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Abstract. Runoff signatures characterize a catchment’s response and provide insight into the hydrological processes. These sig-

natures are governed by the co-evolution of catchment properties and climate processes, making them useful for understanding

and explaining hydrological responses. However, catchment behaviours can vary significantly across different spatial scales,

which complicates the identification of key drivers of hydrologic response. This study represents catchments as networks of

variables linked by cause-and-effect relationships. We examine whether the direct causes of runoff signatures, representing in-5

dependent causal mechanisms, can explain these catchment responsessignatures across different environments., To achieve this

goal, we train the models using the causal parents of the runoff signatures and investigate whether it results in with the goal of

developing more robust, parsimonious, and physically interpretable predictionspredictive models compared to models that do

not use causal information. We compare predictive models that incorporate causal information derived from the relationships

between catchment, climate, and runoff characteristics.We use thePeter and ClarkClarck (PC) causal discovery algorithm is10

applied separately for 11 runoff signatures to derive causal relationships between catchment attributes, climate indices, and

the corresponding runoff signature. Three, along with three prediction models including: Bayesian Network (BN), Generalized

Additive Model (GAM), and Random Forest (RF) are used for predictions. The results indicate that among models, BN, a

linear model with a structure based on the causal network, exhibits the smallest decline in accuracy between training and test

simulations compared to the other models. Across nearly all environments and runoff signatures, using causal parents enhances15

robustness and parsimony while maintaining the accuracy of GAMs. While RF achieves the highest overall performance, it

also demonstrates the most significant drop in accuracy between the training and test phases. When the sample size for train-

ingtraining sample is small, the accuracy of the causal RF model, which uses causal parents as predictors, is comparable to that

of the non-causal RF model, which uses all selected variables as predictors. This study demonstrates the potential of causal

inference techniques for interpreting and enhancing the prediction of catchment responses by effectively representing the inter-20

connected processes within hydrological systems in a cause-and-effect manner.This study demonstrates the potential of causal

inference techniques in representing the interconnected processes in hydrological systems in a more interpretable and effective

manner.
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1 Introduction

Hydrological processes result from complex interactions between climate inputs and catchment characteristics (Sivapalan,25

2006). These processes manifest in the catchmentrunoff response at the catchment outlet. Therefore, catchments can be con-

ceptualized as a unit in which the cumulative effect of all interacting processes defines their runoff behaviour, commonly

referred to as "runoff signatures." Runoff signatures encapsulate key characteristics of the runoff process in a catchment, in-

cluding stream flow magnitude, frequency, and timing. These signatures are essential for a wide range of engineering and

scientific applications (Blöschl et al., 2013), especially when causalcasual interpretation or assessment is not possible due to30

insufficient data. McMillan (2020) outlined a wide range of applications for runoff signatures, such as assessing the perfor-

mance of hydrological models (Clark et al., 2011; Todorovic et al., 2024), selecting appropriate model structures (Hrachowitz

et al., 2014; Spieler and Schuetze, 2024) and estimating parameters (Pokhrel et al., 2012; Pizarro and Jorquera, 2024). They

are also instrumental in streamflow prediction in ungauged basins (Yadav et al., 2007; Zhang et al., 2014; Matos and Oliveira e

Silva, 2024), and in understanding catchment runoff responses at different spatial and temporal scales (Ficchi et al., 2019).35

Although all processes in a catchment contribute to its runoff response, each runoff property (or signature) is directly in-

fluenced by a distinct set of climatic and catchment-specific characteristics. As an example, Chagas et al. (2024) studied the

regional patterns of low flows across 1400 river gauges in Brazil. They showed that catchment characteristics, especially geo-

logical properties, have a significantly greater influence on low flows than climate attributes. Guzha et al. (2018) investigated

the effects of changes in forest cover on annual mean flow, high flow, and low flow in 37 catchments of different climatic40

and physiographic properties in East Africa, concluding that not all catchments exhibit a significant response to forest loss.

Therefore, it is necessary to identify a set of variables or covariates that are causally associated with a specific runoff signature

and can reliably explain it under various environmental conditions. Understanding these variables allows for explaining the

signature of interest across environments with different climatic and physiological conditions.

The main drivers of runoff signatures are commonly investigated using classification and regression methods. These tech-45

niques are applied to identify the main drivers influencing catchment response and assess their spatial dependencies. Classifica-

tion criteria often include runoff properties (Ley et al., 2011; Sawicz et al., 2011; Kuentz et al., 2017), climate, and catchment

similarities (Olden et al., 2012; Singh et al., 2016; Yang and Olivera, 2023; Ciulla and Varadharajan, 2024). Additionally,

machine learning and statistical methods are widely used for the same purpose. For example, Addor et al. (2018) used random

forest to predict 15 runoff signatures across 600 catchments in the US. They showed that climatic attributes are among the most50

influential predictors of the runoff signatures. McMillan et al. (2022) investigated the dominant process by linking climate and

catchment attributes tothrough hydrological signatures over large sets of catchments in the US, UK, and Brazil. They found that

although some signatures, such as runoff ratio and baseflow index, were among the most robust metrics for characterizing pro-

cesses, in some cases, the correlation found among variables and signatures in a country may not always generalize to others.

They noted that these diverging correlations could result from statistical associations rather than true causal relationships.55

We postulate that investigating the relationship between hydrological variables from causal-and-effect perspectives might

solve the problem of diverging correlations reported by McMillan et al. (2022). A variable X is considered the cause of a
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variable Y if the value of Y depends on or is influenced by X in any given circumstances (Pearl et al., 2016; Pearl, 2009).

Therefore, the probability of a target variable, such as a runoff signature, given its causes, should be the same under different

conditions or across different environments. Broadly, there are two widely used frameworks for discovering causal relationships60

and estimating causal effects from observational data, including structural causal modelling (Pearl, 2009) and potential outcome

framework (Rubin, 1974). The methods used to discover causality and quantify causal effects and their strength are broadly

referred to as Causal Inference Methods (CIMs).

One application of CIMs is to complement machine learning approaches by addressing the problems of transfer and gen-

eralization (Schölkopf et al., 2021; Ombadi, 2021), by identifying dependencies and confounding factors using multivariate65

analyses (Runge et al., 2019a). In an under-investigation cause-and-effect relationship, a confounding variable is an unknown or

unmeasured variable that influences both the supposed effect and supposed cause (Pearl et al., 2016). Identifying confounders

and unravelling causal effects make CIMs a valuable tool for enhancing the interpretability of Earth system models (Reich-

stein et al., 2019). CIMs are established based on a robust mathematical framework that identifies conditional dependencies in

observational data (Pearl, 2009). This process often involves deriving a causal graph based on our understanding of relevant70

processes using methods such as the Bayesian Network (BN) or Bayesian Bbelief Network (Verma and Pearl, 1990).

In the last decade, significant efforts have been made to investigate and develop applications for CIMs in the field of Earth

system modelling. These studies, primarily focused on uncovering causal relationships from time series, cover a broad range of

topics including climate science (Runge et al., 2019b; Kretschmer et al., 2016), remote sensing (Perez-Suay and Camps-Valls,

2019), soil moisture-precipitation feedback detection (Wang et al., 2018), runoff behaviour (Zazo et al., 2020), the causal75

discovery of summer and winter evapotranspiration drivers (Ombadi et al., 2020), and study of hydrological connectivity

(Sendrowski and Passalacqua, 2017; Rinderera et al., 2018; Delforge et al., 2022). However, the causal relationships between

catchment attributes, climate characteristics, and runoff signatures have yet to be thoroughly investigated. A catchment can be

represented as a probabilistic network of interconnected processes leading to a runoff signature. To achieve this, catchments can

be conceptualized as Bayesian Networks (BNs), where variables are causally linked. BNs, part of the family of probabilistic80

graphical models, consist of nodes representing variables and directed edges indicating causal directions (Koller and Friedman,

2009). The structure of BNs is usually identified through causal discovery methods and expert knowledge (Runge et al., 2019a).

Methods for causal discovery, also known as structural learning or causal search, can be categorized into constrained-based,

score-based, and asymmetry-based approaches (Runge et al., 2023). Constrained-based methods use conditional independence

tests to identify the causal graph, while score-based methods evaluate multiple causal graphs using a scoring function, selecting85

the highest-scoring one. Asymmetry-based methods are used to infer causal direction in the bivariate relationships (Runge et al.,

2023).

The information about the causal relationships between catchment variables can be incorporated into prediction models to

predict runoff signatures. Predictions using BNs are primarily designed for discrete datasets that can model complex interac-

tions between variables. The rigorous probabilistic theories involved in BN make them popular for environmental modelling90

(Aguilera et al., 2011). However, Nojavan et al. (2017) and Qian and Miltner (2015) showed that the results of BNs are influ-

enced by the discretization choice of continuous variables. Inference with BN for continuous variables is still a challenging task
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(Li and Mahadevan, 2018). Gaussian BN is a widely used method for modelling continuous variables. It assumes that the rela-

tionships between variables are linear and variables follow a Gaussian distribution (Marcot and Penman, 2019). To relax these

assumptions, non-parametric continuous BNs have been developed (e.g. Qian and Miltner (2015)). However, Gaussian BNs95

remain a robust and widely-used framework, supported by various software packages (Geiger and Heckerman, 1994). Gaussian

BNs have been successfully applied in environmental modelling, particularly for water-quality studies e.g. Jackson-Blake et al.

(2022) and Deng et al. (2023).

Given the success of Gaussian BNs in other fields, in this study, we adopt Gaussian BNs to predict runoff signatures.

The links between variables of BN are derived from Peter Spirtes and Clark Glymour’s (PC) causal discovery algorithm.100

Additionally, two non-linear models, the Generalized Additive Model (GAM) and Random Forest (RF), are used in this study.

