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Abstract. Accurately identifying similar catchments is crucial for transferring model parameters and improving hydrological 15 

modeling, especially in ungauged regions with varied climates and topographies. This study presents an integrated method for 

catchment classification by combining Self-Organizing Maps artificial neural network (SOM) and Fuzzy C-Means clustering 

(FCM), utilizing hydrometeorological and geomorphological data. We evaluated six climate indices and fifteen landscape 

characteristics for catchments across China, identifying key variables through correlation and principal component analyses.  

The optimal classification produced six distinct climate regions and 35 catchment types with unique streamflow patterns. 20 

Validation using ten catchments confirmed the effectiveness of the SOM-FCM approach. The study underscores the 

importance of considering both climate and landscape factors for a comprehensive classification of catchments, offering 

valuable insights for hydrological model predictions in ungauged areas and enhancing our understanding of hydrological 

processes at various timescales. 

1 Introduction 25 

Runoff prediction is essential for sustainable watershed management at various timescales, including flood defense design, 

water allocation, and environmental impact assessment (Ma et al., 2021; Wang et al., 2021; Zang et al., 2021). Currently, the 

models used for runoff prediction more or less rely on observed hydrological data to be calibrated to achieve practically 

acceptable performance (Liu et al., 2020; Yaseen et al., 2019). However, observed streamflow data are not available for a large 

number of catchments throughout the world, which poses a challenge to the application of hydrological models in ungauged 30 

catchments (Carozza and Boudreault, 2021; Kratzert et al., 2019). The International Association of Hydrological Sciences 
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(IAHS) launched the Decade on Predictions in Ungauged Basins (PUB) in 2002 to explore prediction methods for ungauged 

basins using an improved understanding for climatic and landscape controls during hydrological processes. Over the past few 

years, the PUB community has proposed a series of regionalization methods, including spatial proximity, physical similarity, 

and regression for data-sparse regions(Guo et al., 2021; Kittel et al., 2020; Tsegaw et al., 2019), essentially defining 35 

homogeneous zones with similar hydrological characteristics. Among these, the physical similarity approach has become a 

focal point of research for hydrological forecasting in ungauged areas. It posits that the hydrological response characteristics 

of a basin are closely related to its climate and underlying surface conditions. Most small and medium-sized basins in China 

are located in hilly areas, where the lack of monitoring data makes model parameter calibration difficult, leaving them highly 

susceptible to natural disasters such as floods and droughts (Liu et al., 2020; Zeng et al., 2021). Therefore, proposing a 40 

hydrological regionalization method for small and medium-sized basins is crucial for optimizing model parameters and 

improving forecasting accuracy in ungauged regions. 

Regionalizing a particular hydrological characteristic and applying it to ungauged catchments is complicated as the behavior 

patterns in hydrology are the consequence of both climate and geomorphology (Gao et al., 2019). It is possible to organize 

climatological and geomorphological heterogeneity patterns and develop classification frameworks to categorize catchments 45 

with similar hydroclimatological characteristics  (Dallaire et al., 2019; Jehn et al., 2020). This framework assumes that 

catchments with similar climatic and catchment characteristics also have comparable hydrological behaviors. The increasing 

availability of climate and geological datasets over the past decade has enabled us to obtain dimensional information and 

generate new insights into catchment classifications (Addor et al., 2017; Coopersmith et al., 2014). Past efforts to organize 

catchments have involved the use of climate characteristics (Knoben et al., 2018; Pagliero et al., 2019), catchment physical 50 

features (Leibowitz et al., 2016; Loritz et al., 2019; Tarasova et al., 2020), and hydrological signatures (Addor et al., 2018; 

Singh et al., 2016). The first two feature types offer the advantage of being available for all geographical locations, and they 

can be applied directly to ungauged catchments.  Different characteristics are inclined to impact diverse hydrological behaviors 

(Mcmillan, 2020). According to recent research, climate is the most significant factor related to hydrological behavior, 

especially aridity, snow, and seasonality  (Jehn et al., 2020). Another study supporting this conclusion focused on analyzing 55 

and clustering 35,215 catchments across Europe. They discovered that the flow signatures were primarily affected by climatic 

characteristics, particularly those corresponding to average and high flows. Furthermore, topography is also a major factor 

controlling flow variability (Kuentz et al., 2017). Different spatial scales in research have also led to various interpretations of 

the key hydrological behavior drivers. At large spatial scales, forcing factors, such as precipitation and temperature, are widely 

recognized as having a substantial impact on hydrological processes (Berghuijs et al., 2014a). At small spatial scales, 60 

catchments are typically in the same climatic region with similar temperatures and water conditions, and the most significant 

factor is the hillslope structure of the catchment (Loritz et al., 2018). Recent research on catchment classification has simply 

combined climate and landscape indices in different climate regions without considering the scale effects of these two types 

of variables (Ghotbi et al., 2020; Yang et al., 2018). Additionally, some countries have been conducted on hydrological 

similarity based on small-sample stations or catchments (Liu et al., 2019; Yang et al., 2020b; Zhai et al., 2021) achieving 65 
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significant classification results. However, China has yet to integrate climatic and catchment physical characteristics with 

spatial scales to propose a comprehensive framework for similar basin classification. 

With the advancement of computer technology in the 21st century, the widespread use of machine learning in regionalization 

studies has become an indisputable fact (Yang et al., 2020a). The self-organizing map (SOM) is an efficient machine learning 

method for visualizing complex high-dimensional data structures on a 2D surface (Kohonen, 1982). However, the number of 70 

output neurons exceeds the expected number of groups in most applications (Kiang, 2001). As a result, previous studies have 

added clustering steps to SOM results, such as k-means clustering algorithms and hierarchical clustering algorithms, to 

generate appropriate groups and facilitate quantitative analysis (Boscarello et al., 2016; Nguyen et al., 2015). Combining these 

algorithms has been used in various fields. Zang et al. (2021) used SOM with k-means to map future drought conditions in 

China, and produced relatively accurate classification results. Kim et al. (2020) investigated deep thermal groundwater in 75 

South Korea using SOM combined with hierarchical clustering and found that five major clusters accounted for various 

bedrock groundwater geochemistry groups. These clustering methods are effective when the sample data clearly define the 

bounds in the feature space. The fuzzy c-means algorithm (FCM) is a soft clustering algorithm that can accommodate the 

heterogeneity of data by assuming that each sample belongs to all groups with varying degrees of membership (Bezdek et al., 

1984). Lee et al. (2019) used SOM in conjunction with FCM to assess the overall quality of groundwater in Seoul and classified 80 

the water samples into three groups. Combining these two algorithms aggregates the advantages of each algorithm. Based on 

the self-organization and nonlinear mapping capabilities of the SOM algorithm as well as the concept of the fuzzy set from the 

FCM algorithm, it can explain the highly heterogeneous and nonlinear data associated with fuzzy boundaries. Research shows 

that the combined algorithms produced good results in water quality identification and climate clustering applications (Knoben 

et al., 2018; Lee et al., 2019). However, there have been no attempts to combine these two algorithms for small catchment 85 

hydrological regionalization. 

The objective of this study was to combine SOM and FCM algorithms to identify hydrologically similar catchments in China. 

This research contributes to a better understanding of the relationship between the similarities of hydroclimatological and 

geomorphological attributes, and the similarities of hydrological processes on the basin level across China. 

2 Methodology and data 90 

2.1 Methods 

The methodology integrates hydroclimatological and geomorphological data to identify catchment similarities. This approach 

combines the Self-Organizing Maps (SOM) algorithm, an unsupervised artificial neural network, with Fuzzy C-Means (FCM) 

clustering, a soft clustering method rooted in fuzzy set theory. The process begins with the selection and preparation of relevant 

climate indices and geomorphological characteristics, followed by the unsupervised classification of catchments. Initially, 95 

SOM is used to group catchments based on spatial climate patterns, identifying regions of meteorological homogeneity. 

Subsequently, FCM refines the classification by clustering catchments within these regions, accounting for gradual transitions 
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in climate and landscape. Finally, the classifications are validated using streamflow data from selected catchments to ensure 

the model’s reliability. 

