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Abstract. Extreme flow conditions in rivers have far-reaching environmental and economic consequences. The 15 

retention of surface water in lakes, wetlands, and floodplains can potentially modify the timing, duration, and 16 

magnitude of flow. However, efforts to explore the impact of surface water storage on discharge regimes have been 17 

limited in geographic extent. In this analysis, we calculated six hydrologic signatures, reflecting flashiness and high 18 

and low flow conditions, at 72 gaged watersheds across the conterminous United States. In addition to traditionally 19 

considered variables representing climate, land cover, topography, and soil, we incorporated a novel remote sensing 20 

(Sentinel-1 & 2) approach to study the contribution of surface water storage dynamics when modelling spatial 21 

variability in hydrologic signatures using random forest models. While climate variables explained much of the 22 

variability in the hydrologic signatures, models for five of the six signatures showed some degree of improvement in 23 

model performance when landscape characteristics were added with adjusted R2 improving 1.75 to 11.69% and Akaike 24 

information criterions improving 0.24% to 6.69%. Automated variable selection can be indicative of the relative 25 

importance of certain variables over others. Using a forward selection process, five of the six signature models selected 26 

remotely sensed inundation variables with all five variables showing a significant (p<0.01) contribution to the 27 

respective model. More semi-permanent and permanent inundation within the floodplain (i.e., lakes along rivers), for 28 

example, was associated with lower wet season and annual flashiness. Further, greater seasonal floodplain inundation 29 

extent was associated with increases in peak flows, so that floodplain water storage was relevant to both flashiness 30 

and high flow signatures. Additionally, spatial variability in the amount of semi-permanent and permanent non-31 

floodplain water significantly contributed to explaining spatial variability in the baseflow index. These findings 32 

suggest that surface water storage dynamics may help explain variability in streamflow signatures. Watershed 33 

management will benefit from an improved understanding of how surface water storage influences stream behaviour.  34 

 35 
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Graphical Abstract 39 

 40 

Short Summary 41 

Streamflow signatures can help characterize a watershed’s response to meteorological conditions. We explored if 42 

surface water storage-related variables, which are typically excluded from streamflow signature analyses, may help 43 

explain spatial variability in streamflow signatures. We found that remotely sensed surface water storage extent and 44 

duration were correlated with and explained a portion of the variability in many of the hydrologic signatures across 45 

the 72 streamflow gages. 46 

 47 

1. Introduction 48 

The response of streamflow to climate extremes has important environmental and economic implications. 49 

Drought events limit streamflow available for agriculture, drinking water, and wildlife (Stewart et al., 2020; Apurv 50 

and Cai, 2021), and have cost the United States $53 billion in just the past five years (2019-2023) (NOAA, 2024). 51 

Flood events, meanwhile, can endanger property, infrastructure, and human lives, and have caused global economic 52 

damages exceeding $1 trillion between 1980 and 2013 (Winsemius et al., 2016). Climate change is altering the 53 

frequency of these hydroclimatic extremes (Heidari et al., 2020) and may also alter how climate extremes propagate 54 

to impact runoff (Wu et al., 2022). In recent years, several studies have shown that surface water storage (e.g., 55 

wetlands, lakes, ponds), at least in some watersheds, can potentially increase baseflow and decrease peak flows (Rajib 56 

et al., 2020; Wu et al., 2020; Zeng et al., 2020), implying that consideration of surface water storage and storage 57 

dynamics in models could improve predictions of flood and drought impacts (Golden et al., 2021). However, surface 58 

water storage is typically excluded from both hydrological models (Golden et al., 2014; Jones et al., 2019) and analyses 59 
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of river and stream hydrologic signatures (Addor et al., 2018; McMillan, 2019). Therefore, our understanding of when 60 

and where surface water storage influences river discharge is still very limited.  61 

Hydrologic signatures are quantitative metrics, typically calculated from daily timeseries of discharge, that can 62 

describe the magnitude, timing, rate of change, duration, and frequency of flow conditions (Richter et al., 1996; Daigle 63 

et al., 2011; McMillan et al., 2019). Hydrologic signatures are often selected for a specific hydrological or ecological 64 

application or objective. For example, some studies have developed signatures that reflect wet conditions such as 65 

flashiness or seasonal flooding (Hannaford and March, 2008; Hendry et al., 2019), while others have focused on 66 

applying hydrologic signatures to characterize late-season, low flow regimes (Daigle et al., 2011; Kelly and White, 67 

2016), or alternatively, the impact of hydrologic alterations, such as groundwater pumping, flow diversions, or land 68 

use conversion (Richter et al., 1996). The relationship between hydrologic signatures and watershed characteristics, 69 

such as climate and topography, has been characterized using statistical techniques such as correlation analyses 70 

(Berghuijs et al., 2016; Kuentz et al., 2017), random forest models (Trancoso et al., 2016; Addor et al., 2018; Oppel 71 

and Schumann, 2020) and regression functions (van Dijk, 2010; Beck et al., 2015; Kuentz et al., 2017), with studies 72 

finding variability in the model strength between different signatures (Beck et al., 2015; Addor et al., 2018).  73 

Previous research has shown that drivers of hydrologic signatures can reflect specific aspects of flow. For 74 

example, signatures that reflect high flow events are often best predicted by climate, including precipitation (van Dijk, 75 

2010; Kuentz et al., 2017), while signatures reflecting baseflow are often linked to geology (Kuentz et al., 2017), as 76 

well as potential evapotranspiration (van Dijk, 2010; Beck et al., 2013). Generally, hydrologic signatures are best 77 

explained by climate variables, such as aridity, precipitation, and snowfall (Beck et al., 2015; Addor et al., 2018). 78 

Land cover, such as proportion forest, often acts as a secondary controlling process (Kuentz et al., 2017; Trancoso et 79 

al., 2016; Addor et al., 2018). While Beck et al. (2013) found baseflow to be positively correlated with the average 80 

proportion of each basin classified as open water, and Beck et al. (2015) found slope, which can be indicative of 81 

potential water storage capacity, to be helpful in explaining multiple signatures, efforts to model drivers of hydrologic 82 

signatures have rarely included or considered surface water storage capacity, and have not, to our knowledge, 83 

considered surface water extent dynamics or hydroperiod.  84 

Despite surface water storage being infrequently considered in the analysis of hydrologic signatures, it is widely 85 

accepted that wetlands and lakes have a significant influence on the hydrologic cycle (Bullock and Acreman, 2003). 86 

In watersheds lacking surface water storage (e.g., lakes, ponds, reservoirs, and wetlands) when precipitation falls, it 87 

is captured by vegetation, infiltrates the soils, or is transported downgradient as infiltration-excess or saturation-excess 88 

runoff (Eamus et al., 2006). Conversely, in watersheds where surface storage availability exists, precipitation, snow 89 

water equivalent and runoff can be stored and gradually released through time from both floodplain and non-floodplain 90 

storage - via groundwater baseflow, fill-spill surface runoff, or merging with streams via fill-and-spill mechanisms 91 

(Rains et al., 2016; Fritz et al., 2018; Lane et al., 2018; Stepchinski et al., 2023), creating a less “flashy” system (Shaw 92 

et al., 2012; Kuppel et al., 2015). Surface storage areas, both within and outside of the floodplain, can also contribute 93 

to streamflow when stream-connected surface-water stages rise, subsuming nearby, previously disconnected storage 94 

systems, e.g., non-floodplain wetlands (Vanderhoof et al., 2016). The influence of these disconnected systems, e.g., 95 

upland wetlands, can depend on the position of the wetlands relative to the stream network as well as watershed 96 
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characteristics (Fritz et al., 2018; Lane et al., 2018; Wu et al., 2020). Although we know that lakes and wetlands can 97 

withhold and contribute water to river networks, it is less clear if surface water storage across multiple watersheds and 98 

regions has a measurable impact on river discharge dynamics.  99 

Our limited understanding of how surface water storage dynamics impact river discharge is in part attributable 100 

to surface water storage being traditionally ignored by hydrologic models (Golden et al., 2014; Jones et al., 2019). In 101 

recent years, studies have shown that integrating wetlands, particularly non-floodplain wetlands, into hydrologic 102 

models can improve streamflow simulation accuracy (Rajib et al., 2020; Golden et al., 2021). While recent modelling 103 

studies have been limited in spatial extents, have simplified wetland volume estimates, and have relied, most 104 

commonly, on topographic estimates of potential water storage, each have demonstrated that surface water storage, at 105 

the scale of an individual basin, can potentially increase baseflow (McLaughlin et al., 2014; Zeng et al., 2020) as well 106 

as potentially reduce peak flow and flood duration (Evenson et al., 2018; Ameli and Creed, 2019; Wu et al., 2020).  107 

Further research is needed to improve our understanding of when and where dynamic surface water storage 108 

influences river discharge across multiple diverse watersheds and regions. Here, we calculated a suite of hydrologic 109 

signatures to characterize variability in flow flashiness and high and low flow conditions across 72 diverse watersheds 110 

in the contiguous United States (CONUS). We developed two random forest models for each flow signature: one 111 

representing climate variables only and one representing climate, land cover, geology, topographic, and surface water 112 

storage input variables. This approach helped us to assess the relative ability of climate alone, compared to catchment 113 

characteristics that uniquely included novel remotely sensed surface water extent and hydroperiod, to explain the 114 

variability in hydrologic signatures. Specifically, our research questions were: (1) What are the dominant explanatory 115 

variables explaining the variability in flow flashiness and high and low flow condition-related hydrologic signatures 116 

across watersheds representing different climates, topography, and land covers? and (2) To what extent do surface 117 

water storage-related variables correlate with or help explain variability in these selected hydrologic signatures?   118 

2. Materials and Methods 119 

2.1 Watersheds  120 

A total of 72 U.S. Geological Survey (USGS) stream gages and associated watersheds (Fig. 1) were selected 121 

across the conterminous U.S. (CONUS) from the GAGES-II dataset (Falcone, 2011). Catchment size influences runoff 122 

(Pilgrim et al. 1982), therefore we prioritized selecting non-nested watersheds within a bounded size class. Most 123 

watersheds, 80%, were between 1500 km2 and 5000 km2, while the full-size range was 292 km2 to 9918 km2. In 124 

comparison, 74 of the CAMEL watersheds are between 1500 and 5000 km2 (Newman et al., 2014). Secondly, gaged 125 

watersheds, to the extent possible, were selected to be approximately co-located with regions used to train the Sentinel-126 

1 and Sentinel-2 satellite-based surface water algorithms to maximize the accuracy of the algorithms (Vanderhoof et 127 

al., 2023). The algorithms were used to map surface water extent over time at each of the watersheds. The intensity of 128 

computing resources needed to process Sentinel-1 and Sentinel-2 imagery into surface water extent also limited the 129 

number of watersheds that was feasible to include. Watersheds with tidal wetlands were excluded to focus on 130 

freshwater aquatic systems. Further, potential watersheds were reviewed to minimize the inclusion of major dams, 131 
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defined as dams 15.2 meters or more in height (storage capacity of 6.17 million cubic meters) near watershed outlets 132 

(National Atlas of the United States, 2006).  133 

Across the selected watersheds, stream density, as calculated from the National Hydrography Dataset (NHDplus) 134 

high resolution dataset (USGS, 2022), ranged from 259 m km-2 to 4182 m km-2 across the selected watersheds, with a 135 

median density of 1461 m km-2 (Table A1). The proportion of each watershed classified as wetland by the National 136 

