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Abstract. Runoff signatures characterize a catchment’s response and provide insight into the hydrological processes. These

signatures are governed by the co-evolution of catchment properties and climate processes, making them useful for under-

standing and explaining hydrological responses. However, catchment behaviours can vary significantly across different spatial

scales, which complicates the identification of key drivers of hydrologic response. This study represents catchments as net-

works of variables linked by cause-and-effect relationships. We examine whether the direct causes of runoff signatures can5

explain these signatures across different environments, with the goal of developing more robust, parsimonious, and physically

interpretable predictive models. We compare predictive models that incorporate causal information derived from the relation-

ships between catchment, climate, and runoff characteristics. We use the Peter and Clarck (PC) causal discovery algorithm,

along with three prediction models: Bayesian Network (BN), Generalized Additive Model (GAM), and Random Forest (RF).

The results indicate that among models, BN exhibits the smallest decline in accuracy between training and test simulations10

compared to the other models. While RF achieves the highest overall performance, it also demonstrates the most significant

drop in accuracy between the training and test phases. When the training sample is small, the accuracy of the causal RF model,

which uses causal parents as predictors, is comparable to that of the non-causal RF model, which uses all selected variables as

predictors. This study demonstrates the potential of causal inference techniques in representing the interconnected processes

in hydrological systems in a more interpretable and effective manner.15

1 Introduction

Hydrological processes result from complex interactions between climate inputs and catchment characteristics (Sivapalan,

2006). These processes manifest in the runoff response at the catchment outlet. Therefore, catchments can be conceptual-

ized as a unit in which the cumulative effect of all interacting processes defines their runoff behaviour, commonly referred

to as "runoff signatures." Runoff signatures encapsulate key characteristics of the runoff process in a catchment, including20

stream flow magnitude, frequency, and timing. These signatures are essential for a wide range of engineering and scientific

applications (Blöschl et al., 2013), especially when casual interpretation or assessment is not possible due to insufficient data.

1

https://doi.org/10.5194/hess-2024-297
Preprint. Discussion started: 2 October 2024
c© Author(s) 2024. CC BY 4.0 License.



McMillan (2020) outlined a wide range of applications for runoff signatures, such as assessing the performance of hydrological

models (Clark et al., 2011; Todorovic et al., 2024), selecting appropriate model structures (Hrachowitz et al., 2014; Spieler and

Schuetze, 2024) and estimating parameters (Pokhrel et al., 2012; Pizarro and Jorquera, 2024). They are also instrumental in25

streamflow prediction in ungauged basins (Yadav et al., 2007; Zhang et al., 2014; Matos and Oliveira e Silva, 2024), and in

understanding catchment runoff responses at different spatial and temporal scales (Ficchi et al., 2019).

Although all processes in a catchment contribute to its runoff response, each runoff property (or signature) is directly in-

fluenced by a distinct set of climatic and catchment-specific characteristics. As an example, Chagas et al. (2024) studied the

regional patterns of low flows across 1400 river gauges in Brazil. They showed that catchment characteristics, especially geo-30

logical properties, have a significantly greater influence on low flows than climate attributes. Guzha et al. (2018) investigated

the effects of changes in forest cover on annual mean flow, high flow, and low flow in 37 catchments of different climatic

and physiographic properties in East Africa, concluding that not all catchments exhibit a significant response to forest loss.

Therefore, it is necessary to identify a set of variables or covariates that are causally associated with a specific runoff signature

and can reliably explain it under various environmental conditions. Understanding these variables allows for explaining the35

signature of interest across environments with different climatic and physiological conditions.

The main drivers of runoff signatures are commonly investigated using classification and regression methods. These tech-

niques are applied to identify the main drivers influencing catchment response and assess their spatial dependencies. Classifica-

tion criteria often include runoff properties (Ley et al., 2011; Sawicz et al., 2011; Kuentz et al., 2017), climate, and catchment

similarities (Olden et al., 2012; Singh et al., 2016; Yang and Olivera, 2023; Ciulla and Varadharajan, 2024). Additionally,40

machine learning and statistical methods are widely used for the same purpose. For example, Addor et al. (2018) used random

forest to predict 15 runoff signatures across 600 catchments in the US. They showed that climatic attributes are among the most

influential predictors of the runoff signatures. McMillan et al. (2022) investigated the dominant process through hydrological

signatures over large sets of catchments in the US, UK, and Brazil. They found that although some signatures, such as runoff

ratio and baseflow index, were among the most robust metrics for characterizing processes, in some cases, the correlation found45

among variables and signatures in a country may not always generalize to others. They noted that these diverging correlations

could result from statistical associations rather than true causal relationships.

We postulate that investigating the relationship between hydrological variables from causal-and-effect perspectives might

solve the problem of diverging correlations reported by McMillan et al. (2022). A variable X is considered the cause of a

variable Y if the value of Y depends on or is influenced by X in any given circumstances (Pearl et al., 2016; Pearl, 2009).50

Therefore, the probability of a target variable, such as a runoff signature, given its causes, should be the same under different

conditions or across different environments. Broadly, there are two widely used frameworks for discovering causal relationships

and estimating causal effects from observational data, including structural causal modelling (Pearl, 2009) and potential outcome

framework (Rubin, 1974). The methods used to discover causality and quantify causal effects and their strength are broadly

referred to as Causal Inference Methods (CIMs).55

One application of CIMs is to complement machine learning approaches by addressing the problems of transfer and gen-

eralization (Schölkopf et al., 2021; Ombadi, 2021), by identifying dependencies and confounding factors using multivariate
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analyses (Runge et al., 2019a). In an under-investigation cause-and-effect relationship, a confounding variable is an unknown or

unmeasured variable that influences both the supposed effect and supposed cause (Pearl et al., 2016). Identifying confounders

and unravelling causal effects make CIMs a valuable tool for enhancing the interpretability of Earth system models (Reich-60

stein et al., 2019). CIMs are established based on a robust mathematical framework that identifies conditional dependencies in

observational data (Pearl, 2009). This process often involves deriving a causal graph based on our understanding of relevant

processes using methods such as the Bayesian Network (BN) or Bayesian belief Network (Verma and Pearl, 1990).

In the last decade, significant efforts have been made to investigate and develop applications for CIMs in the field of Earth

system modelling. These studies, primarily focused on uncovering causal relationships from time series, cover a broad range of65

topics including climate science (Runge et al., 2019b; Kretschmer et al., 2016), remote sensing (Perez-Suay and Camps-Valls,

2019), soil moisture-precipitation feedback detection (Wang et al., 2018), runoff behaviour (Zazo et al., 2020), the causal

discovery of summer and winter evapotranspiration drivers (Ombadi et al., 2020), and study of hydrological connectivity

(Sendrowski and Passalacqua, 2017; Rinderera et al., 2018; Delforge et al., 2022). However, the causal relationships between

catchment attributes, climate characteristics, and runoff signatures have yet to be thoroughly investigated. A catchment can be70

represented as a probabilistic network of interconnected processes leading to a runoff signature. To achieve this, catchments can

be conceptualized as Bayesian Networks (BNs), where variables are causally linked. BNs, part of the family of probabilistic

graphical models, consist of nodes representing variables and directed edges indicating causal directions (Koller and Friedman,

2009). The structure of BNs is usually identified through causal discovery methods and expert knowledge (Runge et al., 2019a).

Methods for causal discovery, also known as structural learning or causal search, can be categorized into constrained-based,75

score-based, and asymmetry-based approaches (Runge et al., 2023). Constrained-based methods use conditional independence

tests to identify the causal graph, while score-based methods evaluate multiple causal graphs using a scoring function, selecting

the highest-scoring one. Asymmetry-based methods are used to infer causal direction in the bivariate relationships (Runge et al.,

2023).

