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Dear Editor and Reviewers, 
 
We sincerely appreciate your valuable feedback and the opportunity to revise our manuscript. We 
have carefully considered each comment and made significant revisions to enhance the 
methodological depth, case study design, noise robustness analysis, and practical relevance of our 
work. Below, we provide a detailed, point-by-point response to the comments. 
 
Comment 1. A third case study with a different spatial correlation should be added. 
Response: 

We have included an additional case study focusing on a non-Gaussian random field. The 
details of this new case study are presented in Section 3.3. 

Additionally, for the dimensionality reduction of the non-Gaussian random field, the 
Karhunen-Loève Expansion (KLE) method is no longer applicable. Hence, a new parameterization 
method based on the Octave Convolution Adversarial Autoencoder (OCAAE) has been introduced 
in Section 2.2.2. 

The surrogate model for this case was constructed using deep residual network (ResNet) with 
2000 training samples, and its prediction accuracy is discussed in the last paragraph of Section 4.1. 
(“We further extended the ResNet for the surrogate model construction of both Gaussian and non-
Gaussian random field scenarios,…………”) 

The inversion results are presented in Section 4.2.3. 
 
Comment 2. Noisy data should be used for all the tests, and I would appreciate very much an 

analysis of the stability of the methods, i.e., which is the behavior of the applied methods, for 
different noise magnitude. 

Response: 
In the second paragraph of the Section 3, we have supplemented the description of the noise 

settings for each scenario. Specifically: In the original two cases, we used 1% Gaussian noise, 
introduced by multiplying the standardized numerical simulation data with a random variable 
𝜀𝜀~𝑁𝑁(1, 0.012) to generate noisy observational data. For the newly added Case 3, we have also 
implemented a 1% noise scenario to ensure consistency. 

Additionally, we fully agree with the editor and reviewer’s suggestion to explore the impact of 
different noise magnitudes on the stability of inversion results. To address this, we specifically 
designed a 10% observational noise scenario for Case 3, as this case involves a high-dimensional 
parameter space and a more complex heterogeneous condition. Regarding low-dimensional 
parameter settings, we previously examined the effects of higher observational noise levels (σ = 
0.05 and 0.1) and real-world noise conditions on inversion accuracy in our earlier study (Chen et 
al., 2021). Therefore, this study focuses on extending the noise analysis to more complex high-
dimensional cases. (“The observation data for model parameter inversion are generated by adding 



Gaussian noise perturbations to the numerical model simulation results. Specifically, 
oobservational noise is introduced by multiplying the simulated data by a random noise factor 
ε~N(1, 𝜎𝜎2),…………we conducted an extended analysis on Case 3—the most complex scenario—by 
increasing the noise level to 10% (σ=0.1)”) 

For the results in the high-dimensional noise setting, given that our study assumes Gaussian 
noise and that observational constraints are sufficiently dense, the impact on the inversion results of 
model parameters is not significant (“Nevertheless, it is important to note that while the inversion 
accuracy under a 10% noise level remains comparable to that in the 1% noise scenario, increasing 
observational noise inevitably raises the convergence value of the least-squares loss 
function. …………In such cases, incorporating additional system information as regularization 
constraints is essential to enhance the robustness of the objective function and mitigate ill-
posedness.”). However, we acknowledge that real-world scenarios often involve more complex 
observational noise distributions and practical constraints, such as limited monitoring networks due 
to cost restrictions. Hence, we have expanded the discussion in the last two paragraphs of Section 
4.3, highlighting potential challenges in real-world studies and possible strategies. This issue is also 
further addressed in our response to Comment 3. 

 
Comment 3. The discussion about the practical relevance of the test cases must be improved. The 

authors claim that “the model conditions of the two synthetic cases in this study are primarily 
based on previous studies, as well as large-scale sandbox”. Their discussion of the relevance 
of the results for practical applications is not convincing: the remarks in section 4.3 and in the 
replies to the reviewers are not well supported from physical arguments and should be deeply 
revised. 

Response: 
 We followed these suggestions to reformat and revise our manuscript deeply. The description 
of the similarities between our model setup and real-world hydrogeological conditions has been 
moved to the first paragraph of Section 3, including detail discussions on the newly added Case 3. 
Specifically, Case 3 now features a lower hydraulic gradient and a model scale of 0.8km. Thus, the 
three cases collectively cover high, medium, and low hydraulic gradient scenarios, providing a more 
comprehensive representation of different hydrogeological conditions. (“This study designed three 
synthetic cases based on previous research, covering different model scales and hydraulic gradient 
combinations (Jose et al., 2004; Zhang et al., 2018; Mo et al., 2019) to evaluate the performance 
of the TNNA algorithm against conventional metaheuristic algorithms. Both Case 1 and Case 2 are 
small-scale scenarios, with simulation time measured in days.…………ase 3 simulates contaminant 
plume migration at a sub-regional scale (approximately 1 km), with simulation time measured in 
years. It uses a hydraulic gradient of 0.00625, representing a smaller natural gradient typically 
found in plain aquifers.…….”) 
 In Section 4.3, we have revised and expanded the discussion on practical applications. In the 
supplemented descriptions, we explain that well-performing optimization algorithms are generally 
applicable across different optimization tasks, provided that the constraints for inversion are 
properly defined. However, the primary challenge in real-world studies lies in establishing robust 
constraint conditions tailored to specific scenarios. We specifically provided a detailed discussion 
on three potential challenges associated with constructing nonlinear optimization models for real-
world applications: 1) Representation of complex heterogeneous model parameter fields; 2) 



Maximizing the effective observational information while optimizing monitoring costs; and 3) 
Integrating multi-source data and accounting for uncertainties in model process to better address 
complex observational noise scenarios and uncertainties in physical mechanisms.  
(“4.3 Parameter inversion method comparison results 
     This study validates the computational efficiency and inversion reliability of the TNNA 
algorithm under three different heterogeneous conditions. In optimization-based inversion studies, 
the primary challenge is to establish nonlinear inversion constraints and design efficient algorithms 
to find optimal parameter solutions………….”) 
 