Wetland Inventory (NWI) dataset (USFWS, 2019) ranged from 1.1% to 48.7% with a median wetland proportion of 137 

5.6% (Table A1). Mean annual precipitation (2016-2023) ranged from 325 mm to 1659 mm, with a median annual 138 

average of 967 mm (GRIDMET; Abatzoglou, 2013). In addition, the dominant landcover class was cultivated crops 139 

or hay/pasture for 36 of the watersheds, with other dominant classes including forest (18 watersheds) and grassland-140 

shrub/scrub (13 watersheds) (Homer et al., 2020; Table A1). The watersheds were grouped by U.S. region, including 141 

West, Southwest, North Central, Gulf Coast, Midwest, and East, to facilitate data interpretation (Fig. 1). 142 

 143 

Figure 1. Selected U.S. Geological Survey (USGS) gaged watersheds in relation to aridity (2016-2023), where 144 

maroon/orange indicates arid conditions and blue indicates less arid conditions. Legend values indicate median 145 

values for the corresponding colours and a histogram equalize stretch was applied.    146 

  147 
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2.2 Hydrologic signatures: response variables 148 

Hydrologic signatures were calculated from daily discharge at each gage and were used as the response 149 

variables in our statistical analyses (Table 1). Daily rate of stream discharge was acquired from the USGS National 150 

Water Information System for 2016-2023 (USGS, 2024). The period was limited by the temporal availability of 151 

Sentinel-2 imagery (Sentinel-2a and -2b launched in June 2015 and March 2017, respectively), required for the 152 

surface water algorithm. Signatures were selected from the literature to represent discharge extremes (high flow and 153 

low flow) as well as variability in discharge and were calculated using the calendar year. Signatures related to 154 

characterizing high flow conditions included a (1) wet season flashiness index, where flashiness reflected daily 155 

variability in discharge within the wet season, defined as the three months in each year with the highest average 156 

discharge (Baker et al., 2004). (2) The maximum annual 30-day flow per drainage area (km2) (MAX30/area) 157 

reflected seasonal peaks in discharge (Hannaford and Marsh, 2008); and (3) discharge exceeded 10% of the time, 158 

within a given year (Q10) minus discharge exceeded 95% of the time (Q95), within a given year ((Q10-Q95)/area) 159 

and averaged over multiple years, or the difference between high flows and the baseflow regime (National River 160 

Flow Archive, 2024). The (4) flashiness index, which reflected daily variability in discharge across seasons, was 161 

included as a metric on how rapidly a watershed responds to precipitation or snowmelt events (Baker et al., 2004). 162 

Low flow conditions were characterized using (5) a baseflow index, calculated as the ratio of the average annual 163 

baseflow volumes to the average annual flow volumes (USFS, 2022), and (6) the average driest month discharge per 164 

area (DryMonth/area, Daigle et al., 2011) (Table 1). We explored shorter time scales (i.e., 7-day instead of 30-day) 165 

for MAX30/area and DryMonth/area but as similar patterns were documented between the two time periods, only 166 

the 30-day version was included. We also considered including signatures based on the coefficient of variation, but 167 

decided they were more challenging to interpret hydrologically, since variability could reflect episodic or seasonal 168 

variability. Signatures were either calculated to be unitless or divided by the drainage area (km2) so that they could 169 

be compared across watersheds (Daigle et al., 2011). The distribution of hydrologic signature values was evaluated 170 

using the Shapiro-Wilk test for normality. Variables with extreme outliers were normalized using log10 transform 171 

(Beck et al., 2015) and included the flashiness index and wet season flashiness index.  172 

Table 1. Hydrological signatures included in the analysis. MAX: maximum 173 

Signature 

Targeted 

flow 

regime 

Calculation Units Median Min Max Source 

Flashiness 

index 
All flows 

The sum of the absolute value of the changes in 

discharge from the day prior to the current day 

(discharge t2 – discharge t1) divided by the sum of the 

daily discharge values (log normalized). 

Unitless -0.81 -1.63 0.23 
(Baker et al., 

2004) 

Flashiness 
index (wet 

season) 

High flows 

The sum of the absolute value of the changes in 

discharge from the day prior in the three wettest 
months (highest discharge) divided by the sum of 

daily discharge values in those months (log 

normalized). 

Unitless -0.84 -1.89 0.23 
(Baker et al., 

2004) 

MAX30/ 
area 

High flows 

The flow rate for the 30 days per year with the highest 

flow rate, summed over the 30 days, and averaged per 

year, divided by the watershed area. 

m3/sec/km2 0.94 0.01 3.48 

(Hannaford 

and Marsh, 

2008) 

(Q10-
Q95)/area 

High flows 

Discharge exceeded 10% of the time (Q10) minus 

discharge exceeded 95% of the time (Q95), divided 

by watershed area. 

m3/sec/km2 0.016 0.000 0.056 

(National 

River Flow 
Archive, 

2024) 
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DryMonth/ 

area 
Low flows 

Average annual discharge in the driest month 

(excluding snow cover months) divided by watershed 

area. 

m3/sec/km2 0.0019 0.0000 0.0112 
(Daigle et al., 

2011) 

Baseflow 

index 
 

Low flows 
The ratio of the average daily flow during the lowest 
annual 7-day flow (excluding snow cover conditions) 

to the annual average daily flow. 

Unitless 0.19 0.00 0.70 (USFS, 2022) 

2.3 Dependence of hydrologic signatures on selected period  174 

While the selected period was limited by the available Sentinel-1 and Sentinel-2 image record, signature 175 

uncertainty can increase when using shorter flow records (Kennard et al., 2010). To evaluate potential uncertainty in 176 

the hydrologic signature values based on the selected period of analysis, the signatures from our 8-year period 177 

(2016-2023) were contrasted with hydrologic signature values derived from a longer 24-year period (2000-2023), 178 

using Pearson correlation, generated using the Hmsic package in R, and relative bias. Between-site variability in the 179 

hydrologic signatures derived from the 8-year period, was highly correlated with the between-site variability from a 180 

longer, 24- year period (2000-2023) (Table 3). The median value of hydrologic signatures showed some differences 181 

between the 8-year period (2016-2023) and the longer 24-year period (2000-2023). While both flashiness indices 182 

had a bias of <1%, the MAX30/area and (Q10-Q95)/area had a relative bias of 13.5% and 8.7%, respectively, 183 

indicating that average peak wetness conditions were wetter within the 8-year period, relative to the longer period. 184 

Additionally, while the DryMonth/area bias was minimal, the baseflow index showed a relative bias of -11.8%, 185 

potentially reflecting a higher volume of water coming from high flows within the 8-year period, relative to the 186 

longer period (Table 3). While the hydrologic signatures of the high and low flow conditions were amplified during 187 

the selected period, the signature values between the two periods were highly correlated, with correlation values 188 

ranging from 0.94 to 0.99 (Table 2). This suggests that the relative variations in hydrologic signature values between 189 

the long-term flow records (24 years) compared to the study period (8 years) are tightly associated.  190 

Table 2. Correlation values comparing the 2016-2023 hydrologic signatures with the same signatures derived from 191 

the 2000-2023 period. The relative bias compares the paired signature values from each watershed. All R values were 192 

significant at p<0.01. MAX: maximum 193 

Metric  

R (2016-

2023 vs 

2000-2023)  

Median 

relative 

bias (%) 

Flashiness index  0.99 0.9 

Flashiness index (wet season)  0.99 0.2 

MAX30/area  0.97 13.5 

(Q10-Q95)/area  0.98 8.7 

DryMonth/area  0.94 -2.2 

Baseflow index   0.95 -11.8 

We also contextualized the study period’s meteorological conditions using the GRIDMET 5-day Palmer 194 

Drought Severity Index values (PDSI; Abatzoglou, 2013). Specifically, we converted PDSI for 1980-2023 to a rank 195 

percentile, where 50% represents the median PDSI for the 1980-2023 period. We examined the minimum (i.e., 196 

driest), maximum (i.e., wettest) and median per watershed PDSI rank percentile that occurred between 2016-2023 to 197 

understand the range of PDSI conditions that this 8-year period represents. The 2016-2023 period averaged 5%, 198 

100%, and 62%, for the minimum, maximum, and median PDSI conditions, respectively (Table A1). This indicated 199 
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that the period was slightly wetter, on average, relative to the longer 44-year period, but that most watersheds 200 

exhibited a large range of PDSI conditions (maximum – minimum) over the 2016-2023 period.  201 

2.4 Independent variables 202 

2.4.1 Climate variables 203 

 Climate variables were averaged over the 2016-2023 period. Total annual, average precipitation and actual 204 

evapotranspiration (ET), using grass as the reference vegetation (“eto”), were derived from the daily University of 205 

Idaho Gridded Surface Meteorological Dataset (GRIDMET, 4 km resolution; Abatzoglou, 2013; Table 3). Water 206 

demand was correspondingly evaluated as annual precipitation – annual ET (Abatzoglou, 2013). An aridity index was 207 

calculated as the annual total potential evapotranspiration (PET) divided by the annual total precipitation 208 

(TerraClimate, 4.6 km; Abatzoglou et al., 2018; Fig. 1), where higher values represent arid watersheds and lower 209 

values represent less arid watersheds (Budyko, 1958). Since only approximately half of the watersheds experience 210 

snow, a snowmelt only variable, like snow water equivalent, was not included, and instead snowmelt was represented 211 

by a precipitation coefficient of variation (CV), precipitation seasonality, and maximum monthly (January-December) 212 

precipitation variables, calculated using DAYMET daily precipitation, which includes daily estimates of snow-water 213 

equivalent (Table 3). Seasonality was defined as the difference between average summer (June, July, August) and 214 

average winter (December, January, February). A Rainfall and Runoff Factor (RFACT), referred to as rainfall 215 

intensity, was included to reflect the long-term average of rainfall amount and peak intensity for storm events, and 216 

was derived from PRISM climate data (1971-2000) (Falcone, 2011). Maximum daily temperature was derived from 217 

DAYMET, which has been found to outperform GRIDMET for temperature (Mehdipoor et al., 2018), and variables 218 

included temperature seasonality as well as the maximum temperature CV. Both CV variables were calculated from 219 

a monthly time step. DAYMET variables relied on 2016-2022 data, as 2023 was not yet available at the time of the 220 

analysis.  221 

2.4.2 Land cover, soils, topography, and wetland variables 222 

Vegetation was represented by the 2019 National Land Cover Database (NLCD), as the proportion of each 223 

watershed classified as (1) forest (evergreen, deciduous, or mixed), (2) developed (low, medium, and high intensity) 224 

and (3) cultivated crops (Homer et al., 2020). Annual minimum depth to water table, depth to bedrock, geologic 225 

permeability, fraction clay, fraction silt, and fraction sand were derived from the Soil Survey Geographic Database 226 

(SSURGO; Falcone, 2011). To represent topography, the mean percent slope and elevation range divided by mean 227 

elevation were derived using the 10 m USGS Digital Elevation Model (DEM) (Table 3). The mean watershed 228 

topographic diversity was also considered, calculated from the multi-scale Topographic Position Index (mTPI) and 229 

the Continuous Heat-Insolation Load Index (CHILI, 30 m; Theobald et al., 2015). Stream density was calculated using 230 

the total stream length, defined by the NHDplus high resolution dataset (USGS, 2022). The National Wetland 231 

Inventory dataset (USFWS, 2019) was used to calculate the proportion of each watershed mapped as wetlands. The 232 

floodplain variable was defined as the proportion of each watershed classified as within the 100-year floodplain 233 