The information about the causal relationships between catchment variables can be incorporated into prediction models to80

predict runoff signatures. Predictions using BNs are primarily designed for discrete datasets that can model complex interac-

tions between variables. The rigorous probabilistic theories involved in BN make them popular for environmental modelling

(Aguilera et al., 2011). However, Nojavan et al. (2017) and Qian and Miltner (2015) showed that the results of BNs are influ-

enced by the discretization choice of continuous variables. Inference with BN for continuous variables is still a challenging task

(Li and Mahadevan, 2018). Gaussian BN is a widely used method for modelling continuous variables. It assumes that the rela-85

tionships between variables are linear and variables follow a Gaussian distribution (Marcot and Penman, 2019). To relax these

assumptions, non-parametric continuous BNs have been developed (e.g. Qian and Miltner (2015)). However, Gaussian BNs

remain a robust and widely-used framework, supported by various software packages (Geiger and Heckerman, 1994). Gaussian

BNs have been successfully applied in environmental modelling, particularly for water-quality studies e.g. Jackson-Blake et al.

(2022) and Deng et al. (2023).90

Given the success of Gaussian BNs in other fields, in this study, we adopt Gaussian BNs to predict runoff signatures.

The links between variables of BN are derived from Peter Spirtes and Clark Glymour’s (PC) causal discovery algorithm.
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Additionally, two non-linear models, the Generalized Additive Model (GAM) and Random Forest (RF), are used in this study.

GAM is an extension of the Generalized Linear Model (GLM) that models non-linear relationships between explanatory and

response variables using sums of arbitrary functions of the explanatory variables (Hastie et al., 2009). GAMs have been widely95

used for hydrological studies including flood frequency analysis (Ouali et al., 2017), low flow frequency analysis (Ouarda

et al., 2018), flood peak prediction (Dubos et al., 2022), analysis of nuisance flooding (Vandenberg-Rodes et al., 2016), spatial

analysis of extremes (Love et al., 2020), climate-crop yield relationships (Zachariah et al., 2021). RFs, first developed by

Breiman (2001), are non-linear, non-parametric models used extensively for regression, classification, prediction, and variable

selection. RF-based models have also been used in the field of environmental modelling, including for flow frequency analysis100

(Desai and Ouarda, 2021), runoff signature prediction (Addor et al., 2018), water level forecasting (Nguyen et al., 2015),

downscaling (Arshad et al., 2024), and understanding of drivers of hazards (Seydi et al., 2024).

This study aims to represent the causal relationships between catchment attributes, climate characteristics and runoff sig-

natures. We compare the performance of prediction models (GAM and RF) that incorporate causal information derived from

causal discovery methods against models that do not. We assume that runoff signatures are causally influenced by a subset of105

variables, known as causal parents, rather than by all available variables. We adopt the Peter and Clark (PC) causal discovery

method (Spirtes et al., 2001), which is a constrained-based causal discovery algorithm, to identify these causal relationships

and to structure the BNs. Our objective is to investigate whether incorporating causal information can provide new insight

into hydrological systems modelling, enhance the prediction models’ robustness, and improve their parsimony. To achieve our

objectives, we follow these steps: 1) select potential predictors for each runoff signature among the catchment and climate110

attributes, 2) identify causal parents and network structure for each signature, 3) execute models using both the causal parents

(causal models) and all selected variables (non-causal models) for entire catchments and sub-clusters of catchments, 4) evaluate

the robustness of the causal and non-causal models.

2 Data and methods

2.1 Data115

The Catchment Attributes and MEteorology for Large-sample Studies dataset (CAMELS) is used in this study (Newman et al.,

2015; Addor et al., 2017). It offers hydrometeorological variables and different land cover characteristics for 671 catchments

spanning the contiguous United States. The attributes in the CAMEL dataset are divided into 5 categories, including climate,

geology, soil, topography, and vegetation (land cover) categories. CAMELS also includes comprehensive explanations of the

techniques employed to derive catchment attributes and a discussion of potential limitations in the data sources. The time series120

of streamflow, precipitation, and potential evapotranspiration are included in the dataset. However, they are not used in this

study. The variables used in this are catchment characteristics, climate attributes and runoff signatures, which are outlined in

Table 1 and Table 2.
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Table 1. Catchment and climate attributes, calculated over the period from 01/10/1989 to 30/09/2009 (Table 2 in Addor et al. (2018)).
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Table 1. (continued) Catchment and climate attributes, calculated over the period from 01/10/1989 to 30/09/2009, (Table 2 in Addor et al.

(2018)).
C

ategory
N

o
A

ttribute
D

escription
U

nit

Soil

1
soil_depth_pelletier

D
epth

to
bedrock

(<
50m

)
m

2
soil_depth_statsgo

Soildepth
(<

1.5m
)

m

3
soil_porosity

Volum
etric

soilporosity
-

4
soil_conductivity

Saturated
hydraulic

conductivity
cm

/hr

5
m

ax_w
ater_content

M
axim

um
w

atercontent
m

6
sand_frac

Sand
fraction

%

7
silt_frac

Siltfraction
%

8
clay_frac

C
lay

fraction
%

9
w

ater_frac
Fraction

ofw
aterin

1.5m
oftopsoil

%

10
organic_frac

Fraction
oforganic

m
atter(fraction

ofsoil_depth_statsgo)
%

11
other_frac

Fraction
ofothercom

ponents
(fraction

ofsoil_depth_statsgo)
%

V
egetation

1
frac_forest

Forestfraction
ofcatchm

ent
-

2
lai_m

ax
M

axim
um

m
onthly

leafarea
index

-

3
lai_diff

D
ifference

betw
een

m
axim

um
and

m
inim

um
leafarea

index
-

4
gvf_m

ax
M

axim
um

m
onthly

green
vegetation

fraction
-

5
gvf_diff

D
ifference

betw
een

m
axim

um
and

m
inim

um
green

vegetation

fraction
-

6
dom

_land_cover
dom

inantland
covertype

-

7
dom

_land_cover_frac
fraction

ofdom
inantland

cover
-

6

https://doi.org/10.5194/hess-2024-297
Preprint. Discussion started: 2 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 2. Runoff Signatures in CAMELS dataset, calculated over the period from 01/10/1989 to 30/09/2009

No Signature Description Unite Reference

1 baseflow_index
The ratio of mean daily baseflow to

mean daily discharge
-

(Ladson et al., 2013), Table

2 in Addor et al. (2018)

2 high_q_dur

The average duration of high-flow

events (successive days of flow

events > 9 × median daily flow)

days

(Clausen and Biggs, 2000),

Table 2 in Addor et al.

(2018)

3 high_q_freq
Frequency of high-flow days (flow

events > 9 × median daily flow)
days/year

(Clausen and Biggs, 2000),

Table 2 in Addor et al.

(2018)

4 low_q_dur

The average duration of low-flow

events (successive days of flow

events < 0.2 × q_mean)

days
(Olden and Poff, 2003), Ta-

ble 2 in Addor et al. (2018)

5 low_q_freq
Frequency of low-flow days (flow

events < 0.2 × q_mean)
days/year

(Olden and Poff, 2003), Ta-

ble 2 in Addor et al. (2018)

6 q_mean Mean Daily Discharge mm/day
Table 2 in Addor et al.

(2018)

7 Q5
Low flow: 5% flow quantile (95%

exceedance probability)
mm/day

Table 2 in Addor et al.

(2018)

8 Q95
High flow: 95% flow quantile (5%

exceedance probability)
mm/day

Table 2 in Addor et al.

(2018)

9 runoff_ratio
Mean daily discharge to mean daily

precipitation
-

(Sawicz et al., 2011), Table

2 in Addor et al. (2018)

10 slope_FDC The slope of flow duration curve -
(Sawicz et al., 2011), Table

2 in Addor et al. (2018)

11 stream_elast

Steam flow elasticity( sensitivity of

annual streamflow to variations in

precipitation)

-

(Sankarasubramanian et al.,

2001), Table 2 in Addor

et al. (2018)

2.2 Methods

The methodology integrates feature selection, clustering, causal discovery and prediction. Fig. 1 shows the methodological125

procedure used in this study. In Fig. 1, causal models refer to the models that use causal parents, and non-causal models use

all selected variables as predictors. Environments are subsets of the dataset obtained by clustering algorithms. Therefore, the

words environment, cluster and subset imply the same meaning in this study. Baseline models refer to the models that use
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the whole dataset, all 671 catchments, for training and testing, and sub-models use subsets of the dataset for this purpose.

