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Abstract. Human-managed reservoirs alter water flows and storage, impacting the hydrological cycle. Modeling reservoir 

outflow and storage is challenging because it depends on human decisions, and there is limited access to data on reservoir 

inflows, outflows, storage, and operational rules. Consequently, large-scale hydrological models either exclude reservoir 10 

operations or use calibration-free algorithms for modeling reservoir dynamics. Nowadays, remotely-sensed information on 

reservoir storage anomalies is a potential resource for calibrating reservoir operation algorithms for a large number of 

globally distributed reservoirs. However, it is not yet clear what impact calibration against storage anomaly has on simulated 

reservoir outflow and absolute storage. In this study, we address this question using in-situ outflow and storage data from 

100 reservoirs in the USA (ResOpsUS dataset) to calibrate three reservoir release algorithms, the well-established Hanasaki 15 

algorithm (CH) and two new storage-based algorithms, the Scaling algorithm (SA) and the Weighting algorithm (WA). 

These algorithms were implemented in the global hydrological model WaterGAP, with their parameters estimated 

individually for each reservoir and four alternative calibration targets: monthly time series of (1) storage anomaly, (2) 

estimated storage (calculated based on storage anomaly and GRanD reservoir capacity), (3) storage, and (4) outflow. The 

first two variables can be obtained from freely available global datasets, while the last two variables are not publicly 20 

available for most reservoirs worldwide. We found that calibration against outflow does not lead to skillful storage 

simulations in most reservoirs and improves the outflow simulations only slightly more than calibration against the three 

storage-related calibration targets. Compared to the results of the non-calibrated Hanasaki Algorithm (DH), calibration 

against both storage anomaly and estimated storage improved the storage simulation and slightly improved the outflow 

simulation. Calibration against storage anomaly resulted in 64 (39), 68 (45), and 66 (45) skillful storage simulations for 25 

CH, SA, and WA, respectively, during the calibration (validation) period, as compared to only 16 (15) for DH. Utilizing 

estimated storage instead of storage anomaly does not provide added benefit, primarily due to inconsistencies in observed 

maximum water storage and storage capacity data from GRanD. Findings show that the default parameters of the Hanasaki 

algorithm rarely matched the calibrated parameters, highlighting the importance of calibration. Using observed instead of 

simulated inflow has a more significant effect on improving outflow simulation than calibration, whereas the opposite is 30 

true for storage simulation. Overall, the performance of the SA and WA algorithms is nearly equal, and both outperform 

the CH and DH algorithms. Moreover, incorporating downstream water demand into the reservoir algorithms does not 

necessarily improve modeling performance due to the high uncertainty in demand estimation. Therefore, to improve the 

modeling of reservoir storage and outflow in large-scale hydrological models, we recommend calibrating either the SA or 

the WA reservoir algorithm individually for each reservoir against remote sensing-based storage anomaly, unless in-situ 35 

storage data are available, and to improve reservoir inflow simulation. 
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1 Introduction 

Globally, more than 58,000 large dams (at least 15 meters in height), capable of impounding 8300 km³, have been 

constructed to meet various human needs such as irrigation, flood control, hydropower generation, domestic water supply, 

and recreation (Chao et al., 2008; Perera et al., 2021). These dams annually store about one-sixth of the streamflow in 40 

reservoirs (Hanasaki et al., 2006), significantly altering the global freshwater system by increasing evaporation and 

modifying downstream streamflow (Best, 2019; Tian et al., 2022). About 60% of the seasonal variability in Earth's surface 

water storage is attributed to human-managed reservoirs, i.e. artificial reservoirs and regulated lakes, as the water level of 

reservoirs varies on average four times as much as that of natural lakes (Cooley et al., 2021). Therefore, to accurately depict 

the hydrologic cycle, the inclusion of human-managed reservoirs in hydrological models is crucial. This inclusion is 45 

supposed to enhance model performance, particularly regarding evapotranspiration and streamflow. At present, six out of 

the 16 global hydrological models contributing to ISIMIP2 (The Inter-Sectoral Impact Model Intercomparison Project, 

www.isimip.org) simulate the dynamics of human-managed reservoirs (Telteu et al., 2021).  

Whereas the outflow from a natural lake strongly depends on the water level of the lake and thus the water storage in 

the lake, humans control the outflow from a reservoir. Even though human decisions on the release of water from reservoirs 50 

do, to some degree, depend on reservoir water storage, they are also influenced by many other factors, such as downstream 

water demand, the demand for hydropower production, the need to protect downstream regions from flooding, ecosystem 

requirements, and legal constraints (Jager and Smith, 2008; Dong et al., 2023). Most reservoirs serve multiple purposes, 

making their simulation even more complex. However, since reservoir operation rules and observations of reservoir inflow, 

outflow and storage dynamics are rarely publicly accessible, large-scale hydrological models need to resort to calibration-55 

free reservoir operation algorithms that only require information about the reservoir's storage capacity and surface water 

area. They are calibration-free algorithms in the sense that they do not require the calibration of reservoir-specific algorithm 

parameters based on observations of model output variables. These calibration-free algorithms can only very roughly 

simulate the decisions of reservoir operators and cannot account for the unique operation patterns of each reservoir (Masaki 

et al., 2018; Turner et al., 2021; Steyaert and Condon 2024).  60 

All global hydrological models currently use calibration-free reservoir operation algorithms, which differ regarding 

their formulation and complexity (Telteu et al., 2021). Examples for calibration-free reservoir operation algorithms 

proposed for large-scale hydrological modeling are described in Dong et al. (2022), Zajac et al. (2017), Haddeland et al. 

(2006), and Hanasaki et al. (2006) (herein referred to as H06). Dong et al. (2022) and Zajac et al. (2017) employed different 

operation rules for four distinct levels of reservoir storage in their algorithms, whereas Haddeland et al. (2006) developed 65 

a prospective optimization algorithm based on the reservoir purpose. The H06 method is currently implemented in the 

global hydrological model H08 (Hanasaki et al., 2008) and, in a slightly modified form, in the global hydrological model 

WaterGAP, and also serves as the foundation for the Dam-Reservoir Operation model (DROP; Sadki et al., 2023). While 

studies (e.g., Döll et al., 2009; Vanderkelen et al., 2022) clearly demonstrate that implementing the H06 algorithm leads to 

improved streamflow simulations compared to not considering the reservoir as a surface water body at all, there is no 70 

consensus (please refer to Döll et al., 2009; Vanderkelen et al., 2022; Gutenson et al., 2020) on whether the H06 algorithm 

outperforms the natural lake outflow parameterization of Döll et al. (2003) (herein referred to as D03), which assumes 

artificial reservoirs behave similarly to natural lakes. It should be noted that simulating reservoir outflow and storage 
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dynamics depends not only on the reservoir operation algorithm but also on the quality of the simulated inflow, making it 

difficult to assess the adequacy of the algorithm without inflow observations (Vanderkelen et al., 2020). 75 

Several studies have endeavored to fine-tune calibration-free algorithms by adjusting a single parameter for each 

reservoir, but the results have been unpromising. For example, Gutenson et al. (2020) found that adjusting only one 

parameter of H06 for 60 non-irrigation reservoirs across the US did not lead to better simulations compared to a calibrated 

D03. Shin et al. (2019) reported that a new algorithm based on H06, where one parameter was calibrated for 27 reservoirs, 

could not accurately capture the seasonality in reservoir storage and outflow. Consequently, some studies have devised 80 

calibration-required algorithms with multiple parameters for each reservoir. Turner et al. (2021) introduced the Inferred 

Storage Targets and Release Functions (ISTARF) approach, a reservoir operating policy with 19 parameters. This approach 

was applied to 1,930 reservoirs across the US and demonstrated robust improvements in both outflow and storage compared 

to the H06 model. Although the ISTARF approach is relatively parsimonious in terms of the number of parameters 

compared to other established calibration-required algorithms — such as those proposed by Yassin et al. (2019) and Turner 85 

et al. (2020), which feature 72 (six parameters for each month) and 208 parameters per reservoir (four parameters for each 

week), respectively — the integration of these approaches into large-scale models incurs substantial computational 

expenses. More importantly, this approach requires time series data of observed inflow, outflow, and reservoir storage, 

which can be difficult to obtain outside the US, rendering it infeasible for global-scale modeling. The same limitation 

applies to some machine learning approaches for simulating reservoir dynamics, such as the artificial neural network 90 

approach proposed by Ehsani et al. (2016) and the tree-based reservoir model of Chen et al. (2022).  