2.1.1 Selection of climate indices preparation 100 

The spatial patterns of climate and landscape have been evaluated as causal factors in determining the hydrological response 

of catchments. Climate not only directly influences runoff generation processes at the event scale but also indirectly affects 

the hydrological cycle by acting on longer-term soil moisture availability and the co-evolution of landscape and vegetation. 

Climate patterns produce significant differences in the long-term balance between available water and energy. Catchments in 

arid regions are generally considered to have a limited water supply. It is characterized by sparse precipitation with high 105 

evaporation, resulting in less recharge of the aquifer. In addition, the stream in these regions is usually lost and reaches a 

certain position, with the flow infiltrating through the riverbed to recharge the underlying aquifer. In contrast, the catchments 

in humid regions are considered energy-limited, and there is higher precipitation and less episodic infiltration. A portion of 

groundwater recharges the streamflow through the waterway. It is plausible that climate patterns influence hydrological 

partitioning in ways reflected in runoff records. An earlier study indicated that five distinct climate indices may be relevant to 110 

hydrological processes (Addor et al., 2017; Betterle et al., 2019; Knoben et al., 2018): (1) the annual average aridity, (2) the 

seasonality of aridity, (3) the fraction of precipitation that falls as snow, (4) the average rainfall intensity, and (5) the seasonality 

of rainfall intensity. Although the precipitation intensity index values can vary widely throughout the world, their effects on 

hydrologic processes are mainly determined by local catchment characteristics. Consequently, the precipitation intensity index 

was not considered in this study, and the influence of landscape differences in watershed characteristics on hydrological 115 

processes will be discussed in later sections.  

Earlier studies illustrated that the indices of aridity and snow are strongly correlated with streamflow patterns without 

considering rainfall intensity (Knoben et al., 2018). Temperature, as an indicator of the snow and evapotranspiration process, 

adds independent information to the discussion of climate similarity. Therefore, three indices were added to capture the 

seasonal and spatial variability of temperature, based on the original aridity and snow indices. Ultimately, we selected six 120 

indices for climate classification: average moisture index (𝐼𝐼𝑚𝑚), seasonal moisture index (𝐼𝐼𝑚𝑚,𝑟𝑟), that falls as snow (𝑓𝑓𝑓𝑓), annual 

average temperature (𝑇𝑇𝑚𝑚), seasonal temperature (𝑇𝑇𝑚𝑚,𝑟𝑟) and the fraction of snowy days (𝐷𝐷𝑓𝑓). The first three are expressed using 

a version of Thornthwaite’s moisture index 𝑀𝑀𝐼𝐼 (Willmott and Feddema, 1992). These indices were calculated for each 0.25° 

land cell based on the CRU TS V4.04 dataset and the meteorological station data. Some of these indices have been previously 

used to map climate homogeneity regions, but not in this specific combination. The climate indices were calculated using the 125 

following equations: 

𝑀𝑀𝐼𝐼(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧1 − 𝐸𝐸𝑃𝑃(𝑡𝑡)

𝑃𝑃(𝑡𝑡)
,𝑃𝑃(𝑡𝑡) > 𝐸𝐸𝑃𝑃(𝑡𝑡)

0,𝑃𝑃(𝑡𝑡) = 𝐸𝐸𝑃𝑃(𝑡𝑡)
𝑃𝑃(𝑡𝑡)
𝐸𝐸𝑃𝑃(𝑡𝑡)

− 1,𝑃𝑃(𝑡𝑡) < 𝐸𝐸𝑃𝑃(𝑡𝑡)
,          (1) 
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𝐼𝐼𝑚𝑚 = 1
12
∑ 𝑀𝑀𝐼𝐼(𝑡𝑡)𝑡𝑡=12
𝑡𝑡=1 ,           (2) 

𝐼𝐼𝑚𝑚,𝑟𝑟 = max�𝑀𝑀𝐼𝐼(1,2, … ,12)� − min(𝑀𝑀𝐼𝐼(1,2, … ,12)),        (3) 

𝑓𝑓𝑓𝑓 = ∑𝑃𝑃(𝑇𝑇(𝑡𝑡)≤𝑇𝑇0)
∑ 𝑃𝑃(𝑡𝑡)𝑡𝑡=12
𝑡𝑡=1

,            (4) 130 

𝑇𝑇𝑚𝑚 = 1
12
∑ 𝑇𝑇(𝑡𝑡)𝑡𝑡=12
𝑡𝑡=1 ,           (5) 

𝑇𝑇𝑚𝑚,𝑟𝑟 = max�𝑇𝑇(1,2, … ,12)� − min(𝑇𝑇(1,2, … ,12)),        (6) 

𝐷𝐷𝑓𝑓 = ∑𝐷𝐷(𝑇𝑇(𝑡𝑡)≤𝑇𝑇0)
∑ 𝐷𝐷(𝑡𝑡)𝑡𝑡=12
𝑡𝑡=1

,            (7) 

𝑃𝑃(𝑡𝑡), 𝐸𝐸𝑃𝑃(𝑡𝑡), and 𝑇𝑇(𝑡𝑡) are the mean monthly observed values of precipitation, potential evapotranspiration, and temperature, 

respectively; 𝐷𝐷(𝑡𝑡) is the number of days per month; 𝑇𝑇0 is the threshold temperature, below which precipitation is presumed to 135 

occur in snow form, set at 0 °C.  

2.1.2 Self-organizing map clustering algorithm 

The function of catchment classification is to map the complex spatial structure of hydrological patterns onto regional patterns 

that are immediately recognizable and interpretable. We recast similar hydrological patterns through two-step clustering to 

first identify the meteorological homogeneity regions and then classify the catchments within the same climate clustering.  140 

Self-organizing map (SOM) is an artificial neural network model proposed by Kohonen (Kohonen, 1982). The SOM technique 

is an unsupervised nonlinear technique capable of mining algorithmic rules embedded in samples. It can automatically identify 

the important internal statistical characteristics of samples through competition and interaction among neurons. Owing to its 

automatic clustering, nonlinear mapping, and fault tolerance features, this algorithm has been widely used to solve pattern 

recognition and classification problems (Jeong et al., 2010; Zhai et al., 2021). 145 

The SOM algorithm, which contains the input and competition layers, projects high-dimensional input data onto low-

dimensional output surfaces composed of an array of ordered neurons. There is complete connectivity between each neuron 𝑖𝑖 

and all the input samples, which is represented by p-dimensional weight vectors 𝒘𝒘𝑖𝑖 = [𝑤𝑤𝑖𝑖1 ,  𝑤𝑤𝑖𝑖2, … ,  𝑤𝑤𝑖𝑖𝑖𝑖]𝑇𝑇  ( 𝑝𝑝  is the 

dimensionality of the input space). Moreover, adjacent neurons are interconnected through neighborhood relationships. The 

SOM neural network performs an iterative procedure called competitive learning, in which neurons are organized according 150 

to their similarities and the best matching unit (BMU) is generated through competition among neurons. The crucial links of 

competition, cooperation, and adaptation between neurons occur throughout the entire learning process. We can select the 

proper structure of the competitive layer in the SOM algorithm by evaluating the network internal indicators of quantitative 

error (𝑄𝑄𝐸𝐸) and topological error (𝑇𝑇𝐸𝐸) as follows (Jeong et al., 2010; Park et al., 2003): 