GAM∼Par and RF∼Par are causal GAM and RF models that employ causal parents for prediction. GAM∼All and RF∼All130

are non-causal GAM and RF models that use all the selected variables as predictors. A robust model is defined as one that

maintains its accuracy across different environments. The goal is to investigate whether the causal discovery can enhance

prediction models’ robustness, identifiability and parsimony.

The steps are explained in the following sections.
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Figure 1. Flowchart depicting the steps followed in this study. Grey boxes indicate the procedures, orange boxes present the results of these

procedures, and blue text highlights where information about causality is utilized. PC refers to Peter and Clark’s causal discovery algorithm,

PAM stands for Partition Around the Centroid clustering algorithm, and DAG refers to Directed Acyclic Graph. BN refers to the Bayesian

Network, GAM refers to the Generalized Additive Model, and RF refers to the Random Forest. GAM∼Par and RF∼Par are causal models

(GAM and RF) using only causal parent variables for prediction, while GAM∼All and RF∼All are non-causal models that use all selected

variables as predictors. Baseline models refer to models that use the entire dataset (all 671 catchments) for training and testing, while sub-

models use only subsets of the dataset or clusters.
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2.2.1 Feature selection135

The explanatory variables for each signature are selected based on 1) ranked correlation coefficients and 2) variable importance.

It should be noted that to develop the BN, which is a probabilistic graphical model, the selected variables (nodes) shouldn’t

be the deterministic functions of each other; otherwise, the conditional dependency structure of DAGs will change. Therefore,

the aridity index, a function of precipitation and potential evapotranspiration, is removed from the selection procedures. Ad-

ditionally, it is assumed that the selected variables satisfy causal Markov and faithfulness assumptions (Spirtes et al., 2001)140

when used for the PC causal discovery algorithm. They are the assumptions under which the causal relationship from the

observational data can be learned. These assumptions relate the d-separation in the graph to conditional dependencies in the

joint distribution (Pearl, 2009). These assumptions are explained in the following sections. The methods used for correlation

analysis and variable importance are as follows:

1. Correlation analysis: Pearson, Kendall, and Spearman correlation coefficients are computed to illustrate the potential145

explanatory variables. In addition, the scatter plot of the data helped visually understand the relationship between vari-

ables.

2. Variable importance: The same approach as correlation is repeated, using the random forest method to investigate the

feature importance. Random forest is implemented using the R package randomForest (Liaw et al., 2015). The variables

are ranked according to the out-of-bag method, which is quantified using the Mean Decreased Accuracy (IncMSE) score.150

With the information provided by the above-mentioned procedures, variables are selected based on a combination of corre-

lation analysis, variable importance assessment and consideration of the underlying physics of the runoff signatures. We tried

to select the most influential variables from each category, including climate, geology, soil, topography, and vegetation. The

results of feature selection are presented in the supplementary materials.

2.2.2 Clustering155

The CAMEL dataset provides five categories of catchment and climate attributes for each catchment. Clustering catchments

based on each category of attributes is assumed to provide groups of catchments with homogeneous characteristics (Blöschl

et al., 2013). We investigate the performance of the sub-models within each cluster of catchments. Each cluster is considered a

new environment with certain properties to investigate the robustness of models with and without casual parents. The models are

trained and tested for each cluster with homogeneous properties. Clusters are considered subsets of data where the distribution160

shifts from one cluster to another. This idea is inspired by Peters et al. (2016), where subsets of data are considered as different

environments. The causal mechanism (the target variable and its parents) for each signature remains unchanged if there is a

change in the distribution of parents (Woodward, 2008). Therefore, causal models (models with casual parents as explanatory

variables) are expected to perform with consistent accuracy across different environments. This concept is influenced by the

covariate shift assumption (Quionero-Candela et al., 2009). Covariate shift states that if variable Y is to be predicted from X ,165

and X is the cause of Y , the conditional probability P (Y |X) remains the same across all environments if the distribution of X

10
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changes. The assumption is tested by measuring the change in the accuracy of models when using causal parents as predictors

across different environments. This information will help investigate the performance of the causal compared to non-causal

models.

Two clustering methods are employed to group the catchment attributes in the CAMEL dataset. The K-medoids or Parti-170

tioning Around Mediods (PAM) clustering algorithm (Rdusseeun and Kaufman, 1987) is used for categories of attributes with

continuous variables. PAM is a more robust method for handling outliers and noises than the K-mean method. The Gower

distance (Gower, 1971) is used for mixed variables. This method is developed for datasets containing continuous, binary or

multiattribute variables (Hennig and Liao, 2013). The elbow and silhouette methods are used to find the optimum number of

clusters.175

2.2.3 Causal discovery

Causal discovery is used to partially or fully infer the causal structure, Directed Acyclic Graph (DAG), from observational

data or distribution under certain assumptions (Heinze-Deml et al., 2018). Here, we try to find causal structures from the

observational data without specifying the underlying physical equations using a causal discovery method.

This study uses the constrained-based PC algorithm (Spirtes et al., 2001), named after its authors Peter and Clarck. This180

method identifies the DAG under faithfulness and Markov assumptions. Markov’s assumption states that DAG represents all

the conditional independencies in the dataset, and faithfulness states that conditional dependencies in the joint distribution of

the data reflect the d-separation in DAG; in other words, the distribution is faithful to DAG (Peters et al., 2017). It is also

assumed that there are no unobserved variables. We also assumed that runoff signatures do not cause climate and catchment

attributes. PC algorithm assumes that the variables have a normal distribution. Therefore, the Box-Cox transformation is applied185

to the data. The bnlearn R package (Scutari, 2009) is used to apply the PC algorithm. Mutual information with the Mont Carlo

permutation test is chosen as the conditional independence test.

2.2.4 Bayesian Network (BN)

Having the graph structure from the causal discovery algorithm, the data is fitted to the graph, and the parameters are estimated.

Gaussian BN is used for inference purposes. Gaussian BN belongs to the family of continuous BNs, meaning the nodes are190

continuous variables. The conditional dependencies are linear and follow the joint Gaussian distribution. The prediction is made

using averaging likelihood simulation with 500 random sampling numbers. Averaging likelihood simulation is a particle-based

approximate method for inference in probabilistic graphical models. This method calculates the weight of samples according

to the likelihood of evidence, which is a specific value of the signature of interest. It adds up these weights for each sample

(Koller and Friedman, 2009). Since Gaussian BN is limited to capturing only linear relationships, other non-linear prediction195

methods are also employed in this study, which are explained in the following sections.
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2.2.5 Generalized Additive Model (GAM)

The Generalized Additive Model (GAM) model (Hastie et al., 2009) is also chosen to handle non-linear relationships between

predictors and runoff signatures. GAMs are extensions of Generalized Linear Models (GLMs), which can identify the linear and

nonlinear relationship between response and explanatory variables. This method uses scatterplot smoothers (e.g., smoothing200

spline or kernel smoother) to fit the additive functions. In this study, the penalized regression spline is used as the smoother.

This smoother prevents the model from overfitting where the coefficients of penalized spline decrease (Dubos et al., 2022).

The calculation is done using mgcv R package (Wood, 2018). The model predicts the signatures once with all variables derived

from feature selection (non-causal model) and once with only the causal parents of the signatures derived from the causal

discovery section (causal model).205

2.2.6 Random Forest (RF)

The last prediction model used in this study is Random Forest (RF). This method estimates response variables using multiple

regression trees. Besides its ability to identify nonlinear patterns in the data, the likelihood of overfitting in RF is low because

the model’s prediction is an ensemble of multiple predictions. Therefore, it can deliver an accurate prediction with little com-

putational effort. These features in the RF model help identify the issues of linearity and overfitting in BN and GAM models,210

respectively. The randomForest R package (Breiman, 2018) is used with the number of trees set to 500 to stabilize the predic-

tion (Addor et al., 2018). Similar to GAM, RF is run twice: once using all selected variables as the predictors of the runoff

signature (non-causal model) and once using only the causal parents as predictors (causal model).