GAM is an extension of the Generalized Linear Model (GLM) that models non-linear relationships between explanatory and

response variables using sums of arbitrary functions of the explanatory variables (Hastie et al., 2009). GAMs have been widely

used for hydrological studies including flood frequency analysis (Ouali et al., 2017), low flow frequency analysis (Ouarda

et al., 2018), flood peak prediction (Dubos et al., 2022), analysis of nuisance flooding (Vandenberg-Rodes et al., 2016), spatial105

analysis of extremes (Love et al., 2020), climate-crop yield relationships (Zachariah et al., 2021). RFs, first developed by

Breiman (2001), are non-linear, non-parametric models used extensively for regression, classification, prediction, and variable

selection. RF-based models have also been used in the field of environmental modelling, including for flow frequency analysis

(Desai and Ouarda, 2021), runoff signature prediction (Addor et al., 2018), water level forecasting (Nguyen et al., 2015),

downscaling (Arshad et al., 2024), and understanding of drivers of hazards (Seydi et al., 2024).110

This study introduces a novel approach for predicting runoff signatures by integrating causal information into predictive

models. To the best of our knowledge, causal inference techniques have not yet been applied for this purpose. Unlike previous

studies that primarily rely on correlated-based features for predicting a specific catchment response, we take a step beyond mere

correlation by focusing on causally relevant variables, specifically, causal parents. By integrating causal information into pre-

dictive models (GAM and RF), we aim to investigate whether it can enhance the prediction models’ robustness, interpretability,115

and parsimony compared to models that do not utilize causal insights. This study aims to represent the causal relationships

between catchment attributes, climate characteristics and runoff signatures. We compare the performance of prediction models

(GAM and RF) that incorporate causal information derived from causal discovery methods against models that do not. We

assume that a specific characteristic of catchment response is directly influenced by a subset of correlated variables, known as

causal parents, rather than by all correlated variables. These causal parents, together with the runoff signature, form a causal120

mechanism that is theoretically independent of other variables and can explain the variations in the signature. In this con-

text, our objective is to test whether this fundamental concept applies to complex, real-world hydrological systems. runoff

signatures are causally influenced by a subset of variables, known as causal parents, rather than by all available variables. We

adopt the Peter and Clark (PC) causal discovery method (Spirtes et al., 2001), which is a constrained-based causal discovery

algorithm, to identify these causal relationships and to structure the BNs. Our objective is to investigate whether incorporating125

causal information can provide new insight into hydrological systems modelling, enhance the prediction models’ robustness,

and improve their parsimony.To achieve our objectives, we follow these steps: 1) select potential predictors for each runoff
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signature among the catchment and climate attributes, 2) identify causal relationships between catchment attributes, climate

characteristics, and runoff signatures (network structure) using Peter and Clark (PC) causal discovery method (Spirtes et al.,

2001), 2) identify causal parents and network structure for each signature, 3) execute models using both the causal parents130

(causal models) and all selected variables (non-causal models) for entire catchments and subset of catchments, 4) evaluate the

robustness of the causal and non-causal models.

2 Data and methods

2.1 Data

The Catchment Attributes and MEteorology for Large-sample Studies dataset (CAMELS) is used in this study (Newman135

et al., 2015; Addor et al., 2017). It includes time series of streamflow andoffers hydrometeorological variables, climatic in-

dices (derived from hydrometeorological time series), catchment attributes, and runoff signatures (derived from streamflow

time series)and different land cover characteristics for 671 catchments spanning the contiguous United States. The attributes

in the CAMELS dataset are divided into 5 categories, including climate, geology, soil, topography, and vegetation (land

cover) categories. CAMELS also includes comprehensive explanations of the techniques employed to derive catchment at-140

tributes and a discussion of potential limitations in the data sources. The time series of streamflow, precipitation, and potential

evapotranspiration are included in the dataset. However, they are not used in this study. The variables used in this study in-

cludeare catchment characteristics, climate attributes, and runoff signatures, which are outlined in Table 1 and Table 2. The

streamflow and hydrometeorological time series are not included in this study.
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Table 1. Catchment and climate attributes, calculated over the period from 01/10/1989 to 30/09/2009 (Table 2 in Addor et al. (2018)).
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Table 1. (continued) Catchment and climate attributes, calculated over the period from 01/10/1989 to 30/09/2009, (Table 2 in Addor et al.

(2018)).
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Table 2. Runoff Signatures in CAMELS dataset, calculated over the period from 01/10/1989 to 30/09/2009

No Signature Description Unit Unite Reference

1 baseflow_index
The ratio of mean daily baseflow to

mean daily discharge
-

(Ladson et al., 2013), Table

2 in Addor et al. (2018)

2 high_q_dur

The average duration of high-flow

events (successive days of flow

events > 9 × median daily flow)

days

(Clausen and Biggs, 2000),

Table 2 in Addor et al.

(2018)

3 high_q_freq
Frequency of high-flow days (flow

events > 9 × median daily flow)
days/year

(Clausen and Biggs, 2000),

Table 2 in Addor et al.

(2018)

4 low_q_dur

The average duration of low-flow

events (successive days of flow

events < 0.2 × mean daily dis-

charge (q_mean))

days
(Olden and Poff, 2003), Ta-

ble 2 in Addor et al. (2018)

5 low_q_freq

Frequency of low-flow days (flow

events < 0.2 × mean daily dis-

charge (q_mean))

days/year
(Olden and Poff, 2003), Ta-

ble 2 in Addor et al. (2018)

6 q_mean Mean daily discharge mm/day
Table 2 in Addor et al.

(2018)

7 Q5
Low flow: 5% flow quantile (95%

exceedance probability)
mm/day

Table 2 in Addor et al.

(2018)

8 Q95
High flow: 95% flow quantile (5%

exceedance probability)
mm/day

Table 2 in Addor et al.

(2018)

9 runoff_ratio
Mean daily discharge to mean daily

precipitation
-

(Sawicz et al., 2011), Table

2 in Addor et al. (2018)

10 slope_FDC The slope of flow duration curve -
(Sawicz et al., 2011), Table

2 in Addor et al. (2018)

11 stream_elast

Steam flow elasticity (sensitivity of

annual streamflow to variations in

precipitation)

-

(Sankarasubramanian et al.,

2001), Table 2 in Addor

et al. (2018)

2.2 Methods145

The methodology integrates feature selection, clustering, causal discovery and prediction. Fig. 1 shows the methodological

procedure used in this study. In Fig. 1, causal models refer to the models that use causal parents, and non-causal models use all
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selected variables as predictors. Environments are defined as subsets of the dataset obtained through are subsets of the dataset

obtained by clustering algorithms. Therefore, the word "environment" refers to the clusters or subsets of data. The whole

dataset itself can also be considered an environment; however, in this study, we primarily refer to clusters when discussing150

environments. Baseline models refer to the models that use the whole dataset (i.e., all 671 catchments) for training and testing,

and sub-models use subsets of the dataset for this purpose. GAM∼Par and RF∼Par are causal GAM and RF models that

employ causal parents for prediction. GAM∼All and RF∼All are non-causal GAM and RF models that use all the selected

variables as predictors. A robust model is defined as one that maintains its accuracy across different environments.

In this study, we explore the concept of independent mechanisms in the context of modelling runoff signatures. The indepen-155

dent mechanisms assumption suggests that the causal generative process of a system’s variables is made up of self-contained

modules that operate independently, without influencing or providing information to one another, and these mechanisms stay

stable even when the data distribution changes (Schölkopf et al., 2012; Peters et al., 2017). Using the Directed Acyclic Graph

(DAG) obtained from causal discovery, we identified the causal parents of the target runoff signature, which represent the

independent causal mechanism generating this variable. Independent mechanisms, as modular components, can be trained sep-160

arately across different environments and tend to be more adaptable and reusable, a quality we refer to as robustness in this

study (Parascandolo et al., 2018). They may also be easier to interpret and provide more insight since these causal mechanisms

correspond to physical mechanisms. To evaluate the real-world applicability of this mechanism, we used the identified causal

parents as predictors to train RF and GAM. This approach tests whether the independent mechanism derived from the DAG

can effectively explain and predict the target variable, supporting the idea that these causal conditionals serve as robust and165

interpretable modules in the prediction of runoff signatures.The goal is to investigate whether the causal discovery can enhance

prediction models’ robustness, identifiability and parsimony.

To achieve this, we use the whole dataset for the prediction in baseline models and subsets of the dataset in sub-models, both

with and without utilizing causal information, corresponding to causal and non-causal models, respectively. If the causal models

performed comparably to or better than non-causal models across different environments, it indicates that causal parents suffice170

to explain the target variable. In cases where causal models outperformed non-causal ones, it suggests that some covariates

in the non-causal models may represent spurious correlations, negatively impacting performance in that specific environment.

Furthermore, the robustness of the models is assessed by comparing their accuracy in training and test settings and checking

whether the difference between causal and non-causal models is statistically significant in both settings. The methods used to

calculate statistical significance tests comparing causal and non-causal models are presented in the supplementary material.175

The steps are explained in the following sections.
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[Comment: The figure is modified to enhance the clarity.]

Figure 1. Flowchart depicting the steps followed in this study. Grey boxes indicate the procedures, orange boxes present the results of these

procedures,and blue text highlights where information about causality is utilized, and the red text and arrows highlight the cluster analysis

and indicate where the clustering results are applied. PC refers to Peter and Clark’s causal discovery algorithm, PAM stands for Partition

Around the Centroid clustering algorithm, and DAG refers to Directed Acyclic Graph. BN refers to the Bayesian Network, GAM refers to

the Generalized Additive Model, and RF refers to the Random Forest. GAM∼Par and RF∼Par are causal models (GAM and RF) using

only causal parent variables for prediction, while GAM∼All and RF∼All are non-causal models that use all selected variables as predictors.