𝑄𝑄𝐸𝐸 =
∑ �𝑋𝑋𝑖𝑖−𝑊𝑊𝑔𝑔(𝑥𝑥𝑖𝑖)�
𝑁𝑁
𝑖𝑖=1

∑ ‖𝑋𝑋𝑖𝑖‖𝑁𝑁
𝑖𝑖=1

,           (8) 155 
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𝑇𝑇𝐸𝐸 = 1
𝑁𝑁
∑ 𝑢𝑢(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ,           (9) 

where 𝑁𝑁 is the number of samples; 𝑊𝑊𝑔𝑔 is a weight vector of the BMU; 𝑄𝑄𝐸𝐸 and 𝑇𝑇𝐸𝐸 measure the average relative distance 

between the input sample and the corresponding BMU, and the topology retention after sample projection, respectively; 𝑢𝑢(𝑥𝑥𝑖𝑖) 

is equal to 1 when adjacent samples remain adjacent after projection; otherwise, it is 0. The competitive layer acquires the best 

neuron structure as  𝑄𝑄𝐸𝐸 and 𝑇𝑇𝐸𝐸 converge to the minimum values. 160 

The learning algorithm consists of the following four steps: (1) initializing the structure and parameters of the competitive 

layer, (2) calculating and comparing the Euclidean distance between each input sample 𝑥𝑥 (i.e., climate indices and catchment 

characteristics, respectively) and every neuron, (3) identifying the closest neuron to the input sample as the BMU of the input, 

and (4) updating the BMU and its neighbor’s weight vector in response to the input sample. The weight vector at each time 

step 𝑡𝑡 + 1 as follows: 165 

𝒘𝒘𝑖𝑖(𝑡𝑡 + 1) = 𝒘𝒘𝑖𝑖(𝑡𝑡) + 𝜕𝜕(𝑡𝑡)𝛿𝛿𝑖𝑖,𝑗𝑗(𝑡𝑡)[𝒙𝒙 −𝒘𝒘𝑖𝑖(𝑡𝑡)], 𝑖𝑖 ∈ 𝛿𝛿𝑖𝑖,𝑗𝑗(𝑡𝑡),       (10) 

where 𝜕𝜕(𝑡𝑡) is the learning rate and 𝛿𝛿𝑖𝑖,𝑗𝑗(𝑡𝑡) is the neighborhood kernel function of neuron 𝑖𝑖 for its BMU (𝑗𝑗), which indicates the 

radius that the BMU can influence. By increasing the time step(𝑡𝑡), the 𝛿𝛿𝑖𝑖,𝑗𝑗(𝑡𝑡) value gradually decreases so that the neurons 

nearer the BMU are updated to have stronger connections with it. Consequently, neurons adjacent to the BMU are drawn closer 

to the BMU than to other neurons, and exhibit greater similarities with the BMU. Following the completion of the iterative 170 

learning, every input sample was assigned to its BMU. Samples with similar properties are grouped in the same BMU, which 

is considered the clustering center in the SOM. SOM was calculated and visualized using the SOMPY toolbox in Python. 

2.1.3 Fuzzy c-means clustering algorithm 

Fuzzy c-means clustering (FCM), based on fuzzy set theory, is one of the most widely used soft clustering algorithms. Unlike 

hard clustering algorithms, such as k-means and hierarchical clustering, the FCM cluster procedure uses a fuzzy parameter to 175 

create overlapping cluster boundaries. By allocating each sample to all groups with a degree of membership ranging between 

0 and 1, undistinctive data can form overlapping clusters with vague boundaries (Pal et al., 2005). As climate and catchment 

landscape characteristics show gradual changes rather than distinct changes in space, the FCM algorithm may be the most 

suitable method for clustering hydrological regions. Furthermore, it requires a relatively short computation time to generate 

an appropriate classification with a low sensitivity to initialization. FCM clustering was performed iteratively by minimizing 180 

the following objective functions: 

𝐹𝐹 = ∑ ∑ 𝑢𝑢𝑗𝑗𝑗𝑗𝑚𝑚�𝑥𝑥𝑗𝑗 − 𝑣𝑣𝑗𝑗�
2N

𝑗𝑗=1
𝐶𝐶
𝑗𝑗=1 ,          (11) 

𝑢𝑢𝑗𝑗𝑗𝑗 = 1

∑ �
�𝑥𝑥𝑘𝑘−𝑣𝑣𝑗𝑗�

�𝑥𝑥𝑘𝑘−𝑣𝑣𝑖𝑖�
�

2
𝑚𝑚−1

𝐶𝐶
𝑖𝑖=1

,           (12) 
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where N is the number of samples, 𝐶𝐶 is the number of clusters, 𝑢𝑢𝑗𝑗𝑗𝑗 is the membership value of sample 𝑘𝑘 in cluster 𝑗𝑗; 𝑥𝑥𝑗𝑗 is the 

value of sample 𝑘𝑘; 𝑣𝑣𝑗𝑗 is the center value of cluster 𝑗𝑗; and 𝑚𝑚 is the degree of fuzziness in the clustering process. 185 

The number of clusters (𝐶𝐶) must be defined before performing the partitioning in the FCM algorithm. Various validity indices 

have been proposed to determine the optimal number of clusters (Halim et al., 2017; Pakhira et al., 2004). Two internal 

indicators were selected: the Davies-Bouldin index (𝐷𝐷𝐷𝐷𝐼𝐼) and silhouette coefficient (𝑆𝑆𝐶𝐶) (Rao and Srinivas, 2006). Both 𝐷𝐷𝐷𝐷𝐼𝐼 

and 𝑆𝑆𝐶𝐶  measure the degree of density within clusters and the amount of disorganization between clusters. The optimum 

number of clusters was selected by minimizing 𝐷𝐷𝐷𝐷𝐼𝐼  and maximizing 𝑆𝑆𝐶𝐶 . Each function is represented by the following 190 

equations: 

𝐷𝐷𝐷𝐷𝐼𝐼 = 1
𝐶𝐶
∑ 𝑚𝑚𝑚𝑚𝑥𝑥 � 𝑠𝑠𝚤𝚤�+𝑠𝑠𝚥𝚥�

�𝑣𝑣𝑗𝑗−𝑣𝑣𝑖𝑖�2
�𝐶𝐶

𝑗𝑗=1            

𝑆𝑆𝑗𝑗 = � 1
𝑛𝑛𝑗𝑗
∑ �𝑥𝑥 − 𝑣𝑣𝑗𝑗�𝑥𝑥∈𝐶𝐶𝑗𝑗 �

1/2
,          (13) 

𝑆𝑆𝐶𝐶 = 1
𝑁𝑁
∑ 𝑏𝑏(𝑗𝑗)−𝑎𝑎(𝑗𝑗)

max {𝑎𝑎(𝑗𝑗),𝑏𝑏(𝑗𝑗)}
𝑁𝑁
𝑗𝑗=1 ,          (14) 

where 𝑛𝑛𝑗𝑗 is the number of samples in cluster 𝑗𝑗; 𝑣𝑣𝑗𝑗  is the cluster center matrix of cluster 𝑗𝑗; 𝑆𝑆𝑗𝑗 is the average distance between 195 

 𝑣𝑣𝑗𝑗  and the others in cluster 𝑗𝑗;  𝑁𝑁 is the number of samples, 𝑚𝑚(𝑘𝑘) is the average distance between sample 𝑘𝑘 and the others in 

the same cluster, 𝑏𝑏(𝑘𝑘) is the minimum average distance between sample 𝑘𝑘 and each sample in a different cluster. 

Based on the output layer of the SOM neural network, the FCM algorithm was used for clustering. The membership values of 

the neurons belonging to different clusters were assigned to the corresponding samples after grouping every output neuron into 

clusters. This illustrates the spatial distribution of the climate and landscape characteristics. This method is used for climate 200 

partitioning and classification of catchments. 

2.2 Dataset 

Precipitation (P) and temperature (T) datasets were collected from the National Meteorological Information Center 

(http://data.cma.cn/) at the Chinese Meteorological Administration (CMA). These data were available for 1982-2015 from 613 

stations in China. Potential evapotranspiration (EP) data were provided at a 0.5° × 0.5° resolution from the CRU TS V4.04 205 

dataset at the Centre for Environmental Data Analysis (https://www.ceda.ac.uk/). The EP is estimated using a variant of the 

Penman-Monteith formula. The climate data were interpolated at a 0.25° × 0.25° spatial resolution, and missing data were 

filled using the weighted nearest-neighbor approach. 

The HydroSHEDS dataset from the World Wildlife Fund (https://www.hydrosheds.org/page/overview) comprises a large 

database of georeferenced information on stream networks, watershed boundaries, and drainage directions (Lehner and Grill, 210 

2013). The HydroBASINS dataset contains seamless coverage of consistently sized sub-basins used to delineate catchments. 