For all models, BN, GAM, and RF, the data is split into 75 % training and 25 % test samples. The models are run 100

times, with training and test sets randomly selected each time. The models are executed for the whole dataset (baseline models)215

and each cluster of categories (sub-models). The models’ accuracy is evaluated using Root Mean Squared Error (RMSE) and

R-squared metrics between prediction and observations. The iteration provides 100 RMSE and R-squared for each run, and the

accuracy is reported as their mean value. The following section discusses the obtained results of this study.

3 Results

3.1 Clustering results for each category220

The clustering classifies the catchments according to the five categories. Table 3 shows the methods used for clustering, the

optimum number of clusters according to the elbow and Silhouette scores, and the number of catchments in each cluster. Fig.

2 illustrates each cluster’s spatial extent of catchments along with two chosen variables. The obtained results from the cluster

analysis for each category of attributes are as follows:

1. Climate attributes: The cluster analysis shows four distinct climate categories, which spread in the east (cluster 1), the225

Midwest (cluster 2), the west (cluster 3) and the northwest (cluster 4) (Fig. 2a). The largest group of catchments belong

to cluster number one, with 334 in the north- and southeast of the US (Table 3). This cluster receives an average of 3.5
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mm daily precipitation and has 2.8 mm daily evapotranspiration. Other clusters have the following average precipitation

and evapotranspiration levels: Cluster 2 has 2.3 mm of precipitation and 2.7 mm of evapotranspiration, Cluster 3 has

5.5 mm of precipitation and 2.4 mm of evapotranspiration, and Cluster 4 has 2.0 mm of precipitation and 3.3 mm of230

evapotranspiration.

2. Soil attributes: This category is divided into 6 groups. There is no distinctive spatial pattern among soil clusters. How-

ever, clusters 2 and 3 are mostly spread across the east and west coastlines (Fig. 2b). The maximum water content and

porosity values are influenced by soil texture, which defines the proportion of sand, clay, silt, and other materials. For

example, cluster 6 shows the highest soil porosity and maximum water content (Fig. 2b). This cluster has the highest235

percentage of clay (26%) and silt (47%) fractions among all clusters.

3. Topographic attributes: This category is divided into 4 distinctive groups. Cluster 1 contains catchments located in the

northeast, which are catchments with low elevation and slope (Fig. 2c). Cluster 2 consists of catchments along the west

coast spread from the west to the northwest. The catchments with the lowest elevation and slope are in cluster 3, located

in the southeast. Cluster 4 contains the highest elevation catchments in the Rocky Mountains (Fig. 2c).240

4. Geological attributes: This category is divided into 7 groups. Unlike the climate and topography categories, this cat-

egory does not show a distinguishable spatial pattern (Fig. 2d). However, the catchments with the highest geological

porosity are mainly concentrated in the southeast, and those with the lowest are located in the west (Fig. 2d).

5. Vegetation attributes: The vegetation or land cover category is divided into 6 different groups (Fig. 2e). The spatial

pattern of the vegetation is influenced by climate and topographic categories. According to Fig. 2e, the catchments with245

the highest forest fractions have the highest maximum leaf area index and are located in the northeast and east of the

study area. This area has high precipitation and low evapotranspiration (Fig. 2a). The lowest vegetation cover belongs to

the central and southern parts of the US, which are in clusters 4 and 6.

These clusters are subsets of the CAMEL dataset with specific properties and different numbers of catchments to be used for

runoff signature prediction. They help evaluate the models’ performance in different environments, analyse the effect of causal250

parents as predictors, and assess how the number of data points impacts the training and test simulations.

Table 3. The methods, number of clusters and number of catchments in each cluster

No Category Method No. of cluster No. of Catchments

1 Climate Gower 4 334, 144, 87, 103

2 Soil PAM 6 154, 123, 138, 88, 95, 70

3 Topography PAM 4 282, 119, 117, 90

4 Geology Gower 7 149, 53, 123, 116, 64, 104, 42

5 Vegetation Gower 6 89, 131, 149, 69, 105, 128
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Figure 2. The spatial pattern of clusters (right column) and the density of two variables of its corresponding category (left column). The

plots show spatial pattern of a) climate attributes, b) soil attributes, c) topographic attributes, d) geological attributes, and 5) vegetation or

landcover attributes.
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3.2 Identification of Causal Links

PC algorithm results identify the causal links between all variables, which are selected as the explanatory variables in the

feature selection procedure. However, undirected links (edges) can be found in the PC results; therefore, the resulting graphs

are usually partially directed. In this case, expert knowledge is used to determine the causal direction between two variables255

with an undirected edge, correct the causally wrong direction between variables and block the spurious edges between variables.

For example, if PC finds a link between p_mean and frac_forest, the causal link should be an edge from precipitation to forest

fraction (p_mean → frac_forest). However, the causal direction between climatic or vegetation variables, such as the direction

between high precipitation frequency and low precipitation frequency, are not clearly definable and differ from one signature

to another. This can be caused by the contemporaneous effect between climatic or vegetation variables. Therefore, in this case,260

the directions are determined based on the algorithm’s results. Fig. 3 shows the obtained DAG for the base flow index. The

signature (orange node) has four direct causes or parents (yellow nodes). DAGs can show information about the variables’

interconnection. For instance, the climate and vegetation variables in Fig. 3 are controlled by topographic attributes, which

are gauge latitude, mean elevation, and mean slope. These variables are independent in this DAG since they do not have any

parents. It should be noted that the causal parents of the signatures, which are identified by the PC algorithm, are not necessarily265

the most influential variables derived from correlation and variable importance analysis. Gao et al. (2023) showed that there

could be a strong causal relationship between variables with weak statistical associations. The highest correlated variable with

a signature can differ across different catchments; however, the causal parents are a set of variables that are always the same and

are independent of regions. The selected variables and DAGs for other signatures can be found in the supplementary materials.
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Figure 3. Estimated DAG for the baseflow index obtained from the PC method. Arrows (edges) show the causal links. The red node represents

the target runoff signature, and the yellow nodes are the causal parents or direct cause of the target variable. The node variables are explained

in Table 1. The red and yellow nodes are the causal mechanism for the baseflow index.

Table 4 shows the casual parents, the number of parents, and the number of all predictions chosen in the feature selection270

procedure for each runoff signature. The number of parents varies from 2 variables for high flow frequency to 6 for mean flow.

We compared the performance of the models using only parents (causal models) to the models using all the selected variables

as explanatory variables (non-causal models). The models are executed for the 671 catchments as baseline models and for each

cluster as sub-models. The results reveal the models’ behaviours in different environments (clusters) compared to the baseline

models.275
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Table 4. Causal parents of the runoff signatures.

Signature Causal parents No. of causal parents No. of selected variables

baseflow_index

frac_snow, sand_frac,

clay_frac, frac_forest,

geol_porosity

5 15

high_q_dur p_mean, silt_frac, lai_max 3 15

high_q_freq low_prec_freq, frac_forest 2 16

low_q_dur
low_prec_dur,

max_water_content, lai_diff
3 14

low_q_freq

frac_snow, low_prec_freq,

low_prec_dur, frac_forest,

geol_porosity

5 15

q_mean

p_mean, p_seasonality,

low_prec_freq, area_gages2,

frac_forest, geol_porosity

6 13

Q5
p_mean, low_prec_freq,

slope_mean
3 15

Q95

p_mean, p_seasonality,

low_prec_freq, slope_mean,

frac_forest

5 14

runoff_ratio
p_mean, p_seasonality,

frac_forest, geol_porosity
4 15

slope_FDC
p_mean, pet_mean,

low_prec_freq, lai_max
4 12

stream_elast
high_prec_freq, clay_frac,

frac_forest
3 14

3.3 Performance of the baseline models (prediction using the whole dataset)

The models’ performance is evaluated according to the value of RMSE, R squared between observation and prediction, and

the differences between the training and test results. The obtained results for each signature are shown in Fig. 4, Table A1,

and Fig. 5. The results are derived from the simulation using the whole dataset (671 catchments), which we call baseline.