(Woznicki et al., 2019). Lastly, the connectivity of wetlands to streams can influence the timing of water moving into 234 

the stream network, so the proportion of each watershed mapped as geographically isolated wetlands (GIWs; 235 
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Leibowitz, 2003), or non-floodplain wetlands (NFW), that are surrounded by upland, as well as the proportion of total 236 

wetland area mapped as GIWs was considered (Lane and D’Amico, 2016). 237 

2.4.3 Inundation variables 238 

In addition to including static water variables, such as wetland area, remote sensing platforms allow us to include 239 

variables that characterize the hydroperiod of surface water stored within watersheds, including lakes, ponds, 240 

wetlands, and temporary inundation in flood prone areas. Although Landsat can provide a longer temporal record of 241 

surface water dynamics, observations are limited to periods free of clouds, snow, and ice, which can limit the accuracy 242 

of temporary and seasonal patterns of inundation. Alternatively, the more frequent Sentinel-2 revisit, and incorporation 243 

of a synthetic aperture radar (SAR) satellite, like Sentinel-1, can help bypass these limitations. Sentinel-1 and Sentinel-244 

2 based algorithms that map non-water, open water and vegetated water were previously developed using gradient 245 

boosted classifier algorithms for 12 sites across the conterminous U.S. (20 m resolution; Vanderhoof et al., 2023). 246 

Details on the surface water algorithms can be found in Vanderhoof et al., (2023). In this effort individual Sentinel-1 247 

and Sentinel-2 images, collected between January 1, 2016, and December 31, 2023, overlapping each of the gaged 248 

watersheds (n=72) were classified into open water, vegetated water, and non-water. The classified Sentinel-1 (S1) and 249 

classified Sentinel-2 (S2) time series were consolidated at a 14-day time step where pixel values were assigned as the 250 

majority classification, water (defined as open water plus vegetated water), or non-water (Fig. 2). If observations of 251 

water and non-water were equal, then open water was prioritized followed by non-water, and lastly vegetated water 252 

(Fig. 2), consistent with the higher accuracy of the open water class relative to the vegetated water class (Vanderhoof 253 

et al., 2023). Where no valid observations were present in the 14-day period, pixels were gap-filled using observations 254 

from the t-1 and t+1 timestep, as shown in Fig. 2. 255 

To limit commission error in the surface water time series, a water mask, defined as the maximum allowable 256 

surface water extent, was derived for each watershed, and applied across the time series. To generate each water mask, 257 

the Sentinel-1 open water and vegetated water, and Sentinel-2 open water, and vegetated water percentile rasters were 258 

manually reviewed for each watershed (Fig. 2). Percentile thresholds were selected, below which the frequency of 259 

erroneously classified water pixels visually exceeded the frequency of correctly classified water pixels (Table A2). To 260 

help inform the threshold selection, ancillary data were used including the NWI dataset (USFWS, 2019), the 2019 261 

NLCD (Homer et al., 2020), and base map imagery, delivered through ArcMap. The spatial extent where water pixels 262 

were retained was defined as pixels located within the 100-year floodplain (Woznicki et al., 2019), to account for 263 

short-term flood events, or pixels where the water percentile was greater than the selected threshold in any of the four 264 

5-year percentile rasters (Table A2). Pixels classified as water outside of the water mask were re-classified as non-265 

water. The Sentinel-1 algorithm has a documented omission and commission error of 3.1% and 0.9% for open water, 266 

and a 28.4% and 16.0% commission error for vegetated water, respectively, while the Sentinel-2 algorithm has an 267 

omission and commission error of 3.1% and 0.5% for open water, and a 10.7% and 7.9% commission error for 268 

vegetated water, respectively, when validated against 36 high-resolution images (i.e., WorldView-2, WorldView-3, 269 

PlanetScope) (Vanderhoof et al., 2023). When consolidated at a monthly time-step to a S1-S2 water, non-water 270 

classification, errors of omission and commission for monthly surface water extent averaged 1.6% and 10.4%, 271 

respectively, when validated against 64 PlanetScope images (Vanderhoof et al., 2024). The use of a water mask was 272 
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previously shown to reduce commission error, resulting in errors of omission and commission of 1.9% and 6.5%, 273 

respectively for the monthly surface water extent (Vanderhoof et al., 2024).  274 

After gap-filling and applying the water masks, the time series for each watershed was then consolidated into an 275 

8-year percentile. Categories of surface water, using the percent of watershed area, were defined in reference to the 276 

100-year floodplain (Woznicki et al., 2019), and included, (1) temporarily flooded, defined as an average of  ≥3 days 277 

but <1 month per year (Cowardin et al., 1979; Scott et al., 2019), (2) seasonally flooded, defined as inundated >1 278 

month but <6 months per year, on average, and (3) semi-permanently and permanently inundated, defined as >6 279 

months per year, on average (Cowardin et al., 1979; Donnelly et al., 2019) (Table 3). The total amount of inundation 280 

of any hydroperiod within the 100-year floodplain, and outside of the 100-year floodplain was also included, as was 281 

the proportion of inundation that was seasonal (Table 3). Examples of variability in inundation patterns between 282 

watersheds are shown in Fig. 3. The terms surface water extent and inundation are used interchangeably in this 283 

analysis. 284 

 285 

  286 
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Table 3. Independent variables considered modelling hydrological signatures. DEM: Digital elevation model, SRTM: 287 

Shuttle Radar Topography Mission, NLCD: National Land Cover Database, SSURGO: Soil Survey Geographic 288 

Database, NHD: National Hydrography Dataset, CV: coefficient of variation, USFWS: U.S. Fish and Wildlife Service   289 

Variable 

Type  
Variable  Units  Min  Max  Median   Source 

Climate  

Precipitation (P, annual)  mm  325.3 1659.1 967.4 GRIDMET (Abatzoglou, 2013)  

Evapotranspiration (ET, annual)  mm  714 1934.1 1181.1 GRIDMET (Abatzoglou, 2013)  

Aridity index (PET/P, annual)  unitless  0.8 6.63 1.21 TerraClimate (Abatzoglou et al., 2018)  

Water demand (P - ET, annual) mm  -1586 265.6 -247.4 GRIDMET (Abatzoglou, 2013)  

Precipitation seasonality  mm  -396 276.6 105 DAYMET (Thornton et al., 2020)  

Precipitation CV unitless 0.41 1.31 0.64 DAYMET (Thornton et al., 2020)  

Rainfall intensity ~ 12.1 412.5 139.2 SSURGO (Falcone, 2011) 

Maximum monthly precipitation mm 53.9 230.8 131.6 DAYMET (Thornton et al., 2020) 

Temperature seasonality  ⁰C  15.6 34.2 23 DAYMET (Thornton et al., 2020)  

Temperature CV unitless  0.23 1.3 0.48 DAYMET (Thornton et al., 2020)  

Land Cover  

Forest (evergreen, deciduous, mixed)  % of area  0.059  56.1  17.5  NLCD (2019; Homer et al., 2020)  

Developed (low, medium, high intensity, 

open space)   
% of area  0.323  35.7  4.69  NLCD (2019; Homer et al., 2020)  

Cultivated crops  % of area  0.0  84.7  17.9  NLCD (2019; Homer et al., 2020)  

Stream density  m km2  259.2  4181.6  1460.9  NHDPlus High Res. (USGS, 2022)  

Soil and 
Geology  

Clay fraction fraction 0.08 0.47 0.23 SSURGO (Falcone, 2011)  

Sand fraction fraction 0.07 0.74 0.33 SSURGO (Falcone, 2011)  

Silt fraction fraction 0.17 0.72 0.44 SSURGO (Falcone, 2011) 

Depth to bedrock cm 81.3 152.4 145.8 SSURGO (Falcone, 2011)  

Annual min depth to water table  meters  0.49  1.83  1.40  SSURGO (Falcone, 2011)  

Geological permeability cm day-1 0.5 8.7 2.2 SSURGO (Falcone, 2011) 

Topography  

Slope  %  0.5  32.5  3.7  DEM (Gesch et al., 2002)  

(Elevationmax - Elevationmin) / 

Elevationaverage  
unitless  0.2  4.9  1.0  DEM (Gesch et al., 2002)  

Global SRTM topographic diversity  unitless  0.03  0.7  0.1  (Theobald et al., 2015)   

Inundation 

Dynamics  

Temporarily flooded, floodplain (3 days - 

1 month) 
% of area  0.07 4.16 0.65 (Vanderhoof et al., 2023)  

Temporarily inundated, non-floodplain (3 
days - 1 month) 

% of area  0.03 5..85 1.29 (Vanderhoof et al., 2023)  

Seasonally inundated, floodplain (1 - 6 
month) 

% of area  0.04 8.58 1.77 (Vanderhoof et al., 2023)  

Seasonally inundated, non-floodplain (1 - 

6 month) 
% of area  0.01 45.81 4.07 (Vanderhoof et al., 2023)  

Semi-permanently and permanently 

inundated, floodplain (>6 month) 
% of area  0 3.54 0.39 (Vanderhoof et al., 2023)  

Semi-permanently and permanently 

inundated, non-floodplain (>6 month) 
% of area  0 5.55 0.44 (Vanderhoof et al., 2023)  

Total floodplain inundation % of area  0.42 15.46 3.08 (Vanderhoof et al., 2023)  

Total non-floodplain inundation % of area  0.04 52.59 6.06 (Vanderhoof et al., 2023)  

Proportion of inundation that is 
seasonally inundated, floodplain (1 - 6 

months) 

% of 

inundation 
3.15 53.56 18.34 (Vanderhoof et al., 2023)  

Proportion of inundation that is 
seasonally inundated, non-floodplain (1 - 

6 months) 

% of 

inundation 
2.16 77.44 39.64 (Vanderhoof et al., 2023)  

Wetland  

Geographically Isolated Wetlands (GIW)  % of area  0.0  9.4  0.6  (Lane and D'Amico 2016)   

Proportion of wetland area identified as 
GIW 

% of area  0.6  80.9  11.4  
(Lane and D'Amico 2016; USFWS 
2019)   

Floodplain % of area  1.2  36.8  7.7  (Woznicki, et al., 2019)   

National Wetland Inventory (NWI) 

wetlands 
% of area  1.1  48.7  5.6  NWI (USFWS 2019)  

 290 
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 291 

 292 

 293 

Figure 2. Flowchart of steps to generate the surface water variables and data analysis.  294 

 295 

  296 
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 297 

Figure 3. Examples of between watershed variability in the abundance of inundation variables, with the relative 298 

distribution of inundation variables shown with pie charts, including (a) MN5, (b) NE1, (c) OR1, (d) AZ2, where 299 

the numbers indicate the gage number. Temp: temporary, Seas: seasonal, SP+P: semi-permanent to permanent, 300 

FP: floodplain, NFP: non-floodplain  301 
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2.5 Modelling analysis 302 

The relationships between multiple predictor variables and hydrologic signatures were modelled with random 303 

forest regressions developing using the scikit-learn python package (Pedregosa et al., 2011). For each hydrologic 304 

signature, random forest models were generated that (1) considered the inclusion of climate-related variables only 305 

(MClimate), and (2) considered inclusion of all variables, including climate, topographic, land cover, and wetland and 306 

inundation related variables (MAll) (Table 2). The multi-model approach furthered our ability to quantify the relative 307 

contribution of different variable types to explain variability in the hydrologic signatures.  308 