Preliminary quality assessments have concluded that these data are significantly more accurate than existing data on watersheds 

and rivers, and have been applied to a variety of studies (Anh and Aires, 2019; Carozza and Boudreault, 2021; Yamazaki et 
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al., 2014). Therefore, 13,487 catchments from the HydroBASINS dataset in China were analyzed. The catchment was 

classified using clustering technology, and hydrologic similarity regions were established based on catchment signatures. The 215 

catchment landscape was characterized by analyzing a wide range of features, which can be organized into three classes: 

topographic characteristics, soil and vegetation characteristics, and topological characteristics. The topographic and 

topological properties were computed using the digital elevation model ASTER GDEMV2 with a resolution of 30 m, which 

was provided by the Geospatial Data Cloud, Computer Network Information Center, Chinese Academy of Sciences 

(http://www.gscloud.cn). The soil and vegetation characteristics were derived from the 1:1 million soil map of China at the 220 

Institute of Soil Science (http://www.issas.ac.cn) and the Spot/vegetation NDVI dataset provided by the Resource and 

Environmental Science and Data Center (https://www.resdc.cn), respectively. 
Table 1. Summary of catchment descriptors used in this study. 

 Description Variables Unit Mean Range 

To
po

gr
ap

hi
c 

ch
ar

ac
te

ris
tic

s 

Mean elevation 𝐻𝐻 m 1,795.52 -134.36-5,803.84 

Elevation range ∆𝐻𝐻 m 1,086.08 3-7,315 

Hypsometric curve integral 𝐻𝐻𝐼𝐼 - 0.64 0.24-1 

Gradient of hypsometric curve 𝐴𝐴𝑆𝑆 - 0.52 0-1.84 

Mean topographic index 𝑇𝑇𝐼𝐼 - 10.02 7.43-12.72 

Mean slope 𝛽𝛽 degree 5.45 0.02-28.32 

So
il 

an
d 

ve
ge

ta
tio

n 
ch

ar
ac

te
ris

tic
s 

Sand fraction 𝑆𝑆𝑚𝑚𝑛𝑛𝑆𝑆 % 44.42 0-91.72 

Clay fraction 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 % 20.22 0-52.23 

Silt fraction 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 % 33.14 0-54.00 

NDVI 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 - 0.56 0-0.9 

To
po

lo
gi

ca
l 

ch
ar

ac
te

ris
tic

s 

Area 𝐴𝐴 km2 761.04 15-14,612.8 

Length 𝐿𝐿 km 52.96 9.3-615.7 

Form factor 𝑅𝑅𝑓𝑓 - 0.33 0.02-1.97 

Elongation ratio 𝑅𝑅𝑅𝑅 - 0.61 0.15-1.58 

Drainage density 𝑅𝑅𝑆𝑆 km/km2 0.29 0.06-1.40 
 

The complete catchment signatures from the various data sources mentioned above are provided, as well as details on the 225 

statistical characteristics (Table 1). Fifteen characteristics were selected to describe catchment landscapes. These signatures 

were calculated for all the catchments with a wide spectrum of characteristics. These data were relatively simple to obtain, 

allowing the application of this method to some ungauged basins. They can also improve the prediction of hydrological 

signatures (Addor et al., 2018; Addor et al., 2017; Boscarello et al., 2016; Jehn et al., 2020). In addition, we illustrate some of 

these characteristics using Eq. (1-3). The integral of the hypsometric curve (HI) indicates the catchment's surface quality, and 230 
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the gradient of the hypsometric curve (AS) reflects the degree of topographic relief. Both are calculated using the hypsometric 

curve f(x). The mean topographic index (TI) is the arithmetic mean of the topographic indices of the raster cells in the 

catchment. 

𝐻𝐻𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)𝑆𝑆𝑥𝑥1
0 ,            (15) 

𝐴𝐴𝑆𝑆 = 𝑓𝑓(0.2)−𝑓𝑓(0.8)
0.8−0.2

,            (16) 235 

𝑇𝑇𝐼𝐼 = 1
𝑛𝑛
∑ ln ( 𝛼𝛼𝑖𝑖

𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡𝑖𝑖
)𝑛𝑛

𝑖𝑖=1 ,           (17) 

where f(0.2) and f(0.8) are expressed as the hypsometric curve's relative elevation differences corresponding to 0.2 and 0.8, 

respectively; α and β indicate the drainage area and slope of the cell in a catchment, respectively; n is the total number of raster 

cells in the catchment. 

3 Results 240 

3.1 Classification of regions based on climate factors 

3.1.1 Spatial distributions of climate indices 

Figure 1 shows that the spatial distribution of six individual climate indicators gradually changed. Climate features are 

primarily influenced by latitude and altitude; however, abrupt changes in topography (e.g., the Tianshan and Himalayan 

Mountains) can result in relatively sharp climate transitions in some regions. The six indicators were standardized to between 245 

0 and 1, and were then applied to show a single overview of the moisture (𝐼𝐼𝑚𝑚, 𝐼𝐼𝑚𝑚,𝑟𝑟, and 𝑓𝑓𝑓𝑓) and temperature indices (𝑇𝑇𝑚𝑚, 𝑇𝑇𝑚𝑚,𝑟𝑟, 

and 𝐷𝐷𝑓𝑓) with RGB color scales combined to a map, respectively (Fig. 1g). This visualizes the spatial distribution of each 

climate indicator and describes them according to their corresponding relationships. Overall, there was a trend from northwest 

to southeast in the first three indices, indicating the degree of wetness in China. (Fig. 1g, left). Specifically, arid regions (red 

areas) are located in the northwest part of China and are characterized by a large desert with high PET compared to available 250 

precipitation, almost no seasonal changes, and no snowfall. The wet regions (dark green) are concentrated along the middle 

and lower reaches of the Yangtze River. . Generally, these areas have no snowfall, little seasonal variation, and continuous 

rainfall. The transitional climate regions (bright green and yellow) are located between arid and humid zones, and the climate 

in this region experiences strong seasonality in their water-energy balance, most notably in the seasonal variation of 

precipitation and the seasonal pattern of PET.  The pink regions indicate areas where the majority of the precipitation falls as 255 

snow.  

Unlike the regional distribution of the wetness indices, the temperature feature gradient from the indices varies gradually along 

the latitudinal band and mutates with abrupt changes in topography (Fig. 1g, right). There are regions with high temperatures 

in southern China (dark green), where the temperature remains constant throughout the year.The low-temperature regions 
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(yellow) in northern China have relatively strong seasonal temperature changes and snow processes. The transitional climate 260 

regions (dark yellow and green) are located between two zones, increasing in temperature and decreasing in seasonality from 

north to south. Furthermore, there is a low-temperature region (pink) in the southwest, influenced by the Tibetan Plateau, 

where snow accumulates for years and temperatures remain extremely low with little seasonal variation. 

According to the climate spatial distribution characteristics of each individual indicator, the spatial distribution of 

meteorological variables has a strong regional component in China. Meanwhile, the spatial distribution of snow days was 265 

strongly inversely correlated with the average temperature (Spearman rank correlation coefficient was -0.82). To avoid a 

classification procedure that could introduce redundancy, the snow day index was removed, and five different climate indices 

were selected for climate partitioning. 

 

Figure 1. Maps of average values of climate indices from 1982 to 2015 across China: (a) average moisture index  (𝑰𝑰𝒎𝒎), (b) seasonal moisture 270 
index (𝑰𝑰𝒎𝒎,𝒓𝒓), (c) fraction of precipitation that falls as snow (𝒇𝒇𝒇𝒇), (d) annual average temperature (𝑻𝑻𝒎𝒎), (e) seasonal temperature (𝑻𝑻𝒎𝒎,𝒓𝒓), and 

https://doi.org/10.5194/hess-2024-304
Preprint. Discussion started: 28 November 2024
c© Author(s) 2024. CC BY 4.0 License.



11 
 

(f) fraction of snowy days (𝑫𝑫𝒇𝒇).  Panel (g) provides an overview of the climate indices combination using an RGB color scale, where the 
moisture indices (left) are represented by 𝑰𝑰𝒎𝒎 (red), 𝑰𝑰𝒎𝒎,𝒓𝒓 (green), and 𝒇𝒇𝒇𝒇 (blue), and the temperature indices (right) by 𝑻𝑻𝒎𝒎(red), 𝑻𝑻𝒎𝒎,𝒓𝒓 (green), 
and 𝑫𝑫𝒇𝒇 (blue). 