Baseline models are considered the most accurate models, in which 75% of the whole dataset is used for training and 25% for280

test simulation. The training and test sets are randomly sampled 100 times, and models are executed after each sampling. The

grey dots in Fig. 4 indicate the simulation results for each model’s execution. The simulation for GAM and RF models is done
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twice, once using all the predictors, which are shown by GAM∼All and RF∼All (non-causal models), and once using only

causal parents as predictors, GAM∼Par and RF∼Par (causal models).

Fig. 4 and Table A1 show that reducing the number of predictors decreases the models’ accuracy. Among all models, RF285

models are the most accurate despite showing the most significant drop in accuracy between training and testing simulations

(Fig. 5). The R-squared values from the non-causal RF model (RF∼All), in which all selected variables are used as predictors,

are compatible with the results obtained from the study of Addor et al. (2018). Using causal parents for RF simulations

(RF∼Par) leads to a greater distance between training and test results compared to using RF∼All for some signatures. These

signatures are baseflow index, low flows, runoff ratio, the slope of flow duration curve and streamflow elasticity with 21%,290

15%, 39%, 13% and 15% increases in distance, respectively, caused by using causal model (Fig. 5). These differences are less

significant for other signatures (less than 7%). Similar to the RF model, the accuracy of GAM models is decreased by reducing

the number of predictors from all selected variables to parent variables (Table 4 and Fig. 5). However, unlike RF, the distance

between the training and test accuracy in R squared versus RMSE space significantly decreases by using the causal model for

the GAM (Fig. 5). This distance decreases from 29% for runoff ratio to 90% for streamflow elasticity (Fig. 5). Finally, BN295

is the least accurate model in capturing the variance since it is a linear model; however, it shows almost the same R squared

and RMSE values in training and testing simulations. As seen in Fig 5, BN has the shortest distance between training and test

compared to the other two models.
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Figure 4. Performance of the models: R-squared vs. RMSE. Each coloured circle and cross represent the centroid of a set of 100 data points

(grey dots) generated from the models’ execution. Circles indicate the training results, and crosses indicate the test results. In the legend,

"All" refers to using all variables as predictors (non-causal model), and "Par" refers to using only parent variables as predictors (causal

model). BN refers to the Bayesian Network, GAM refers to the Generalized Additive Model, and RF refers to Random Forest.
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Figure 5. The Eucleadian distance between the centroid points of training and test simulations in Fig. 4. In the legend, "All" refers to using

all variables as predictors, and "Par" refers to using only parent variables as predictors. BN refers to the Bayesian Network, GAM refers to

the Generalized Additive Model, and RF refers to Random Forest.

We see that when the training set is large, the accuracy of the non-causal models is higher (GAM∼All and RF∼All). How-

ever, this pattern might not be the same if the size of the training set is reduced. Testing the models in different environments300

with different properties and sizes can help us understand how these models perform. In this study, environments are clusters of

catchments, defined according to each category of attributes (Table 3) that result in homogeneous hydrological properties. The

selected variables for the DAG structure and analysis are assumed to be the same, both with and without clusters. However, in

the analysis based on clusters, the model’s parameterization and predictions are derived from a smaller subset of data compared

to the baseline models. The direct causes of signatures are assumed to be the same across all clusters. Therefore, causal models305

are assum result in robust prediction in different environments. This idea is investigated in the following sections.

3.4 The performance of models across different clusters (Sub-models)

This simulation’s results indicate different models’ behaviours across clusters, which are shown in Fig.7, Table 5, and figures

in Appendix B. The simulation results for each runoff signature are as follows:
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Figure 6. Performance of the models for baseflow index: R-squared vs. RMSE. Each coloured circle and cross represent the centroid of 100

data points (grey dots) generated from the models’ execution. Circles indicate the training results, and crosses indicate the test results. In

the legend, "All" refers to using all variables as predictors (non-causal model), and "Par" refers to using only parent variables as predictors

(causal model). BN refers to the Bayesian Network, GAM refers to the Generalized Additive Model, and RF refers to the Random Forest.

The results for other signatures are provided in supplementary materials.
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Figure 7. The Eucleadian distance between the training and test simulation for runoff signatures across different environments for each sub-

model. In the legend, "All" refers to using all variables as predictors (non-causal model), and "Par" refers to using only parent variables as

predictors (casual model). BN refers to the Bayesian Network, GAM refers to the Generalized Additive Model, and RF refers to the Random

Forest. On the x-axis, Baseline means simulation without any clustering and is done for all 671 catchments. Clim stands for climate, Geol for

geology, Topo for topography and Vege for vegetation. The numbers in front of these names on the x-axis represent the clusters’ numbers.
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1. Baseflow Index: The parents of this signature belong to climate, soil, vegetation and geology categories (Table 4). The310

obtained DAG, Fig 3, indicates the topographic attributes directly control the snow fraction and indirectly control the

forest fraction and geological porosity. It can be seen in Fig. 6 that the models in the topographic and climatic groups

perform well compared to the baseline. According to Fig. 6, GAM∼All demonstrates high accuracy in the training set.

The distance between training and test for GAM∼Par is lower than GAM∼All in all clusters, and in most cases, the

model’s accuracy is higher than GAM∼All (Fig. 7). This can be due to the overfitting problem in GAM∼All. Although315

RF∼All demonstrates the best performance, in most cases, the difference between the accuracy of the RF∼All and

RF∼Par in the test set is negligible, for example, in soil category cluster number 4 (Fig. 6). Finally, BN has the lowest

distance between training and test (Fig. 7) and in many cases, it outperforms GAM models (Fig. 6). The decrease in

R-squared made by causal models is improved from a 20% drop for the baseline model to less than a 5% drop for sub-

models (Table 5). The R-squared is increased using parents for GAM in geology, soil and topography categories (Table320

5).

2. High Flow Duration: This signature has 3 parents belonging to climate, soil, and vegetation categories (Table 4). The

obtained DAG shows the parent from the soil category is an independent variable. The effect of this parent can be seen

in Fig. S8, where the highest accuracy of models are among the clusters of soil category, namely Soil Cluster 1, 3, 4 and

6. Since the topographic attributes control the other two parents, namely mean daily precipitation and maximum leaf325

area index, the topography group of clusters also performed well with small uncertainty (spread of grey dots in Fig. S8)

compared to the baseline. GAM∼All shows very high accuracy in the training sets, in some cases higher than random

forest, and a significant drop in accuracy in the test sets (Fig. S8). In addition, the distance between training and the test is

higher than GAM∼Par in all cases (Fig. 7b). The causal models show robust performance. The distance between training

and test simulation in RF∼Par is mainly smaller than RF∼All. In addition, in Geology Cluster 5, the BN and GAM∼Par330

perform better than RF∼All. The accuracy difference between causal and non-causal sub-models is significantly smaller

than those of baseline models (Table 5).

3. High Flow Frequency This signature has only two parents belonging to climate and vegetation categories (Table 4).

The obtained DAG indicates that topographic attributes influence the causal parents. Models perform well across most

clusters based on climate and topography. However, there is no single category within which all models outperform the335

others (Fig. S12). For instance, the models perform well in Vegetation Cluster 5 (Fig. S12), which are catchments with a

high percentage of vegetation cover (Fig. 2). In general, GAM∼All does not show acceptable performance in the test set,

and its accuracy in many cases is lower than linear BN (Fig. S12). However, GAM∼Par demonstrate a better performance

by reducing the distance between training and test simulations (Fig 7) and increasing accuracy compared to GAM∼All

across all clusters (Fig. S12). Similarly, RF∼Par decreases the distance between the training and test across most of340

the clusters, although for the baseline models, this distance is smaller for RF∼All than RF∼Par (Fig. 7). Additionally,

the accuracy of RF∼Par and GAM∼Par models are comparable to RF∼All. Finally, GAM and RF show significantly
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smaller decreases in R-squared values across categories compared to the baseline models (Table 5). GAM∼Par improved

the R-squared by 7.43% and 1.45% in geology and soil categories compared to GAM∼All.

