise here is assumed to follow a Gaussian distribution, more 

complex noise in real -world scenarios with more complex noise characteristics may further exacerbateincrease equifinality in 

the inversion results. In such cases, incorporating additional system information as regularization constraints is essential to 785 

enhance the robustness of the objective function and mitigate ill-posedness.  



33 
 

Compared to the four metaheuristic algorithms, TNNA demonstrates advantages in computational efficiency and accuracy 

for non-Gaussian random field inversion. In the low noise level scenario, TNNA achieves an inversion convergence accuracy 

with an RMSEAll of 0.021 and an  RAll
2  of 0.996 (Figure 17(a)). In contrast, the two best-performing metaheuristic methods, GA 

and SA, yield RMSEAll values of 0.027 and 0.029, with RAll
2   values of 0.994 and 0.993, respectively (Figure 167(a)). Moreover, 790 

TNNA achieves the highest fitting accuracy for predictive results among the five optimization algorithms, with an RMSE of 

0.018 and an R2 of 0.994 (Figure 167(b)). Even in high-noise scenarios, TNNA continues to exhibit an advantage over the four 

metaheuristic algorithms in both inversion convergence accuracy (Figure 18(a)) and predictive accuracy (Figure 18(b)). 

Additionally, considering the number of forward simulation calls required by each inversion algorithm, TNNA proves to be a 

more efficient approach in this case study. 795 

 

 

Figure 15. Reconstructed non-Gaussian binary channelized fields and their error distributions (1% observation noise) 
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Figure 16. Reconstructed non-Gaussian binary channelized fields and their error distributions (10% observation noise) 800 

 

Figure 17. pair-wise comparison between the calibrated simulation results with the observational data (a); and the true parameter 
based predictions (1% observation noise).  
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Figure 18. pair-wise comparison between the calibrated simulation results with the observational data (a); and the true parameter 805 
based predictions (10% observation noise).  

 

 

 

4.3 Insights from synthetic cases for practical researchParameter inversion method comparison results 810 

 

         

This study validates the computational efficiency and inversion reliability of the TNNA algorithm under three different 

heterogeneous conditions. In optimization-based inversion studies, the primary challenge is to establish nonlinear inversion 

constraints and design efficient algorithms to find optimal parameter solutions. The main difference between cases lies in how 815 

the constraint conditions are formulated, while the optimization algorithm itself remains generally applicable across different 

optimization tasks if these conditions are properly defined. Therefore, the fundamental challenge in applying well-performing 

inversion methods to real-world cases lies in whether robust nonlinear optimization constraints can be effectively established 

for inversion tasks. Considering the complexities of real-world groundwater systems, three key aspects should be considered 

to extended for real-world applications: 1) Representation of complex heterogeneous model parameter fields; 2) Maximizing 820 

the effective observational information while optimizing monitoring costs; and 3) Integrating multi-source data and accounting 

for uncertainties in model process to better address complex observational noise scenarios and uncertainties in physical 

mechanisms. Detailed considerations for these issues are as follows: 

 This study extends the application scenarios of the TNNA algorithm and verifies its advantages in computational 

efficiency and inversion reliability under multiple heterogeneous conditions. However, the research primarily remains at the 825 
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algorithmic theoretical level. To extend the TNNA algorithm to practical applications, the following issues warrant further 

attention: 

 Heterogeneity in aquifer parameter structures: This study developed a dimensionality-reduction framework using the 

OCAAE for high-dimensional parameter field inversion. While generative machine learning methods (including state-

of-the-art variants) show potential for extending to complex non-Gaussian fields in practical scenarios, a critical challenge 830 

arises when heterogeneity exhibits ambiguous statistical features. For instance, in non-stationary stochastic aquifer 

systems, spatial variations across sampling windows may induce substantial discrepancies in geostatistical parameters. 

Therefore, the critical challenge in practical research is creating training datasets that fully represent parameter 

distributions using similar geological cases, or designing generator training rules based on geological principles to ensure 

consistent parameter field outputs (Mariethoz and Caers, 2014). Therefore, the critical challenge in practical research is 835 

creating training datasets that fully represent parameter distributions using similar geological cases, or designing 

generator training rules based on geological principles to ensure consistent parameter field outputs. 