Remotely sensed data on water levels and surface water area of reservoirs are increasingly available and are being used 

to derive time series of water storage anomalies or even absolute storage. With recent advancements in spaceborne data, 

such as the Surface Water and Ocean Topography (SWOT) mission, storage anomalies data can now be gathered even for 

small reservoirs, providing a valuable source for enhancing resource modeling within large-scale hydrological models 95 

(Biancamaria et al., 2016). Examples include HydroSat (Tourian et al., 2022), the Global Reservoir Storage (GRS) dataset 

(Li et al., 2023), and GloLakes (Hou et al., 2024). This newly available information could be used to calibrate reservoir 

operation algorithms individually for each reservoir, which is expected to lead to an improved simulation of reservoir 

dynamics. Remote sensing-derived reservoir storage anomalies were shown to fit reasonably well to in-situ observations, 

depending on the reservoir and satellite data product; storage anomalies rather than absolute water storage values should be 100 

considered for both the simulated and remote sensing data (Otta et al., 2023). In this regard, Hanazaki et al. (2022) developed 

a targeted storage-and-release algorithm for global flood modeling, where release is estimated for four storage zones based 

on the volume of each zone, flood discharge, and long-term average inflow. They estimated the volume of each storage 

zone using remote sensing data, while flood discharge was calculated using a probability distribution for 2,169 dams 

worldwide. The authors reported a 62% improvement in Nash-Sutcliffe Efficiency compared to the version of the CaMa-105 

Flood global hydrodynamic model that did not include the reservoir module. Recently, supported by remote sensing data 

and a machine learning approach, Shen et al. (2024) developed a satellite-based target storage reservoir operation scheme 

(SBTS) with seven parameters. This scheme simulates the outflow and storage of flood control reservoirs across four 

distinct storage zones, using estimated flood storage capacity (FSC) data for 1,178 reservoirs derived through machine 

learning, trained on reported FSC data from 436 reservoirs. They found that their approach, when using observed inflow, 110 

improves reservoir parameterizations, allowing the SBTS to generally outperform the methods of Dong et al. (2022), Zajac 
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et al. (2017), and Hanazaki et al. (2022). However, they reported no improvement when simulated inflow was used. Dong 

et al. (2023) demonstrated that simultaneous calibrations against reconstructed release and reservoir storage data (using 

remotely sensed data, model simulations, and in-situ data) considerably improved the performance of reservoir operation 

algorithms for the Ertan and Jinping I reservoirs in China. However, for global-scale studies, release information is 115 

unavailable for most reservoirs. In such cases, calibrating against storage anomaly alone for parameter estimation may 

degrade outflow simulations due to potential trade-offs between calibrating against different variables (Döll et al., 2024, 

Hasan et al., 2025). The recently published dataset of observed dynamics of US reservoirs, 'ResOpsUS' (Steyaert et al., 

2022), which provides time series of daily observed storage, elevation, inflows, and outflows for up to 679 reservoirs across 

the contiguous US, offers an opportunity to explore this trade-off. 120 

The main objective of this study is to investigate how monthly time series of observed reservoir-related data can 

improve the simulation of reservoir outflow and storage in continental or global hydrological models. We focus on the 

suitability of observed storage anomaly for calibrating reservoir release algorithms, as these anomalies can be obtained 

globally through remote sensing-based observations. We compare their informational value to that of scarcer outflow and 

absolute storage observations, as well as the simulation results achieved with an uncalibrated reservoir algorithm. We 125 

utilized in-situ storage and outflow data from the ResOpsUS dataset for 100 reservoirs in the US to calibrate three reservoir 

operation algorithms. All algorithms were implemented in the global hydrological model WaterGAP 2.2e (Müller Schmied 

et al., 2024). The parameters of the algorithms were estimated using as alternative calibration targets, 1) storage anomaly, 

2) estimated storage (calculated based on storage anomaly and GRanD reservoir capacity, detailed in section 2.3), 3) storage, 

and 4) reservoir outflow. Calibration involved optimizing parameters individually for each reservoir, algorithm and 130 

calibration target. To explore, in addition, the sensitivity of the model results to the quality of the inflow data, we calibrated 

the algorithms for a subset of 35 reservoirs with available inflow measurements, using observed inflow instead of the inflow 

simulated by WaterGAP. Finally, for a subset of 21 reservoirs, we determined the effect of incorporating, in the case of 

irrigation and water supply reservoirs, the downstream water demand in the reservoir algorithms. 

2 Methods and Data 135 

2.1 The global hydrological model WaterGAP  

WaterGAP simulates the dynamics of water flows and storages on the continents as impacted by human water use and 

human-managed reservoirs (Müller Schmied et al., 2021). It computes sectoral water abstractions as well as net abstractions 

(abstraction minus return flows) from surface water bodies (reservoirs, lakes, and rivers) and from groundwater. The model 

has a spatial resolution of 0.5°×0.5° and a daily temporal resolution. However, the model output analysis is normally done 140 

at the monthly scale. The current version, 2.2e, has been calibrated in a basin-specific manner against the mean annual 

streamflow at 1,509 gauging stations worldwide (Müller Schmied et al., 2024). Taking into account the commissioning 

years, WaterGAP simulates the dynamics of reservoirs with a storage capacity of at least 0.5 km3, referred to as 'global' 

reservoirs, using a slightly adapted version of the H06 algorithm (Döll et al., 2009). Smaller reservoirs (termed "local" 

reservoirs) are treated as natural lakes (Müller Schmied et al., 2021). A total of 1,255 global reservoirs, with a combined 145 

maximum capacity of 5,672 km3, are integrated into WaterGAP 2.2e, sourced from the GRanD (Lehner et al., 2011) and 

GeoDAR (Wang et al., 2022) datasets; in addition, 88 regulated lakes are treated like global reservoirs (Müller Schmied et 

al., 2024). The water balance for a reservoir in WaterGAP is calculated as (Müller Schmied et al., 2021): 
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𝑑𝑆

𝑑𝑡
= 𝐼 + 𝐴 ∙  (𝑃 − 𝐸𝑝𝑜𝑡) − 𝐺𝑊𝑅 − 𝑁𝐴𝑠 − 𝑂 (1) 

where S (m3) represents reservoir storage, I (m3/d) denotes inflow into the reservoir from upstream, A (m2) is the reservoir 

area, P (m/d) indicates precipitation, Epot (m/d) stands for potential evaporation, GWR (m3/d) denotes groundwater recharge 150 

(only in arid/semiarid regions), NAs (m3/d) represents potential net abstraction from the reservoir, and O (m3/d) is the 

reservoir outflow including release and spill. The surface area 𝐴 is computed daily as a fraction of the maximum area that 

depends on the current reservoir storage and its storage capacity. A is reduced by 15 % when S reaches 50% of the reservoir's 

capacity, and by 75% when S drops to 10% of the capacity (Müller Schmied et al., 2021). Abstraction from a reservoir is 

permitted only until the water storage level drops to 10% of its total capacity. The implementation of reservoir operation 155 

algorithms in WaterGAP is described below. For detailed information on WaterGAP, please refer to Müller Schmied et al. 

(2021, 2024). 

2.2 Reservoir operation algorithms 

2.2.1 Hanasaki algorithm as implemented in WaterGAP2.2e 

The calibration-free H06 method, in its original formulation, estimates monthly reservoir outflow distinguishing irrigation 160 

and non-irrigation reservoirs. For non-irrigation reservoirs, this outflow is determined by factors such as the storage at the 

beginning of the operational year (determined by analyzing the seasonal flow dynamics), the mean annual inflow into the 

reservoir, and the reservoir storage capacity. The long-term target for reservoir releases is the mean annual inflow. If 

reservoir storage at the beginning of an operational year is above normal, releases are increased throughout the year, and if 

it is below normal, releases are decreased. Therefore, the total release in an operational year depends on the storage level at 165 

the start of that year. In the case of irrigation reservoirs, the demand also influences the release (Hanasaki et al., 2006). The 

H06 algorithm was implemented in WaterGAP on a daily time scale, and the mean annual inflow was adjusted by adding 

the difference between precipitation and evaporation over the reservoir. This modification aimed to provide a more accurate 

representation of the reservoir's water balance (Döll et al., 2009). 

The first step in the H06 algorithm involves determining the release coefficient for the operational year 'y' (𝑘𝑦) using 170 

the following equation: 

𝑘𝑦 =
𝑆𝑖𝑛𝑖

𝑎1 ∙ 𝐶
 (2) 

where Sini (km3) represents the reservoir storage at the start of the operational year; 𝐶 (km3) denotes the water storage 

capacity of the reservoir; and 𝑎1 is a parameter of the H06 method, recommended to be set to 0.85 in its standard form. In 

the second step, the provisional release is determined. For non-irrigation reservoirs, the provisional release is calculated as 

follows: 175 

𝑅𝑑
′ = 𝐼′̅ (3) 

in which 𝑅𝑑
′  (m3/s) is the provisional release for the day ’d’ and 𝐼′̅ (m3/s) is the mean annual inflow into the reservoir plus 

the difference between precipitation and evaporation over the reservoir (for this study, the period 1980-2009). For irrigation 

reservoirs, the provisional release is computed as follows: 
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𝑅𝑑
′ = {

𝑎2 ∙ 𝐼′̅ ∙ [1 +  
𝑘𝑎𝑙𝑐 ∙ 𝑁𝐴𝑠𝑑

𝑁𝐴𝑠̅̅ ̅̅ ̅̅
]                𝑖𝑓  𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅  ≥  𝑎2 ∙ 𝐼′̅  

𝐼′̅ +  𝑘𝑎𝑙𝑐 ∙ 𝑁𝐴𝑠𝑑 −  𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 (4) 

in which 𝑁𝐴𝑠𝑑 (m3/s) represents the potential net abstraction from surface water bodies for downstream cells of the reservoir 

for day 'd'; 𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅  (m3/s) denotes the mean total annual potential net abstraction for downstream cells of the irrigation 180 

reservoir; 𝑘𝑎𝑙𝑐 is an allocation coefficient that distributes the abstraction to the upstream reservoirs based on the proportion 

of 𝐼′̅ into each reservoir (it equals one if there is only one irrigation reservoir upstream of the demand cells); and 𝑎2 is a 

parameter specifically for irrigation reservoirs that acts as a partitioner, leading to the use of different equations for 

reservoirs with a high demand-to-inflow ratio compared to those with a low demand-to-inflow ratio. With a default value 

of 0.5, this parameter sets the minimum provisional release at 50% of the mean annual inflow during non-crop months. 185 

During crop months, the fluctuations in provisional release for reservoirs with a high demand-to-inflow ratio (𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅  

exceeding 50% of mean annual inflow, first equation) correspond to fluctuations in daily net abstraction relative to 𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅ . 