3.1.2 The clustering results of SOM 275 

Using standardized climate index raster data from China, SOM technology was used to cluster climate data, and 418 output 

neurons were obtained. The neurons are displayed on a 19×22 rectangular grid with 418 hexagons, as shown in Fig. 2. Here, 

the structure of the neurons was selected based on the network internal indicators of quantization error (QE) and topographic 

error (TE). Vesanto (1999) suggested that SOM results can be expressed in the form of two types of maps: component planes 

and distance matrices (d-matrices). On the component planes, the individual neuron weight vector values are shown using 280 

color coding; blue and red correspond to low and high values, respectively. This allows the recognition of the mutual 

dependence relationship among variables when comparing the patterns of the component planes. For instance, opposite 

gradients in the component planes indicate a negative correlation between the variables. In the median d-matrix, the median 

Euclidean distances between neighboring neurons are indicated by the color scale. Consequently, we can obtain an indication 

of the relative distances between neurons; neurons with high similarity (blue) may be considered as clusters. 285 

Five features are apparent in the component planes (Fig. 2a). First, the vector values did not exhibit a horizontal or diagonal 

gradient distribution in color. Overall, the five climate indicators had different patterns, and the weight vectors in the 

component planes did not follow a uniform distribution, indicating that the indicators were relatively independent and could 

represent a range of hydroclimatic characteristics. Second, the low-value regions of 𝐼𝐼𝑚𝑚, 𝐼𝐼𝑚𝑚,𝑟𝑟 , as well as the high-value regions 

of 𝐼𝐼𝑚𝑚   and 𝑇𝑇𝑚𝑚, have a consistent distribution on the component plane map. The consistency between climate indices indicates 290 

that several climate features develop synergistically in local regions. For example, the arid regions exhibit stable humidity with 

little seasonal variation, while humid regions have high temperatures and precipitation predominantly in the form of rainfall. 

This aligns with existing studies on the synchrony of rain and heat in China's climate characteristics (Hao et al., 2018). 

The data for the climate indices were continuously distributed rather than discretely clustered. It was difficult to distinguish 

the cluster structures of the data in the d-matrix (Fig. 2b). Therefore, we utilized the FCM algorithm to reveal the underlying 295 

cluster structures in SOM neurons, which considers the complexity of climate spatial continuity and heterogeneity. 
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Figure 2. Results of SOM clustering: (a) component planes showing weight vector values of climate variables, and (b) clustering distance 

matrix (d-matrix). 300 

3.1.3 FCM clustering results 

Before clustering the output neurons from the SOM competitive layer using the FCM algorithm, two validation metrics were 

calculated (i.e., 𝐷𝐷𝐷𝐷𝐼𝐼 and 𝑆𝑆𝐶𝐶) to determine the optimal number of clusters. An experiment was conducted to test the number of 

clusters from two to the maximum number determined by the AP algorithm. The optimal number of clusters was theoretically 

determined by minimizing 𝐷𝐷𝐷𝐷𝐼𝐼 and maximizing 𝑆𝑆𝐶𝐶. They showed the best values when the number was up to six, and then 305 

𝐷𝐷𝐷𝐷𝐼𝐼 increased with an increase in the number of clusters, and 𝑆𝑆𝐶𝐶 changed slowly. Therefore, we defined six representative 

climates in continuous climate index space. The spatial distribution of these six climate groups in China is shown in Fig.3, 

where blue and red correspond to the low and high membership values belonging to a certain cluster, respectively. The results 

showed that there is a strong relationship between climatic clustering and mountain distribution on a large scale. The climate 

groups are described below in terms of their meteorological index characteristics. 310 

Region 1 consists largely of Northwest China's desert regions, where the climate is extremely arid with little seasonal variation 

in the humidity index and some seasonal variation in temperature (Fig. 3a). Region 2 is located in southeastern China along 

the middle and lower reaches of the Yangtze River (Fig. 3b) and is characterized by a humid climate, high temperatures, and 

fairly steady humidity and temperatures throughout the year with little seasonal variation. Region 3 includes the Northeast 

Plain region of China (Fig. 3c), which is characterized by extremely cold temperatures, heavy snowfall, and wide seasonal 315 

temperature and precipitation variability. In the North China Plain region, region 4 occupies the middle and lower reaches of 

the Yellow River and exhibits more seasonal variation and higher temperatures than region 3 (Fig. 3d). Region 5 is located in 
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the basin north of the Tianshan Mountains (Fig. 3e) and is characterized by a high proportion of precipitation that is occupied 

by snowfall, as well as a large seasonal variation in temperature and moisture content. Region 6 is located in the Tibetan 

Plateau region (Fig. 3f), which is comparable to region 3 in terms of cold climate and high snowfall but with more consistent 320 

regional temperatures and less seasonality. 

 

 

 
Figure 3. FCM clustering results across China. Colors represent fuzzy membership values for six climate regions.   325 

The continuous spatial variation of the climate index causes the boundaries among different clusters to become blurred. 

However, grid cells located far from the clustering boundaries tend to reflect a single climate mode with high membership 

values. To facilitate catchment classifications under similar climate patterns, the climate type with the highest membership in 

each grid cell was used as the dominant climate type for this cell (black borders in Fig. 2 represent the main clusters in the 

component plane space). Regions 1,2,3 and 5 are on the extremes in the high-dimensional space of the climate index, and their 330 

climate features, characterized by extremes, can be roughly approximated (e.g., region 1 is always arid and low seasonal; 

region 2 is always wet and no snow). Conversely, for non-extreme points in the high-dimensional space of the climate index 

(regions 4 and 6), the characteristics are more complicated to define (Fig. S1). 
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3.2 Results of catchment classification 

3.2.1 Correlations of catchment attributes in the different climate regions 335 

The catchments in terms of climate homogeneity were classified based on the climate region map in this section. Initially, the 

catchment landscape characteristics were assessed in various climatic regions. It is hypothesized that climate differences affect 

the relationship between catchment attributes. To quantify this, Spearman's rank correlation coefficients between catchment 

attributes across climate regions were calculated. The differences between regional correlation coefficients and average 

correlation coefficients were then compared for catchment characteristics in China. According to Fig. 4, similar types of 340 

catchment feature indicators have high correlation for all climate regions (𝛽𝛽  and 𝑇𝑇𝐼𝐼  , both belonging to topographic 

characteristics, correlation coefficient >0.9), whereas different types of features have low correlation (𝛽𝛽 and 𝐿𝐿 , which belong 

to topographic characteristics and topological characteristics, respectively, with a correlation coefficient <0.1). Additionally, 

catchment attribute correlations varied little between climatic regions (Fig. S2), and the Spearman rank correlation coefficient 

for most characteristics varies less than 0.4 in most cases (> 80%). Nonetheless, some catchment attributes differed by up to 345 

0.8. The 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 and 𝐻𝐻 were the most noticeable. From a national perspective, vegetation and elevation are negatively correlated; 

as elevation increases, vegetation becomes sparser. There was a strong correlation between vegetation and elevation (r=0.7) in 

the highlands (region 6), while in the plains (regions 2 and 5), the direction of correlation shifted. This is because temperature 

often varies significantly with elevation in highland areas, and thus, vegetation growth is influenced by temperature gradient. 

In contrast, temperature in plain areas is more closely tied to latitude, and therefore, vegetation is less correlated to elevation. 350 

Considering that region 6 is located on the Tibetan Plateau and is characterized by complex topography, the correlation between 

part of the elevation and topographic features is inverse to that of the other five regions (for instance, elevation range and slope 

do not increase significantly as elevation increases). Although the correlation coefficient has some local differences across 

climate regions, they still have comparable relationships between catchment attributes. 
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 355 
Figure 4. Spearman rank correlation coefficients for catchment attributes across different climate regions. 

To eliminate redundancy, a principal component analysis was performed for each of the three types of catchment features to 

remove correlations between individual signatures of the same type. The results showed that catchments within the same 

climate region exhibited widely disparate topographic and topological characteristics in the principal component space (Fig. 