Random forest models use a bootstrapping approach to generate hundreds of regression trees and make no prior 309 

assumptions about cause-and-effect relationships or correlations among variables (Hastie et al., 2009). They have also 310 

been previously used in the analysis of hydrologic signatures (e.g., Trancoso et al., 2016; Addor et al., 2018; Oppel 311 

and Schumann, 2020). While random forest techniques are generally insensitive to multicollinearity, the inclusion of 312 

highly correlated variables can make it more challenging to identify the most predictive variables, deflate or bias 313 

variable importance values, and complicate model interpretation (Murphy et al., 2010; Gregorutti et al., 2016). 314 

Conversely, an automated variable selection can be indicative of the relative importance of certain variables over 315 

others (Murphy et al., 2010). A stepwise forward selection routine was implemented where the set of potential 316 

predictors were sequentially tested. The predictor that contributed most to reducing the RMSE was selected. During 317 

each step, the remaining predictors were removed if they had a correlation value of 0.85 or greater with any of the 318 

selected predictors. This process was iterated until the improvement in the model’s RMSE was <0.001 with any 319 

additional variables (Sherrouse and Hawbaker, 2023). 320 

For each model the variable and hyperparameter selection process were concurrently run, where the potential 321 

models were compared using a nested cross-validation, KFold with 6 splits (Cawley and Talbot, 2010). The 322 

hyperparameters tested were n_estimators (the number of trees in the forest with tested values of 300, 500, 700, and 323 

1000), max_depth (the maximum depth of a tree with tested values of 2, 3, and 4). For all models, max_features (the 324 

number of features to consider when looking for the best split) was set at the square root of the number of features, 325 

and max_samples (the proportion of samples selected to train each estimator) was set at 0.8. The model with the 326 

highest cross-validated adjusted R2 was selected. 327 

Random forest models do not consider the spatial pattern between samples, therefore any clustering of the 328 

watersheds included in the analysis could potentially bias model predictions (Hengl et al., 2018). The residuals of each 329 

selected model were tested for spatial autocorrelation using Moran’s I (Klute et al., 2002). Of the random forest model 330 

residuals, only 1 of 12 showed significant (p<0.01) spatial autocorrelation, the (Q10-Q95)/area (MAll). An 331 

autocovariate, or additional model term, representing the mean neighborhood (defined as within 500 km of the 332 

catchment center, reflecting catchment clusters) model residual value, was included in this model to account for spatial 333 

dependency (Betts et al., 2006). Performance of final random forest models was evaluated using the leave-one-out 334 

cross validation to account for the limited sample size (n=72) (Vabalas et al., 2019), and the cross-validated model 335 

RMSE, R2, and adjusted R2, to account for differences in the number of variables selected. The Mean Square Error 336 

(MSE) and Akaike information criterion (AIC) were also calculated from the observed and model predicted values, 337 
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where decreases in both values indicate model improvement (Portet, 2020). Variable importance was calculated with 338 

Python Scikit-learn as the permutation importance. Significance of model selected variables and the corresponding 339 

decrease in MSE with the exclusion of each variable was calculated using the rfPermute package in R using 100 340 

repetitions. Single variable correlations between the hydrologic signatures and the predictor variables were calculated 341 

using the non-parametric Spearman Rank Correlation Coefficient, generated in R using the Hmisc package. Because 342 

of the number of comparisons, a Bonferroni correction was applied before significance was determined (Emerson, 343 

2020).  344 

3. Results 345 

3.1 Flashiness signatures 346 

The flashiness and wet season flashiness signatures reflect how quickly discharge changes in response to 347 

episodic rainfall and snowmelt events, over the course of the year and within the wet season, respectively. Despite 348 

representing different portions of the year, the two signatures were highly correlated (R = 0.97, p<0.01). Flashiness 349 

and wet season flashiness were highest, on average, in the Southwest watersheds, and lowest in the West and North 350 

Central watersheds (Table A3, Fig. 4). Watershed flashiness and wet season flashiness were significantly correlated 351 

with very few of the independent variables considered. Most prominently, both significantly (p<0.01) decreased with 352 

an increased area mapped as semi-permanently and permanently inundated within the floodplain, and with increased 353 

total area classified as wetland by the NWI dataset (Table 4). Correlations with climate variables were weaker relative 354 

to the other hydrologic signatures explored. The flashiness index and wet season flashiness index MAll models saw 355 

improvement in explanatory power and associated decreases in the RMSE, MSE and AIC relative to MClimate, or when 356 

landscape and water variables were added for consideration (Table 5). Adjusted R2, for example improved by 11.57% 357 

and 8.72% for the flashiness and wet season flashiness, respectively, while MSE decreased by 10.4% and 5.13%, 358 

respectively (Table 6). Variability in the flashiness signature was best explained by the evapotranspiration and the 359 

amount of semi-permanent-permanent (SP+P) inundation within the floodplain. In the wet season flashiness MAll, 360 

model the amount of SP+P floodplain inundation had the greatest variable importance (Table 7; Fig. 5). Lower 361 

flashiness was associated with greater SP+P inundation within the floodplain, both across the year as well as in the 362 

wet season (Fig. 6a) and showed strong variable importance (Table 7) over both time periods. Table 6 consolidates 363 

the information on the role of inundation variables. For the flashiness signatures, both signatures had an inundation 364 

variable selected, which was significant (p<0.01), and their potential exclusion had a projected increase in MSE of 365 

18% (Table 6). Both flashiness signatures saw consistent improvement in model performance, across metrics, for MAll 366 

relative to MClimate, although these improvements were minor to moderate (3.99% to 11.69%), and lastly, the inundation 367 

variable selected for inclusion in MAll was consistent with the inundation variables that were significantly (p<0.01) 368 

correlated with the flashiness signatures (Table 6).   369 
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3.2 Peak flow signatures 370 

The peak flow signatures, MAX30/area and (Q10-Q95)/area, were highest, on average, within the Gulf Coast 371 

watersheds, and lower, on average, within the Southwest, North Central, and West watersheds, although both 372 

signatures saw a higher degree of variability across the West region (Table A3, Fig. 4). The two signatures were 373 

positively correlated (R = 0.93, p<0.01). In relation to the independent variables considered, both signatures, 374 

MAX30/area and (Q10-Q95)/area, were most highly positively correlated with precipitation and water demand (P-375 

ET), and negatively correlated with aridity (Table 4). The MAX30/area and (Q10-Q95)/area were also both 376 

significantly correlated with four of the remotely sensed inundation variables. An example of the correlation of (Q10-377 

Q95)/area in relation to seasonally inundated area in the floodplain (R=0.69, p<0.01) is shown in Fig. 5. The high flow 378 

signatures had a positive, significant (p<0.01) correlation with the total amount of inundation within the floodplain, 379 

the amount of seasonal inundation in the floodplain, and the amount of temporary inundation outside of the floodplain 380 

(Table 4). These correlation values were equivalent to or exceeded correlation with existing water variables, 381 

specifically the 100-year floodplain (Table 4). The MAX30/area MAll model was best explained by the maximum 382 

monthly precipitation and aridity index, while the (Q10-Q95)/area MAll model was best explained by annual 383 

precipitation and water demand (Table 7). Despite the high explanatory power of climate variables for both high flow 384 

signatures, the MAll models still showed some minor improvement with the adjusted R2 improving by 5.44% and 385 

1.75% and the RMSE decreasing by 6.44% and 5.22% relative to the MClimate models, for MAX30/area and (Q10-386 

Q95)/area, respectively (Table 6). The (Q10-Q95)/area MAll model added stream density and the proportion of 387 

inundation that was seasonally inundated and occurred within the floodplain. The landscape-based variables added for 388 

MAX30/area included the amount of seasonally inundated area on the floodplain, stream density, and geologic 389 

permeability (Table 7). The inundation variables were both found to be significant, and their potential exclusion had 390 

a projected increase in model MSE of 15.44% and 8.32% for MAX30/area and (Q10-Q95)/area, respectively (Table 391 

6). Further, like the flashiness signatures, the selected inundation variables were consistent with the inundation 392 

variables identified as significant in the correlation analysis (Table 6). 393 

3.3 Low flow signatures 394 

The DryMonth/area and baseflow index were highest within the East watersheds, on average, and lowest 395 

within the Southwest watersheds (Table A3, Fig. 4). Watersheds were also regionally variable. For example, the 396 

DryMonth/area signature graded west (lower) to east (higher) within the North Central region (Fig. 4), concurrent 397 

with the aridity gradient within the region (Fig. 1). The two low flow signatures had a significant, but weaker 398 

correlation with one another (R = 071, p<0.01). The DryMonth/area was significantly correlated with many more 399 

independent variables than the baseflow index. Like the peak flow signatures, DryMonth/area was positively 400 

correlated with greater annual precipitation and water demand (P-ET) and negatively correlated with greater aridity. 401 

The DryMonth/area was also positively correlated with total inundation within the floodplain, seasonally inundated 402 

area within the floodplain, and temporarily inundated area outside of the floodplain. No significant correlations for 403 

DryMonth/area, in contrast, were found with topographic or wetland variables (Table 4). The DryMonth/area had the 404 

greatest model explanatory power, relative to the other hydrologic signature models (Table 5, 6). However, despite 405 
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significant (p<0.01) correlations with remotely sensed inundation dynamics, there was no model improvement as 406 

landscape variables were added between the MClimate and MAll models (Table 5). The DryMonth/area was best 407 

explained by watershed aridity and the precipitation CV.  408 

The baseflow index was negatively significantly (p<0.01) correlated with precipitation CV, 409 

evapotranspiration, and fraction of clay (Table 4). Adding landscape variables, unlike DryMonth/area, showed a 410 

limited amount of improvement with the adjusted R2, RMSE and MSE improving by 2.95%, 2.90%, and 3.43%, 411 

respectively (Table 6) and improved the relationship between the observed and predicted baseflow index values (Fig. 412 

6b). While the precipitation CV was the most important variable in both the baseflow index MAll and MClimate models, 413 

the MAll model’s improvement was attributable to the inclusion of stream density, clay fraction, and the amount of 414 

non-floodplain area classified as semi-permanent to permanent (i.e., large wetlands and lakes outside of the floodplain) 415 

(Table 7). The selected inundation variable was significant (p<0.01) within the model and had a projected 15.47% 416 

increase in MSE with the potential exclusion of the variable within the MAll model (Table 6). 417 

 418 

Figure 4. Hydrological signature values by watershed including (a) flashiness index, (b) wet season flashiness index, 419 

(c) MAX30/area (m3/sec/km2), (d) (Q10-Q95)/area (m3/sec/km2), (e) DryMonth/area (m3/sec/km2), and (f) baseflow 420 

index. Greater flashiness (a, b), higher peak flows (c, d), and greater flows during low flow periods (e, f) are shown 421 

in blue.422 
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Table 4. Correlation values between hydrologic signatures and variables. Significant (p<0.01) correlations, after 423 

Bonferroni correction was applied, are shown in shaded gray. CV: coefficient of variation, FP: floodplain, NFP: non-424 

floodplain, Prop: proportion, MAX: maximum, SP+P: semi-permanent and permanent, Proport.: proportion, GIW: 425 

geographically isolated wetlands, NWI: National Wetland Inventory 426 

Variable 

Type 
Variable 

Flashiness 

Index 

Flashiness 

(wet 

season) 

