
Reply to Reviewer 3

Thank you very much for taking the time to review our manuscript and for providing constructive
feedback. Your comments have helped improve the quality of our work. We have revised the manuscript
and repeated all analyses, taking into account the points you raised. Additionally, we increased the
number of model runs from 100 to 500 using a high-performance computing (HPC) system. The updated
code used in our analysis has also been uploaded to GitHub for transparency and reproducibility. We
hope that the changes we have made address your concerns. Below, we summarize the main points we
have revised:

1. First of all, I want to point out that the output of the PC algorithm is a CPDAG,
i.e., the Markov equivalence class. A CPDAG is a graphical representation of a set
of DAGs where the distribution satisfies the Markov property relative to every single
DAG in that set. This means that given a distribution which satisfies the Markov
property for one DAG, there could also be several other DAGs for which the Markov
assumption is satisfied. In other words, given a distribution, there are several DAGs
where the distribution fulfills the Markov assumptions with respect to those DAGs.
When orienting undirected edges to obtain a DAG from this set of DAGs, you should
be careful not to introduce new unshielded colliders / v-structures. Additionally,
you can also introduce background knowledge before running the PC algorithm. See
for example ”Interpreting and using CPDAGs with background knowledge” (2017)
or ”Constraint-based causal discovery with tiered background knowledge and latent
variables in single or overlapping datasets” (2025).

Thank you for this comment. We totally agree that we should be aware not to introduce any new
unshielded colliders when orienting undirected edges to obtain the DAG. To derive DAGs from
CPDAGs, we previously relied on expert knowledge before and after running the PC algorithm.
Therefore, to ensure the validity of our DAGs, and in response to your third comment regarding
variable selection, we repeated the entire analysis using a consistent set of 22 variables across all
runoff signature (target) variables. In this revised analysis, we incorporated general edge assump-
tions as background knowledge, considering the references you provided, prior to running the PC
algorithm. We placed these implausible links in a blacklist and then ran the PC algorithm. This
helped have a valid CAPDAG with a minimum number of Markov equivalence classes. Using this
blacklist, we obtained a CPDAG with only one undirected edge between mean elevation and mean
slope. Since neither of these variables has any parent nodes, the resulting CPDAG corresponds to
two Markov equivalence classes. Introducing a directed edge, either from mean elevation to mean
slope or vice versa, does not create any unshielded colliders. Therefore, we oriented the edge from
mean elevation to mean slope. These points are addressed in the newly added Section 3.2 of the
Methods, and we have rewritten and updated the entire explanation of the causal discovery section
accordingly.

2. Depending on the specific algorithm and plot function you are using, you will obtain
bi-directed edges. If you use R and the pcalg package, there are cases where the
direction could not be determined (but not because of the Markov equivalence class).
This leads to an invalid CPDAG, meaning that your output is not representing a
Markov equivalence class. There are several reasons for this, but it is important to
mention that undirected and bi-directed edges are not the same. There are at least
three violations of assumptions which may lead to an invalid CPDAG: cycles, hidden
common causes, and selection bias. It could be that you set a direction for an edge
without realizing that you are violating something else (for example, introducing new
unshielded colliders / v-structures or creating cycles).

Thank you for raising this point and for your clear explanation. We used the bnlearn package in R
along with the graphviz.plot function to generate the CPDAGs, which correctly displays undirected
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edges when appropriate. To enhance visual clarity and ensure consistency across all figures, we
manually recreated the graphs using Inkscape, a vector graphics editor. No bidirected edges were
introduced during the causal discovery process. Additionally, we took care not to orient any edges in
a way that would violate the assumptions of a valid CPDAG, such as by creating cycles, introducing
unshielded colliders (v-structures), or misrepresenting the underlying Markov equivalence class.