In contrast, reservoirs with a low demand-to-inflow ratio (second equation) align their provisional releases with the daily 

net abstraction (Hanasaki et al., 2006). The downstream potential net abstraction associated with each reservoir is calculated 

based on surface water demand for a maximum of five grid cells downstream in the absence of other reservoirs. Otherwise, 190 

it extends to the next reservoir. The potential net abstraction information is obtained from the WaterGAP dataset. 

With the provisional release determined, the daily release is calculated using the following equation: 

𝑅𝑑 = {

𝑘𝑦 ∙ 𝑅𝑑
′                                                                𝑖𝑓   𝑐 ≥  𝑎3        

(
𝑐

𝑎3

)
2

∙ 𝑘𝑦 ∙ 𝑅𝑑
′ + {1 −  (

𝑐

𝑎3

)
2

} ∙  𝐼𝑑           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 (5) 

where 𝑐 represents the ratio of 𝐶 (km3) to 𝐼′̅ (km3/yr); 𝐼𝑑 (m3/s) is the daily inflow into the reservoir for the day 'd'; 𝑅𝑑 (m3/s) 

is the daily release from the reservoir; and 𝑎3 is a third parameter in the H06 approach, with default value of 0.5. This 

parameter is also a partitioner that results in the application of different equations for reservoirs with high capacity-to-195 

inflow ratios (c ≥ 𝑎3) compared to those with low capacity-to-inflow ratios. This implies that for reservoirs with high 

capacity-to-inflow ratios (first equation), release is independent of daily inflow, while for reservoirs with low capacity-to-

inflow ratios (second equation), daily inflow influences the release (Hanasaki et al., 2006). In this study, H06 with default 

values for 𝑎1, 𝑎2, and 𝑎3 is referred to as the DH algorithm, while H06 with calibrated parameters is referred to as the CH 

algorithm. 200 

2.2.2 New algorithms 

In this study, we introduce and compare two new reservoir operation algorithms that 1) require the reservoir-specific 

calibration of their parameters; 2) different from H06, utilize daily reservoir water storage as a critical factor in computing 

daily releases; and (3) do not require water use information to estimate the releases of irrigation reservoirs. Both algorithms 

include three parameters that are related to different levels of storage: above 70% of the reservoir capacity (level 1), between 205 

40% and 70% of the reservoir capacity (level 2), and below 40% of the reservoir capacity (level 3). This classification is 

based on the observation that the operation rule curve of reservoirs often varies at different storage levels, typically 

corresponding to different seasons (Dang et al., 2020). Unlike the H06 approach, which employs a single release coefficient 

for a full year of operation, both new algorithms consider a daily filling ratio, i.e. relative water storage (𝑆𝑟𝑒𝑙𝑑), as defined 

by the following equation: 210 
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𝑆𝑟𝑒𝑙𝑑 =
𝑆𝑑

𝐶
 (6) 

 in which 𝑆𝑑 (km3) is the reservoir storage on day 'd', and 𝐶 (km3) indicates the water storage capacity of the reservoir. Both 

algorithms use 𝑆𝑟𝑒𝑙𝑑 for release estimation but apply different equations to calculate the release. The following sections 

describe the release estimation methods employed by these algorithms, i.e., Scaling algorithm (SA) and Weighting 

algorithm (WA). 

2.2.2.1 Scaling algorithm 215 

In the SA algorithm, the daily release at each specific storage level (Level 1, Level 2, or Level 3) is computed as a function 

of 𝑆𝑟𝑒𝑙𝑑, mean annual inflow (𝐼 ̅), daily inflow (Id), the 30-day mean inflow (𝐼3̅0𝑑), and a parameter associated with that 

level (Eq. 7). For this purpose, Id is scaled using the ratio of 𝐼 ̅to 𝐼3̅0𝑑. This ratio represents the general effect of reservoirs 

in altering the temporal variation of streamflow by storing excess wa ter during high-flow months and releasing it during 

low-flow months. The multiplication of 𝐼 ̅ with 𝑆𝑟𝑒𝑙𝑑  mimics a prompt response to extreme events where storage can fill 220 

up within a few days. The release in the SA algorithm, when water storage is at level 𝑛, is calculated as follows: 

𝑅𝑑 = 𝑝
𝑛

∙ [𝑆𝑟𝑒𝑙𝑑−1 ∙ 𝐼 ̅ + 𝐼 ̅

𝐼 ̅30𝑑
 ∙ 𝐼𝑑]       for  𝑛 = 1, 2, 3   (7) 

in which 𝐼̅30𝑑 (m3/s) represents the mean inflow into the reservoir during the last 30 days. The variable 𝑛 indicates the 

storage level at time d-1, and 𝑝𝑛 is the parameter assigned to storage level n (one parameter assigned to each storage level). 

Levels 1, 2, and 3 correspond to 𝑆𝑟𝑒𝑙 as follows: Level 1 for above 0.7, Level 2 for between 0.4 and 0.7, and Level 3 

for below 0.4. (see Fig. 1). The parameters value need to be determined through the calibration process. These parameters 225 

enable us to adjust the mean release, while temporal variability is estimated inside the square brackets. 

2.2.2.2 Weighting algorithm 

The WA are the same as SA method in most part of the release calculation, however, in contrast to the SA method, WA 

does not consider Id to compute the release and solely relies on 𝑆𝑟𝑒𝑙𝑑 for weighting 𝐼 ̅and 𝐼3̅0𝑑. Therefore, the contribution 

of long-term inflow is higher at higher storage levels, while its contribution decreases with lower storage levels. Conversely, 230 

the contribution of inflow from the last 30 days increases as storage decreases. A maximum of 30% of  𝐼3̅0𝑑 contributes to 

release estimation at higher storage levels (𝑆𝑟𝑒𝑙 ≥  0.7), while it reaches 100% when the reservoir is empty, which is 

identical to run-of-the-river flow. In the WA algorithm when water storage is at level n, the release is estimated as follows: 

𝑅𝑑 = 𝑞𝑛 ∙ [𝑆𝑟𝑒𝑙𝑑−1 ∙ 𝐼 ̅ + (1 − 𝑆𝑟𝑒𝑙𝑑−1) ∙ 𝐼3̅0𝑑]          for  𝑛 = 1, 2, 3 (8) 

where 𝑞𝑛 is the parameter assigned to storage level n that needs to be determined (see Fig. 1). We opted for 𝐼3̅0𝑑 over 𝐼𝑑 

assuming that release decisions may rather be based on the past inflow over a longer period and not on the inflow on just 235 

the previous day.  

Contrary to the H06 approach, where the release is independent of inflow in reservoirs with large storage capacity 

relative to the annual inflow (meaning constant release throughout the year, see Eq. 5), both new algorithms consider the 

impact of inflow on release in all reservoirs. This impact varies with different seasons and storage levels, leading to 

variability in release throughout the year, which is more realistic (see Eq. 7 and Eq. 8). It should be noted that the new 240 

algorithms do not distinguish between irrigation and non-irrigation reservoirs; therefore, no water use data is required for 
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Cross-Out

mwe
Inserted Text
is



8 

 

their application, making their implementation easier than the H06 algorithm. This is because the estimation of downstream 

water demand at a large scale is generally very uncertain, and reservoirs are usually designed for multiple purposes. 

In each of the three algorithms, if 𝑆𝑑  falls below 10 percent of the storage capacity (𝐶), the calculated 𝑅𝑑 is adjusted to 

 0.1 ∙ 𝑅𝑑 if the available water is sufficient; otherwise, the entire 𝑆𝑑 will be released. Finally, the reservoir outflow is 245 

calculated as follows: 

𝑂𝑑 = 𝑅𝑑 + 𝑆𝑃𝑑  (9) 

where 𝑂𝑑   (m3/s) and 𝑆𝑃𝑑 (m3/s) are the reservoir outflow and the spill from the reservoir during day 'd', respectively. 𝑆𝑃𝑑  

is calculated as the difference between 𝑆𝑑 and 𝐶, where 𝑆𝑑 exceeds 𝐶; otherwise, it is zero. 