 Monitoring network optimization: The inversion performance of the TNNA and four metaheuristic algorithms is 

evaluated based on a nonlinear optimization model with dense distributed monitoring networks. This monitoring strategy 

is commonly employed in the evaluation of inversion algorithms to ensure sufficient observational information, thereby 840 

reducing non-uniqueness in parameter inversion results (Bao et al., 2020; Mo et al., 2020; Zhang et al., 2024). Such 

designs are also to eliminate other interferences affecting inversion results, ensuring that differences in inversion accuracy 

are primarily determined by the performance of the inversion algorithms themselves. However, the number and locations 

of monitoring stations are constrained by financial budgets. Thus, optimizing monitoring network design to minimize 

monitoring costs without compromising constraint information quality is indispensable for practical applications (Keum 845 

et al., 2018; Chen et al., 2022; Cao et al., 2025). 

 Multi-source data constraintsConsidering multi-source data and uncertainties in model processes: based inverse modeling: 

This study considers only hydraulic head and solute concentration data, assuming ideal white Gaussian noises. However, 

in real-world scenarios, observational noise is often more complex and may exhibit non-Gaussian characteristics. For 

instance, some solute concentrations cannot be measured in situ, and unavoidable perturbations may be included during 850 

sample collection and laboratory analysis. Similarly, hydraulic head data can also may be affectedinfluenced by 

meteorological factors. Moreover, all observational data in this study are constrained by a  single predetermined process 

model. However, iIf significant uncertainties exist in the actual aquifer model processes or if the conceptual model 

deviates substantially from real-world conditions, even an advanced optimization algorithm may produce incorrect 

inversion results., inversion simulations based on a single model may lead to substantial errors. Therefore, future work 855 

should integrate multi-source data (e.g., geophysical measurements or isotope data) and develop multi-process coupled 

models to establish more robust inversion frameworks. Therefore, it is crucial to integrate multi-source data (e.g., 

geophysical measurements or isotope data) and develop multi-process coupled models to establish more robust inversion 

frameworks (Dai and Samper, 2006; Botto et al., 2018; Chang and Zhang, 2019). Specifically, parameterizing model 
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process uncertainties to enable the simultaneous identification of both model processes and unknown parameters could 860 

be a promising direction for real-world studies.  

This approach would mitigate the impact of errors from single data sources on final inversion results.  

The model conditions of the two synthetic cases in this study are primarily based on previous studies, as well as large-

scale sandbox (Jose et al., 2004; Zhang et al., 2018; Mo et al., 2019). It is worth noting that the domain sizes for field-scale 

groundwater models are commonly on the kilometre scale, which is significantly larger than 10m or 20m sizes used in this 865 

study. Moreover, the hydraulic gradient of groundwater in natural alluvial aquifers is generally below 0.01, while hydraulic 

gradients of 0.1 and 0.05 may occur when the underlying aquitard of the aquifer has a natural slope (Chai et al., 2024). 

Additionally, the monitoring stations in the synthetic cases of this study are densely distributed, whereas in practical studies, 

the number and locations of monitoring stations are constrained by financial budgets. They are often designed based on multi-

objective optimization criteria, such as maximizing information and minimizing redundancy (Keum et al., 2018; Chen et al., 870 

2022; Cao et al., 2025). Therefore, a common concern that may arise is whether the results of this study can guide the selection 

of appropriate algorithms in practical research scenarios. 

As summarized in the Introduction, the performance of an inversion algorithm depends on the degree of model 

nonlinearity and the complexity of parameter space. The mathematical model of this study consists of the groundwater flow 

continuity equation and the advection-dispersion equation. Within a fixed system mathematical model, variations in the 875 

average hydraulic gradient by an order of magnitude primarily affect flow velocity and solute transport rates, with little impact 

on the degree of nonlinearity in the system. Therefore, the inversion algorithms are expected to perform similarly in these real-

world scenarios, provided that the system variables at field sites adhere to the same mathematical models and exhibit 

comparable parameter heterogeneity to that in this study. Additionally, monitoring strategies with densely distributed stations 