5), implying the necessity for identifying similar catchments in the climate regions. Additionally, the soil and vegetation 360 

properties of the catchments in the same climate region were similar. While most catchments were characterized by a high 

percentage of sand and poor vegetation cover in regions 1 and 6, the catchments in region 2 had a high percentage of clay and 

dense vegetation cover. The remaining catchments fell between these two extremes. Each catchment feature type was analyzed 

using principal component analysis, and the principal component eigenvalues and proportions are shown in Table 2. Principal 

components were determined by eigenvalues greater than 1. As a result, two principal components were selected for each type 365 

of feature, which encompassed the most information in which the cumulative proportion exceeded 70%. In terms of 

topographic attributes, the first principal component had the highest correlation with the elevation and slope. The second most 

strongly correlated with 𝐴𝐴𝑆𝑆; and the first principal component of soil and vegetation characteristics had the highest correlation 
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with sand content. The second correlated most strongly with 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼; the first principal component of topological characteristics 

had a strong correlation with 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑓𝑓, while the second had the highest correlation with river network density. 370 

 
Figure 5. Biplots of the principal components: (a) topographic characteristics, (b) soil and vegetation, and (c) topological characteristics. 
Colors represent the climate clusters, while n indicates the number of catchments within each climate region. 

Table 2. Eigenvalues and proportions of principal components for three types of landscape characteristics. 

Descriptor classes Component Eigenvalue Proportion Cumulative Proportion 

Topographic characteristics 

1 3.24  54.02  54.02  
2 1.17  19.44  73.46  
3 0.68  11.37  84.83  
4 0.54  8.92  93.75  
5 0.31  5.14  98.89  
6 0.07  1.11  100.00  

Soil and vegetation 
characteristics 

1 2.31  57.71  57.71  
2 0.91  22.83  80.54  
3 0.54  13.43  93.98  
4 0.24  6.02  100.00  

Topological characteristics 

1 1.94  38.89  38.89  
2 1.71  34.22  73.11  
3 0.96  19.23  92.34  
4 0.26  5.15  97.49  
5 0.13  2.51  100.00  
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3.2.2 Catchment classification results using SOM-FCM algorithm 375 

The SOM-FCM combined algorithm was used to cluster 13,487 catchments within six climate regions separately in China, 

and catchments were divided into 35 classifications. The membership values of the catchments within meteorologically 

homogeneous zones can be determined for various surface patterns. However, some catchment properties are spatially 

continuous, so catchments can belong to more than one mode. A membership threshold of 0.5 is generally interpreted as the 

cell belonging exclusively to its main cluster (Schwämmle and Jensen, 2010). Therefore, only membership values above 0.5 380 

are regarded as belonging to a certain cluster, and below 0.5 are considered an indication that the catchment does not belong 

to a significant cluster and may have overlapping hydrological properties between multiple groups. The proportion of 

catchments with a single main cluster varied across meteorological regions. There were 44 percent of catchments in climate 

region 6 with insignificant main clusters and more complicated basin conditions, whereas 78 percent of catchments in 

meteorological region 5 had a delineated main cluster and low uncertainty in catchment mode. Catchment clusters are discussed 385 

in terms of their characteristics (Fig. S3) and location (Fig. 6); the crucial components of this description are presented in Table 

3. 

The catchments in climate region I were divided into seven classifications. Clusters 1 and 5 were mainly in the northern climate 

region 1 with relatively low elevation and gentle topography, defined by a high clay fraction and high hypsometric curve 

integral, respectively. Nevertheless, the soil texture in cluster 5 was coarser than that in cluster 1. Cluster 3 covered the majority 390 

of the west side of the climate region and was characterized by a high elevation range. This region showed high elevation and 

slope, low hypsometric curve integral, and low level of geomorphic development. The catchments in cluster 6 were in the 

Tarim Basin. They were characterized by a high sand fraction, flat terrain, low elevation, and sparse vegetation. Most of cluster 

7 was located in the southern region. They possessed a relatively high level of geomorphic development, high silt fraction, and 

high elevation. Cluster 2, like cluster 4, was dispersed in space with a low drainage density. The two clusters had similar 395 

topography and soil characteristics, but the catchments in cluster 2 had larger areas and longer rivers. 

There were five clusters in climate region II.  Cluster 1 encompassed hilly areas in the southeast and southwest of climate 

region 2. The catchments were defined by high 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 and had relatively low terrain and elevation, high clay fraction, and 

abundant vegetation. Cluster 2 consisted of catchments located in the Sichuan Basin and Lower Yangtze Coast. They were 

distinguished by a high gradient of hypsometric curves and have low elevation, moderate slope, and high silt fraction. Cluster 400 

3, indicated by a moderate elevation range, demonstrated dispersed spatial distribution. The catchments here were very similar 

in their geographical characteristics to cluster 1, but cluster 3 shows a coarser soil texture. The majority of the catchments in 

cluster 4 were concentrated in the middle and lower reaches of the Yangtze River. The region had a gentle topography, with 

high hypsometric curve integra and low gradient of hypsometric curve, and the degree of landform development was modest. 

Cluster 5, characterized by high elevation, was mostly located in the Hengduan Mountains, and the catchments had high 405 

elevation and slope, as well as a high degree of geomorphic development. 
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The catchments in climate region III were grouped into six clusters. Cluster 1 was concentrated in the southern climatic region 

and was defined by a high topographic index. The catchments had an undulating topography, low slope degree, and coarse soil 

texture. Cluster 4 was identified in the Greater Khingan Range and Changbai Mountains, distinguished by a high silt fraction, 

relatively large slope degree, and low topographic index. Clusters 2 and 3 had a dispersed spatial distribution across the entire 410 

climate region. They were distinguished by low drainage density and high clay fraction, respectively, and both exhibit similar 

landscape characteristics. Cluster 2 had a slightly larger slope and elevation range, whereas cluster 3 had a rounded basin shape. 

The catchments in climate region IV were divided into six classifications. Clusters 1 and 5 were in the western Taihang 

Mountains and were distinguished by a low drainage density and high slope degree, respectively. These clusters had similarities 

in terms of relatively high slope, high elevation, and high geomorphic development, but cluster 1 showed slightly higher terrain 415 

undulation. Cluster 2 mainly covered the downstream area of the Yellow River, which was defined by a high hypsometric 

curve integral and has gentle topography with a low slope. Cluster 3 was situated to the east of the Taihang Mountains and had 

a low slope, low elevation, and low sand fraction with a high silt fraction. Clusters 4 and 6 were widely dispersed throughout 

the climate region. They were defined by a moderate gradient of hypsometric curves and low drainage density, respectively, 

and had similar topographic characteristics. However, cluster 4 had an overall higher sand fraction than cluster 6 did. Cluster 420 

6 had larger areas and longer lengths than cluster 4. 

The catchments in climate region V were grouped into 5 clusters. Cluster 3 was distributed in the Tianshan and Altay Mountain 

areas and was defined by a low drainage density. There are high altitudes, steep slopes, high silt, and dense vegetation in this 

area. The other clusters were distributed throughout the Junggar Basin. The landscape features of clusters 1, 2, and 5 were 

comparable and were defined by a high gradient of hypsometric curves, moderate drainage density, and high silt fraction, 425 

respectively. Cluster 1 had a slightly lower hypsometric curve integral and a lower degree of terrain undulation than clusters 2 

and 5. Cluster 2 was characterized by a large area and longer river length than clusters 1 and 5. Cluster 4, characterized by a 

high topographic index, showed low topography and a moderate slope fraction with coarse soil and poor vegetation cover. 

There were eight clusters in climate region VI. Overall, clusters 1 and 7 were distributed in the eastern part of the climate 

region and were defined by a high silt fraction and high 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼, respectively. Clusters 2 and 6 were located in the southern part 430 

of the climatic region, which is defined by high 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 and moderate drainage density, respectively. Cluster 2 had a finer soil 

texture, lower elevation, and was covered by a higher percentage of vegetation than cluster 6. Cluster 5 was situated in the 

northern climate region with a definition of high elevation, which has a relatively small degree of regional topographic relief 

and geomorphological development. Clusters 4 and 8 were defined by low drainage density, and the catchments in cluster 8 

had narrow basin shapes with larger areas and longer lengths. As mentioned above, similar trends were observed for some 435 

clusters. Some similar catchments had spatial proximity, whereas others were far from each other. 
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Table 3. Properties of catchment clusters within climate regions. “Typical attribute” and “second attribute” refer to the attributes of the 440 
cluster with the lowest and second lowest coefficient of variation, which were scaled by the mean coefficient of variation of the dataset. 