 
Figure 1. Overview of the process to calculate reservoir release using the Hanasaki (H06), Scaling (SA) and Weighting 250 

(WA) algorithms, indicating the required inputs as well as the equation numbers where the complete equations can be found 

in the text. The left panel details the H06 algorithm implemented in WaterGAP, with steps for calculating the release 

coefficient, provisional release, and release. The H06 algorithm requires reservoir capacity, storage values at the start of the 

operational year, daily inflow, precipitation, evaporation data, and daily potential net abstraction data for irrigation 

reservoirs. The right panel presents SA and WA, indicating the calculation of relative water storage and the release 255 

computation as a function of three reservoir water storage levels (n = 1, 2, or 3). SA and WA release are calculated based 

on reservoir capacity, daily storage, precipitation, evaporation, and inflow. The time-averaged variables are derived from 

daily data. For the H06 algorithm DH, the default values for a1, a2, and a3 are 0.85, 0.5, and 0.5, respectively.  
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2.3 Data 

The ResOpsUS dataset (Steyaert et al., 2022), which served for calibrating and evaluating the three algorithms in this study 260 

encompasses daily in-situ records of inflow, storage, outflow, elevation, and evaporation for up to 679 US reservoirs. The 

available data spans from 1930 to 2020, determined by each dam's commissioning year and data availability. In this study, 

data on reservoir inflow (daily), outflow (monthly), and storage (monthly) from 1980 to 2019 were considered, divided into 

two distinct periods: a calibration phase spanning from 1980 to 2009, and a validation phase covering the years 2010 to 

2019. Monthly data were computed from daily records, excluding months with more than one week of missing values. 265 

Subsequently, we applied filters to the dataset, considering only reservoirs with a minimum data length of five years, a 

minimum reservoir capacity of 0.5 km3, as well as ensuring there is only one reservoir per 0.5°×0.5° grid cell and no 

negative values. This resulted in 100 reservoirs, with 35 having data for storage, inflow and outflow and 65 having data for 

storage and outflow only. The minimum number of monthly data values for the 65 (35) reservoirs was 111 (252) for the 

calibration period and 65 (59) for the validation period. The reservoirs' storage capacities (C) range from 0.5 km3 to 36.7 270 

km3 based on the GRanD dataset (Lehner et al., 2011). Out of the total 100 reservoirs, nine are irrigation reservoirs. Detailed 

information on each reservoir is provided in Table S1.  

Using in-situ storage data, we derived two additional storage-related variables: the time series of storage anomaly and 

estimated storage. These variables can also be estimated using remote sensing data. Storage anomaly time series for each 

reservoir is calculated by subtracting the mean storage during the calibration period from the in-situ storage data for each 275 

reservoir. However, the storage anomaly lacks information about the bias term and calibrating against it can result in a 

simulated storage time series that significantly deviates from the observed water storage. Having actual absolute storage is 

advantageous, as reservoirs are the only surface water bodies for which we can model absolute storage within the 

WaterGAP. To provide an alternative, we calculated the “estimated storage time series”; this term refers to storage values 

that are not observed directly but are estimated using storage anomaly and the reservoir capacity C. First, we determined 280 

the storage changes time series by subtracting the initial month's storage anomaly value from the monthly storage anomaly 

values. Assuming the reservoir reaches maximum capacity at least once between 1980 and 2009, we calculated the 

maximum monthly storage change, termed Difmax. We then subtracted Difmax from the GRanD reservoir storage capacity to 

estimate the initial water storage for the first month. The estimated storage time series is then obtained by adding the storage 

changes to this estimated initial water storage. Since the data are monthly, and daily maximum storage is generally higher, 285 

we applied a 1.2 scaling factor to Difmax. This adjustment means that Difmax used in our calculations is 20% higher than the 

initially calculated value. This 20% increase is derived from the mean difference between the maximum daily storage and 

the monthly storage observed in 100 studied reservoirs (see Table S1). The calculation of estimated storage can be 

performed using either absolute storage or storage anomaly, as the time series of storage changes would remain the same 

in both cases. An example using GRanD ID 597 (Glen Canyon Dam, Lake Powell) clarifies the calculation of storage 290 

anomaly and estimated storage. The mean observed storage value between 1980 and 2009 for Glen Canyon Dam is 22.45 

km³. To obtain the storage anomaly time series for this reservoir, the value of 22.45 km³ is subtracted from all storage data 

for the reservoir over the entire period (1980–2019). For calculating estimated storage, the Difmax is 6.6 km³, which occurred 

in July 1983 (see Fig. S1). This is calculated as the storage anomaly value in July 1983 minus the initial storage anomaly 

value in January 1980. The initial storage is estimated as 25.1 km³ (the reservoir capacity reported by GRanD) minus 7.9 295 

km³ (6.6 km³×1.2). This gives an initial storage value of approximately 17.2 km³. Storage changes are then added to the 
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estimated initial storage to obtain the time series of estimated storage (Fig. S1c), e.g., the estimated storage for July 1983 

is 23.8 km³, which is the sum of 17.2 km³ and 6.6 km³. 

2.4 Model variants and calibration approach 

The three reservoir operation algorithms were implemented in WaterGAP. For each algorithm, the algorithm-specific 300 

parameters (𝑎1, 𝑎2, and 𝑎3 for the CH, 𝑝1, 𝑝2, and 𝑝3 for the SA and 𝑞1, 𝑞2, and 𝑞3 for the WA) were estimated by optimizing 

the Kling–Gupta Efficiency (KGE) (Kling et al., 2012), including the trend term (see Eq. 10). This optimization was 

performed through a single-objective calibration against the monthly time series of four variables: outflow, storage, storage 

anomaly, and estimated storage (see Section 2.3). The parameters of each algorithm were calibrated using a grid search 

approach. Reservoir outflow and storage time series were simulated for all parameter sets listed in Table S2, and the 305 

parameter set corresponding to the highest KGE was selected. The parameter estimation using storage anomaly and 

estimated storage serves as the main experiment, as the primary emphasis of this study is on exploring the added value of 

incorporating storage anomaly (which facilitate the calibration of reservoir algorithms using remote sensing data in regions 

where in-situ storage time series are unavailable) into the calibration of reservoir operation algorithms. 

 As in previous studies by Dong et al. (2023), Turner et al. (2021), and Shin et al. (2019), the uncalibrated H06 (DH) 310 

is used as a benchmark. For comparison purposes, in all calibration experiments based on WaterGAP inflow, the inflow 

into reservoirs simulated by the DH algorithm was used to ensure that the same inflow data were applied across all 

algorithms. To achieve this, WaterGAP was first run with the DH algorithm to save the reservoir inflow data. These inflow 

data were then read from the saved files and used as the inflow source to model each reservoir independently. As a result, 

inflow into all reservoirs, regardless of their position, was based on the DH algorithm when applying the CH, SA, and WA 315 

algorithms, meaning that the operations of upstream reservoirs did not affect downstream reservoirs. The calibration runs 

were initialized by running WaterGAP five times for the year 1979 to allow water storages to reach a relatively stable 

equilibrium state. 

In addition to the inflow simulated by WaterGAP, we also assessed the algorithms based on observed inflow where 

available. This was done to check the performance of reservoir operation algorithms in the presence of high-quality inflow 320 

data, as the performance of the algorithms may be heavily impacted by poor inflow data (Vanderkelen et al., 2022). 

Moreover, we assessed the impact of distinguishing irrigation and supply reservoirs from other reservoirs. The distinction 

for irrigation reservoirs is the default approach for the H06 algorithm; however, here we also applied this distinction for 

supply reservoirs, as also their outflow depends on downstream demand. To this end, we modeled 21 reservoirs (nine 

irrigation and 12 supply reservoirs) in two different ways for all algorithms: one including downstream demand and the 325 

other without considering it. The purpose of this comparison is to evaluate whether including downstream demand, despite 

the high uncertainty in water demand estimation for the reservoirs, enhances the outflow and storage simulation, or whether 

it may not add value and instead introduce unnecessary complexity. In the case of the SA and WA approaches for 

considering downstream demand, similar to the DH algorithm, Eq. 4 was used with the default value for the parameter  𝑎2. 

However, instead of using 𝐼′̅,  𝐼 ̅  was applied in Eq. 4. The resulting 𝑅𝑑
′  from Eq. 4 then replaced 𝐼 ̅ in Eqs. 7 and 8 for 330 

estimating 𝑅𝑑. 

Table 1 shows a summary of the different calibration variants. In Table 1, each calibration variant is characterized by 

a combination of a reservoir operation algorithm, a calibration variable, an inflow source, and whether or not downstream 
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demand is considered. For example, calibrating the CH algorithm against outflow using inflow simulated by WaterGAP 

while considering downstream water demand represents one calibration variant. Thus, each reservoir operation algorithm 335 

comprises 12 calibration variants (eight utilizing WaterGAP inflow and four using observed inflow), leading to a total of 

36 calibration variants. 

Table 1. Components of the different calibration variants, comprising 36 variants in total, with 12 variants for each 

algorithm. Each algorithm includes four variants using WaterGAP inflow with downstream demand considerations 

(calibrated against outflow, storage, storage anomaly, and estimated storage), four variants using WaterGAP inflow without 340 

downstream demand, and four variants using observed inflow. Each calibration variant is defined by the combination of a 

reservoir operation algorithm, calibration variable, inflow source, and the consideration or non-consideration of downstream 

demand. For CH, the default approach incorporates the downstream demand of irrigation reservoirs, while the opposite is 

true for SA and WA. Additionally, considering the downstream demand for supply reservoirs is not the default approach 

for any of the reservoir operation algorithms. For calibration variants that utilize observed inflow, only the default approach 345 

of each algorithm is considered.  