Baseline models refer to models that use the entire dataset (all 671 catchments) for training and testing, while sub-models use only subsets

of the dataset or clusters.

2.2.1 Feature selection

In this section, we conduct the variable selection to 1) identify the most influential factors explaining the target signature and

2) reduce the dimensionality of the causal discovery problem (Runge et al., 2023). Including all 41 climate and catchment

10



attributes in the PC algorithm increases the dimensionality of the PC algorithm. Increasing the number of covariates in the PC180

algorithm can reduce the algorithm’s detection power (Runge, 2018). It is worth mentioning that we attempted to include all

continuous variables in the causal discovery process without applying variable selection. This approach was tested to address

the causal sufficiency assumption in the PC algorithm, which requires that all common causes of the target variables are

accounted for. Despite this, we observed challenges such as the generation of disconnected DAGs with independent nodes or

groups of nodes lacking causal relationships with runoff signatures.185

The explanatory variables for each signature are selected based on 1) ranked correlation coefficients and 2) variable im-

portance. It should be noted that to develop the BN, which is a probabilistic graphical model, the selected variables (nodes)

should not be the deterministic functions of each other; otherwise, the conditional dependency structure of DAGs will change.

Therefore, the aridity index, a function of precipitation and potential evapotranspiration, is removed from the selection pro-

cedures. Additionally, it is assumed that the selected variables satisfy causal Markov and faithfulness assumptions (Spirtes190

et al., 2001) when used for the PC causal discovery algorithm. They are the assumptions under which the causal relationship

from the observational data can be discoveredlearned. These assumptions relate the d-separation in the graph to conditional

dependencies in the joint distribution (Pearl, 2009). These assumptions are explained in the following sections. The methods

used for correlation analysis and variable importance are as follows:

1. Correlation analysis: Pearson, Kendall, and Spearman correlation coefficients are computed to illustrate the potential195

explanatory variables. The correlation analysis reveals the most influential variables from each category, namely cli-

mate, geology, vegetation, topography and soil. In addition, the scatter plot of the data helped visually understand the

relationship between variables.

2. Variable importance: Since the results of the correlation analysis by the 3 methods are not always consistent, another

feature selection procedure is conducted using the random forest method to investigate the feature importance. The same200

approach as correlation is repeated, using the random forest method to investigate the feature importance. Random forest

is implemented using the R package randomForest (Liaw et al., 2015).The variables are ranked using according to the

out-of-bag method, which is quantified using the Mean Decreased Accuracy (IncMSE) score. The out-of-bag method

ranks variables based on the increase in prediction error caused by removing each variable from the prediction process.

Random forest is implemented using the R package randomForest (Liaw et al., 2015).205

With the information provided by the procedures mentioned above, variables are selected based on a combination of correla-

tion analysis, variable importance assessment and consideration of the underlying physics of the runoff signatures. We tried to

select the most influential variables from each category, including climate, geology, soil, topography, and vegetation. The num-

ber of selected variables varies across categories. Multiple variables are selected from categories where most variables exhibit

high correlation. Conversely, for categories with a weak correlation to the runoff signature of interest, only the most correlated210

variable is chosen. For example, climatic variables often have a strong influence on runoff signatures, leading to the selection

of multiple variables. In contrast, geological variables tend to have a weak correlation with some runoff signatures, so only
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the most influential variable from this category is selected. The results of feature selection are presented in the supplementary

materials.

2.2.2 Clustering215

The CAMELS dataset provides five categories of catchment and climate attributes for each catchment (Table 1). Clustering

catchments based on each category of attributes is assumed to provide groups of catchments with homogeneous characteristics

(Blöschl et al., 2013). Clustering is used to group the CAMELS catchments into different categories based on specific attributes.

Any given catchment will belong to one climate attribute cluster, one soil attribute cluster, one topographic attribute cluster,

one geological cluster and one vegetation cluster (i.e. each catchment is ‘assigned’ 5 cluster values, one for each attribute). The220

whole process of training and testing the models is now (also) done on separate attribute clusters only, so basically, it is only

done on a subset of the available data but using data that share certain characteristics. The causal parents and selected variables

are, however, the same whether we use clustering or not.

We investigate the performance of the sub-models within each cluster of catchments. Each cluster is considered a new

environment with certain properties to investigate the robustness of models with and without causal casualparents. The selected225

covariates remain the same across all environments for each runoff signature. Within each cluster or environment, covariate

properties are assumed to be homogeneous with respect to specific attributes, allowing us to train and test models using

variables with consistent properties.The models are trained and tested for each cluster with homogeneous properties. Defining

environments as subsets of data is inspired by Peters et al. (2016). Here, we use clustering analysis to define these subsets,

resulting in environments with specific properties. Therefore, clusters can beClusters are considered as subsets of data where230

the distribution of covariates shifts from one cluster to another. This variation across clusters provides a framework for exploring

the underlying independent causal mechanisms of each runoff signature.. This idea is inspired by Peters et al. (2016), where

subsets of data are considered as different environments.

The causal independent mechanism (the target variable and its parents) for each signature remains unchanged if there is a

change in the distribution of parents (Woodward, 2008). Therefore, causal models (models with causalcasual parents as ex-235

planatory variables) are expected to perform with consistent accuracy across different environments. This concept is influenced

by the covariate shift assumption (Quionero-Candela et al., 2009). Covariate shift states that if variable Y is to be predicted from

a set of variables X , and X is the cause of Y , the properties of conditional probability P (Y |X) remains unchangedthe same

across all environments if the distribution of X changes. The assumption is tested by measuring the change in the accuracy

of models when using causal parents as predictors across different environments. This information will help investigate the240

performance of the causal compared to non-causal models.

Two clustering methods are employed to group the catchment attributes in the CAMELS dataset. The K-medoids or Par-

titioning Around Mediods (PAM) clustering algorithm (Rdusseeun and Kaufman, 1987) is used for categories of attributes

with continuous variables, namely, soil and topography. PAM is a more robust method for handling outliers and noises than

the K-mean method. The Gower distance (Gower, 1971) is used for mixed variables. This method is developed for datasets245
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containing continuous, binary or multiattribute variables (Hennig and Liao, 2013). The elbow and silhouette methods are used

to find the optimum number of clusters.

2.2.3 Causal discovery

Causal discovery is used to partially or fully infer the causal structure, Directed Acyclic Graph (DAG), from observational

data or distribution under certain assumptions (Heinze-Deml et al., 2018). Here, we try to find causal structures from the250

observational data without specifying the underlying physical equations using a causal discovery method. The causal discovery

method is applied to the selected variables for the whole dataset and each runoff signature.

This study uses the constrained-based PC algorithm (Spirtes et al., 2001), named after its authors Peter and ClarkClarck.

This method identifies the DAG under faithfulness and Markov assumptions. Markov’s assumption states that DAG represents

all the conditional independencies in the dataset, and faithfulness states that conditional dependencies in the joint distribution255

of the data reflect the d-separation in DAG; in other words, the distribution is faithful to DAG (Peters et al., 2017). It is also

assumed that there are no unobserved variables. We also assumed that runoff signatures do not cause climate and catchment

attributes and it is a sink node, meaning that it does not have any child nodes. This setting makes the causal parents of the

signatures their Markov and stable blankets. The Markov blanket of a node consists of its parents, its children, and the parents

of its children. Conditioning on the Markov blanket of a node makes the node independent of the rest of the DAG (Pearl, 1988).260

Since the target variable (runoff signature) has no child nodes, its causal parents are also a stable blanket for the regression

models. This is because the causal parents form a subset of the Markov blanket, and interventions on non-parent nodes do not

affect the functional relationships underlying the causal mechanism of the target variable (Pfister et al., 2021).

PC algorithm assumes that the variables are normally distributedhave a normal distribution. Therefore, the Box-Cox trans-

formation is applied to the data (Dutta and Maity, 2020). The bnlearn R package (Scutari, 2009) is used to apply the PC265

algorithm. Mutual information with the Monte Carlo permutation test is chosen as the conditional independence test. Since it

is well-documented that the PC algorithm’s results can be sensitive to factors such as sample size or permuting variable order,

(e.g. Colombo et al. (2014); Kalisch and Bühlman (2007)), we applied an iterative process based on the expert knowledge to

make sure that our results are reproducible. Therefore, first, a blacklist of edges is created to specify all impossible links prior

to running the PC algorithm. The algorithm is then executed to derive the initial structure of the graph. Expert knowledge is270

applied to correct the causally incorrect edge directions by blacklisting the specific incorrect direction and to remove spurious

links by blacklisting both directions if they were not initially excluded. Additionally, corrected causal links are added to a

separate list called the whitelist. We then iteratively applied the PC algorithm until the resulting DAG contained no undirected

or spurious links. It is worth mentioning that blacklisting impossible links is important to reduce the number of iterations to

reach a stable DAG.275

We do not claim that the DAGs resulting from this procedure represent the ground-truth causal links. In the absence of

a known ground-truth DAG, the primary means of evaluating these graphs relies on domain knowledge. The structure of

the DAG can vary depending on the causal discovery method used and the choice of conditional independence tests. While

metrics like the Bayesian Information Criterion (BIC) or Structural Hamming Distance (SHD) could be used if reference DAGs
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were available, they are not applicable here. Instead, the legitimacy of the inferred graph was assessed based on our expert280

knowledge, judging the plausibility of the identified causal relationships. Despite these limitations, this iterative procedure

produced stable and reproducible results.