MAX 

30/area 

(Q10-

Q95)/area 

DryMonth 

/area 

Baseflow 

index 

Climate 

Precipitation 0.06 0.01 0.86 0.87 0.68 0.16 

Evapotranspiration  0.43 0.32 0.18 0.14 -0.15 -0.47 

Aridity index   -0.02 -0.04 -0.77 -0.80 -0.86 -0.42 

Water demand  -0.03 -0.02 0.78 0.83 0.82 0.41 

Precipitation seasonality  0.17 0.26 0.01 -0.04 0.21 0.20 

Precipitation CV 0.18 0.17 -0.59 -0.65 -0.85 -0.59 

Rainfall intensity 0.20 0.16 0.78 0.75 0.55 -0.02 

Max monthly precipitation 0.30 0.25 0.85 0.82 0.48 -0.10 

Temperature seasonality  -0.29 -0.18 -0.30 -0.28 -0.05 0.24 

Temperature CV -0.38 -0.29 -0.35 -0.30 -0.08 0.28 

Land cover 

Forest -0.14 -0.17 0.28 0.32 0.18 0.15 

Developed 0.22 0.18 0.62 0.60 0.62 0.18 

Cultivated crops  -0.16 -0.13 0.03 0.06 0.30 0.27 

Stream density  0.36 0.29 0.37 0.35 -0.06 -0.33 

Soil and 

Geology 

Clay fraction 0.40 0.37 0.25 0.15 -0.12 -0.44 

Sand fraction -0.23 -0.27 -0.32 -0.26 -0.07 0.16 

Silt fraction 0.04 0.10 0.18 0.17 0.12 0.06 

Depth to bedrock -0.29 -0.30 0.14 0.18 0.32 0.20 

Water table depth 0.12 0.13 -0.54 -0.55 -0.45 -0.09 
 Geological permeability -0.42 -0.40 -0.25 -0.20 0.16 0.43 

Topography 

Slope  0.13 0.13 -0.23 -0.22 -0.27 0.00 

Elevation range 0.12 0.03 0.24 0.24 0.14 -0.04 

Topographic diversity  0.11 0.11 -0.17 -0.15 -0.20 0.04 

Inundation 

Dynamics 

Temporarily flooded, FP 0.27 0.23 0.42 0.40 0.24 -0.05 

Temporarily inundated, NFP -0.06 -0.03 0.49 0.51 0.58 0.30 

Seasonally inundated, FP -0.12 -0.15 0.66 0.69 0.59 0.15 

Seasonally inundated, NFP -0.21 -0.19 0.36 0.37 0.39 0.14 

SP+P inundated, FP -0.44 -0.46 0.24 0.33 0.33 0.14 

SP+P, inundated, NFP -0.34 -0.32 0.13 0.11 0.13 0.04 

Total inundation, FP -0.12 -0.15 0.60 0.63 0.52 0.12 

Total inundation, NFP -0.19 -0.17 0.37 0.37 0.41 0.17 

Proport. Seasonally inundated, FP -0.17 -0.20 0.41 0.46 0.36 0.17 

Proport. Seasonally inundated, NFP -0.20 -0.16 0.06 0.04 0.11 0.09 

Wetland 

GIW -0.31 -0.29 0.07 0.08 0.13 0.04 

Prop. of wetland area that is GIW -0.08 -0.05 0.08 0.03 0.06 0.01 

Floodplain -0.02 -0.07 0.49 0.51 0.39 0.00 

NWI wetlands -0.44 -0.44 0.12 0.19 0.28 0.19 

 427 

428 
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Table 5. Model statistics for each hydrologic signature and version of the model including (1) climate variables only 429 

(MClimate) and (2) all variables including wetland and surface water variables (MAll). All models were significant at 430 

p<0.0001. RMSE: root mean square error, adj: adjusted, MSE: mean square error, AIC: Akaike information criterion, 431 

MAX: maximum 432 

Signature Model R2  
R2 

adj.  
RMSE  MSE AIC Trees 

Max. 

tree 

depth 

Variable 

count 

Flashiness 

index 

MClimate 0.54 0.51 0.242 0.191 -196.04 700 4 4 

MAll 0.61 0.57 0.225 0.172 -202.74 700 4 5 

Flashiness 

index (wet 

season) 

MClimate 0.47 0.43 0.273 0.209 -178.78 500 4 4 

MAll 0.51 0.47 0.262 0.198 -182.64 300 4 5 

MAX30/ 

area 

MClimate 0.65 0.63 0.475 0.327 -101.11 1000 4 3 

MAll 0.69 0.66 0.445 0.311 -106.70 700 4 5 

(Q10-

Q95)/area 

MClimate 0.76 0.74 0.007 0.005 -712.87 1000 3 3 

MAll 0.78 0.76 0.006 0.005 -714.59 700 4 6 

DryMonth/ 

area 

MClimate 0.80 0.78 0.001 0.001 -952.93 700 4 5 

MAll 0.80 0.78 0.001 0.001 -952.93 700 4 5 

Baseflow 

index 

MClimate 0.60 0.57 0.114 0.085 -306.80 700 4 4 

MAll 0.62 0.59 0.111 0.082 -307.04 700 4 5 

 433 

 434 

 435 
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Table 6. Difference in model performance between MClimate, model in which only climate variables were considered, 436 

and MAll, model where all variables were considered, where positive values for R2, and R2 adjusted indicate model 437 

improvement, and negative values for RMSE (root mean square error), MSE (mean square error), and AIC (Akaike 438 

information criterion) indicate model improvement. Inundation variables selected as well as significant correlations 439 

with inundation variables are also shown. Chg: change, SP+P: semi-permanent and permanent inundation, Seas: 440 

seasonally inundated, Temp: temporary inundation, FP: floodplain, NFP: non-floodplain, Prop: proportion of 441 

inundation, FP (%): 100-year floodplain, NWI: National Wetland Inventory   442 

Metric 
Flashiness 

index 

Flashiness 

index (wet 

season) 

MAX30/ area (Q10-Q95)/area 
DryMonth/ 

area 

Baseflow 

index 

Comparison of MAll to MClimate model metrics 

R2 (% chg) 11.57 8.72 6.78 3.28 0.00 3.77 

R2 adjusted (% chg)  11.69 7.96 5.44 1.75 0.00 2.95 

RMSE (% chg)  -7.16 -3.99 -6.44 -5.22 0.00 -2.90 

MSE (% chg) -10.40 -5.13 -5.07 -0.58 0.00 -3.43 

AIC (chg) -6.69 -3.86 -5.59 -1.72 0.00 -0.24 

Inundation variables selected for MAll model and their significance 

Selected inundation 

variables 
SP+P (FP) SP+P (FP) Seas (FP) Prop Seas (FP)  ~ SP+P (NFP) 

Increase in MSE with 

inundation variable 

exclusion (%) (p-value) 

18.61% 

(p<0.01) 

18.81% 

(p<0.01) 

15.44% 

(p<0.01) 
8.32% (p<0.01) ~ 

15.47% 

(p<0.01) 

Significant correlations (with Bonferonni correction) between signatures and inundation variables 

Positive correlations  

(p<0.01) 
~ ~ 

Temp (NFP), 

Seas (FP), FP 

(%) 

Prop Seas (FP), Inun 

(FP), Temp (NFP), 

Seas (FP), FP (%) 

Inun (FP), 

Temp (NFP), 

Seas (FP) 

~ 

Negative correlations 

(p<0.01) 

SP+P (FP), 

NWI (%) 

SP+P (FP), 

NWI (%) 
~ ~ ~ ~ 

 443 

 444 
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Table 7. Variable permutation importance of variables selected for MClimate: model in which only climate variables 446 

were considered, and MAll: all variables were considered. CV: coefficient of variation, min.: minimum, FP: floodplain, 447 

NFP: non-floodplain, SP+P: semi-permanent and permanent, Q10 and Q95: discharge at 10th and 95th percentiles, 448 

MAX: maximum 449 

Variable 

Type 
Variable 

Flashiness 

index 

Flashiness 

index (wet 

season) 

MAX30/area 
(Q10-

Q95)/area 
DryMonth/area Baseflow index 

MClimate MAll MClimate MAll MClimate MAll MClimate MAll MClimate MAll MClimate MAll 

Climate 

Precipitation      0.23   0.44   0.44 0.38         

Evapo-

transpiration  
0.41 0.31 0.34 0.24       0.26 0.18 

Aridity index  0.23     0.25   0.39 0.39   

Water demand      0.33  0.38 0.30     

Precipitation 
seasonality  

0.15 0.11 0.21    0.18 0.09 0.07 0.07 0.13  

Precipitation CV   0.18 0.21      0.29 0.29 0.40 0.30 

Rainfall intensity 0.21 0.15  0.18     0.19 0.19 0.21  

Max Month Precip      0.44       

Temperature 

seasonality 
        0.05 0.05   

Temperature CV        0.13 0.23               

Land 
Cover 

Stream density            0.12   0.14       0.19 

Soil and 
Geology 

Clay fraction                       0.18 

Silt fraction             

Water table depth     0.19         

Geologic 

permeability 
          0.05             

Inundation 

Dynamics 

SP+P inundated, 

FP 
  0.24   0.26                 

SP+P inundated, 
NFP 

           0.16 

Seasonally 

inundated, FP 
     0.14       

Prop. Seasonally 
inundated, FP 

              0.09         

Other 
Residual 
autocovariate  

              0.00         

 
Color Legend: (0-25%) (26-50%) (51-75%) (76-100%) 

 

   
 450 
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453 
Figure 5. Scatter plot of (a) wet season flashiness versus the percent of semi-permanent and permanent (SP+P) 454 

floodplain (FP) inundation, which was included in the MAll, with corresponding examples (b, c) and (d) (Q10-455 

Q95)/area in relation to the percent of seasonally inundated area (FP), with corresponding examples (e, f). To match 456 

the Spearman correlation analysis, both variables in panel d were converted to rank.  457 

 458 

 459 

 460 
Figure 6. Scatter plots showing observed versus predicted with the Mclimate and Mall models for (a) flashiness (wet 461 

season, unitless) and (b) baseflow index (unitless).   462 
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4. Discussion 463 

4.1 Contributions of climate and inundation variables to model hydrologic signatures 464 

 Hydrologic signatures can facilitate rapid comparison of river hydrology between diverse watersheds 465 

(McMillan, 2019). Climate variables often provide the highest predictive power for many hydrologic signatures (Beck 466 

et al., 2015; McMillan et al., 2021). Similarly, we found climate variables had the greatest variable importance in five 467 

of the six MAll models, with annual precipitation, evapotranspiration, aridity, and water demand dominating variable 468 

importance across the signatures tested (Table 7). Processes generating discharge are variable across the United States 469 

(Berghujs et al., 2016), but consistent with the variables selected in our analysis, rainfall, and for more northern 470 

watersheds, snowmelt (Jiang et al., 2022), as well as aridity (Sauqet et al., 2021) commonly account for variability in 471 

discharge. However, there are still opportunities to incorporate new watershed descriptors that may improve the 472 

characterization of flow signatures (Gnann et al., 2020). Specifically, McMillan et al. (2021) argued that novel 473 

relationships may be discovered where hydrology is more important than climate. For example, flood signatures have 474 

been predicted using watershed drainage patterns (Oppel & Schumann, 2020), and surface waterbodies have been 475 

found to help predict baseflow signatures (Beck et al., 2013). More generally, the influence of a watershed’s landscape, 476 

including vegetation type (Trancoso et al., 2016; Addor et al., 2018), topography (Beck et al., 2015, and geology 477 