3. You wrote: ”It is worth mentioning that we attempted to include all continuous
variables in the causal discovery process without applying variable selection. This ap-
proach was tested to address the causal sufficiency assumption in the PC algorithm,
which requires that all common causes of the target variables are accounted for. De-
spite this, we observed challenges such as the generation of disconnected DAGs with
independent nodes or groups of nodes lacking causal relationships with runoff signa-
tures.” This should be a big red warning signal for your analysis and needs further
investigation. The output of the PC algorithm heavily depends on the alpha value,
this is the significance level for the tests. Have you optimized this value somehow?
How does the results depends on alpha? Additionally, it seems strange to me to per-
form feature selection methods before applying the PC algorithm. The PC algorithm
also estimates Pearson correlations, and the first step of the PC algorithm (learning
the skeleton) is based purely on conditional independence tests. These tests are, for
example, partial correlation for two variables conditional on a third one, or in the first
step just a correlation between two variables. Why should you use an extra step of
correlation analysis if the PC algorithm will do the same and additionally will save the
information on potential unshielded colliders / v-structures?

Thank you for this comment. We acknowledge that the detected edges by the PC algorithm are
sensitive to the choice of the alpha level, which controls the threshold for conditional independence
tests. In our initial experiments using all available continuous variables (without feature selec-
tion), we applied the alpha value of 0.05. However, this resulted in sparse CPDAGs, sometimes
with disconnected nodes, for example, geological permeability. Additionally, domain-reasonable
relationships, such as the influence of geological attributes on the baseflow index, failed to appear
under this setting. Therefore, applying the PC algorithm to a selected set of variables with an
alpha value of 0.05 resulted in physically meaningful graphs. However, due to concerns raised by
the reviewers regarding the variable selection process, we removed this step and instead applied the
PC algorithm to a consistent set of 22 variables for each runoff signature in the revised manuscript.
We acknowledge that the alpha value significantly influences the algorithm’s results; however, the
relatively small sample size (around 670 data points) may also contribute to graph sparsity or
potential underfitting (Zuk et al., 2012).

Therefore, to address the loss of information on potential v-structures and account for the relatively
small sample size, we applied the PC algorithm to all 22 variables without performing variable
selection, using a significance threshold of 0.2 to allow for a more inclusive initial edge selection. In
this setting, the edge assumptions, which are explained in the first comments, avoid appearances
of spurious links. To assess the stability of the discovered edges, we performed 1,000 bootstrap
resamples of the data and applied the PC algorithm to each resample, using a significance threshold
of 0.05 for conditional independence tests. We then measured the strength of each edge based on its
frequency across the bootstrap iterations. The resulting edge strength estimates, which represent
the proportion of bootstrap samples in which each edge appears, were then mapped onto the initial
CPDAG obtained from the PC algorithm. This approach enabled us to evaluate the stability of the
inferred causal relationships. This method is inspired by the work of Petersen et al. (2021), which
you mentioned in your sixth comment. We addressed these points in Section 3.2 and reflected them
in the Results and Discussion sections accordingly.

4. Furthermore, the authors are mainly interested in discovering the parent set of the
outcome Y. Why are you not considering methods which are designed for this task?
I mean Invariant Causal Prediction (ICP). I would spend a bit more time on the
limits of causal discovery and non-linear methods. I would recommend reading: 1)
Model-Based Causal Feature Selection for General Response Types (2024); 2) Invariant
Causal Prediction for Nonlinear Models (2018); 3) Causal inference by using invariant
prediction: identification and confidence intervals (2016).

Thank you for your suggestion. While the main focus of this study is indeed on identifying the
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causal parents of the runoff signatures, one of the broader objectives is to construct interpretable
DAGs that reflect the underlying hydrological processes. These graphs aim to provide a more
comprehensive understanding of the system beyond the immediate causal predictors of runoff sig-
natures. We also examined model performance across clusters defined by climate, soil, geology,
topography, and vegetation categories. The availability of DAGs allowed us to explore the causal
relationships among variables within each category.