4. Low Flow Duration: This signature has 3 parents belonging to climate, soil, and vegetation categories (Table 4). The345

DAG shows that parents are controlled by the topographic variables. Training and test simulation performed well across

all topographic clusters except for cluster number 4, where catchments have high elevations (Fig. 2 and Fig. S16). The

signature also shows high predictability in clusters with high precipitation intensity (Climate Cluster 3) and clusters

with low soil porosity (Soil Cluster 2). GAM∼Par performs better in different clusters than GAM∼All by reducing the

distance between training and test simulation and increasing the model’s accuracy. This distance is almost the same350

across clusters for RF∼Par and RF∼All and, in some cases, smaller for RF∼Par. The results show that the decrease in

R-squared values due to using parents as predictors is significantly lower across categories for GAM and RF (Table 5).

5. Low Flow Frequency: This signature has 5 parents, 3 belonging to climate, one to vegetation, and one to geological

categories (Table 4). The topographic variables control the casual parents, according to the obtained DAG, which is

shown in the supplementary material. Models perform well across most clusters of climate and topography categories355

(Fig. S16). In most cases, GAM∼All performs poorly compared to GAM∼Par. The difference between training and

testing is significantly reduced in GAM∼Par. This distance is also reduced in RF∼Par and, in many cases, performs

as well as RF∼All. For example, in Soil Cluster 1 to 5 or Geology Cluster 7, RF∼Par and GAM∼Par perform the

same as RF∼All. However, in Vegetation Cluster 1 and 2, GAM∼All outperform RF∼Par and GAM∼Par. BN has the

smallest difference between training and test simulation. There are smaller drops in accuracy across categories when360

using parents for GAM and RF (∼Par). The accuracy of GAM∼Par is higher than GAM∼All in the geology, soil and

vegetation categories (Table 5).

6. Mean Daily Runoff: The parents of the mean daily runoff belong to climate, topography, vegetation and geology cat-

egories (Table 4). This signature has the highest number of parents among other signatures and is the most predictable

runoff signature. All models perform well across all clusters; however, unlike other signatures, BN and GAM models365

outperform RF in most cases, for example, Geology Cluster 2 (Fig. S24). In most cases, the difference between training

and test simulations is smaller when using parents, which shows the benefits of using causal parents. In addition, the

difference in model accuracy between simulations using only causal parent (∼Par) and those using all variables (∼All)

is negligible. The accuracy is also lower for categories compared to the baseline (Table 5).

7. Low Flow (Q5): The parents of low flow belong to climate and topography categories (Table 4). The models’ test results370

are comparable to the baseline models in Geology Cluster 2 and 4 and Soil Cluster 2 and 4 (Fig. S28). GAM∼All is

outperformed by other models in test simulation (Fig. S28). The obtained DAG shows that topographic variables are

independent since they have no parents. These variables are also the drivers of the climatic variables. As shown in

Fig. S28, models perform well across the topographic category. The difference between training and test simulation is

improved in GAM∼Par compared to GAM∼All. This distance for RF∼Par is smaller than RF∼All across half of the375
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clusters (Fig. 7). BN has the smallest difference between training and testing, and it outperforms GAM models in Climate

Cluster 3, Geology Cluster 6 and 7, Soil Cluster 1 and 4, Topographic Cluster 4 and Vegetation Cluster 6. Using parents

as predictors increases the accuracy of GAM in the geology, soil and vegetation categories by 0.93%, 2.03%, and 5.0%

(Table 5). The performance difference between RF∼Par and RF∼All is significantly smaller across categories than the

baseline (Table 5).380

8. High Flow (Q95): High flows are among the most identifiable signatures. According to the obtained DAG, high flows are

controlled by vegetation (land cover), climate, and topographic variables (Table 4). The models showed high accuracy

across all clusters of the topographic categories. Unlike other signatures, the RF∼All and RF∼Par models, which are the

most accurate overall, are outperformed by GAM and BN in certain cases (Fig. S32). The difference between training

and test simulations is improved in all clusters when using parents for GAM and RF. Table 5 indicates that the difference385

models’ accuracy is negligible when using causal parents. The R-squared is improved among geology and soil categories

for GAM and RF models, where the signature is least predictable (Table 5).

9. Runoff Ratio: Runoff ratio has four parents belonging to climate, geology and vegetation categories (Table 4). The

obtained DAG indicates that soil variables control the geological porosity (geological parent), and topographic variables

control climate and vegetation variables. The models perform well across topographic and soil clusters, and models are390

more robust across those environments (Fig. S36). In most cases, causal models show less difference between training

and test simulations for GAM but not for RF (Fig. 5). The difference between R-squared values is significantly lower

across categories than the baseline models, especially in geology and soil categories (Table 5).

10. Slope of Flow Duration Curve: The parents of the slope of the flow duration curve belong to climate and vegetation

categories, which, according to the DAG, are controlled by topographic variables (Table 4). Models in topographic395

clusters performed well except for Topography Cluster 4, where there are catchments with a high elevation and steep

slopes. RF∼Par and GAM∼Par perform almost the same across most of the clusters. In most cases, GAM∼Par reduced

the difference between training and test simulations compared to GAM∼All. This difference is not improved for RF

when comparing RF∼Par with RF∼All (Fig. S40). However, the accuracy of RF∼Par and RF∼All are comparable in

most cases. GAM∼Par performs better than GAM∼All in the geology category by increasing the R-squared by 2.37%400

compared to the baseline model (Table 5). RF∼Par shows almost the same accuracy as RF∼All compared to the baseline

in the soil category (Table 5).

11. Stream Precipitation Elasticity: The three parents of this signature belong to climate, soil and vegetation categories

(Table 4). According to the obtained DAG, the topography controls the climate and vegetation parents. However, no

dominant category exists where models perform well in all of its clusters. The same as other signatures, GAM∼All405

performs well in training simulation. However, GAM∼All shows the worst accuracy across the soil and geological

clusters compared to the other models. It can be seen in Table 5, which indicates 5.38% and 8.08% increase in accuracy

of GAM using causal parents in the geology and soil categories. The performance of RF∼All, RF∼Par and GAM∼Par
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are close and comparable in the test simulation (Fig. S44 and Table 5). The distance between training and test simulation

in GAM∼Par is smaller than GAM∼All. This pattern can be seen in only one-third of the clusters for RF models (Fig.410

7).

Table 5. Comparison of R-squared values between causal and non-causal models presented as percentages. Negative values indicate a

decrease in R-squared when using causal models compared to non-causal models. The R-squared values for each category are calculated

using the weighted mean, with weights based on the proportion of catchments in each cluster relative to the total number of catchments. Red

indicates a decrease in R-squared, while blue indicates an increase. The values of R-squared can be found in Table A2 and Table A3.