(Kuentz et al., 2017), on discharge has been well established. Likewise, in our analysis five of the six hydrologic 478 

signatures, showed an improvement in the MAll model performance, relative to relying on climate variables alone. 479 

Improvement, however, was moderate at best, with improvement in model metrics ranging from 0.24% to 11.57% 480 

(Table 6), making it difficult to interpret from model performance, alone, if the contributions were meaningful for 481 

hydrological processes.  482 

More convincing was that inundation variables were selected for inclusion and were found to be significant 483 

in all hydrologic signature MAll models except DryMonth/area. The variables selected for inclusion were also highly 484 

consistent with the inundation variables that showed significant correlations with the corresponding signatures 485 

(Table 6), but further, and most importantly, the selected inundation variables were also consistent with our current 486 

understanding of watershed hydrology. The flashiness signatures, which reflect the rate that streamflow rises and 487 

falls in response to high rainfall and snowmelt events (Hannaford and March, 2008), selected the amount of SP+P 488 

inundation in the floodplain as the most and second most important variable for the wet season and all season 489 

flashiness, respectively (Table 7), where reduced flashiness was associated with greater SP+P floodplain inundation. 490 

This finding is consistent with stream-connected lakes or large wetlands moderating peak flows (Kuppel et al., 2015; 491 

Fritz et al., 2018). The signatures, MAX30/area and (Q10-Q95)/area, representing peak flows, relied instead on the 492 

amount and proportion of seasonal inundation within the floodplain, respectively. Greater peak flows in our analysis 493 

were positively correlated with greater seasonal floodplain inundation, consistent with our understanding of seasonal 494 

flooding coinciding with peak flow conditions (Blanchette et al., 2019; Wohl, 2021). However, the association of 495 

greater seasonal flooding with greater peak flows in our analysis does not allow us to understand how seasonal 496 

flooding extent may change the timing or magnitude of peak discharge conditions. Lastly, the baseflow index 497 

selected the amount of SP+P inundation outside of the floodplain. Differences in specific yield between uplands and 498 

non-floodplain wetlands leads to frequent reversals in hydraulic gradients, meaning that non-floodplain wetlands can 499 
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act as both groundwater sinks and sources (McLaughlin et al., 2014), contributing to baseflow (Evenson et al., 2015) 500 

and stabilizing low flow conditions (Ameli and Creed, 2017; Blanchette et al., 2019). Model selection of remotely 501 

sensed inundation dynamic variables over existing wetland and floodplain dataset variables suggests that 502 

consideration of surface water hydroperiod, alongside landscape position, was more helpful in explaining variability 503 

in hydrologic signatures then static datasets representing the spatial extent of wetlands (e.g., NWI, GIW) and 504 

floodplains (e.g., 100-year floodplain). 505 

However, even when incorporating novel, remotely sensed inundation data, characterizing the potential 506 

influence of surface water storage on river discharge is challenging (Golden et al., 2021). In cases where variables 507 

can be isolated (e.g., basins with tile drainage, compared to basins without tile drainage), significant differences 508 

between models can be an appropriate mechanism to help quantify the impact of a variable (Rainio et al. 2024). But 509 

both discharge and surface water extent tend to be a function of climate inputs and catchment characteristics 510 

(Heimhuber et al., 2016; Vanderhoof et al., 2018). Consequently, our inundation variables were significantly 511 

correlated with not only catchment characteristics, such as depth to bedrock, slope, and topographic diversity, but 512 

also climate variables, including annual precipitation, aridity, and rainfall intensity (Table A4), with the highest 513 

correlation occurring between the amount of seasonal inundation on the floodplain and the watershed rainfall 514 

intensity (R=0.80, p<0.01) (Table A4). Because our inundation variables were significantly correlated with select 515 

climate variables, the MClimate cannot be considered a null model, relative to MAll, and therefore comparing variables 516 

selected, variable significance and importance as well as model improvement using evaluation metrics was seen as 517 

more appropriate than testing for significant differences between models. It is possible that an alternative 518 

methodological approach, for example integrating remotely sensed surface water into a process-based hydrologic 519 

model (e.g., Stacke and Hagemann, 2012; Rajib et al. 2020) or applying a deep learning approach to time series data 520 

(e.g., Kratzert et al. 2019), may help build upon these findings and provide additional clarity regarding the discrete 521 

role of surface water extent on diverse discharge regimes. However, process-based hydrologic models are most often 522 

developed for a single or series of nested watersheds (Jones et al., 2019), limiting our ability to compare 523 

geographically disparate watersheds. What was novel to this effort, conversely, was that we were able to explore the 524 

relevance of surface water storage variables from a spatial analysis across multiple, diverse watersheds, instead of 525 

from modelling temporal variability within a single watershed. 526 

 527 

4.2 Sources of Uncertainty 528 

Modelling hydrologic signatures to evaluate the relative influence of drivers on hydrologic responses has 529 

many potential sources of uncertainty. Our results, for instance, could depend on the hydrologic signatures included 530 

in the analysis (McMillan et al., 2021). It is possible that inundation has a greater or lesser influence on different 531 

aspects of the flow regime than those explored here. For the hydrologic signatures considered, such signatures can 532 

show substantial uncertainty, attributable to error in precipitation and discharge datasets (Westerberg and McMillan, 533 

2015). To account for uncertainty, the hydrologic signatures were calculated annually, and then averaged across 534 

multiple years, while independent variables were averaged over multiple years and across each watershed, both steps 535 

that have been shown to reduce uncertainty (Westerberg and McMillan, 2015). Our findings may also depend on the 536 

https://doi.org/10.5194/hess-2024-298
Preprint. Discussion started: 8 November 2024
Public domain. CC0 1.0.



25 

 

variables included in the analysis. While we included diverse climate and catchment characteristics, it is possible that 537 

additional catchment variables, if available, such as data on aquifers (Bloomfield et al., 2021) or additional geologic 538 

characteristics, such as proportion sandstone (Carlier et al. 2018), could improve the explanatory power of certain 539 

hydrologic signatures, like baseflow index, and reduce our model uncertainty. However, included variables like clay 540 

fraction, crop cover, topography, aridity, bedrock depth, and precipitation have all previously been found to explain 541 

variability in baseflow (Aboelnour et al., 2021; Bloomfield et al., 2021; Briggs et al., 2022) Uncertainty can also be 542 

attributable to the watersheds selected (McMillan et al., 2021). While we limited the range of watershed sizes and 543 

sampled across diverse regions, we under-sampled certain regions including the northeastern U.S. and mountainous 544 

regions, where a high proportion of forest cover and steep slopes, respectively, tend to increase our uncertainty in 545 

mapping surface water. Generating the surface water variables was also computationally intensive and limited our 546 

feasible sample size, which also likely contributed uncertainty to the modelling effort. Further, while surface water 547 

extent was used to represent surface water storage, the two are distinct measurements, and in the future, conversion 548 

of surface water (2D) to storage (3D) will facilitate improved modelling of total water distribution. Lastly, uncertainty 549 

can be introduced by the statistical modelling approach itself. To minimize modelling-related uncertainty we applied 550 

hyper-parameter optimization and variable selection procedures. Random forest models have also previously been 551 

found to be an effective mechanism to model hydrologic signatures (Trancoso et al., 2016; Addor et al., 2018; Oppel 552 

and Schumann, 2020). Further exploration of how inundation impacts diverse components of flow regimes will be an 553 

important next step to reduce the uncertainty associated with this effort. 554 

 555 

4.3 Management implications 556 

Hydrologic signatures have been used to support watershed management. For example, signatures related to 557 

flow magnitude, high flow frequency and flow variability have applications for flood management (Mogollon et al., 558 

2016), wildlife habitat condition (Lowe et al., 2019), and riparian vegetation (Richter et al., 1996). Further, changes 559 

in hydrologic signatures over time have been used to examine the impacts of management actions or to assess a 560 

watershed’s vulnerability or resilience to change (Hannaford and Marsh, 2008; Mogollon et al., 2016; McMillan et 561 

al., 2021; Lane et al., 2023). Applying results linking different watershed characteristics (e.g., climate, land use, 562 

geology) to hydrologic signature variability can therefore help inform future watershed management actions. 563 

However, a challenge is how to synthesize this information in a useful way (Gnann et al., 2020). One approach would 564 

be to focus on managing watershed characteristics that are highly correlated with a pre-determined flow signature 565 

target, like those associated with flood risks. For example, in our analyses, the association of greater semi-permanent 566 

and permanent floodplain inundation with less flashiness suggests that protection and restoration of floodplains may 567 

be particularly important in watersheds with flashy discharge. On the other hand, we found that non-floodplain surface 568 

water inundation contributed to small improvements in modelling variability in the baseflow index, which describes 569 

the proportion of flow coming from groundwater, and by inference the relative potential vulnerabilities for drought 570 

and extreme low flow conditions. Results from our analyses, and other future analyses leveraging large satellite-based 571 

data sets against streamflow records, can therefore advance our ability to support improved watershed management in 572 

the face of future floods and drought (Winsemius et al., 2016; Stewart et al., 2020). 573 
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5. Conclusion 574 

 Hydrologic signatures are increasingly used to provide insights on process-based streamflow dynamics 575 

(Addor et al., 2018; McMillian, 2019). Most previous efforts that have modelled flow signatures have not tested 576 

inundation- related, observation-based variables. And conversely, most previous efforts that have tested the influence 577 

of inundation- related variables on discharge, have been limited in geographic extent. In this analysis we explored 578 

integrating novel remotely sensed surface water variables to help explain spatial variability in hydrologic signatures 579 

in watersheds across CONUS. While improvement in model performance between using only climate variables, and 580 

considering climate and catchment variables, was moderate at best, inundation variables were selected and significant 581 

in models for five of the six hydrologic signatures. Variables representing floodplain inundation dominated, with the 582 

amount of semi-permanent to permanent floodplain inundation supporting the greatest improvement in modelling the 583 

flashiness signatures, relative to the other signatures explored, and model improvement metrics ranging from 3.86% 584 

to 11.69% (Table 6). Enhancing our understanding of when and where surface water storage influences discharge 585 

regimes can help guide management of non-riverine surface water, including wetlands, lakes, and floodplains, and in 586 

turn, support greater watershed resilience against climate extremes and hydrologic disturbances (Lane et al., 2023). 587 
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Appendix 829 

Table A1. The 72 U.S. Geological survey gages and watersheds included in the analysis. The 2016-2023 period is 830 

shown relative to the Palmer Drought Severity Index (PDSI, 1980-2021). NHD: National hydrographic dataset, NWI: 831 

National Wetland Inventory. CC: cultivated crops, DF: deciduous forest, D: developed, HP: hay/pasture, EF: 832 

evergreen forest, WW: woody wetlands, MF: mixed forest, SS: shrub/scrub, H: herbaceous  833 

Gage ID  
Site 

ID  

U.S. 