The obtained DAG structures are used to predict runoff signatures using Bayesian Network (BN) methods. Additionally,

Generalized Additive Models (GAM) and Random Forests (RF) are applied to predict runoff signatures: once using all variables

in the DAGs (non-causal models) and once using only the causal parents of the target nodes (causal models).285

2.2.4 Bayesian Network (BN)

Having the graph structure from the causal discovery algorithm, the data is fitted to the graph, and the parameters are estimated.

Gaussian BN is used for inference purposes. Gaussian BN belongs to the family of continuous BNs, meaning the nodes are

continuous variables. The conditional dependencies are linear and follow the joint Gaussian distribution. The prediction is made

using averaging likelihood simulation with 500 random sampling numbers. Averaging likelihood simulation is a particle-based290

approximate method for inference in probabilistic graphical models. This method calculates the weight of samples according

to the likelihood of evidence, which is a specific value of the signature of interest. It adds up these weights for each sample

(Koller and Friedman, 2009). Since Gaussian BN is limited to capturing only linear relationships, other non-linear prediction

methods are also employed in this study, which are explained in the following sections.

2.2.5 Generalized Additive Model (GAM)295

The Generalized Additive Model (GAM) model (Hastie et al., 2009) is also chosen to handle non-linear relationships between

predictors and runoff signatures. GAMs are extensions of Generalized Linear Models (GLMs), which can identify the linear and

nonlinear relationship between response and explanatory variables. This method uses scatterplot smoothers (e.g., smoothing

spline or kernel smoother) to fit the additive functions. In this study, the penalized regression spline is used as the smoother.

This smoother prevents the model from overfitting where the coefficients of penalized spline decrease (Dubos et al., 2022).300

The calculation is done using mgcv R package (Wood, 2018). The model predicts the signatures once with all variables derived

from feature selection (non-causal model) and once with only the causal parents of the signatures derived from the causal

discovery section (causal model).

2.2.6 Random Forest (RF)

The last prediction model used in this study is Random Forest (RF). This method estimates response variables using multiple305

regression trees. Besides its ability to identify nonlinear patterns in the data, the likelihood of overfitting in RF is low because

the model’s prediction is an ensemble of multiple predictions. Therefore, it can deliver an accurate prediction with little com-

putational effort. These features in the RF model help identify the issues of linearity and overfitting in BN and GAM models,

respectively. The randomForest R package (Breiman, 2018) is used with the number of trees set to 500 to stabilize the predic-
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tion (Addor et al., 2018). Similar to GAM, RF is run twice: once using all selected variables as the predictors of the runoff310

signature (non-causal model) and once using only the causal parents as predictors (causal model).

For all models, BN, GAM, and RF, the data is split into 75 % training and 25 % test samples. The models are run 100 times,

with training and test sets randomly selected each time. the environments are divided into training and test sets, where 75%

of the catchments are randomly selected for training, and the remaining 25% are used for testing. This process is repeated

100 times using bootstrapping to generate different combinations of training and test sets. This approach provides a range of315

model performances, and their average performance is used for comparison. Importantly, the training and testing of models

are conducted within the same environment, meaning that models trained for a specific environment are tested within that

same environment. For example, if a model is trained on catchments from a specific climate category cluster, it is also tested

on catchments within that same cluster. The models are executed for the whole dataset (baseline models) and each cluster of

categories (sub-models). The models’ accuracy is evaluated using Root Mean Squared Error (RMSE) and R-squared metrics320

between prediction and observations. The iteration provides 100 RMSE and R-squared for each run, and the accuracy is

reported as their mean value. The following section discusses the obtained results of this study.

3 Results

3.1 Clustering results for each category

The clustering classifies the catchments according to the five categories. Time series data is not used for clustering analysis,325

and only catchment attributes available in the CAMELS dataset, as listed in Table 1, are utilized for this purpose. Table 3 shows

the methods used for clustering, the optimum number of clusters according to the elbow and Silhouette scores, and the number

of catchments in each cluster. Fig. 2 illustrates each cluster’s spatial extent of catchments along with two chosen variables. The

obtained results from the cluster analysis for each category of attributes are as follows:

1. Climate attributes: Climate attributes in the CAMELS dataset are derived from area-weighted averaging of meteoro-330

logical forcing time series from October 1, 1989, to September 30, 2009. The cluster analysis shows four distinct climate

categories, which spread in the east (cluster 1), the Midwest (cluster 2), the west (cluster 3) and the northwest (cluster 4)

(Fig. 2a). The largest group of catchments belong to cluster number one, with 334 members in the north- and southeast

of the US (Table 3). This cluster receives an average of 3.5 mm daily precipitation and has 2.8 mm daily evapotranspi-

ration. Other clusters have the following average precipitation and evapotranspiration levels: Cluster 2 has 2.3 mm of335

precipitation and 2.7 mm of evapotranspiration, Cluster 3 has 5.5 mm of precipitation and 2.4 mm of evapotranspiration,

and Cluster 4 has 2.0 mm of precipitation and 3.3 mm of evapotranspiration.

2. Soil attributes: The soil properties data, derived from the State Soil Geographic Database (STATSGO), provides infor-

mation about the top 2.5 meters of soil. However, the CAMELS dataset only includes soil data for the top 1.5 meters. Soil

texture is represented in 16 classes, of which there are 12 classes based on the United States Department of Agriculture340

(USDA) and 4 non-soil classes. The saturated hydraulic conductivity and soil porosity are calculated based on the sand
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and clay fraction using multiple regression analysis. Cluster analysis identifies six groups of catchments. This category

is divided into 6 groups. There is no distinctive spatial pattern among soil clusters. However, clusters 2 and 3 are mostly

spread across the east and west coastlines (Fig. 2b). The maximum water content and porosity values are influenced by

soil texture, which defines the proportion of sand, clay, silt, and other materials. For example, cluster 6 shows the highest345

soil porosity and maximum water content (Fig. 2b). This cluster has the highest percentage of clay (26%) and silt (47%)

fractions among all clusters.

3. Topographic attributes: The topographic information of catchments, namely catchments’ contours, are determined

using geospatial fabric (Viger and Bock, 2014) and Geospatial Attributes of Gages for Evaluating Streamflow (GAGES

II) methods (Falcone, 2011). These methods are used to determine the area, and the Digital Elevation Model (DEM)350

is clipped for each catchment. This category is divided into 4 distinctive clustersgroups. Cluster 1 contains catchments

located in the northeast, which are catchments with low elevation and slope (Fig. 2c). Cluster 2 consists of catchments

along the west coast spread from the west to the northwest. The catchments with the lowest elevation and slope are in

cluster 3, located in the southeast. Cluster 4 contains the highest elevation catchments in the Rocky Mountains (Fig. 2c).

4. Geological attributes: The geological variables in the CAMELS datasets are derived from the Global Lithological355

Map (GLiM) (Hartmann and Moosdorf, 2012) and the Global HYdrogeology MaPS (GLHYMAPS) (Gleeson et al.,

2014). From the GLiM dataset, sixteen lithological classes are identified, and their proportional areas are calculated

for each catchment. The GLHYMAPS dataset is used to estimate subsurface permeability and porosity (Addor et al.,

2017). This category is divided into 7 groups. Unlike the climate and topography categories, this category does not

show a distinguishable spatial pattern (Fig. 2d). However, the catchments with the highest geological porosity are mainly360

concentrated in the southeast, and those with the lowest are located in the west (Fig. 2d).

5. Vegetation attributes: Vegetation is represented using two indicators, vertical density, measured by the Leaf Area Index

(LAI), and horizontal density, measured by the Green Vegetation Fraction (GVF). These measurements are derived from

a 1-km resolution product of the Moderate Resolution Imaging Spectroradiometer (MODIS). The vegetation or land

cover category is divided into 6 different groups (Fig. 2e). The spatial pattern of the vegetation is influenced by climate365

and topographic categories. According to Fig. 2e, the catchments with the highest forest fractions have the highest

maximum leaf area index and are located in the northeast and east of the study area. This area has high precipitation and

low evapotranspiration (Fig. 2a). The lowest vegetation cover belongs to the central and southern parts of the US, which

are in clusters 4 and 6.

These clusters are subsets of the CAMELS dataset with specific properties and different numbers of catchments to be used370

for runoff signature prediction. They help evaluate the models’ performance in different environments, analyse the effect of

causal parents as predictors, and assess how the number of data points impacts the training and test simulations.
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Table 3. Attribute categories, clusteringThe methods, number of clusters, andnumber of catchments perin each cluster.

No Category Method No. of cluster No. of Catchments

1 Climate Gower 4 334, 144, 87, 103

2 Soil PAM 6 154, 123, 138, 88, 95, 70

3 Topography PAM 4 282, 119, 117, 90

4 Geology Gower 7 149, 53, 123, 116, 64, 104, 42

5 Vegetation Gower 6 89, 131, 149, 69, 105, 128
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Figure 2. The spatial pattern of clusters (right column) and the density of two variables of its corresponding category (left column). The

plots show spatial pattern of a) climate attributes, b) soil attributes, c) topographic attributes, d) geological attributes, and 5) vegetation or

landcover attributes.
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3.2 Identification of Causal Links

PC algorithm results identify the causal links between all variables, which are selected as the explanatory variables in the fea-

ture selection procedure. However, undirected links (edges) can be found in the PC results; therefore, the resulting graphs are375

usually partially directed. In this case, expert knowledge is used to determine the causal direction between two variables with an

undirected edge, correct the causally wrong direction between variables and block the spurious edges between variables if they

were not initially excluded. For example, if PC finds a link between p_mean and frac_forest, the causal link should be an edge

from precipitation to forest fraction (p_mean → frac_forest). However, the causal direction between climatic or vegetation

variables, such as the direction between high precipitation frequency and low precipitation frequency, are not clearly defin-380

able and differ from one signature to another. This can be caused by the existence of unobserved variablescontemporaneous

effect between climatic or vegetation variables. Therefore, in such casesthis case, the directions are left as determined by the

algorithmdetermined based on the algorithm’s results.