Operation algorithm Calibration variable Inflow source Downstream demand considered? 

CH Outflow 

Storage 

Storage anomaly 

Estimated storage 

WaterGAP 
Yes1 

No 

Observation Yes2 

SA  

WA 

Outflow 

Storage 

Storage anomaly 

Estimated storage 

WaterGAP 
Yes1 

No 

Observation No 

1 Water demand is considered for irrigation and supply reservoirs, i.e., 21 out of 100 studied reservoirs. 
2 Water demand is considered for irrigation reservoirs, i.e., two out of 35 studied reservoirs with observed inflow. 

 

2.5 Performance evaluation metrics 350 

The performance of the reservoir operation algorithms was evaluated using KGE and the normalized root mean square error 

(nRMSE). KGE is widely used for model calibration and evaluation, as it simultaneously considers multiple important 

aspects of model performance, providing a comprehensive assessment (Beck et al., 2019; Lamontagne et al., 2020). The 

use of nRMSE offers additional insights by focusing on the magnitude of errors. Following Hosseini-Moghari et al. (2020), 

we incorporated the trend component into the conventional KGE equation as follows: 355 

𝐾𝐺𝐸 = 1 − √(𝑅𝐾𝐺𝐸 − 1)2 + ( 𝐵𝐾𝐺𝐸 − 1)2 + (𝑉𝐾𝐺𝐸 − 1)2 + (𝑇𝐾𝐺𝐸 − 1)2  (10) 

𝑅𝐾𝐺𝐸 =
𝑐𝑜𝑣(𝑠𝑖𝑚, 𝑜𝑏𝑠)

𝜎𝑠𝑖𝑚 ∙ 𝜎𝑜𝑏𝑠

 (11) 

𝐵𝐾𝐺𝐸 =  
𝑠𝑖𝑚̅̅ ̅̅ ̅

𝑜𝑏𝑠̅̅ ̅̅ ̅
 (12) 

𝑉𝐾𝐺𝐸 =  

𝜎𝑠𝑖𝑚
𝑠𝑖𝑚̅̅ ̅̅ ̅⁄

𝜎𝑜𝑏𝑠

𝑜𝑏𝑠̅̅ ̅̅ ̅⁄
 (13) 

𝑇𝐾𝐺𝐸 =  
𝑇𝑠𝑖𝑚

𝑇𝑜𝑏𝑠

 (14) 

where 𝑅𝐾𝐺𝐸  represents the correlation coefficient between observed (obs) and simulated (sim) time series; 𝐵𝐾𝐺𝐸  denotes the 

bias of the mean simulated (𝑠𝑖𝑚̅̅ ̅̅ ̅) compared to the mean of observed (𝑜𝑏𝑠̅̅ ̅̅ ̅), 𝑉𝐾𝐺𝐸  is the variability component that denotes 

the ratio of the standard deviation of the simulated (𝜎𝑠𝑖𝑚) to the standard deviation of the observed (𝜎𝑜𝑏𝑠) time series, 

divided by their mean, and 𝑇𝐾𝐺𝐸   represents the ratio of the linear trend of the simulated time series (𝑇𝑠𝑖𝑚) to the observed 
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one (𝑇𝑜𝑏𝑠). In the case of calibrating against storage anomaly, we did not divide 𝜎 by the mean, as the mean for storage 360 

anomaly is zero. Similarly, the 𝐵𝐾𝐺𝐸  component was not considered in calculating KGE related to storage anomaly. The 

optimal value for the KGE and its four components is 1. The KGE range is (−∞, 1], while 𝑅𝐾𝐺𝐸  ranges from -1 to 1; 𝐵𝐾𝐺𝐸 , 

𝑉𝐾𝐺𝐸  and 𝑇𝐾𝐺𝐸  can vary between −∞ and + ∞. Following Knoben et al. (2019), a KGE value above -0.73 indicates that 

the model performs better than the mean of observations if the trend component is included in the KGE.  

The normalized root mean square error (nRMSE) is calculated as:  365 

𝑛𝑅𝑀𝑆𝐸 =  
√1

𝑇
∑ (𝑜𝑏𝑠𝑡 − 𝑠𝑖𝑚𝑡)2𝑇

𝑡=1

𝜎𝑜𝑏𝑠

 
(15) 

The perfect value for nRMSE is zero. Normalizing the RMSE with the standard deviation of observations brings this metric 

closer to the Nash-Sutcliffe Efficiency (NSE), but different from the NSE, the nRMSE cannot become negative (Turner et 

al., 2021). 

 

3 Results  370 

3.1 Performance of calibration variants in the case of simulated inflow into reservoirs 

We found that calibrating against observed water storage, water storage anomaly, or estimated water storage (derived from 

storage anomaly and GRanD storage capacity) improves the very poor simulation of storage by the calibration-free 

algorithm (DH) for both the calibration and validation periods in the case of all three algorithms (Table 2). In the case of 

DH, storage simulation is skillful, i.e. with a KGEstorage > -0.73, for only 16% of the 100 reservoirs during the calibration 375 

period, and for 15% during the validation period. Calibration of the H06 reservoir operation algorithm (CH) achieves skillful 

storage simulations for 64% (39%) of the reservoirs when calibrated against storage anomaly and for 69% (32%) of the 

reservoirs when calibrated against estimated storage during the calibration (validation) period. Both SA and WA outperform 

CH in storage simulation when calibrated against storage-related variables for both the calibration and validation period 

(Table 2 and Fig. 2). However, the fit of simulated to observed storage remains poor during the validation period, in 380 

particular after calibration against storage anomaly and estimated storage (Table 2 and Fig. 2). 

Table 2. The number of reservoirs out of 100 in which KGE values are greater than the benchmark thresholds of -0.73 

during the calibration (validation) phase. All algorithms were calibrated against outflow, storage, storage anomaly, as well 

as estimated storage using KGE as the objective function. The inflow data is sourced from the WaterGAP model. 

Calibrated variable  Algorithm 
 KGE > -0.73 

 Outflow  Storage 

—  DH  63 (56)  16 (15) 

Outflow  CH  78 (68)  22 (30) 

 SA  86 (71)  14 (24) 

 WA  86 (69)  20 (30) 

Storage  CH  68 (69)  91 (46) 

 SA  66 (67)  98 (68) 

 WA  67 (66)  100 (55) 

Storage anomaly  CH  67 (69)  64 (39) 

 SA  67 (69)  68 (45) 

 WA  71 (70)  66 (45) 

Estimated storage  CH  70 (69)  69 (32) 

 SA  65 (68)  69 (46) 

 WA  67 (70)  74 (41) 
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Calibration against storage-related variables only slightly improves the mostly poor simulations of reservoir outflow 

during the calibration period and shows a bit more improvement in the validation period (Table 2 and Fig. 2). Skillful 

outflow simulations were achieved for 86% of the reservoirs when either SA or WA were calibrated against outflow, 385 

compared to 78% for CH and 63% for DH during the calibration phase. However, skillful storage simulations were observed 

in only 14% (24%) and 20% (30%) of the reservoirs for SA and WA, respectively, compared to 22% (30%) for CH and 

16% (15%) for DH in the calibration (validation) phase (Table 2). The performances of outflow simulations with CH, SA 

and WA are very similar in both the calibration and validation periods except in the case of calibration against observed 

outflow for the calibration period. In this case, SA and WA achieved positive KGEoutflow, with medians of 0.15 for SA and 390 

of 0.13 for WA. Calibrating against outflow improves the correlation, variability and trend of the simulated outflow 

compared to DH for all three algorithms, while the bias is not affected much (Figs. S2-S5). On average, outflow trends are 

underestimated. Calibrating against outflow worsens both the correlation and variability of storage simulations across all 

three algorithms during the calibration phase, though it notably improves the bias component (Figs. S2-S4). Model 

performance regarding storage is not affected in a relevant manner by calibration against outflow and remains very poor. 395 

When algorithms are calibrated against outflow, the mean observed storage generally remains a better estimator than the 

simulated storage. 

 
Figure 2. Letter-value plots of KGE for outflow and storage of 100 studied reservoirs for DH, CH, SA, and WA algorithms 

for the calibration period (1980-2009, in blue) and validation period (2010-2019, in yellow). All algorithms are calibrated 400 

against outflow (first column), storage (second column), storage anomaly (third column), as well as estimated storage 

(fourth column) using KGE as the objective function. The values at the top of the panels are the median KGE (indicated by 

the horizontal line). KGE values below the benchmark threshold of -0.73 are set to -0.73. The widest box contains 50% of 

the 100 data points, the second widest 25% of the data (12.5% in the upper box and 12.5% in the lower box), the third 

widest 12.5%, and so on. The inflow data is sourced from the WaterGAP model. 405 
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Calibrating against storage (second column of Fig. 2) leads to the highest KGEstorage values; with a median KGEstorage 

of 0.29, SA outperforms CH and WA, while the KGEoutflow and its component values for the three algorithms are similar 

(Figs. S2-S5). Calibrating against storage anomaly (third column in Fig. 2) or estimated storage (fourth column in Fig. 2) 410 

improves both storage and outflow simulations as compared to DH but the fit to observed storage is considerably worse 

than in the case of calibration against storage. While the median KGEstorage in the case of calibration against storage anomaly 

is slightly better than when calibrated against estimated storage, the widest box of the letter-value plot related to calibration 

against estimated storage, which contains 50% of the data, is above the one for calibration against storage anomaly. The 

improvement of storage simulation is mainly through bias adjustment (Fig. S3). The DH algorithm has a median BKGE of 415 

1.90 for storage during the calibration period. This value decreases to 0.92 (1.04, 0.99), 0.71 (0.91, 1.18), and 1.25 (1.44, 

1.32) for calibration against storage, storage anomaly, and estimated storage of the CH (SA, WA) algorithm, respectively. 