State(s)  

Area 

(km2) 

NHD 

Density        

(m km2) 

NWI 

(% 

area) 

PDSI 

(min, 

%)  

PDSI 

(max, 

%)  

PDSI 

(median, 

%)  

Primary land cover  

01491000  MD1  MD, DE  292 2030.7 28.6 32.6 100.0 66.5 CC (47%)  

01578475  MD2  MD, PA  458 1069.2 2.6 6.1 100.0 72.4 CC (43%)  

01580520  MD3  MD, PA  425 1130.1 2.1 8.9 100.0 67.4 DF (30%)  

01594440  MD4  MD  907 1571.9 6.4 16.7 100.0 64.4 D (36%)  

01643000  MD5  MD, PA  2112 1394.3 3.0 4.2 100.0 57.5 HP (27%)  

02049500  VA1  VA  1583 1497.8 15.7 33.0 100.0 79.3 EF (29%)  

02131500  SC1  SC, NC  1720 1451.6 10.3 18.3 100.0 53.7 EF (26%)  

02135000  SC2  SC, NC  7256 1628.6 27.2 8.5 100.0 78.0 WW (31%), CC (31%)  

02136000  SC3  SC  3211 1738.0 27.0 17.6 100.0 75.2 CC (32%), WW (31%)  

02175000  SC4  SC  7077 1163.0 17.3 27.1 98.0 75.5 EF (25%), WW (24%)  

02198000  GA1  GA  1676 1365.2 12.0 19.4 96.6 61.1 EF (26%)  

02202500  GA2  GA  6887 1249.8 16.8 21.1 97.7 60.2 EF (26%)  

05056000  ND1  ND  4862 283.9 10.6 1.2 100.0 56.3 CC (52%)  

05057200  ND2  ND  1897 259.2 11.6 0.0 100.0 65.0 CC (67%)  

05062500  MN1  MN  2407 745.9 23.9 3.4 100.0 58.6 CC (39%)  

05066500  ND3  ND  3218 774.1 6.9 0.3 100.0 63.4 CC (81%)  

05078500  MN2  MN  3518 862.3 23.5 1.2 100.0 54.5 CC (48%)  

05090000  ND4  ND  1742 1068.9 3.7 1.5 100.0 51.0 CC (73%)  

05123400  ND5  ND  3206 515.6 12.2 1.0 97.8 48.8 CC (48%)  

05131500  MN3  MN  4384 608.9 42.4 4.5 100.0 84.4 WW (49%)  

05132000  MN4  MN  3895 537.3 48.7 5.6 100.0 71.1 WW (49%)  

05244000  MN5  MN  2683 471.2 23.8 0.9 100.0 52.3 DF (27%)  

05300000  MN6  MN, SD  2468 1286.4 11.5 11.6 100.0 66.6 CC (68%)  

05304500  MN7  MN  4899 733.6 17.0 4.8 100.0 62.5 CC (66%)  

05313500  MN8  MN, SD  1801 1129.0 8.8 8.5 100.0 58.8 CC (80%)  

05336700  MN9  MN  2252 676.5 34.1 17.0 100.0 87.8 WW (34%)  

05388250  IA1  IA, MN  2010 1548.4 2.7 9.2 100.0 76.1 CC (61%)  

05412500  IA2  IA  3858 1414.9 2.4 6.9 100.0 81.6 CC (66%)  

05418500  IA3  IA  4019 1452.5 2.1 6.3 100.0 70.8 CC (69%)  

05422000  IA4  IA, MN  6049 1248.5 4.6 5.9 99.7 70.2 CC (79%)  

05434500  WI1  WI, IL  2677 1618.6 3.0 5.1 100.0 71.9 CC (44%)  

05447500  IL1  IL  2576 1115.6 1.9 20.7 100.0 74.9 CC (85%)  

06018500  MT1  MT  9373 1628.9 3.9 0.3 89.3 50.9 SS (47%)  

06052500  MT2  MT, WY  4634 1376.2 2.9 1.2 97.4 61.8 EF (47%)  

06076690  MT3  MT  2189 1695.3 4.3 1.4 98.1 62.7 H (35%)  

06468170  ND6  ND  2809 302.6 7.4 1.0 100.0 66.3 CC (67%)  

06471200  ND7  ND, SD  1869 627.2 11.2 1.2 100.0 70.8 CC (62%)  

06479525  SD1  SD  2467 947.8 9.8 19.3 100.0 67.4 CC (59%)  

06481500  SD2  SD  1604 1102.0 8.7 8.8 100.0 62.0 CC (72%)  

06815000  NE1  NE, KS  3473 1688.2 1.8 4.1 99.2 52.8 CC (54%)  

06821190  MO1  MO, IA  6179 1925.6 4.8 11.3 99.0 56.6 CC (50%)  

06908000  MO2  MO  2895 1737.9 4.2 3.5 90.4 51.9 HP (38%)  

06916600  KS2  KS, MO  8387 1685.9 3.8 12.3 100.0 57.5 HP (37%)  

06918060  MO3  MO, KS  2773 1669.2 5.4 4.7 100.0 57.0 HP (56%)  
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Gage ID  
Site 

ID  

U.S. 

State(s)  

Area 

(km2) 

NHD 

Density        

(m km2) 

NWI 

(% 

area) 

PDSI 

(min, 

%)  

PDSI 

(max, 

%)  

PDSI 

(median, 

%)  

Primary land cover  

06928000  MO4  MO  3275 1538.7 1.8 12.8 100.0 79.9 DF (45%), HP (43%)  

07047950  AR1  AR  1985 1864.2 12.5 20.2 100.0 82.5 CC (73%)  

07169500  KS3  KS  2098 1781.3 2.9 4.9 100.0 62.0 H (595)  

07288500  MS1  MS  2009 1809.9 9.8 7.1 97.9 55.9 CCs (82%)  

07290000  MS2  MS  7124 2565.5 10.0 13.3 100.0 74.8 EF (19%), MF (19%)  

07346070  TX1  TX  1809 2010.3 9.3 6.5 100.0 70.4 HP (27%)  

07363500  AR2  AR  5429 1762.5 3.0 28.8 99.1 83.0 EF (40%)  

07364200  LA1  AR, LA  3138 1507.9 14.6 22.8 100.0 79.5 CC (31%)  

08033500  TX2  TX  9406 1712.0 8.0 3.2 99.9 64.9 EF (29%)  

08068090  TX4  TX  2539 1695.0 9.9 10.9 100.0 71.4 EF (32%)  

08110000  TX5  TX  2616 1630.0 4.8 8.9 100.0 73.8 HP (55%)  

08117500  TX6  TX  1869 1085.4 5.6 6.4 98.6 64.8 HP (43%)  

08164000  TX7  TX  2124 1435.4 2.1 8.8 94.1 52.3 HP (59%)  

09439000  AZ1  AZ, NM  9279 1679.3 1.2 1.2 98.1 40.2 SS (45%)  

09485700  AZ2  AZ  2238 2347.0 2.1 0.0 95.4 48.3 SS (64%)  

09487000  AZ3  AZ  2028 3229.6 2.3 0.0 87.7 42.4 SS (79%)  

09512800  AZ4  AZ  2876 1639.6 1.3 0.1 88.1 47.1 SS (68%)  

09517000  AZ5  AZ  3967 1664.7 1.7 0.2 90.8 50.6 SS (81%)  

09537500  AZ6  AZ  2912 1392.5 1.1 0.0 96.6 46.0 SS (67%)  

11348500  CA1  CA  3884 1469.4 8.0 0.0 84.1 55.6 SS (50%)  

11376000  CA2  CA  2313 2450.2 1.9 0.0 89.1 29.9 SS (56%)  

11473900  CA3  CA  1925 4181.6 1.2 0.0 88.2 35.5 EF (45%)  

11501000  OR1  OR  4121 1028.4 8.2 0.0 83.3 43.4 EF (55%)  

11517500  CA4  CA  2047 1495.8 5.6 0.0 94.6 17.6 EF (37%)  

11519500  CA5  CA  1714 2381.7 3.8 0.0 97.6 26.3 EF (46%)  

12324680  MT4  MT  4590 1287.2 3.5 1.4 97.7 46.4 EF (45%)  

13302005  ID1  ID  2143 1615.5 1.2 0.5 97.8 51.2 SS (76%)  

13305000  ID2  ID  2412 1443.0 1.3 0.5 93.6 48.6 SS (59%)  

All 

(median) 
~ ~ 2647 1461.0 5.6 5.0 100.0 62.0 ~ 

  834 
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Table A2. Thresholds selected from 5-year Sentinel-1 (S1) and Sentinel-2 (S2) based surface water percentiles to 835 

account for variable accuracy between sites, sensors, and classes (open water (OW) compared to vegetated water 836 

(VW). ~ indicates that this output was excluded from the allowable water mask. 837 

Site 

ID 

S1 

OW 

(%) 

S1 

VW 

(%) 

S2 

OW 

(%) 

S2 

VW 

(%) 

Site 

ID 

S1 

OW 

(%) 

S1 

VW 

(%) 

S2 

OW 

(%) 

S2 

VW 

(%) 

AR1 15 30 15 30 MN7 10 35 5 25 

AR2 5 20 10 25 MN8 10 25 5 15 

AZ1 10 5 15 10 MN9 5 25 5 25 

AZ2 5 15 10 15 MO1 10 20 10 20 

AZ3 5 10 10 15 MO2 5 15 15 25 

AZ4 5 20 15 20 MO3 5 30 10 30 

AZ5 5 20 20 15 MO4 10 15 10 35 

AZ6 10 15 10 ~ MS1 10 30 10 35 

CA1 5 15 10 20 MS2 5 10 5 30 

CA2 10 10 15 15 MT1 25 ~ 10 30 

CA3 10 ~ 15 15 MT2 25 ~ 15 40 

CA4 10 15 20 20 MT3 30 ~ 10 40 

CA5 10 10 20 15 MT4 30 ~ 10 30 

GA1 5 5 5 20 ND1 15 20 5 10 

GA2 5 10 10 15 ND2 20 20 10 20 

IA1 ~ 15 10 15 ND3 15 ~ 5 20 

IA2 ~ 10 10 20 ND4 15 35 5 30 

IA3 10 10 10 20 ND5 20 30 5 25 

IA4 10 20 10 20 ND6 15 30 5 25 

ID1 30 ~ 15 35 ND7 20 30 5 20 

ID2 30 ~ 20 35 NE1 15 15 10 20 

IL1 10 30 10 15 OR1 10 20 25 25 

KS2 10 20 10 30 SC1 5 20 10 35 

KS3 ~ 15 10 20 SC2 5 25 5 25 

LA1 10 25 15 35 SC3 5 30 5 30 

MD1 5 ~ 10 20 SC4 5 30 10 35 

MD2 5 15 10 20 SD1 10 25 5 25 

MD3 5 10 10 15 SD2 15 25 5 25 

MD4 5 10 10 15 TX1 5 10 10 30 

MD5 10 30 15 ~ TX2 5 30 10 35 

MN1 15 20 5 20 TX4 5 30 10 35 

MN2 10 20 5 30 TX5 5 20 10 ~ 

MN3 10 30 10 30 TX6 10 ~ 10 35 

MN4 5 30 5 30 TX7 5 35 10 30 

MN5 10 30 5 25 VA1 5 30 10 45 

MN6 15 25 5 20 WI1 ~ 15 10 20 

  838 
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Table A3. Hydrologic signatures by watershed. The blue to red shading reflects the high to low values for each 839 

signature. The bold values indicate the average values for the watersheds within each region. 840 

Region ID Gage 
Flashiness 

Index 

Flashiness 

index 

(wet 

season) 