Fig. 3 shows the obtained DAG for the baseflow index. The signature (redorange node) has fivefour direct causes or parents

(yellow nodes). The nodes that form the independent causal mechanism for the baseflow index are shown by the green line.385

The causal models, ∼Par, are trained within the causal mechanism to predict the baseflow index. The causal parents in the

independent mechanisms also form the Markov and stable blankets for the baseflow index. The structure and variables of the

DAG remain unchanged across all environments; only the values of the variables change across environments. DAGs can show

the order in which the variables are connected.information about the variables’ interconnection. For instance, the climate and

vegetation variables in Fig. 3 are controlled by topographic attributes, which are gauge latitude, mean elevation, and mean390

slope. These variables are independent in this DAG since they do not have any parents. It should be noted that the causal

parents of the signatures, which are identified by the PC algorithm, are not necessarily the most influential variables derived

from correlation and variable importance analysis. Gao et al. (2023) showed that there could be a strong causal relationship

between variables with weak statistical associations. The highest correlated variable with a signature can differ across different

catchments; however, the causal parents are a set of variables that are always the same and are independent of regions. The395

selected variables and DAGs for other signatures can be found in the supplementary materials.

19



[Comment: A green line is added to the figure to show the independent causal mechanism.]

Figure 3. Estimated DAG for the baseflow index obtained from the PC method. Arrows (edges) show the causal links. The red node represents

the target runoff signature, and the yellow nodes are the causal parents or direct cause of the target variable. The node variables are explained

in Table 1. The red and yellow nodes are the causal mechanism for the baseflow index. The independent causal mechanism for the baseflow

index is determined by the green line.

Table 4 shows the causalcasual parents, the number of parents, and the number of all predictors chosen in the feature selection

procedure for each runoff signature. The number of parents varies from 2 variables for high flow frequency to 6 for mean flow.

We compared the performance of the models using only parents (causal models) to the models using all the selected variables

as explanatory variables (non-causal models). The models are executed for the 671 catchments as baseline models and for each400

cluster as sub-models. The results reveal the models’ behaviours in different environments (clusters) compared to the baseline

models.
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Table 4. Causal parents of the runoff signatures and their numbers derived from the PC algorithm.

Signature Causal parents No. of causal parents No. of selected variables

baseflow_index

frac_snow, sand_frac,

clay_frac, frac_forest,

geol_porosity

5 15

high_q_dur p_mean, silt_frac, lai_max 3 15

high_q_freq low_prec_freq, frac_forest 2 16

low_q_dur
low_prec_dur,

max_water_content, lai_diff
3 14

low_q_freq

frac_snow, low_prec_freq,

low_prec_dur, frac_forest,

geol_porosity

5 15

q_mean

p_mean, p_seasonality,

low_prec_freq, area_gages2,

frac_forest, geol_porosity

6 13

Q5
p_mean, low_prec_freq,

slope_mean
3 15

Q95

p_mean, p_seasonality,

low_prec_freq, slope_mean,

frac_forest

5 14

runoff_ratio
p_mean, p_seasonality,

frac_forest, geol_porosity
4 15

slope_FDC
p_mean, pet_mean,

low_prec_freq, lai_max
4 12

stream_elast
high_prec_freq, clay_frac,

frac_forest
3 14

3.3 Performance of the baseline models (prediction using the whole dataset)

The models’ performance is evaluated according to the value of RMSE, R squared between observation and prediction, and

the differences between the training and test results. The obtained results for each signature are shown in Fig. 4, Table A1,405

and Fig. 5. The results are derived from the simulation using the whole dataset (671 catchments), which we call baseline.

Baseline models are considered the most accurate models, in which 75% of the whole dataset is used for training and 25% for

test simulation. The training and test sets are randomly sampled 100 times, and models are executed after each sampling. The

grey dots in Fig. 4 indicate the simulation results for each model’s execution. The simulation for GAM and RF models is done
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twice, once using all the predictors, which are shown by GAM∼All and RF∼All (non-causal models), and once using only410

causal parents as predictors, GAM∼Par and RF∼Par (causal models).

Fig. 4 and Table A1 show that reducing the number of predictors decreases the models’ accuracy. Among all models, RF

models are the most accurate despite showing the most significant drop in accuracy between training and testing simulations

(Fig. 5). The R-squared values from the non-causal RF model (RF∼All), in which all selected variables are used as predictors,

are compatible with the results obtained from the study of Addor et al. (2018). Using causal parents for RF simulations415

(RF∼Par) leads to a greater distance between training and test results compared to using RF∼All for some signatures. These

signatures are baseflow index, low flows, runoff ratio, the slope of flow duration curve and streamflow elasticity with 21%,

15%, 39%, 13% and 15% increases in distance, respectively, caused by using causal model (Fig. 5). These differences are less

significant for other signatures (less than 7%). Similar to the RF model, the accuracy of GAM models is decreased by reducing

the number of predictors from all selected variables to parent variables (Table 4 and Fig. 5). However, unlike RF, the distance420

between the training and test accuracy in R squared versus RMSE space significantly decreases by using the causal model for

the GAM (Fig. 5). This distance decreases from 29% for runoff ratio to 90% for streamflow elasticity (Fig. 5). Finally, BN

is the least accurate model in capturing the variance since it is a linear model; however, it shows almost the same R squared

and RMSE values in training and testing simulations. As seen in Fig. 5, BN has the shortest distance between training and test

compared to the other two models.425
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Figure 4. Performance of the models: R-squared vs. RMSE. Each coloured circle and cross represent the centroid of a set of 100 data points

(grey dots) generated from the models’ execution. Circles indicate the training results, and crosses indicate the test results. In the legend,

"All" refers to using all variables as predictors (non-causal model), and "Par" refers to using only parent variables as predictors (causal

model). BN refers to the Bayesian Network, GAM refers to the Generalized Additive Model, and RF refers to Random Forest.
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Figure 5. The Eucleadian distance between the centroid points of training and test simulations in Fig. 4. In the legend, "All" refers to using

all variables as predictors, and "Par" refers to using only parent variables as predictors. BN refers to the Bayesian Network, GAM refers to

the Generalized Additive Model, and RF refers to Random Forest.

We see that when the training set is large, the accuracy of the non-causal models is higher (GAM∼All and RF∼All). How-

ever, this pattern might not be the same if the size of the training set is reduced. Testing the models in different environments

with different properties and sizes can help us understand how these models perform. In this study, environments are clusters of

catchments, defined according to each category of attributes (Table 3) that result in homogeneous hydrological properties. The

selected variables for the DAG structure and analysis are assumed to be the same, both with and without clusters. However, in430

the analysis based on clusters, the model’s parameterization and predictions are derived from a smaller subset of data compared

to the baseline models. The direct causes of signatures are assumed to be the same across all clusters. Therefore, causal models

are assumed to result in robust prediction in different environments. This idea is investigated in the following sections.

3.4 The performance of models across different clusters (Sub-models)

The results of this simulation indicate different models’ behaviours across clusters, which are shown in Fig.7, Table 5, and435

figures in Appendix B. The simulation results for each runoff signature are as follows:
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Figure 6. Performance of the models for baseflow index: R-squared vs. RMSE. Each coloured circle and cross represent the centroid of 100

data points (grey dots) generated from the models’ execution. Circles indicate the training results, and crosses indicate the test results. In

the legend, "All" refers to using all variables as predictors (non-causal model), and "Par" refers to using only parent variables as predictors

(causal model). BN refers to the Bayesian Network, GAM refers to the Generalized Additive Model, and RF refers to the Random Forest.

The results for other signatures are provided in supplementary materials.
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Figure 7. The Eucleadian distance between the training and test simulation for runoff signatures across different environments for each

sub-model. In the legend, "All" refers to using all variables as predictors (non-causal model), and "Par" refers to using only parent variables

as predictors (causal casual model). BN refers to the Bayesian Network, GAM refers to the Generalized Additive Model, and RF refers to

the Random Forest. On the x-axis, Baseline means simulation without any clustering and is done for all 671 catchments. Clim stands for

climate, Geol for geology, Topo for topography and Vege for vegetation. The numbers in front of these names on the x-axis represent the

clusters’ numbers.
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1. Baseflow Index: The parents of this signature belong to climate, soil, vegetation and geology categories (Table 4). The

obtained DAG, Fig 3, indicates the topographic attributes directly control the snow fraction and indirectly control the

forest fraction and geological porosity. It can be seen in Fig. 6 that the models in the topographic and climatic groups

perform well compared to the baseline. According to Fig. 6, GAM∼All demonstrates high accuracy in the training440

set. The distance between training and test for GAM∼Par is lower than GAM∼All in all clusters, and in most cases,

the model’s accuracy is higher than GAM∼All (Fig. 7). This can be due to the overfitting problem in GAM∼All, which

makes the difference between GAM∼All and GAM∼Par insignificant for all environments (Tabls S1). Although RF∼All

demonstrates the best performance, in most cases, the difference between the accuracy of the RF∼All and RF∼Par in

the test set is negligible, for example, in soil category cluster numbers 1, 3, and 4 (Fig. 6; Table S2). Finally, BN has the445

lowest distance between training and test (Fig. 7) and in many cases, it outperforms GAM models (Fig. 6). The decrease

in R-squared made by causal models is improved from a 20% drop for the baseline model to less than a 5% drop for

sub-models (Table 5). The R-squared is increased using parents for GAM in geology, soil and topography categories

(Table 5).