The correlation is improved in the case of SA and WA but only in the calibration period (Fig. S2). The variability is 

improved for calibration against storage anomaly, while calibration against estimated storage leads to an underestimation 

of storage variability (Fig. S4). By calibration against storage, storage anomaly and estimated storage, the trend component 420 

of KGEstorage strongly improves as compared to DH for the calibration period but the trend is on average still underestimated 

(Fig. S5). Assessing the KGEstorage_anomaly when calibrating with different variables shows less degradation during the 

validation phase (Fig. S6). For example, the number of skillful simulations for storage reached 17 (18), 93 (44), 98 (59), 

and 99 (55) when calibrating using storage anomaly with DH, CH, SA, and WA, respectively (see Table 2 for comparison). 

The fit to observed storage-related variables is much less improved as compared to DH for the validation period than 425 

for the calibration period (Table 2 and Fig. 2). Comparing calibration against storage anomaly and estimated storage, which 

are the available options when using only remote sensing data, reveals that SA and WA are preferable to CH and DH, even 

though the differences from CH are small during the validation period. Differences between the KGEstorage values of SA and 

WA are small for all calibration variables for both calibration and validation periods.  

Examining the empirical cumulative distribution functions (eCDFs) for nRMSE reveals that the eCDFs for outflow are 430 

much closer across different algorithms compared to those for storage (see Fig. 3). This suggests that calibration has a more 

significant impact on storage than on outflow. Calibration against any storage-related variable generally enhances outflow 

performance at lower nRMSEoutflow levels (in approximately 60% of the reservoirs), while at higher nRMSEoutflow ranges, a 

slight degradation is observed in about 35% of reservoirs (with probabilities ranging from less than 0.60 to 0.95, mainly 

concentrated between 0.8 and 0.9). When calibrating against outflow, there is generally improvement in nRMSEstorage for 435 

CH and WA algorithms, while no clear improvement is seen for SA. Moreover, the error in outflow simulation is reduced 

in over 40% of reservoirs where the nRMSEoutflow was already lower compared to others. For nRMSEoutflow greater than 

0.98, there is almost no discernible improvement observed when calibrating algorithms against outflow, as indicated by the 

eCDFs. The calibration against storage anomaly, which is the main calibration variant, especially in the validation phase, 

reveals that SA slightly performs better than WA. SA shows nRMSEstorage lower and nearly similar nRMSEoutflow compared 440 

to WA. Disregarding the magnitude of error, the eCDF for validation has a shape similar to that of the calibration period, 

suggesting that the error distribution for the algorithm is consistent across both periods. 
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Figure 3. Empirical cumulative distribution functions of nRMSE for storage and outflow of 100 studied reservoirs are 

based on DH, CH, SA, and WA algorithms for the calibration period (1980-2009) and validation period (2010-2019). All 445 

algorithms are calibrated against outflow (first column), storage (second column), storage anomaly (third column), and 

estimated storage (fourth column) using KGE as the objective function. The x-axis has a logarithmic scale. If nRMSE is 

larger than 1, the mean error is larger than the standard deviation of the observational values. The inflow data is sourced 

from the WaterGAP model. 

3.2 Illustrative calibration results for three reservoirs 450 

As an example, we plotted the time series of storage and outflow for the Glen Canyon Dam (Lake Powell) in Fig. 4 and 

Fig. S7, respectively. This dam is one of the largest in our study, with several dams located upstream. The WaterGAP 

dataset includes four upstream reservoirs as global reservoirs, with storage capacities ranging from 0.57 to 4.3 km³. 

Calibrating the H06 algorithm against outflow did not lead to better results compared to the DH model (Fig. 4a, Fig. S7a). 

However, some improvement was observed in the outflow simulation for SA and WA during the calibration period, though 455 

this led to worse outflow simulation during the validation phase (Fig. S7). Despite this, with a KGE > -0.73, all outflow 

simulations demonstrated skillful performance. Calibration against outflow did not degrade storage simulation compared 

to the DH, except for SA, particularly during the validation phase, where the variability of the simulated time series was 

more than three times higher than the observed one (Table S3). During the calibration phase, storage levels are mainly 

above 40% (10 km³) of the capacity, with a sharp decline between 40% and 70%, and smaller changes when the reservoir 460 

is filled above 70% (17.5 km³). This pattern leads to storage levels below 40% not being adequately considered in the 

parameter selection process. As a result, when storage drops below 10 km³ during the validation phase, the outcomes are 

not promising (Fig. 4). The large difference between the capacity reported by GRanD (25 km³) and the maximum observed 

daily storage (31.7 km³) results in poorer performance in storage simulation for all calibrated algorithms based on estimated 

storage compared to storage anomaly (see Fig. S1). This ~20% difference between the reported capacity and maximum 465 

observed storage introduces a 20% bias, which directly impacts the bias and variability components of KGEstorage (Table 

S3). However, there is almost no bias in the outflow, thanks to the data from the Lees Ferry station, located just downstream 
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of the dam, which is used in the bias adjustment of streamflow simulations in WaterGAP through a simple calibration 

approach. 

 470 
Figure 4. Monthly time series of observed and simulated storage values from DH, CH, SA, and WA algorithms for Glen 

Canyon dam, GRanD ID 597, calibrated against (a) outflow, (b) storage, (c) storage anomaly, and (d) estimated storage 

using KGE as the objective function. The dashed black lines distinguish between the calibration and validation periods. The 

inflow data is sourced from the WaterGAP model. The time series for outflow is plotted in Figure S7. 

Very poor storage simulation with a much higher seasonal magnitude compared to observed storage is seen for the 475 

Yellowtail Dam (GRanD ID = 355), an irrigation reservoir with different calculations in the DH and CH algorithms 

compared to the SA and WA algorithms, and for the Harry S. Truman Dam (GRanD ID = 989), which is a hydropower 

reservoir (Fig. 5). Calibrating against storage anomaly can lead to time series of storage with considerable bias (Fig. 5c). 

This issue can also occur when calibrating against estimated storage if there is an offset between the estimated storage and 

the in-situ observation (Fig. 4d). The time series related to the Yellowtail Reservoir reveals that SA and WA, which do not 480 

consider the irrigation purpose of this reservoir, can simulate reservoir storage better than DH and CH which explicitly take 

into account the downstream water demand (Fig. 5a). However, the opposite is true for outflow simulation, where the 

uncalibrated DH performs best (Fig. S8a).  
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From these examples, we found that calibrating solely against storage-related variables does not necessarily lead to 

poorer outflow simulations (Fig. S8). However, other factors, such as inaccuracies in reservoir capacity data (e.g., for the 485 

Glen Canyon Dam) and discrepancies between actual available water and the reported static storage value in the GRanD 

dataset — which may include dead storage (see Table S1 for Yellowtail and Harry S. Truman dams) — are important 

considerations when evaluating the performance of the reservoir operation algorithm. In such cases, comparing storage 

anomaly may offer a more reasonable assessment than comparing absolute storage. This error in storage simulation may 

also affect outflow simulations, where inaccuracies in input data are the primary factor leading to inaccurate storage levels 490 

being maintained during the validation phase (Fig. 4c). 

 
 

Figure 5. Monthly time series of observed and simulated storage values from DH, CH, SA, and WA algorithms for 

Yellowtail/Harry S. Truman reservoirs, GRanD IDs 355/989, calibrated against (a, c) storage anomaly and (b, d) estimated 495 

storage using KGE as the objective function. The primary purposes of the Yellowtail Dam and the Harry S. Truman Dam 

are irrigation and hydropower, respectively. The dashed black lines distinguish between the calibration and validation 

periods. The inflow data is sourced from the WaterGAP model. The time series for outflow is plotted in Figure S8. 
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3.3 Impact of using observed streamflow as input to the reservoir operation algorithms 500 

Comparing the results of the modeling using WaterGAP inflow and observed inflow is presented in Fig. 6 for 35 reservoirs 

of 100 studied ones. Based on Fig. 6, there is no overall improvement or deterioration in storage simulation when using 

observed or WaterGAP inflow data, except for the WA algorithm, which demonstrates better performance with observed 

inflow than with simulated streamflow. This is evident as most of the circles are positioned above the y=x line (Fig. 6c). 