Climate region Cluster 
Catchment 
numbers 

Typical attribute Second attribute 

I 

I-1 662 High 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 High 𝑇𝑇𝐼𝐼 
I-2 568 Low 𝑅𝑅𝑆𝑆 High 𝐴𝐴 
I-3 651 high ∆𝐻𝐻 High 𝐻𝐻 
I-4 361 Low 𝑅𝑅𝑆𝑆 High 𝐻𝐻𝐼𝐼 
I-5 365 High 𝐻𝐻𝐼𝐼 High 𝐴𝐴𝑆𝑆 
I-6 605 High 𝑆𝑆𝑚𝑚𝑛𝑛𝑆𝑆 High 𝐴𝐴𝑆𝑆 
I-7 578 High 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 High 𝐻𝐻𝐼𝐼 

II 

II-1 1110 High 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 High 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 
II-2 615 High 𝐴𝐴𝑆𝑆 Low 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 
II-3 661 Mid ∆𝐻𝐻 Mid 𝑅𝑅𝑆𝑆 
II-4 690 High 𝐻𝐻𝐼𝐼 Mid 𝑅𝑅𝑆𝑆 
II-5 825 High 𝐻𝐻 Mid 𝑆𝑆𝑚𝑚𝑛𝑛𝑆𝑆 

III 

III-1 218 High 𝑇𝑇𝐼𝐼 High 𝐴𝐴𝑆𝑆 
III-2 403 Low 𝑅𝑅𝑆𝑆 High 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 
III-3 538 High 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 High 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 
III-4 603 High 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 High 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 

IV 

IV-1 234 Low 𝑅𝑅𝑆𝑆 High ∆𝐻𝐻 
IV-2 211 High 𝐻𝐻𝐼𝐼 Mid 𝑅𝑅𝑆𝑆 
IV-3 256 High 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 High 𝑇𝑇𝐼𝐼 
IV-4 221 Mid 𝐴𝐴𝑆𝑆 Mid 𝐻𝐻 
IV-5 388 High 𝛽𝛽 High 𝐻𝐻 
IV-6 226 Low 𝑅𝑅𝑆𝑆 High 𝐴𝐴 

V 

V-1 105 High 𝐴𝐴𝑆𝑆 Mid 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 
V-2 69 Mid 𝑅𝑅𝑆𝑆 High 𝐴𝐴 
V-3 129 Low 𝑅𝑅𝑆𝑆 High ∆𝐻𝐻 
V-4 93 High 𝑇𝑇𝐼𝐼 High 𝑅𝑅𝑆𝑆 
V-5 102 High 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 High 𝑇𝑇𝐼𝐼 

VI 

VI-1 131 High 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 Mid 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 
VI-2 150 High 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 Mid 𝑅𝑅𝑓𝑓 
VI-3 197 Low 𝑅𝑅𝑆𝑆 High 𝐻𝐻 
VI-4 247 High 𝐻𝐻 High 𝑆𝑆𝑚𝑚𝑛𝑛𝑆𝑆 
VI-5 317 High 𝐻𝐻 High 𝑇𝑇𝐼𝐼 
VI-6 143 Mid 𝑅𝑅𝑆𝑆 High 𝛽𝛽 
VI-7 322 High 𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 High 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 
VI-8 171 Low 𝑅𝑅𝑆𝑆 Mid 𝑆𝑆𝑖𝑖𝐶𝐶𝑡𝑡 
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Figure 6. Map of the derived catchment classification across China. 445 

3.3 Validation results for small catchments in China 

Small catchments from various clusters were considered to validate the hydrological similarity with catchment classification. 

The catchments selected for this study were based on the following criteria: (1) available hydrological data, (2) unregulated 

catchments, and (3) containing a range of climate types and catchment classes(Li et al., 2018). Each catchment had 10–15 

years of available daily continuous rainfall and runoff data with 10-35 flood events. The catchment areas range from 441 to 450 

4,321 km2, and the climate types span different regions containing various small catchment classes. The period of the data 

record and small catchment classes for each catchment are listed, and the catchments are primarily located in climate regions 

II and IV, which contain a variety of small basins (Table 4). 

 

 455 
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Table 4. Information and characteristics of the study catchments. Basin class indicates the class types of the subbasins in catchment.  

Station River System Area(km2) 
Number of 

flood events 
Record period Basin classes 

Fenshuijiang Qiantang River 2619 10 2003-2014 Ⅱ-1 

Tunxi Qiantang River 2680 35 2008-2017 Ⅱ-1 

Chenhe Yellow River 1429 18 2003-2012 Ⅱ-5 

Daheba Yangtze River 2198 13 2013-2017 Ⅱ-5 

Banqiao Yangtze River 441 13 2000-2010 Ⅳ-4 

Suide Yellow River 3897 22 2010-2017 Ⅳ-4 

Daiying Hai River 4321 16 1990-2002 Ⅳ-6 

Maduwang Yellow River 1605 12 2000-2010 Ⅳ-6 

Dage Hai River 1864 17 1990-2008 Ⅳ-4 

Zhidan Yellow River 779 15 2000-2010 Ⅳ-1 

 

The seasonal flow regime is a reliable predictor that can be used in comparative studies to analyze hydrological signatures 460 

across regions. Our research focused on the average seasonal pattern of runoff variability over the annual cycle in different 

regions, and variations in seasonal runoff between years were also discussed. Catchments located in different meteorological 

regions indicate clear regional heterogeneity (Fig. 7). The flow regime in climate region II presented multiple peaks following 

multiple peaks in precipitation in June and July during the same period. Monthly runoff was influenced by abundant 

precipitation and has great interannual variability (e.g., the Fenshuijiang and Tunxi catchments).  In climate region Ⅳ, the flow 465 

regime generally had a single peak after July, and the runoff showed a noticeable lag in peak monthly compared to monthly 

precipitation. The catchments had small runoff and low inter-annual variability (e.g., Daiying and Dage catchments). 

Catchments in the same climate region had comparable seasonal flow regimes connected to climate patterns rather than 

catchment landscapes. This is because seasonal runoff variations are directly driven by the relative seasonality of precipitation 

and potential evaporation, whereas the landscape characteristics of catchments tend to influence runoff indirectly by affecting 470 

soil and groundwater storage. 
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Figure 7. Regional differences in seasonality of precipitation and runoff. 

The flow duration curve (FDC) is a valuable tool for diagnosing rainfall-runoff responses in gauged catchments at a holistic 

level. The hourly FDC in flood event periods from different catchments located across several cluster regions showed 475 

significant differences in the runoff regime (Fig. 8), illustrating the classification of the 10 catchments into five homogeneous 

regions: (1) Tunxi, Fenshuijiang, (2) Chenhe, Daheba, (3) Daiying, Maduwang, (4) Dage, Suide, Banqiao, and (5) Zhidan. 

Among them, the Tunxi and Fenshuijiang catchments belong to II-1, which has low elevation, fine soil, and dense vegetation. 

These areas experience relatively stable humid climates with abundant precipitation, resulting in similar surface runoff and 

stable groundwater flow processes.. The FDC curves represent a gentle flow, with high flow values obtained in the upper 480 

portion, and stable and gentle flow in the lower flow portion. The Chenhe River and Daheba catchments belong to category 

II-5, characterized by relatively high elevations and steep terrain. These areas experience significant high flows during 

precipitation periods, with the flow becoming more gradual as the exceedance percentage increases, indicating higher base 

flow levels. Zhidan is located in Ⅳ-1, which is distinguished by a hazardous terrain with a high degree of geomorphic 

development, high elevation, and coarse soils. This climate is reflected in seasonal climate changes and low precipitation. The 485 

FDC in Zhidan indicated a steeper curve with rapid regional surface runoff as the major flow, but essentially no subsurface 
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runoff activity. FDCs in the other catchments showed a situation between these two states. These results indicate that catchment 

classification based on climate and landscape can reflect the performance of runoff characteristics and differences.  

Overall, climate appears to be the most important factor for medium- or long-term hydrological signatures, such as seasonal 

runoff, whereas landscape features are more essential to hydrological features at the flood event scale. The results and 490 

comparison show that the hydrological similarity of the catchment is more difficult to identify than the spatial proximity. Using 

spatial proximity may prove effective only in areas where hydrological behavior gradually changes. However, in regions with 

high spatial variability, spatial proximity cannot be used to establish hydrological similarities (Knoben et al., 2018). 