2. High Flow Duration: This signature has 3 parents belonging to climate, soil, and vegetation categories (Table 4). The450

obtained DAG shows the parent from the soil category is an independent variable (Fig. S7). The effect of this parent can

be seen in Fig. S8, where the highest accuracy of models are among the clusters of soil category, namely Soil Cluster 1,

3, 4 and 6. Since the topographic attributes control the other two parents, namely mean daily precipitation and maximum

leaf area index, the topography group of clusters also performed well with small uncertainty (spread of grey dots in

Fig. S8) compared to the baseline. GAM∼All shows very high accuracy in the training sets, in some cases higher than455

random forest, and a significant drop in accuracy in the test sets (Fig. S8). In addition, the distance between training

and the test is higher than GAM∼Par in all cases (Fig. 7). The causal GAM models show robust performance for all

environments (Table S1). The distance between training and test simulation in RF∼Par is mainly smaller than RF∼All,

and in most cases the difference between causal and non-causal RF models are negligible (Table S2). In addition, in

Geology Cluster 5, the BN and GAM∼Par perform better than RF∼All. The accuracy difference between causal and460

non-causal sub-models is significantly smaller than those of baseline models (Table 5).

3. High Flow Frequency This signature has only two parents belonging to climate and vegetation categories (Table 4). The

obtained DAG (Fig. S11) indicates that topographic attributes influence the causal parents. Models perform well across

most clusters based on climate and topography. However, there is no single category within which all models outperform

the others (Fig. S12). For instance, the models perform well in Vegetation Cluster 5 (Fig. S12), which are catchments465

with a high percentage of vegetation cover (Fig. 2). In general, GAM∼All does not show acceptable performance in the

test set, and its accuracy in many cases is lower than linear BN (Fig. S12). However, GAM∼Par demonstrate a better

performance by reducing the distance between training and test simulations (Fig 7) and increasing accuracy compared

to GAM∼All across all clusters (Fig. S12; Table S1). Similarly, RF∼Par decreases the distance between the training and

test across most of the clusters, although for the baseline models, this distance is smaller for RF∼All than RF∼Par (Fig.470
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7). However, the difference between RF∼All and RF∼Par is negligible in only five environments, namely, Geology 4, 5,

and 7, Soil 5, and Vegetation 4. For the rest of the environments, RF∼All is more accurate (Table S2). TheAdditionally,

the accuracy of RF∼Par and GAM∼Par models are comparable to RF∼All. Finally, GAM and RF show significantly

smaller decreases in R-squared values across categories compared to the baseline models (Table 5). GAM∼Par improved

the R-squared by 7.43% and 1.45% in geology and soil categories compared to GAM∼All.475

4. Low Flow Duration: This signature has 3 parents belonging to climate, soil, and vegetation categories (Table 4). The

DAG shows that parents are controlled by the topographic variables (Fig. S15). Training and test simulation performed

well across all topographic clusters except for cluster number 4, where catchments have high elevations (Fig. 2 and

Fig. S16). The signature also shows high predictability in clusters with high precipitation intensity (Climate Cluster 3)

and clusters with low soil porosity (Soil Cluster 2). GAM∼Par performs better in different clusters than GAM∼All480

by reducing the distance between training and test simulation and increasing the model’s accuracy (Table S1). This

distance is almost the same across clusters for RF∼Par and RF∼All and, in some cases, smaller for RF∼Par and in

most environments, the difference between RF∼Par and RF∼All is not significant (Table S2). The results show that the

decrease in R-squared values due to using parents as predictors is significantly lower across categories for GAM and RF

(Table 5).485

5. Low Flow Frequency: This signature has 5 parents, 3 belonging to climate, one to vegetation, and one to geological cat-

egories (Table 4). The topographic variables control the causalcasual parents, according to the obtained DAG (Fig. S19).

Models perform well across most clusters of climate and topography categories (Fig. S16). In most cases, GAM∼All

performs poorly compared to GAM∼Par (Table S1). The difference between training and testing is significantly reduced

in GAM∼Par. This distance is also reduced in RF∼Par and, in many cases, performs as well as RF∼All. For example,490

in Soil Cluster 1, 3, 4, 5 to 5 or Geology Cluster 1, 2, 3, and 7, RF∼Par and GAM∼Par perform the same as RF∼All

(Table S2). However, in Vegetation Cluster 1 and 2, GAM∼All outperform RF∼Par and GAM∼Par. BN has the smallest

difference between training and test simulation. There are smaller drops in accuracy across categories when using par-

ents for GAM and RF (∼Par). The accuracy of GAM∼Par is higher than GAM∼All in the geology, soil and vegetation

categories (Table 5).495

6. Mean Daily Runoff: The parents of the mean daily runoff belong to climate, topography, vegetation and geology cat-

egories (Table 4 and Fig. S23). This signature has the highest number of parents among other signatures and is the

most predictable runoff signature. All models perform well across all clusters; however, unlike other signatures, BN and

GAM models outperform RF in most cases, for example, Geology Cluster 2 (Fig. S24). In most cases, the difference

between training and test simulations is smaller when using parents, which shows the benefits of using causal parents.500

In addition, the difference in model accuracy between simulations using only causal parent (∼Par) and those using all

variables (∼All) is negligible across almost all clusters (Table S1 and Table S2). The accuracy is also lower for categories

compared to the baseline (Table 5).
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7. Low Flow (Q5): The parents of low flow belong to climate and topography categories (Table 4). The models’ test results

are comparable to the baseline models in Geology Cluster 2 and 4 and Soil Cluster 2 and 4 (Fig. S28). GAM∼All is505

outperformed by GAM∼Par and other models in test simulation (Fig. S28, Table S1). The obtained DAG shows that

topographic variables are independent since they have no parents. These variables are also the drivers of the climatic

variables. As shown in Fig. S28, models perform well across the topographic category. The difference between training

and test simulation is improved in GAM∼Par compared to GAM∼All. This distance for RF∼Par is smaller than RF∼All

across half of the clusters (Fig. 7) and the difference between causal and non-causal RF models are negligible for most510

environments (Table S2). BN has the smallest difference between training and testing, and it outperforms GAM models

in Climate Cluster 3, Geology Cluster 6 and 7, Soil Cluster 1 and 4, Topographic Cluster 4 and Vegetation Cluster 6.

Using parents as predictors increases the accuracy of GAM in the geology, soil and vegetation categories by 0.93%,

2.03%, and 5.0% (Table 5). The performance difference between RF∼Par and RF∼All is significantly smaller across

categories than the baseline (Table 5).515

8. High Flow (Q95): High flows are among the most identifiable signatures. According to the obtained DAG, high flows are

controlled by vegetation (land cover), climate, and topographic variables (Table 4). The models showed high accuracy

across all clusters of the topographic categories. Unlike other signatures, the RF∼All and RF∼Par models, which are the

most accurate overall, are outperformed by GAM and BN in certain cases (Fig. S31). The difference between training

and test simulations is improved in all clusters when using parents for GAM, except for climate cluster 1, and most of the520

clusters for RF (Table S1). Table 5 indicates that the difference in the models’ accuracy is negligible when using causal

parents. The R-squared is improved among geology and soil categories for GAM and RF models, where the signature is

least predictable (Table 5).

9. Runoff Ratio: Runoff ratio has four parents belonging to climate, geology and vegetation categories (Table 4). The

obtained DAG indicates that soil variables control the geological porosity (geological parent), and topographic variables525

control climate and vegetation variables. The models perform well across topographic and soil clusters, and models are

more robust across those environments (Fig. S35). CausalIn most cases, causal models show negligibleless difference

between training and test simulations for almost all clusters for GAM but not for RF (Fig. 5, Table S2). The difference

between R-squared values is significantly lower across categories than the baseline models, especially in geology and

soil categories (Table 5).530

10. Slope of Flow Duration Curve: The parents of the slope of the flow duration curve belong to climate and vegetation cat-

egories, which, according to the DAG, are controlled by topographic variables (Table 4, Fig. S39). Models in topographic

clusters performed well except for Topography Cluster 4, where there are catchments with a high elevation and steep

slopes. RF∼Par and GAM∼Par perform almost the same across most of the clusters. In most cases, GAM∼Par reduced

the difference between training and test simulations compared to GAM∼All (Table S1). However, thisThis difference535

for RF∼Par and RF∼All is insignificant for only 8 clustersnot improved for RF when comparing RF∼Par with RF∼All

(Fig. S40, Table S2). However, the accuracy of RF∼Par and RF∼All are comparable in most cases. GAM∼Par performs
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better than GAM∼All in the geology category by increasing the R-squared by 2.37% compared to the baseline model

(Table 5). RF∼Par shows almost the same accuracy as RF∼All compared to the baseline in the soil category (Table 5).

11. Stream Precipitation Elasticity: The three parents of this signature belong to climate, soil and vegetation categories540

(Table 4). According to the obtained DAG, the topography controls the climate and vegetation parents. However, no

dominant category exists where models perform well in all of its clusters. The same as other signatures, GAM∼All

performs well in training simulation. However, GAM∼All shows the worst accuracy across the soil and geological

clusters compared to the other models and the difference between causal and non-causal models is not significant (Table

S1). It can be seen in Table 5, which indicates 5.38% and 8.08% increase in accuracy of GAM using causal parents in545

the geology and soil categories. The performance of RF∼All, RF∼Par and GAM∼Par are close and comparable in the

test simulation (Fig. S43, andTable 5, and Table S2). The distance between training and test simulation in GAM∼Par is

smaller than GAM∼All. This pattern can be seen in only one-third of the clusters for RF models (Fig. 7).