However, performance of WA with observed inflow is not better than the performance of SA. In contrast, there is a 505 

considerable improvement in the reservoir outflow simulation when utilizing observed inflow data. For instance, KGEoutflow 

below -1 achieved with WaterGAP inflow can approach 1 with observed inflow (Fig. 6f). In most cases, KGEoutflow between 

0-0.5 based on WaterGAP inflow reaches 0.5-1 based on observed inflow. The most substantial improvement is observed 

for the WA algorithm, where the median of KGEoutflow across various calibration objectives, ranging from [-0.27, 0.14], 

increases to [0.56, 0.69] upon replacing WaterGAP inflow with observed data. It implies that the WA is more sensitive to 510 

the quality of inflow data than other algorithms. The same pattern is reiterated during the validation period, with the median 

KGEoutflow [0.38, 0.56] compared to [-0.87, -0.41] based on observed inflow compared to WaterGAP inflow across all 

calibration variants (Fig. S9). Using observed inflow improves almost all components of KGEoutflow, but the main 

components that are improved are variability and trend components (see Figs. S10-S17). 

 515 

Figure 6. The relationship between KGE of (a-c) storage and (d-f) outflow obtained from modeling reservoirs using 

WaterGAP inflow and observed inflow to the reservoirs for the calibration period (1980-2009) for 35 reservoirs with 

observed inflow. KGE values less than -1 are set to -1. The KGE values for storage anomaly and estimated storage are not 

shown. The circle size indicates the reservoir capacity. The values above each panel indicate the median KGE, with the top 

values achieved with WaterGAP inflow and the bottom values with observed inflow. The dashed red lines indicate the KGE 520 

benchmark threshold of -0.73. 
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3.4 Impact of considering downstream water demand  

We evaluated the benefit of distinguishing irrigation and water supply reservoirs from others by counting how many times 

estimating the outflow of irrigation reservoirs (9 reservoirs) and supply reservoirs (12 reservoirs) using Eq. 4 (the default 

approach for irrigation reservoirs in the H06 algorithm, which takes into account the seasonality of downstream water 

demand) leads to a more skillful simulation compared to disregarding water demand in the modeling of reservoir dynamics. 530 

We found that there is no general advantage in distinguishing irrigation and supply reservoirs from other reservoirs, in 

particular when calibrating against storage anomaly or estimated storage using the overall superior WA and SA algorithms. 

While in the case of calibration against estimated storage, the SA algorithm performs better for outflow with considering 

downstream demand, the opposite is true for storage. For the WA algorithm, the same number of reservoirs achieve better 

or worse streamflow performance if taking into account downstream water demand while storage performance is better if 535 

demand is not considered (Table 3).  

Table 3. The number of irrigation and supply reservoirs (out of 21) where KGE values for the calibration phase are higher 

when considering downstream water demand than when neglecting downstream demand. Improvements are only identified 

if the achieved KGE value is larger than -0.73, i.e. the simulation is skillful. The values in parentheses indicate the number 

of reservoirs where neglecting downstream demand leads to higher KGE values. All algorithms are calibrated against 540 

outflow, storage, storage anomaly, and estimated storage using KGE as the objective function. The inflow data is sourced 

from the WaterGAP model. 

Calibrated variable 
  CH  SA  WA 

  Outflow Storage  Outflow Storage  Outflow Storage 

Outflow   4 (5) 1 (3)   10 (6) 1 (3)   8 (8) 3 (4) 

Storage   7 (6) 7 (2)   5 (6) 11 (10)   6 (6) 7 (14) 

Storage anomaly   6 (6) 3 (3)   7 (6) 7 (10)   8 (6) 7 (9) 

Estimated storage   6 (4) 6 (1)   9 (3) 6 (10)   6 (6) 3 (12) 

4 Discussion 

4.1 Calibration variables 

Calibrating against outflow does not necessarily improve storage simulations and may even lead to their degradation during 545 

the calibration phase. In contrast, calibrating against all types of storage-related variables slightly improves outflow 

compared to the DH algorithm (see Fig. 2 and Table 2). Thus, calibrating against storage-related variables is more effective 

than calibrating against outflow when aiming to improve the simulation of both variables through a single-objective 

calibration. Additionally, comparing the KGE values of the compromise solution (defined as the solution with the minimum 

Euclidean distance from the optimal KGE value of 1 for both storage and outflow) with KGE values from calibrations 550 

against storage and outflow indicate that the results of calibration against storage are considerably closer to the compromise 

solution compared to those for outflow (see Fig. S18). A similar pattern is observed for calibrations against both storage 

anomaly and estimated storage. This suggests that calibrating solely against storage-related variables yields results closer 

to the compromise solution than calibrating against outflow alone. One reason for this is the lower sensitivity of outflow 

simulations to calibration compared to storage simulations. This finding is encouraging because, unlike outflow data, 555 

storage anomaly can be estimated using remotely sensed data. The data length should exceed five years to be used 

effectively for this purpose (Otta et al., 2023). Although our results indicate that, in general, calibrating against storage 
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anomaly improves the simulation of storage, using the absolute simulated storage from such calibrations should be done 

carefully, as these calibrations do not always guarantee an improvement in absolute storage.  

Calibrating against estimated storage does not outperform calibrating against storage anomaly (see Fig. 2 and Table 2), 560 

although theoretically, it should provide results closer to calibration against storage. The reason for this, besides the inherent 

error in storage estimation, can be traced to discrepancies between the capacity information from GRanD and the maximum 

daily observed storage (median difference equals to ~25%). The maximum observed storage should be less than or equal 

to capacity unless during an overtopping period. However, comparing maximum daily storage data from ResOpsUS with 

reservoir capacity from GRanD shows notable differences in several cases (see Table S1). Steyaert and Condon (2024) also 565 

reported that, due to GRanD's omission of overtopping and potential inclusion of inaccurate data, 100 out of the 679 dams 

listed in the ResOpsUS dataset have maximum storage values exceeding the reservoir capacities reported by GRanD. 

Inconsistencies are also reported for reservoir area; Dong et al. (2023) reported that the actual reservoir polygons of Ertan 

Reservoir and Jinping I Reservoir are 69% and 50% larger than the GRanD polygons. Therefore, for those reservoirs, 

modeling reservoir operation using GRanD information should not lead to good results, particularly for absolute storage 570 

simulation. Consequently, absolute storage comparison may not be a fair approach for model performance assessment, 

although it remains valid for comparing different algorithms. An assessment of the degradation in KGE values obtained 

from calibration against estimated storage compared to calibration against actual storage reveals that the results from 

estimated storage closely match those from actual storage when the difference between the reservoir capacity reported by 

GRanD and the maximum daily observed storage is minimal. However, as this difference increases, the discrepancy 575 

between the results of the two calibration variants also grows (Fig. S19). It is important to note that calibration against 

storage anomaly does not exhibit a direct relationship with these differences in storages. 

To the best of our knowledge, there are currently two global datasets — the Global Reservoir Storage (GRS) introduced 

by Li et al. (2023) and the GloLakes dataset by Hou et al. (2024) — that provide monthly time series of estimated absolute 

storage using remotely sensed information, along with either a geostatistical model or a volume-elevation/area-volume 580 

relationship. We assessed the quality of their estimates for the absolute storage of the studied reservoirs. GRS covers all 

100 studied reservoirs, while GloLakes includes only 57 of those 100 reservoirs. The median KGEstorage (without the trend 

component) was 0.26 for GRS and 0.14 for GloLakes, indicating that neither dataset provides estimates accurate enough to 

be considered reliable for calibrating reservoir operation algorithms against their estimated absolute storage (see Table S4). 

The BKGE components for GRS, with a median of 0.84, range from significant underestimation — such as for Norfork Dam 585 

(GRanD ID 1042), where the mean estimated storage is only 2% of the observed value — to substantial overestimation, 

such as for Albeni Falls Dam (GRanD ID 305), where the mean estimated storage is 45 times greater than the observed 

value. GloLakes, with a median BKGE of 1.49, performs slightly better in terms of extreme bias; the largest underestimation 

occurs at Santa Rosa Dam (GRanD ID 1086), where the mean estimated storage is only 35% of the observed value. 

Maximum overestimation for GloLakes is observed at the same dam (Albeni Falls Dam) but is less extreme compared to 590 

GRS, though still substantial. The RKGE and VKGE components of KGE for storage are better than BKGE in terms of extreme 

values. However, with medians of 0.63 and 0.84 for GRS and 0.71 and 0.47 for GloLakes, respectively, RKGE and VKGE for 

both datasets are still not sufficiently promising, indicating uncertainty in remotely sensed storage anomaly estimates. 

 

 595 
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4.2 Value of calibration and choice of reservoir operation algorithm 

Applying streamflow simulated by the global hydrological model WaterGAP 2.2e as inflow to 100 US reservoirs, we found 

that the outflow generated by the calibration-free algorithm DH is a better alternative to the mean observed outflow. 

However, the opposite is true for simulated reservoir storage (see Fig. 2), underscoring the need for reservoir-specific 

calibration. Our findings indicate that all three calibrated algorithms generally perform better than DH in terms of storage, 600 

but the effect on reservoir outflow simulation is negligible. The degree of improvement varies considerably between 

reservoirs, and in some cases, no improvements are seen, as also reported by Turner et al. (2021) with a more complex 

reservoir operation algorithm. Among the calibrated algorithms, SA and WA performs better than CH when calibrated 

against storage, storage anomaly, and estimated storage. Thus, CH may only be preferred over SA and WA in the case of 

irrigation reservoirs with rather good water demand information or if computational resources are very limited as CH 605 

requires the estimation of only two instead of three parameters for non-irrigation reservoirs. While the performance of SA 

and WA cannot be distinguished by KGE, nRMSE indicates a slightly better performance of SA in the case of calibration 

against storage anomaly (Fig. 3). 