Additionally, catchments with large spatial distances are capable of exhibiting similar hydrological characteristics (Maduwang 

and Daiying, year). Hydrological complexity is reflected in various climates and individual signatures. The combined 495 

indicators appear to depict a dynamic that is climatic in origin, but are influenced by catchment characteristics (Berghuijs et 

al., 2014b; Jehn et al., 2020). The validation experiment demonstrated that the hydrological similarity of catchments at different 

scales can be reflected through classification based on climate and landscape characteristics. 

 
Figure 8. Flow duration curves for the test catchments. 500 

4 Discussion 

4.1 The necessity and boundary effects of dividing meteorologically homogeneous zones 

Dividing small catchments based on meteorologically homogeneous zones involves grouping regions with similar climatic 

characteristics to understand hydrological processes. This approach is based on the premise that climate, as the primary driver 

of hydrological behavior, significantly influences water resource availability, flow patterns, and overall watershed dynamics 505 

(Kuentz et al., 2017; Zhang et al., 2022). We believe that climatic variables such as precipitation and temperature play a critical 

role in shaping hydrological processes. Differences in climatic conditions lead to significant variations in the hydrological 

responses of watersheds (Addor et al., 2018; West et al., 2022; Wu et al., 2020). Studies have demonstrated that regionalization 

techniques are more effective when applied to areas with similar climatic conditions (Bharath and Srinivas, 2015; Hazarika 
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and Sarma, 2021; Samantaray et al., 2021). Classifying small catchments with similar climatic conditions enables the 510 

development of more accurate regional hydrological models, thereby improving water resource management and planning 

(Liu et al., 2021; Pagliero et al., 2019). 

However, the application of meteorologically homogeneous zones encounters boundary effect issues in practice. This issue 

arises because climatic variables, such as temperature and precipitation, generally change gradually across space. The 

introduction of artificial boundaries can result in inaccurate classifications, particularly at the edges of these zones. Although 515 

climate change is continuous (Viviroli et al., 2011), creating abrupt boundaries can disrupt natural gradients, potentially leading 

to errors in hydrological modelling. An effective solution to this issue is the use of fuzzy clustering techniques, which allow 

each catchment to belong to multiple clusters with varying degrees of membership (Bharath and Srinivas, 2015; Sreeparvathy 

and Srinivas, 2022). Some studies have introduced transition zones or buffer areas between clusters to create gradients in 

climatic and hydrological characteristics, thereby reducing the impact of abrupt boundaries (Cantidio and Souza, 2019; Wen 520 

et al., 2017). Hierarchical clustering methods also offer a multi-scale approach, starting with broader climatic zones and then 

making more detailed subdivisions, thus maintaining the continuity of climatic variables at various spatial resolutions 

(Sreeparvathy and Srinivas, 2022). Finally, fuzzy clustering was adopted to preserve the continuity of climatic variables, 

providing a more accurate representation of hydrological regions. This approach resulted in well-classified similar catchments. 

4.2 The complexity of catchment hydrological behavior 525 

Watersheds are complex systems resulting from the interaction of climatic and landscape processes, leading to the co-evolution 

of hydrological processes (Addor et al., 2018). Therefore, identifying the primary drivers of changes in hydrological response 

is challenging (Jehn et al., 2020). This watershed study encompasses mountainous, plateau, and plain regions but does not 

account for the impact of human activities. Due to data limitations, hydrological characteristics were not used as a zoning 

factor; instead, the study was based on a fundamental assumption: watersheds with similar climatic and basin characteristics 530 

exhibit comparable hydrological behavior (Dallaire et al., 2019; Jehn et al., 2020). This assumption is based on the premise 

that hydrological behavior in watersheds is largely influenced by climatic factors (e.g., precipitation and evaporation) and 

basin characteristics (e.g., topography, soil type, and land use). For example, Jehn et al. (2020) pointed out that watersheds 

under different climatic conditions typically exhibit different hydrological responses because precipitation and evaporation 

patterns directly determine the inputs and outputs of the hydrological cycle. Additionally, topography and soil type affect water 535 

infiltration and runoff pathways, thereby influencing the hydrological response of the watershed (Kuentz et al., 2017). On the 

other hand, clustering analyses using catchment attributes and flow signatures showed significant consistency in clustering 

results, further demonstrating the significant control catchment attributes have on hydrological behavior (Du et al., 2023). 

However, this assumption is not without limitations. First, the hydrological behavior of a watershed is not determined solely 

by external factors like climate and topography, but also by complex interactions within internal hydrological processes 540 

(Mcdonnell et al., 2007). Co-evolutionary processes within a watershed, such as dynamic changes in vegetation, soil, and 
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geomorphology, can lead to watersheds with similar climatic and topographical features exhibiting different hydrological 

behaviors (Bogaart et al., 2016). Second, anthropogenic factors such as land-use changes and water resource management 

practices can significantly alter a watershed’s hydrological behavior (Dwarakish and Ganasri, 2015). Human activities, such 

as urbanization and agriculture, can exert a greater influence on a watershed's hydrological processes than natural 545 

characteristics (Neupane and Kumar, 2015). Consequently, even watersheds with similar climatic and topographical features 

may exhibit significantly different hydrological behaviors due to human interference. Therefore, watershed hydrological 

behavior results from the interaction of multiple factors, necessitating a comprehensive analysis to accurately understand 

watershed similarities and predict hydrological responses. 

5 Conclusions  550 

Hydrologically homogeneous catchments were clustered in China based using both SOM and FCM algorithms. As runoff is 

the result of the interaction between climate and catchment processes, an index system for climate and landscape characteristics 

was constructed. We assembled six climatic regions and 35 watershed classifications that fully reflect the regional hydrological 

characteristics of China. Furthermore, 10 catchments belonging to different classifications were selected to verify and analyze 

homogeneous regions. The results indicated that hydrological behavior is better characterized through climate and landscape 555 

characteristics in catchments. Moreover, climate-homogeneous regions respond to hydrological behaviors at medium- or long-

time scales, whereas catchment classification regulates hydrological processes at the flood event scale. Combining the SOM 

and FCM algorithms provides a comprehensive quantitative evaluation of complex catchment structures. SOM enables 

complex, high-dimensional input data to be converted into intuitive 2D output surfaces. FCM utilizes membership values to 

address identifying catchments with fuzzy boundaries. There is no particular classification for one catchment that allows 560 

greater flexibility in the selection of a catchment for comparative studies or parameter transplantation in ungauged catchments. 

The issue of flood simulation and forecasting in ungauged catchments has been a challenge owing to the lack of effective 

observational data. The development of a better hydrological similarity classification is critical for transferring hydrological 

model parameters and runoff simulations. In a high-dimensional heterogeneous feature space, the proposed method for 

identifying similar catchments at the basin scale can provide a guide for selecting similar basins. However, the hydrological 565 

behavior of catchments is not only determined by external characteristics such as climate and topography but also influenced 

by the complex interactions of internal hydrological processes, making it challenging to provide an in-depth description of 

catchment hydrological characteristics. Future research should focus on finer scales and consider including additional 

hydrological features, taking into account the impact of scale and feature selection on hydrological classification. Open data 

sources enable new regionalization studies, showing great potential for generating new knowledge and hydrological insights 570 

across various environmental conditions. For the Chinese region, however, there is a lack of homogeneous datasets on runoff 

characteristics and human impacts. Therefore, it is crucial to make more public sector data available and to construct 
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standardized datasets for research purposes. This is of great importance for understanding the causes of catchment hydrological 

processes and for conducting regional studies. 

Data availability. The observation-driven datasets analyzed in this study are publicly available as referenced within the article. 575 

Meteorological and land surface products datasets utilized in this study can be accessed through the following sources: 

Precipitation and Temperature datasets (http://data.cma.cn/), Potential Evapotranspiration dataset (https://www.ceda.ac.uk/), 

watershed boundary HydroSHEDS dataset (https://www.hydrosheds.org/page/overview), ASTER GDEMV2 digital elevation 

model (http://www.gscloud.cn), Soil and Vegetation characteristics (http://www.issas.ac.cn), Spot/vegetation NDVI dataset 

(https://www.resdc.cn). The self-organizing map clustering methodology used in this study is available online 580 

(https://github.com/sevamoo/SOMPY). Python code for data computation, analysis, and graphical visualization can be 

obtained from the respective authors upon reasonable request. 
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