Table 5. Comparison of R-squared values between causal and non-causal models presented as percentages. Negative values indicate a

decrease in R-squared when using causal models compared to non-causal models. The R-squared values for each category are calculated

using the weighted mean, with weights based on the proportion of catchments in each cluster relative to the total number of catchments. Red

indicates a decrease in R-squared, while blue indicates an increase. The values of R-squared can be found in Table A2 and Table A3.

Percentage of change in R squared made by using causal parents

Baseline Climate Geology Soil Topography Vegetation

Signature GAM RF GAM RF GAM RF GAM RF GAM RF GAM RF

baseflow_index -20.22 -19.34 -2.39 -3.22 1.92 -2.11 1.43 -2.69 0.41 -4.27 -0.25 -3.12

high_q_dur -28.89 -28.49 -4.11 -0.01 8.13 -2.03 3.46 -0.66 1.69 -6.52 0.62 -5.19

high_q_freq -16.63 -43.84 -3.63 -13.34 7.43 -3.43 1.45 -6.59 -1.26 -7.52 -0.71 -8.37

low_q_dur -25.29 -23.81 -2.28 -6.55 3.47 -2.58 -1.10 -3.97 -1.39 -5.05 -1.80 -4.55

low_q_freq -5.18 -17.19 -3.25 -6.83 3.31 -1.18 2.5 -2.35 -0.71 -3.38 0.31 -5.13

q_mean -2.95 -1.92 -2.39 -1.47 -0.29 0.19 -0.57 0.01 0.96 -0.58 -0.70 -0.58

Q5 -7.74 -12.71 -1.26 -4.09 1.99 -1.42 2.03 -1.99 -1.60 -4.75 5.0 -3.57

Q95 -2.97 -3.20 -3.28 -2.05 0.93 0.39 0.48 -0.09 -0.40 -0.57 -1.11 -0.66

runoff_ratio -17.40 -12.40 -8.37 -7.32 -1.27 -2.07 -1.63 -2.06 -1.72 -3.03 -3.07 -3.31

slope_FDC -9.50 -12.04 -2.88 -5.61 2.37 -0.91 -0.07 -1.48 -3.65 -4.80 -1.33 -3.30

stream_elast -16.76 -36.78 -0.16 -6.24 5.38 -3.98 8.08 -5.16 -1.76 -7.67 3.45 -3.70

Fig. 8 displays the rankings of the overall performance of models across different environments for all signatures. RF∼All

achieved the highest overall accuracy in the baseline mode where the whole dataset is used. The performance rankings of550

RF∼Par generally align with those of RF∼All across most clusters, with the exception of Climate 1 and Soil 5. GAM∼Par

follows the same pattern as RF∼All except for clusters Climate 1 and 3, Geology 2 and Soil 5. The difference between the

30



rankings of the models for Climate 1 is the most significant for all models. The similar behaviour of causal models and RF∼All

across clusters, particularly in the topography category, suggests that causal patterns as predictors perform comparably to using

all variables as predictors. The model GAM∼All, despite experiencing overfitting in most clusters, shows strong performance555

across clusters Soil 2, 3, 4 and Topography 1, 2 and 3. Although BN model has a linear structure with the lowest accuracy in

most cases, it follows the same behaviours as other models. In general, BN, GAM∼Par, RF∼Par, and RF∼All follow a similar

ranking pattern; however, GAM∼All exhibits slightly different behaviour.

Figure 8. Rankings of model performance based on R-squared values obtained from evaluating their accuracy in predicting all signatures

within each cluster. On the x-axis, Clim stands for climate, Geol for geology, Topo for topography and Vege for vegetation.

4 Discussion

For most runoff signatures, the Directed Acyclic Graphs (DAGs) indicate that topographic variables drive climate and vegeta-560

tion and, in some cases, geological and soil variables. Also, they show that climate attributes influence all runoff signatures, a

finding supported by various studies (E.g. Jehn et al. (2020); McMillan et al. (2022)). Models perform well across topographic

clusters for most signatures with consistent accuracy rankings (Fig. 8). However, in Topography Cluster 4—characterized by

high elevation, steep slopes, and low precipitation—all models struggle to predict signatures accurately. This issue aligns with
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Viglione et al. (2013), who observed a decline in prediction model performance in arid catchments. Signatures proverove to565

be more predictable in clusters characterized by high precipitation and low elevation, such as those in Climates 1 and 3. This

indicates that even in catchments with low precipitation, the transfer of information from precipitation to runoff remains the

predominant driver compared to other mechanisms (Neri et al., 2022). According to Fig. 8, models achieve high accuracy

scores in regions with high precipitation, such as Geology 7, Topography 1, Soil 4, and Vegetation 5. The prediction results

indicate that independent variables derived from causal discovery, such as topographic variables, can serve as effective criteria570

for catchment classification. Furthermore, the causal interconnections identified by DAGs improve model accuracy, reduce

prediction uncertainty, and increase consistency between training and test simulations.

For the GAM model, the difference in accuracy between causal models, trained within the independent causal mechanism,

and non-causal models, trained using all selected variables, is not significant across all runoff signatures. For the RF models,

this difference is also insignificant for half of the signatures. The baseflow index, high flow frequency, runoff ratio, and the slope575

of the flow duration curve are the signatures that non-causal RF models outperform the causal models. For signatures where the

difference is insignificant, using causal parents can enhance model parsimony by reducing the number of predictors, improve

robustness by maintaining accuracy across environments comparable to non-causal models, and minimize accuracy reduction

between the training and testing phases.Although causal models use fewer predictors, making them more parsimonious than

non-causal models, they enhance the models’ performance across different environments.580

The causal parents identified by the PC algorithm align with the underlying physical processes for most ofunderlying the

signatures. For example, according to PC results, snow fraction drives the baseflow index and low flows, consistent with runoff-

generating mechanisms during spring and summer (Gentile et al., 2023). In addition, vegetation, soil, and geological variables,

which contribute to infiltration and groundwater flow, are causal parents of the baseflow index (Gnann et al., 2019). For

high flows (Q95), drivers include precipitation seasonality, vegetation cover, mean precipitation, and slope. This suggests that585

precipitation intensity, often driven by seasonality, influences runoff-generating mechanisms like infiltration excess process

(Nanda et al., 2019). Slope and vegetation cover also affect the time concentration and the magnitude of high flows in the

catchment area (Sultan et al., 2022). In regions with high mean precipitation and low seasonality, saturation excess runoff

mechanisms dominate high flows. However, the PC causal discovery results for low flows (Q5) were expected to identify

geological variables as being importantare less accurate. Low flows are strongly governed by geological variables in addition590

to climate and topography (Laaha and Bloeschl, 2006; Giuntoli et al., 2013). The algorithm fails to identify any geological

variables as a causal parent for this signature, likely due to thecomplexity and non-linearity of the low-flow process or limited

sample size for the causal discovery, especially in arid catchments or when the dataset size is insufficient.

The results of the baseline models indicate that the RF model is the most accurate, followed by GAM and BN. This finding

is consistent with Pourghasemi and Rahmati (2018), who demonstrated the RF model’s superiority over GAM when analyzing595

landslide causal factors. Reducing the number of predictors to causal parents decreases the accuracy of the baseline models.

Although the models are expected to perform similarly across different environments, the results reveal significant uncertainty

in the test simulations, primarily due to the smaller training set sizes across clusters. As emphasized by Riley et al. (2020),
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sample size plays a critical role in determining the accuracy and robustness of prediction models. In cases where the sample

size is smaller than that of baseline models, non-causal models often fail to outperform their causal counterparts.600

Despite BN having lower accuracy than GAM and RF, it shows the smallest difference between training and test results

across all cases. This consistency may be due to the BN structure, which relies on conditional dependencies derived from

the causal relationships between variables, although further investigation is needed. GAM models show completely different

behaviour compared to the baseline when applied to clusters. Although GAM∼All is among the most accurate models in

the training simulation, its test results have significantly lower accuracy than other models, likely due to overfitting when the605

training sample size is small. In contrast, GAM∼Par performs better, with higher accuracy and reduced uncertainty, suggesting

that using causal parents makes GAM more robust across various environments. RF∼All display the highest accuracy among all

models. However, for some signatures like high flow duration, it is outperformed by RF∼Par across most clusters. Additionally,

for highly predictable signatures like mean daily flows and high flows, GAM and BN perform better than RF.

The high accuracy of GAM∼All and RF∼All in baseline models may result from the large number of data points in the610

training sets. However, with smaller sample sizes, the performance difference between causal and non-causal models becomes

negligible. In some cases, models using causal parents even achieve higher accuracy, such as predicting high flow duration in

the geology category for GAM (Table 5).

Finally, our results show that causal discovery enhances the representation of physical systems, making models more in-

terpretable and parsimonious, as emphasized by Runge et al. (2019a) and Reichstein et al. (2019). The insights gained from615

causal interconnections not only improve the understanding of hydrological systems but also lead to more informed modelling

practice (Slater et al., 2024). However, we still need theoretical developments to quantify the stability and robustness of uncer-

tainty of such a model, particularly when combined with machine learning and classification algorithms (Herman et al., 2015;

AghaKouchak et al., 2022; Singh et al., 2015).