We appreciate the recommendation to consider Invariant Causal Prediction (ICP). We have explored
the use of ICP as part of our preliminary analysis; however, we found that applying it meaningfully
in this context, especially given the non-linear dependencies in hydrological data, requires further
investigation and careful adaptation, which is beyond the scope of the current study. Nonetheless,
we agree that ICP is a promising approach, and we included a discussion of its potential, highlighting
it as an avenue for future research. We discussed this method as a potential approach for future
work in the context of our study in the Discussion section.

5. Furthermore, you are using GAMs without specifying which GAMs you are using.
Which link function do you use? Which family of distribution is assumed for the out-
come y? Generalized linear models are then useful if your outcome is discrete (Poisson,
...), binary (logistic, c-log-log, ...), or continuous but only positive valued (exponen-
tial, gamma, ...). I see why you are using the additive components (splines), but I
miss some more information about the model specification. Without this information,
reproducibility is not possible.

Thank you for your comment. We agree that more details on the model specification are important
for clarity and reproducibility. In our study, we used Generalized Additive Models (GAMs) imple-
mented via the mgcv package in R. Specifically, we used cubic regression splines (bs = ”cr”) for the
smooth terms. The outcome variable is continuous, and we used the default identity link function
with a Gaussian error distribution (family = gaussian()). The GAMs were fitted using Restricted
Maximum Likelihood (REML) to estimate the smoothing parameters. We explained the model’s
specifications in Section 3.3.2.

6. A further point to note is that while the PC algorithm basically only uses (partial)
correlation, testing linear dependency, the subsequent use of additive models assumes a
potentially non-linear association between X and the mean of Y. This is not necessarily
a flaw in your approach, but it is crucial to be aware that while the PC algorithm relies
on (partial) correlations, which inherently assess linear relationships (keeping in mind
the fundamental connection between linear regression and correlation), the application
of GAMs (the additive part of it) implies that a non-linear relationship between the
predictors and the mean of y is assumed. What you could try is something like using
regression modeling with cubic spline as a heuristic test of conditional independence.
See for an data example: ”Data-Driven Model Building for Life-Course Epidemiology
(2021)”.

Thank you for this helpful point. We fully agree that the PC algorithm, in its standard form,
relies on (partial) correlations to test for conditional independence, which inherently assumes linear
relationships among variables. However, given the known nonlinearity of hydrological processes, we
tried to address this limitation in two ways.

First, for the conditional independence tests during causal discovery, we used a non-parametric
approach based on mutual information with the James-Stein shrinkage estimator (Hausser and
Strimmer, 2009), as implemented in the bnlearn package. This method does not assume linearity
and is better suited than partial correlation for capturing the complex dependencies commonly
found in environmental and hydrological systems.

Second, following your suggestion, we used cubic spline regression to further explore potential non-
linear associations and assess the robustness of the inferred edges. This served as a heuristic test
to evaluate the significance of connections between adjacent nodes in the learned DAG, aligning
with your suggestion. Using these spline-based models, we assessed the significance of relationships
between adjacent variables in the DAGs by reporting the p-values from likelihood ratio tests for
each edge.

We clarified these methodological choices in Section 3.2 of the manuscript, emphasizing that our
approach complements the PC algorithm by addressing its linearity assumption both during and
after the structure learning phase.
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List of Changes in the Manuscripts

The list of changes in the manuscript is as follows:

Table 1: Changes in the manuscript.

Section Changes

Section 1 (Introduction) Add a short introduction on the PC algorithm, and remove the section about the
variable selection.

Section 2 (Data) add more explanation about how the data is used for clustering, causal discovery, and
prediction. Modify Table 1 to clarify the data used in the study.

Section 3 (Methods) Add explanation about causal discovery, including causal discovery with the PC,
background knowledge, and PC implementation. Add more information about GAM
specification.

Section 4 (Results) Update the whole Section 4.2, 4.3, and 4.4 according to the new results.

Section 5 (Discussion) Update this section according to the new results.

Section 6 (Conclusion) Update this section according to the new results.

Appendix A Update the tables in this section according to the new results.

Supplementary Materials Update sections 2 and 3, according to the new results.
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