Calibration of H06 reveals that default parameters are rarely included in the calibrated parameter sets (Fig. S20), 

especially noticeable for irrigation reservoirs where parameter 𝑎2 almost always remains at its lower bound of 0.1. 610 

According to Eq. 4, this implies that calibration prioritizes using a scaled version of long-term inflow rather than directly 

integrating demand through addition. The demand estimation is not accurate enough for reservoir operations, resulting in 

increased complexity with limited benefit when distinguishing irrigation and supply reservoirs from other types of 

reservoirs (Table 3). Vanderkelen et al. (2022) similarly observed minimal additional value in including irrigation demand 

in reservoir operations.  615 

4.3 Relevance of the quality of simulated reservoir inflow and reservoir storage capacity data 

We found that the quality of inflow data is more important than the reservoir operation algorithms for outflow simulation, 

while it has less impact on storage simulation. This finding aligns with Vanderkelen et al. (2022), who attributed the similar 

performance of natural lake parameterization and H06 to poor simulated streamflow in the Community Land Model. Using 

observed inflow as a substitute for simulated outflow (ignoring the dam) and comparing it with observed outflow reveals 620 

that the DH algorithm, with median KGEoutflow values of 0.42 (calibration) and 0.02 (validation), results in worse outflow 

simulations compared to the observed inflow, which has median KGEoutflow values of 0.57 (calibration) and 0.36 

(validation). This is in line with Vora et al. (2024), who reported that ignoring reservoirs in modeling may lead to better 

outflow simulations than DH in some cases. However, some skill is observed in other algorithms, particularly SA, where 

the median KGEoutflow values for CH, SA, and WA are 0.68 (0.46), 0.75 (0.52), and 0.69 (0.56) for calibration (validation), 625 

respectively, when calibrated against outflow (see Figs. 6 and S9). In contrast to Vanderkelen et al. (2022), our study found 

that using observed inflow did not lead to a clear improvement in storage simulation. One possible reason is the error in 

GRanD data, with a median difference of ~14% between GRanD data and maximum daily observed storage for reservoirs 

with observed data. Another potential reason could be the impact of initial storage on simulation outcomes, which varies 

depending on the level of regulatory of reservoir operations, as reported by Yassin et al. (2019). In summary, calibrating 630 

reservoir algorithms against storage anomaly as the main calibration variant will not result in accurate outflow simulations 

unless the quality of inflow data is significantly improved. 
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4.4 Complexities of reservoir operations and dynamics 

In addition to poor inflow data and inaccurate capacity information, other factors also impact the performance of reservoir 

operation algorithms. Incorporating human decision-making into the model is very challenging, despite its critical 635 

importance (Rougé et al., 2021). This complexity arises because human decisions do not always follow operational rules 

due to evolving conditions, such as changes in water demand (Shah et al., 2019) or during droughts and floods (Nazemi 

and Wheater, 2015). For example, the Hoover Dam (Lake Mead) and Glen Canyon Dam (Lake Powell) are interconnected, 

and historically, Glen Canyon could release enough water to meet downstream needs until 2014. However, due to a drought 

in 2012 and 2013, the release from Glen Canyon Dam in 2014 dropped to its lowest level since the initial filling of Lake 640 

Powell in 1963 (Arizona Water Resource, 2013; Colorado River Drought, 2019). This reduction in release was aimed at 

recovering Lake Powell's storage, which had fallen to ~40% of its capacity (NASA Earth Observatory, 2014). Additionally, 

climate change and increases in water demand can lead to non-stationary situations, meaning that calibrated algorithms may 

not perform as well compared to the calibration period. This trend is observed in the ResOpsUS dataset, where there is 

generally a decreasing trend in reservoir storage, which also impacts release (Steyaert and Condon, 2024). For example, the 645 

Hoover Dam has experienced a continuous negative trend in its capacity since 2000 (see Fig. S21). Understanding these 

trends is crucial for assessing the degradation of the studied algorithms during the validation period, where the connection 

between observed inflow and outflow also becomes weaker. 

4.5 Limitations  

In this study, we modeled each reservoir independently, which may affect the quality of the analysis. In practice, a calibrated 650 

upstream reservoir would lead to different inflows to a downstream reservoir. However, since the calibration has not had a 

considerable impact on outflow simulation, it is expected that the overall conclusions would be similar. For the SA and WA 

algorithms, a reservoir may reach relative storage level(s) (see Eqs. 7 and 8) during the validation phase that were not 

observed during the entire calibration period. Consequently, the parameters for these unseen relative storage levels cannot 

be determined and are set to the lowest value (0.1 for both SA and WA). As a result, the performance of the algorithm for 655 

those reservoirs during the validation phase is affected by setting these undetermined parameters to the lowest value. In the 

case of the SA algorithm, this issue occurs for at most four reservoirs across the calibration variants, while for the WA 

algorithm it occurs for up to nine reservoirs (see Table S5). Moreover, although Yassin et al. (2019) suggest that a five-year 

spin-up period is generally sufficient to fully stabilize even for large dams, and we used five simulations of 1979 as our 

spin-up period, a longer run extending further back before 1980 could result in different initial storage conditions. 660 

Consequently, this could affect the performance of the operational algorithm. This potential limitation should be 

acknowledged, as it may impact the accuracy and generalizability of the results. 

5 Conclusions 

In this study, we assessed whether monthly time series of observed reservoir storage anomaly, which, unlike time series of 

storage and outflow, are available for many reservoirs worldwide from remote sensing, are suitable as targets for calibrating 665 

reservoir operation algorithms in large-scale hydrological models. To achieve this, we integrated a well-established 

reservoir algorithm and two newly developed ones into the global hydrological model WaterGAP, calibrating them against 

storage anomaly, estimated storage, storage, and outflow data sourced from ResOpsUS for 100 reservoirs in the USA. For 
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35 out of the 100 reservoirs with available observed inflow data, both observed and simulated inflows were used in the 

analysis. Our findings lead to the following conclusions: 670 

• Using observed storage-related variables, i.e., storage anomaly, estimated storage, or storage, for calibration of the 

reservoir algorithms results in a clear improvement in storage simulation and a slight improvement in outflow 

simulation during the calibration phase, particularly when calibration is performed against storage. However, the 

performance of the algorithms for storage during the validation phase remains worse than their performance 

regarding outflow. It should be noted that calibration using the rarely available outflow data leads to improvements 675 

only in simulated outflow and does not noticeably affect simulated storage, which remains very poor. 

• Among the three calibrated reservoir operation algorithms, the two newly introduced algorithms, WA and SA, 

perform similarly and better in storage simulation than CH, the calibrated version of the Hanasaki algorithm. 

• If observations of either storage, storage anomaly or outflow are available for a reservoir, the parameters of the 

reservoir algorithm should be adjusted as we found that the default parameter set of the DH algorithm, particularly 680 

the irrigation reservoir parameter, is seldom the optimal parameter set. For the reservoirs without observations, a 

calibration-free algorithm such as DH has to be used. 

• Considering water demand in the modeling of irrigation and water supply reservoirs, as done in DH, does not 

necessarily improve reservoir simulation, potentially due to high uncertainty in demand estimation. We therefore 

recommend disregarding downstream water demand, even in the case of irrigation and water supply reservoirs. 685 

• We found that using observed inflow instead of simulated inflow considerably improves the performance of the 

reservoir operation algorithms in terms of outflow simulation, but it does not have much impact on their 

performance in storage simulation. 

• For most reservoirs, none of the three relatively simple reservoir operation algorithms can accurately represent the 

dynamics of both reservoir outflow and storage, even after calibration against observations of outflow or storage-690 

related variables and even with observed inflow used in the simulation. The complexity of human decision-making 

cannot be captured by algorithms that rely solely on globally available information, even if their parameters are 

adjusted through calibration. 

• To improve large-scale hydrological modeling, we suggest leveraging recent and upcoming spaceborne 

information on reservoir water storage anomaly by implementing the SA or WA reservoir operation algorithms, 695 

which enables reservoir-specific calibration against observed storage anomaly. These algorithms showed, after 

calibration, a slightly better performance than the CH algorithm and are more suitable for large-scale applications 

than algorithms such as those of Chen et al. (2022) and Turner et al. (2021) that require daily inflow, storage, and 

outflow data — data that are rarely available outside the US.  

• As the currently available time series of absolute reservoir storage derived from remote sensing-based water 700 

storage anomaly often exhibit strong biases, and calibration against estimated storage did not outperform 

calibration against storage anomaly, we recommend to estimate the parameters of the SA or WA algorithm using 

globally available, remote sensing-based monthly time series of reservoir water storage anomaly (and in-situ 

storage and outflow  time series where available). This approach is expected to particularly enhance the quality of 

simulated reservoir storage. 705 
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Improving the accuracy of inflow simulations and validating reservoir-related characteristics are considered more 

important than solely improving the algorithm itself. Nevertheless, hybrid machine learning approaches, e.g. combining 

knowledge-based equations with deep learning, should be investigated for simulating reservoir dynamics. Finally, to further 

evaluate the impact of calibration approaches on the performance of reservoir operation algorithms, we suggest using more 

advanced parameter optimization methods than the grid search method we applied in this study.  710 
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