5 Conclusions620

This study investigates the application of causal discovery to represent the causal interconnections between variables in

hydrological systems. The PC algorithm is used to identify the causal links between catchments attributes,and climate in-

dicesattributes, andfor 11 runoff signatures, producing a Directed Acyclic Graph (DAG) for each signature. DAGs reveal the

connections between variables, including the direct causes (parents) of the target signatures. Three prediction models, BN,

GAM, and RF, in five different settings, namely BN, GAM∼Par, GAM∼All, RF∼Par and RF∼All, are used to predict runoff625

signatures. These models are executed on the entire dataset as well as 27 clusters, with each configuration undergoing 100 ran-

dom samplings of training and test sets, resulting in a total of 28,000 model executions. BN directly utilizes the DAG structure

for prediction, while GAM and RF predict the target variable both by using all the variables in the DAG and by using only

the causal parents (the variables that, together with the target variables, form the independent causal mechanism). Each model

is run 100 times with random sampling of training and tests for each run. The dataset is then grouped into different clusters630

based on attribute categories. The clusters serve as new environments to train and test the models, allowing for an assessment
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of model performance when using causal parents as the explanatory variables. The major outcomes of this research are as

follows:

– The causal parents of the signatures identified by the PC algorithm do not always align with the most influential vari-

ables determined by correlation and variable importance analysis. This suggests that strong correlations may result from635

confounding variables, and causal relationships do not always coincide with high variable importance. This point can

impact the robustness of prediction models, especially when the same set of predictor variables is used across diverse

environments with varying characteristics.

– BN shows the smallest decrease in accuracy between the training and test samples, demonstrating high transferability.

The accuracy of the models is not sensitive to the training sample size and shift in the distribution of predictors. This640

indicates that P (Effect | Cause) remains consistent across environments. Although BN’s overall accuracy is lower than

that of the nonlinear GAM and RF models, it outperforms RF in predicting mean daily runoff and high flows across

different environments (clusters).

– Using causal parents helps mitigate the overfitting problem and improve the robustness in prediction models, particularly

in GAM, when the size of the training set is small. Using causal parents helps reduce overfitting, particularly for GAM,645

when the training sample size is small.

– The high accuracy of non-causal models, GAM∼All and RF∼All, in the baseline scenarios may be attributed to spurious

relationships. This is supported by their reduced accuracy in environments with smaller training sets, highlighting a lack

of robustness compared to causal models, which maintain higher reliability under such conditions. The high accuracy

of non-causal GAM∼All and RF∼All in the baseline models may be due to spurious relationships, as their accuracy650

decreases in environments with smaller training sets compared to the causal models.

– In environments where the target signature is more difficult to predict, such as clusters of the geology category, using

causal parents increases prediction accuracy.

– Independent variables identified through causal discovery can determine groups of catchments where prediction models

exhibit consistent performance. For instance, topographic variables are among the independent variables in this context655

since all models perform consistently well in clusters 1, 2, and 3, and less effectively in cluster 4. This information

helps identify environments where training models achieve higher accuracy, reduced uncertainty, and greater robustness.

The independent variables identified through causal discovery using DAGs can serve as reliable criteria for catchment

classification. This is evident from the models performing consistently well in clusters 1, 2, and 3, while performing

less effectively in cluster 4. This information improves model accuracy, reduces prediction uncertainty, and enhances660

consistency between training and test simulations.

– Causal inference methods contribute to improving prediction models’model parsimony, interoperability and robustness

in hydrological systems modelling.
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In conclusion, causal modelswith causal parents (causal models) maintain acceptable accuracy across environments with

varyingeven when there are shifts in the distributions of explanatory variables (covariates). The DAGs obtained from causal665

discovery enhance the interpretability of prediction models and offer more informed clustering criteria, which is valuable for

regionalization purposes. This study focuses on investigating the direct causes of runoff signatures and their effects on predic-

tion accuracy, but other criteria for selecting predictors from the DAG variables could be explored. For example, investigating

the effect of variables with different topological ordering on the target variable, such as root nodes, ancestors of the target

variables, etc. In addition, different causal discovery methods may yield alternative DAG structures, which merit further inves-670

tigation. This work highlights the importance of causal inference methods in understanding runoff-generating mechanisms in

hydrological systems.

While causal inference analysis has been extensively explored in fields such as computer science and medicine, its appli-

cations in hydrology are still in their infancy. There is a broad range of potential uses for causal models in hydrology, from

identifying the drivers of hydrological anomalies (Tárraga et al., 2024) to linking extreme events with their cascading societal675

impacts (AghaKouchak et al., 2023). As research in this area progresses, the application of causal inference methods is likely

to lead to more accurate and robust predictive models, offering valuable insights into complex hydrological variability.

Code and data availability. The codes are available on the GitHub repository at https://github.com/abbasizadeh/Catchment-Causal-Discovery.

The CAMELS attributes are available at https://gdex.ucar.edu/dataset/camels.html.
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Appendix A: The values of R squared and RMSE for the baseline models and R squared values for sub-models680

A1 R-squared and RMSE values for test simulations of baseline models in Fig. 4

Table A1. R-squared and RMSE values for test simulations of baseline models. The values are an average of 100 executions of each model.

R squared (Test Set) RMSE (Test Set)

Signature BN GAM∼All GAM∼Par RF∼All RF∼Par BN GAM∼All GAM∼Par RF∼All RF∼Par

baseflow_index 0.27 0.44 0.35 0.63 0.51 0.13 0.12 0.13 0.10 0.11

high_q_dur 0.27 0.42 0.30 0.52 0.37 8.66 7.91 8.55 7.11 8.12

high_q_freq 0.30 0.40 0.33 0.52 0.29 24.51 23.08 23.97 20.18 24.89

low_q_dur 0.29 0.38 0.28 0.46 0.35 18.33 17.27 18.50 16.11 17.64

low_q_freq 0.32 .039 0.37 0.54 0.45 68.13 64.52 65.36 55.84 61.11

q_mean 0.84 0.93 0.90 0.92 0.90 0.62 0.41 0.48 0.46 0.50

Q5 0.48 0.59 0.54 0.70 0.61 0.19 0.17 0.18 0.15 0.17

Q95 0.82 0.88 0.85 0.88 0.85 2.09 1.75 1.91 1.80 1.98

runoff_ratio 0.65 0.83 0.69 0.82 0.72 0.14 0.10 0.13 0.10 0.12

slope_FDC 0.50 0.60 0.54 0.69 0.61 0.36 0.32 0.34 0.28 0.32

stream_elast 0.30 0.36 0.30 0.46 0.29 0.65 0.63 0.65 0.58 0.66
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A2 R squared values used to calculate values in Table 5

Table A2. The R-squared values of causal models for each category which is calculated using the weighted mean. The weights are the ratio

of the catchments in each cluster to the total number of catchments.

R squared values for causal models

Climate Geology Soil Topography Vegetation

Signature BN GAM RF BN GAM RF BN GAM RF BN GAM RF BN GAM RF

baseflow_index 0.31 0.35 0.44 0.28 0.31 0.36 0.33 0.33 0.38 0.32 0.36 0.41 0.27 0.30 0.35

high_q_dur 0.24 0.26 0.35 0.34 0.38 0.39 0.35 0.35 0.38 0.23 0.30 0.30 0.23 0.28 0.29

high_q_freq 0.21 0.24 0.20 0.32 0.34 0.32 0.25 0.29 0.24 0.30 0.31 0.32 0.19 0.22 0.19

low_q_dur 0.23 0.26 0.27 0.38 0.37 0.36 0.29 0.29 0.29 0.43 0.39 0.40 0.20 0.23 0.24

low_q_freq 0.23 0.28 0.32 0.33 0.31 0.35 0.34 0.32 0.35 0.37 0.37 0.42 0.21 0.24 0.25

q_mean 0.73 0.74 0.72 0.82 0.83 0.81 0.86 0.86 0.86 0.83 0.85 0.82 0.77 0.78 0.74

Q5 0.27 0.31 0.37 0.42 0.45 0.49 0.40 0.45 0.47 0.35 0.37 0.43 0.31 0.34 0.36

Q95 0.62 0.62 0.60 0.78 0.77 0.74 0.81 0.80 0.80 0.79 0.81 0.78 0.68 0.67 0.64

runoff_ratio 0.34 0.42 0.48 0.61 0.58 0.60 0.65 0.66 0.67 0.69 0.70 0.69 0.49 0.53 0.52

slope_FDC 0.31 0.37 0.41 0.46 0.46 0.49 0.48 0.52 0.55 0.41 0.43 0.47 0.27 0.33 0.37

stream_elast 0.30 0.32 0.31 0.28 0.27 0.27 0.25 0.23 0.22 0.26 0.28 0.27 0.25 0.26 0.23
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Table A3. The Rsquared values of non-causal models for each category which is calculated using the weighted mean. The weights are the

ratio of the catchments in each cluster to the total number of catchments.

R squared values for non-causal models

Climate Geology Soil Topography Vegetation

Signature GAM RF GAM RF GAM RF GAM RF GAM RF

baseflow_index 0.39 0.51 0.28 0.43 0.31 0.45 0.35 0.48 0.31 0.42

high_q_dur 0.33 0.37 0.26 0.46 0.30 0.43 0.27 0.39 0.26 0.38

high_q_freq 0.31 0.43 0.24 0.41 0.26 0.38 0.34 0.45 0.23 0.37

low_q_dur 0.29 0.37 0.28 0.41 0.30 0.37 0.41 0.49 0.24 0.31

low_q_freq 0.33 0.43 0.27 0.40 0.28 0.40 0.38 0.50 0.25 0.37

q_mean 0.81 0.76 0.85 0.80 0.89 0.86 0.82 0.84 0.81 0.77

Q5 0.33 0.45 0.41 0.54 0.41 0.51 0.42 0.54 0.31 0.45

Q95 0.70 0.65 0.74 0.73 0.78 0.81 0.83 0.79 0.71 0.67

runoff_ratio 0.63 0.66 0.65 0.69 0.74 0.76 0.76 0.78 0.64 0.65

slope_FDC 0.42 0.52 0.42 0.54 0.51 0.60 0.48 0.55 0.36 0.45

stream_elast 0.31 0.39 0.22 0.36 0.23 0.32 0.28 0.36 0.24 0.30
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