are commonly employed in the evaluation of inversion algorithms to ensure sufficient observational information, thereby 880 

reducing non-uniqueness in parameter inversion results (Bao et al., 2020; Mo et al., 2020; Zhang et al., 2024). Although such 

monitoring networks are unlikely to be used in field-scale groundwater studies, the effectiveness of the inversion results 

ultimately depends on the amount of effective information in the observational data. Furthermore, as optimized monitoring 

networks exclude redundant monitoring stations, dynamic responses from optimal monitoring stations typically exhibit higher 

sensitivity to model parameters, making it easier to achieve data assimilation goals for inversion algorithms. As a whole, the 885 

findings of this study are also applicable to research conducted at field scales with similar mathematical model conditions.  

5. Summary and conclusions 

This study systematically evaluates the performance of the Tandem Neural Network Architecture (TNNA) in comparison 

to four widely used metaheuristic algorithms (GA, PSO, DE, and SA) across three inversion frameworks designed for different 

heterogeneous groundwater conditions. The results demonstrate that TNNA consistently Recent advancements in machine 890 

learning have significantly contributed to the development of inverse modeling. This study aims to compare the universality 
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and advantages of the novel TNNA algorithm with four popular metaheuristic algorithms (GA, PSO, DE, and SA) across 

various parameter dimensions in solute transport models. Surrogate models for these inversion methods were constructed using 

ResNet, which achieved the highest predictive accuracy for hydraulic heads and solute concentrations among four evaluated 

surrogate modeling methods (MSVR, FC-DNN, LeNet, and ResNet).  895 

The inversion results indicate that the TNNA algorithm outperforms the four conventional metaheuristic algorithms across 

the designed scenarios, covering both low-dimensional and high-dimensional cases. in both high-dimensional and low-

dimensional scenarios It provides, providing more accurate inversion results while significantly reduces reducing the 

computational burdencosts. Moreover, it has been verified that the TNNA algorithm consistently delivers reliable inversion 

results with just a single forward simulation per iteration step in scenarios featuring various complex and uncertain model 900 

parameters. This characteristic offers a practical approach to balancing exploration and exploitation with a reduced 

computational burden, contrasting with conventional metaheuristic algorithms that require increasing forward simulations as 

the inversion problem grows more complex. Furthermore, this study introduces a novel framework that integrates TNNA, 

along with optimization algorithms, with generative machine learning-based parameterization methods for dimensionality 

reduction in complex heterogeneous parameter fields.  905 

 

This study demonstrates that achievements in machine learning can significantly enhance inversion results compared to 

conventional methods. Given that nonlinearity and ill-posedness are two common challenges in inversion problems across 

various disciplines, establishing constraints on nonlinear relationships and applying appropriate machine learning techniques 

can be treated as vital approaches for future research. Key focus areas include heterogeneous structure parameterization, 910 

monitoring network design, and multi-source data assimilation.  Meanwhile, the equifinality induced by ill-posedness can be 

attenuated through monitoring network optimizations. The model processes in this study are clearly defined, but in real-world 

scenarios, model response measurements often involve significant uncertainty, especially in groundwater systems with multi-

component reactive transport. In such scenarios, it is crucial to consider the inversion of model parameters and integrate the 

identification of key processes within the groundwater system models. These optimization challenges may also benefit from 915 

the capabilities of machine learning, since they often involve uncertain quantifications. Furthermore, it is essential to 

continuously follow the latest developments of machine learning and consider integrating more advanced DNN models to 

address increasingly complex groundwater system inversion problems. For example, the emergence of large language models 

offers opportunities for complex system modeling and inversion studies across various scientific and engineering disciplines 

(Birhane et al., 2023; Buehler, 2023). The latent capacity of large language models has yet to be fully explored. Significant 920 

achievements have primarily focus on protein designs (Jumper et al., 2021; Ferruz et al., 2022; Lin et al., 2023), drug 

development (Peng et al., 2023; Duffy et al., 2024), and molecular discovery (Flam-Shepherd et al., 2022; Li et al., 2023). 

Developing groundwater system inversion frameworks based on large language models is of great significance for the 

advancement of hydrology and earth science (Deng et al., 2023; Foroumandi et al., 2023). 
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