Percentage of change in R squared made by using causal parents

Baseline Climate Geology Soil Topography Vegetation

Signature GAM RF GAM RF GAM RF GAM RF GAM RF GAM RF

baseflow_index -20.22 -19.34 -2.39 -3.22 1.92 -2.11 1.43 -2.69 0.41 -4.27 -0.25 -3.12

high_q_dur -28.89 -28.49 -4.11 -0.01 8.13 -2.03 3.46 -0.66 1.69 -6.52 0.62 -5.19

high_q_freq -16.63 -43.84 -3.63 -13.34 7.43 -3.43 1.45 -6.59 -1.26 -7.52 -0.71 -8.37

low_q_dur -25.29 -23.81 -2.28 -6.55 3.47 -2.58 -1.10 -3.97 -1.39 -5.05 -1.80 -4.55

low_q_freq -5.18 -17.19 -3.25 -6.83 3.31 -1.18 2.5 -2.35 -0.71 -3.38 0.31 -5.13

q_mean -2.95 -1.92 -2.39 -1.47 -0.29 0.19 -0.57 0.01 0.96 -0.58 -0.70 -0.58

Q5 -7.74 -12.71 -1.26 -4.09 1.99 -1.42 2.03 -1.99 -1.60 -4.75 5.0 -3.57

Q95 -2.97 -3.20 -3.28 -2.05 0.93 0.39 0.48 -0.09 -0.40 -0.57 -1.11 -0.66

runoff_ratio -17.40 -12.40 -8.37 -7.32 -1.27 -2.07 -1.63 -2.06 -1.72 -3.03 -3.07 -3.31

slope_FDC -9.50 -12.04 -2.88 -5.61 2.37 -0.91 -0.07 -1.48 -3.65 -4.80 -1.33 -3.30

stream_elast -16.76 -36.78 -0.16 -6.24 5.38 -3.98 8.08 -5.16 -1.76 -7.67 3.45 -3.70

Fig. 8 displays the rankings of the overall performance of models across different environments for all signatures. RF∼All

achieved the highest overall accuracy in the baseline mode where the whole dataset is used. The performance rankings of

RF∼Par generally align with those of RF∼All across most clusters, with the exception of Climate 1 and Soil 5. GAM∼Par

follows the same pattern as RF∼All except for clusters Climate 1 and 3, Geology 2 and Soil 5. The difference between the415

rankings of the models for Climate 1 is the most significant for all models. The similar behaviour of causal models and RF∼All

across clusters, particularly in the topography category, suggests that causal patterns as predictors perform comparably to using

all variables as predictors. The model GAM∼All, despite experiencing overfitting in most clusters, shows strong performance

across clusters Soil 2, 3, 4 and Topography 1, 2 and 3. Although BN model has a linear structure with the lowest accuracy in

most cases, it follows the same behaviours as other models. In general, BN, GAM∼Par, RF∼Par, and RF∼All follow a similar420

ranking pattern; however, GAM∼All exhibits slightly different behaviour.
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Figure 8. Rankings of model performance based on R-squared values obtained from evaluating their accuracy in predicting all signatures

within each cluster. On the x-axis, Clim stands for climate, Geol for geology, Topo for topography and Vege for vegetation.

4 Discussion

For most runoff signatures, the Directed Acyclic Graphs (DAGs) indicate that topographic variables drive climate and vegeta-

tion and, in some cases, geological and soil variables. Also, they show that climate attributes influence all runoff signatures, a

finding supported by various studies (e.g. Jehn et al. (2020); McMillan et al. (2022)). Models perform well across topographic425

clusters for most signatures with consistent accuracy rankings (Fig. 8). However, in Topography Cluster 4—characterized by

high elevation, steep slopes, and low precipitation—all models struggle to predict signatures accurately. This issue aligns with

Viglione et al. (2013), who observed a decline in prediction model performance in arid catchments. Signatures rove to be more

predictable in clusters characterized by high precipitation and low elevation, such as those in Climates 1 and 3. This indicates

that even in catchments with low precipitation, the transfer of information from precipitation to runoff remains the predom-430

inant driver compared to other mechanisms (Neri et al., 2022). According to Fig. 8, models achieve high accuracy scores in

regions with high precipitation, such as Geology 7, Topography 1, Soil 4, and Vegetation 5. The prediction results indicate that

independent variables derived from causal discovery, such as topographic variables, can serve as effective criteria for catch-
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ment classification. Furthermore, the causal interconnections identified by DAGs improve model accuracy, reduce prediction

uncertainty, and increase consistency between training and test simulations.435

Although causal models use fewer predictors, making them more parsimonious than non-causal models, they enhance the

models’ performance across different environments. The causal parents identified by the PC algorithm align with the physical

processes underlying the signatures. For example, according to PC results, snow fraction drives the baseflow index and low

flows, consistent with runoff-generating mechanisms during spring and summer (Gentile et al., 2023). In addition, vegetation,

soil, and geological variables, which contribute to infiltration and groundwater flow, are causal parents of the baseflow index440

(Gnann et al., 2019). For high flows (Q95), drivers include precipitation seasonality, vegetation cover, mean precipitation,

and slope. This suggests that precipitation intensity, often driven by seasonality, influences runoff-generating mechanisms like

infiltration excess process (Nanda et al., 2019). Slope and vegetation cover also affect the time concentration and the magnitude

of high flows in the catchment area (Sultan et al., 2022). In regions with high mean precipitation and low seasonality, saturation

excess runoff mechanisms dominate high flows. However, the PC causal discovery results for low flows (Q5) are less accurate.445

Low flows are strongly governed by geological variables in addition to climate and topography (Laaha and Bloeschl, 2006;

Giuntoli et al., 2013). The algorithm fails to identify any geological variables as a causal parent for this signature, likely due to

the complexity and non-linearity of the low-flow process, especially in arid catchments or when the dataset size is insufficient.

The results of the baseline models indicate that the RF model is the most accurate, followed by GAM and BN. This finding

is consistent with Pourghasemi and Rahmati (2018), who demonstrated the RF model’s superiority over GAM when analyzing450

landslide causal factors. Reducing the number of predictors to causal parents decreases the accuracy of the baseline models.

Although the models are expected to perform similarly across different environments, the results reveal significant uncertainty

in the test simulations, primarily due to the smaller training set sizes across clusters. As emphasized by Riley et al. (2020),

sample size plays a critical role in determining the accuracy and robustness of prediction models. In cases where the sample

size is smaller than that of baseline models, non-causal models often fail to outperform their causal counterparts.455

Despite BN having lower accuracy than GAM and RF, it shows the smallest difference between training and test results

across all cases. This consistency may be due to the BN structure, which relies on conditional dependencies derived from

the causal relationships between variables, although further investigation is needed. GAM models show completely different

behaviour compared to the baseline when applied to clusters. Although GAM∼All is among the most accurate models in

the training simulation, its test results have significantly lower accuracy than other models, likely due to overfitting when the460

training sample size is small. In contrast, GAM∼Par performs better, with higher accuracy and reduced uncertainty, suggesting

that using causal parents makes GAM more robust across various environments. RF∼All display the highest accuracy among all

models. However, for some signatures like high flow duration, it is outperformed by RF∼Par across most clusters. Additionally,

for highly predictable signatures like mean daily flows and high flows, GAM and BN perform better than RF.

The high accuracy of GAM∼All and RF∼All in baseline models may result from the large number of data points in the465

training sets. However, with smaller sample sizes, the performance difference between causal and non-causal models becomes

negligible. In some cases, models using causal parents even achieve higher accuracy, such as predicting high flow duration in

the geology category for GAM (Table 5).
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Finally, our results show that causal discovery enhances the representation of physical systems, making models more in-

terpretable and parsimonious, as emphasized by Runge et al. (2019a) and Reichstein et al. (2019). The insights gained from470

causal interconnections not only improve the understanding of hydrological systems but also lead to more informed modelling

practice. However, we still need theoretical developments to quantify the stability and robustness of uncertainty of such a

model, particularly when combined with machine learning and classification algorithms (Herman et al., 2015; AghaKouchak

et al., 2022; Singh et al., 2015).

5 Conclusions475

This study investigates the application of causal discovery to represent the causal interconnections between variables in hydro-

logical systems. The PC algorithm is used to identify the causal links between catchments and climate attributes for 11 runoff

signatures, producing a Directed Acyclic Graph (DAG) for each signature. DAGs reveal the connections between variables,

including the direct causes (parents) of the target signatures. Three prediction models, BN, GAM, and RF, are used to predict

runoff signatures. BN directly utilizes the DAG for prediction, while GAM and RF predict the target variable both by using all480

the variables in the DAG and by using only the causal parents. Each model is run 100 times with random sampling of training

and tests for each run. The dataset is then grouped into different clusters based on attribute categories. The clusters serve as

new environments to train and test the models, allowing for an assessment of model performance when using causal parents as

the explanatory variables. The major outcomes of this research are as follows:

– The causal parents of the signatures identified by the PC algorithm do not always align with the most influential vari-485

ables determined by correlation and variable importance analysis. This suggests that strong correlations may result from

confounding variables, and causal relationships do not always coincide with high variable importance.