MAX30 

/area 

(Q10-

Q95)/area 

Dry 

Month 

/area 

Baseflow 

index 

East 

East -0.74 -0.78 1.37 0.023 0.0065 0.38 

MD1 01491000 -0.48 -0.45 2.16 0.034 0.0072 0.28 

MD2 01578475 -0.44 -0.43 1.52 0.024 0.0105 0.55 

MD3 01580520 -0.52 -0.64 1.45 0.024 0.0112 0.54 

MD4 01594440 -0.43 -0.42 1.38 0.021 0.0089 0.49 

MD5 01643000 -0.35 -0.40 1.98 0.028 0.0058 0.24 

VA1 02049500 -0.87 -1.01 1.27 0.028 0.0060 0.36 

SC1 02131500 -0.66 -0.64 1.29 0.022 0.0059 0.39 

SC2 02135000 -1.05 -1.07 1.55 0.025 0.0055 0.35 

SC3 02136000 -0.91 -1.04 1.22 0.023 0.0039 0.28 

SC4 02175000 -1.13 -1.20 0.89 0.017 0.0055 0.44 

GA1 02198000 -0.90 -0.95 0.86 0.016 0.0043 0.37 

GA2 02202500 -1.09 -1.17 0.92 0.017 0.0030 0.24 

Gulf 

Coast 

Gulf Coast -0.79 -0.83 1.88 0.032 0.0026 0.09 

AR1 07047950 -0.99 -1.01 3.48 0.050 0.0057 0.18 

MS1 07288500 -0.79 -0.90 2.23 0.056 0.0035 0.04 

MS2 07290000 -0.85 -0.93 2.22 0.046 0.0030 0.10 

TX1 07346070 -0.74 -0.71 1.64 0.025 0.0006 0.02 

AR2 07363500 -0.82 -0.86 2.46 0.050 0.0024 0.05 

LA1 07364200 -1.45 -1.58 1.37 0.044 0.0030 0.16 

TX2 08033500 -0.94 -1.01 1.19 0.024 0.0027 0.08 

TX4 08068090 -0.35 -0.31 2.30 0.016 0.0022 0.09 

TX5 08110000 -1.00 -1.02 0.54 0.020 0.0024 0.08 

TX6 08117500 -0.51 -0.59 2.10 0.021 0.0019 0.08 

TX7 08164000 -0.21 -0.23 1.13 0.003 0.0010 0.07 

Midwest 

Midwest -0.62 -0.60 1.43 0.021 0.0042 0.28 

IA1 05388250 -0.78 -0.68 1.51 0.025 0.0083 0.47 

IA2 05412500 -0.73 -0.62 1.53 0.024 0.0066 0.37 

IA3 05418500 -0.80 -0.69 1.11 0.016 0.0077 0.59 

IA4 05422000 -0.99 -1.06 1.14 0.023 0.0060 0.41 

WI1 05434500 -1.12 -1.01 0.96 0.014 0.0094 0.70 

IL1 05447500 -0.79 -0.78 1.03 0.018 0.0055 0.38 

NE1 06815000 -0.25 -0.21 0.96 0.007 0.0013 0.24 

MO1 06821190 -0.52 -0.55 1.14 0.016 0.0018 0.19 

MO2 06908000 -0.40 -0.44 1.61 0.022 0.0010 0.05 

KS2 06916600 -0.55 -0.60 1.48 0.023 0.0013 0.09 

MO3 06918060 -0.39 -0.45 2.13 0.030 0.0020 0.06 

MO4 06928000 -0.38 -0.34 2.24 0.026 0.0024 0.10 

KS3 07169500 -0.42 -0.36 1.69 0.032 0.0015 0.06 

North-

Central 

North-Central -0.93 -0.93 0.52 0.008 0.0016 0.19 

ND1 05056000 -1.04 -0.98 0.11 0.002 0.0005 0.08 

ND2 05057200 -0.83 -0.88 0.21 0.004 0.0004 0.07 

MN1 05062500 -0.94 -0.92 0.48 0.007 0.0014 0.24 

ND3 05066500 -0.76 -0.79 0.54 0.006 0.0007 0.09 

MN2 05078500 -0.81 -0.77 0.54 0.006 0.0011 0.23 

ND4 05090000 -0.78 -0.82 0.34 0.004 0.0004 0.05 

ND5 05123400 -1.09 -1.11 0.10 0.002 0.0001 0.06 
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Region ID Gage 
Flashiness 

Index 

Flashiness 

index 

(wet 

season) 

MAX30 

/area 

(Q10-

Q95)/area 

Dry 

Month 

/area 

Baseflow 

index 

MN3 05131500 -0.90 -0.86 1.15 0.018 0.0028 0.19 

MN4 05132000 -1.01 -0.95 0.77 0.013 0.0020 0.27 

MN5 05244000 -1.45 -1.46 0.31 0.006 0.0038 0.68 

MN6 05300000 -0.99 -0.96 0.65 0.011 0.0019 0.21 

MN7 05304500 -1.16 -1.14 0.46 0.010 0.0029 0.34 

MN8 05313500 -0.90 -0.89 0.83 0.015 0.0025 0.18 

MN9 05336700 -0.77 -0.78 1.69 0.027 0.0055 0.25 

ND6 06468170 -0.93 -0.93 0.18 0.003 0.0001 0.04 

ND7 06471200 -0.68 -0.64 0.24 0.002 0.0002 0.09 

SD1 06479525 -1.00 -1.09 0.23 0.005 0.0010 0.22 

SD2 06481500 -0.73 -0.73 0.48 0.009 0.0016 0.18 

Southwest 

Southwest -0.12 -0.16 0.06 <0.001 <0.0001 0.01 

AZ1 09439000 -0.61 -0.83 0.09 0.001 0.0000 0.03 

AZ2 09485700 0.07 0.12 0.08 0.000 0.0000 0.00 

AZ3 09487000 0.23 0.23 0.01 0.000 0.0000 0.00 

AZ4 09512800 -0.08 -0.09 0.16 0.001 0.0000 0.00 

AZ5 09517000 -0.30 -0.34 0.02 0.000 0.0001 0.05 

AZ6 09537500 -0.02 -0.03 0.01 0.000 0.0000 0.00 

West 

West -1.03 -1.09 0.67 0.012 0.0009 0.26 

MT1 06018500 -1.23 -1.41 0.04 0.001 0.0004 0.44 

MT2 06052500 -1.18 -1.06 0.69 0.013 0.0022 0.32 

MT3 06076690 -1.04 -1.01 0.18 0.004 0.0007 0.32 

CA1 11348500 -0.70 -0.77 0.22 0.004 0.0001 0.02 

CA2 11376000 -0.51 -0.69 1.62 0.023 0.0006 0.06 

CA3 11473900 -0.51 -0.69 3.31 0.051 0.0003 0.01 

OR1 11501000 -1.25 -1.24 0.31 0.005 0.0011 0.35 

CA4 11517500 -1.13 -1.27 0.14 0.003 0.0005 0.21 

CA5 11519500 -0.82 -0.95 0.92 0.023 0.0003 0.03 

MT4 12324680 -1.16 -1.07 0.33 0.006 0.0015 0.38 

ID1 13302005 -1.63 -1.89 0.12 0.002 0.0019 0.61 

ID2 13305000 -1.22 -1.08 0.20 0.003 0.0012 0.40 

 841 
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Table A4. Correlation values between remotely sensed surface water variables and other independent variables. Significant 

(p<0.01) correlations, after Bonferroni correction has been applied, are shown shaded in gray. Correlations between surface 

water variables ranged from 0 to 0.98 with a median correlation of 0.35. CV: coefficient of variation, FP: floodplain, NFP: 845 

non-floodplain, temp: temporarily, seas: seasonally, SP+P: semi-permanent to permanent, inun: inundation, Prop.: proportion, 

Geographically Isolated Wetlands: GIW 

Variable 

Type 
Variable 

Temp. 

flooded, 

FP 

Temp. 

inun., 

NFP 

Seas. 

inun., 

FP 

Seas. 

inun., 

NFP 

SP+P 

inun., 

FP 

SP+P 

inun., 

NFP 

Total 

inun., 

FP 

Total 

inun., 

NFP 

Prop. 

seas. 

inun., 

FP 

Prop. 

seas. 

inun., 

NFP 

Climate 

Precipitation 0.39 0.52 0.75 0.44 0.41 0.21 0.69 0.45 0.47 0.06 

Evapo-

transpiration  
0.40 -0.12 0.19 -0.22 -0.10 -0.27 0.19 -0.23 0.22 -0.44 

Aridity index  -0.27 -0.69 -0.67 -0.55 -0.40 -0.26 -0.61 -0.59 -0.28 -0.20 

Water demand  0.22 0.61 0.61 0.46 0.34 0.16 0.53 0.50 0.31 0.16 

Precipitation 
seasonality  

0.03 0.19 0.06 0.29 0.03 0.09 0.11 0.26 -0.20 0.32 

Precipitation CV -0.20 -0.52 -0.64 -0.45 -0.38 -0.25 -0.55 -0.46 -0.41 -0.17 

Rainfall intensity 0.49 0.47 0.80 0.47 0.41 0.26 0.77 0.45 0.43 0.03 

Max monthly 
precipitation 

0.51 0.44 0.63 0.33 0.26 0.09 0.63 0.34 0.34 -0.06 

Temperature 

seasonality  
-0.37 0.02 -0.25 0.19 0.06 0.23 -0.21 0.19 -0.31 0.46 

Temperature CV -0.44 -0.01 -0.32 0.14 0.05 0.23 -0.28 0.15 -0.32 0.43 

Land Cover 

Forest 0.00 0.30 0.10 -0.02 0.06 0.00 0.04 0.04 0.20 -0.15 

Developed 0.39 0.37 0.63 0.28 0.28 0.04 0.58 0.28 0.44 -0.04 

Cultivated crops  0.07 0.05 0.21 0.28 0.17 0.16 0.23 0.25 0.04 0.30 

Stream density  0.43 -0.11 0.13 -0.32 -0.24 -0.48 0.13 -0.32 0.32 -0.45 

Soil and 

Geology 

Clay fraction 0.39 -0.01 0.27 0.00 0.00 -0.10 0.27 -0.06 0.20 -0.14 

Sand fraction -0.35 0.05 -0.17 0.08 0.10 0.22 -0.18 0.09 -0.25 0.11 

Silt Fraction 0.22 -0.06 0.02 -0.12 -0.15 -0.25 0.04 -0.11 0.19 -0.07 

Depth to bedrock -0.12 0.33 0.49 0.71 0.66 0.69 0.51 0.68 -0.03 0.52 

Water table 

depth 
-0.18 -0.51 -0.68 -0.78 -0.67 -0.64 -0.72 -0.73 -0.12 -0.47 

Geological 
permeability 

-0.36 0.16 -0.06 0.21 0.18 0.31 -0.09 0.21 -0.17 0.27 

Topography 

Slope  0.02 -0.30 -0.55 -0.77 -0.63 -0.76 -0.56 -0.71 0.05 -0.59 

Elevation range 0.21 0.02 0.12 -0.22 -0.13 -0.23 0.04 -0.18 0.24 -0.35 

Topographic 

diversity  
0.02 -0.22 -0.50 -0.71 -0.57 -0.70 -0.51 -0.65 0.05 -0.58 

Wetland 

GIW -0.27 0.32 0.37 0.80 0.73 0.89 0.40 0.76 -0.21 0.73 

Prop. of wetland 

area that is GIW 
-0.09 0.14 0.26 0.55 0.38 0.62 0.29 0.50 -0.12 0.59 

Floodplain 0.64 0.28 0.84 0.36 0.55 0.19 0.92 0.30 0.57 -0.17 

NWI wetlands -0.27 0.48 0.45 0.81 0.86 0.85 0.46 0.80 -0.13 0.60 
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