– BN shows the smallest decrease in accuracy between the training and test samples, demonstrating high transferability.

The accuracy of the models is not sensitive to the training sample size and shift in the distribution of predictors. This

indicates that P (Effect | Cause) remains consistent across environments. Although BN’s overall accuracy is lower than490

that of the nonlinear GAM and RF models, it outperforms RF in predicting mean daily runoff and high flows across

different environments (clusters).

– Using causal parents helps reduce overfitting, particularly for GAM, when the training sample size is small.

– The high accuracy of non-causal GAM∼All and RF∼All in the baseline models may be due to spurious relationships,

as their accuracy decreases in environments with smaller training sets compared to the causal models.495

– In environments where the target signature is more difficult to predict, such as clusters of the geology category, using

causal parents increases prediction accuracy.

– The independent variables identified through causal discovery using DAGs can serve as reliable criteria for catchment

classification. This is evident from the models performing consistently well in clusters 1, 2, and 3, while performing
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less effectively in cluster 4. This information improves model accuracy, reduces prediction uncertainty, and enhances500

consistency between training and test simulations.

– Causal inference methods contribute to improving model parsimony and interoperability in hydrological systems mod-

elling.

In conclusion, models with causal parents (causal models) maintain acceptable accuracy even when there are shifts in the

distribution of the explanatory variables (covariates). The DAGs obtained from causal discovery enhance the interpretability505

of prediction models and offer more informed clustering criteria, which is valuable for regionalization purposes. This study

focuses on investigating the direct causes of runoff signatures and their effects on prediction accuracy, but other criteria for

selecting predictors from the DAG variables could be explored. For example, investigating the effect of variables with different

topological ordering on the target variable, such as root nodes, ancestors of the target variables, etc. In addition, different

causal discovery methods may yield alternative DAG structures, which merit further investigation. This work highlights the510

importance of causal inference methods in understanding runoff-generating mechanisms in hydrological systems.

While causal inference analysis has been extensively explored in fields such as computer science and medicine, its appli-

cations in hydrology are still in their infancy. There is a broad range of potential uses for causal models in hydrology, from

identifying the drivers of hydrological anomalies (Tárraga et al., 2024) to linking extreme events with their cascading societal

impacts (AghaKouchak et al., 2023). As research in this area progresses, the application of causal inference methods is likely515

to lead to more accurate and robust predictive models, offering valuable insights into complex hydrological variability.

Code and data availability. The codes are available on the GitHub repository at https://github.com/abbasizadeh/Catchment-Causal-Discovery.

The CAMELS attributes are available at https://gdex.ucar.edu/dataset/camels.html.
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Appendix A: The values of R squared and RMSE for the baseline models and R squared values for sub-models

A1 R-squared and RMSE values for test simulations of baseline models in Fig. 4520

Table A1. R-squared and RMSE values for test simulations of baseline models. The values are an average of 100 executions of each model.

R squared (Test Set) RMSE (Test Set)

Signature BN GAM∼All GAM∼Par RF∼All RF∼Par BN GAM∼All GAM∼Par RF∼All RF∼Par

baseflow_index 0.27 0.44 0.35 0.63 0.51 0.13 0.12 0.13 0.10 0.11

high_q_dur 0.27 0.42 0.30 0.52 0.37 8.66 7.91 8.55 7.11 8.12

high_q_freq 0.30 0.40 0.33 0.52 0.29 24.51 23.08 23.97 20.18 24.89

low_q_dur 0.29 0.38 0.28 0.46 0.35 18.33 17.27 18.50 16.11 17.64

low_q_freq 0.32 .039 0.37 0.54 0.45 68.13 64.52 65.36 55.84 61.11

q_mean 0.84 0.93 0.90 0.92 0.90 0.62 0.41 0.48 0.46 0.50

Q5 0.48 0.59 0.54 0.70 0.61 0.19 0.17 0.18 0.15 0.17

Q95 0.82 0.88 0.85 0.88 0.85 2.09 1.75 1.91 1.80 1.98

runoff_ratio 0.65 0.83 0.69 0.82 0.72 0.14 0.10 0.13 0.10 0.12

slope_FDC 0.50 0.60 0.54 0.69 0.61 0.36 0.32 0.34 0.28 0.32

stream_elast 0.30 0.36 0.30 0.46 0.29 0.65 0.63 0.65 0.58 0.66
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A2 R squared values used to calculate values in Table 5

Table A2. The R-squared values of causal models for each category which is calculated using the weighted mean. The weights are the ratio

of the catchments in each cluster to the total number of catchments.

R squared values for causal models

Climate Geology Soil Topography Vegetation

Signature BN GAM RF BN GAM RF BN GAM RF BN GAM RF BN GAM RF

baseflow_index 0.31 0.35 0.44 0.28 0.31 0.36 0.33 0.33 0.38 0.32 0.36 0.41 0.27 0.30 0.35

high_q_dur 0.24 0.26 0.35 0.34 0.38 0.39 0.35 0.35 0.38 0.23 0.30 0.30 0.23 0.28 0.29

high_q_freq 0.21 0.24 0.20 0.32 0.34 0.32 0.25 0.29 0.24 0.30 0.31 0.32 0.19 0.22 0.19

low_q_dur 0.23 0.26 0.27 0.38 0.37 0.36 0.29 0.29 0.29 0.43 0.39 0.40 0.20 0.23 0.24

low_q_freq 0.23 0.28 0.32 0.33 0.31 0.35 0.34 0.32 0.35 0.37 0.37 0.42 0.21 0.24 0.25

q_mean 0.73 0.74 0.72 0.82 0.83 0.81 0.86 0.86 0.86 0.83 0.85 0.82 0.77 0.78 0.74

Q5 0.27 0.31 0.37 0.42 0.45 0.49 0.40 0.45 0.47 0.35 0.37 0.43 0.31 0.34 0.36

Q95 0.62 0.62 0.60 0.78 0.77 0.74 0.81 0.80 0.80 0.79 0.81 0.78 0.68 0.67 0.64

runoff_ratio 0.34 0.42 0.48 0.61 0.58 0.60 0.65 0.66 0.67 0.69 0.70 0.69 0.49 0.53 0.52

slope_FDC 0.31 0.37 0.41 0.46 0.46 0.49 0.48 0.52 0.55 0.41 0.43 0.47 0.27 0.33 0.37

stream_elast 0.30 0.32 0.31 0.28 0.27 0.27 0.25 0.23 0.22 0.26 0.28 0.27 0.25 0.26 0.23
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Table A3. The Rsquared values of non-causal models for each category which is calculated using the weighted mean. The weights are the

ratio of the catchments in each cluster to the total number of catchments.

R squared values for non-causal models

Climate Geology Soil Topography Vegetation

Signature GAM RF GAM RF GAM RF GAM RF GAM RF

baseflow_index 0.39 0.51 0.28 0.43 0.31 0.45 0.35 0.48 0.31 0.42

high_q_dur 0.33 0.37 0.26 0.46 0.30 0.43 0.27 0.39 0.26 0.38

high_q_freq 0.31 0.43 0.24 0.41 0.26 0.38 0.34 0.45 0.23 0.37

low_q_dur 0.29 0.37 0.28 0.41 0.30 0.37 0.41 0.49 0.24 0.31

low_q_freq 0.33 0.43 0.27 0.40 0.28 0.40 0.38 0.50 0.25 0.37

q_mean 0.81 0.76 0.85 0.80 0.89 0.86 0.82 0.84 0.81 0.77

Q5 0.33 0.45 0.41 0.54 0.41 0.51 0.42 0.54 0.31 0.45

Q95 0.70 0.65 0.74 0.73 0.78 0.81 0.83 0.79 0.71 0.67

runoff_ratio 0.63 0.66 0.65 0.69 0.74 0.76 0.76 0.78 0.64 0.65

slope_FDC 0.42 0.52 0.42 0.54 0.51 0.60 0.48 0.55 0.36 0.45

stream_elast 0.31 0.39 0.22 0.36 0.23 0.32 0.28 0.36 0.24 0.30
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