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Abstract.  Human-managed reservoirs alter water flows and storage, impacting the hydrological cycle. Modeling reservoir 

outflow and storage, which affect water availability for humans and freshwater ecosystems, is challenging because it 

dependsthey depend on human decisions, and there is limited. In addition, access to data on reservoir inflows, outflows, 10 

storage, and operational rules is very limited. Consequently, large-scale hydrological models either exclude reservoir 

operations or use calibration-free algorithms for modelingto model reservoir dynamics. Nowadays, remotely-sensed 

information on estimates of reservoir storage anomalies isbased on remote sensing are a potential resource for calibrating 

reservoir operationthe release algorithms for a large number of globally distributedmany reservoirs worldwide. However, 

it is not yet clear whatthe impact of calibration against storage anomaly has on simulated reservoir outflow and absolute 15 

storage is unclear. In this study, we address this questionby using in-situ outflow and storage data from 100 reservoirs in 

the USA (ResOpsUS dataset) to calibrate three reservoir release operation algorithms,: the well-established Hanasaki 

algorithm (CH) and two new storage-based algorithms, the Scaling algorithm (SA) and the Weighting algorithm (WA).  

These algorithms were implemented in the global hydrological model WaterGAP, with their parameters estimated 

individually for each reservoir and four alternative calibration targets: monthly time series of (1) storage anomaly, (2) 20 

estimated storage (calculated based on storage anomaly and GRanD reservoir capacity), (3) storage, and (4) outflow. The 

first two variables can be obtained from freely available global datasets, while the lastlatter two variables are not publicly 

availableaccessible for most reservoirs worldwide. We found that calibrationcalibrating against outflow doesdid not lead to 

skillful storage simulationsresult in skillful storage simulations for most of the 100 reservoirs and improves the only slightly 

improved outflow simulations only slightly more than compared to calibration against the three storage-related calibration 25 

targets. Compared to the results of the non-calibrated Hanasaki Algorithm (DH), calibrationcalibrating against both storage 

anomaly and estimated storage improved the storage simulation and slightly improved, whereas the outflow simulation. 

was only slightly improved. Calibration against storage anomaly resulted in 64 (39), 68 (45), and 66 (45) yielded skillful 

storage simulations for 64 (39), 68 (45), and 66 (45) reservoirs in the case of CH, SA, and WA, respectively, during the 

calibration (validation) period, as compared to onlyjust 16 (15) for DH. Utilizing Using estimated storage instead of storage 30 

anomaly does not provideoffer any added benefit, primarily due to inconsistencies in the observed maximum water storage 

and storage capacity data from GRanD. Findings show that theThe default parameters of the Hanasaki algorithm rarely 

matched the calibrated parameters, highlighting the importance of calibration. Using observed instead of inflow rather than 

simulated inflow has a more significant effectgreater impact on improving the outflow simulation than calibration, whereas 

the opposite is true for the storage simulation. Overall, the performance of the SA and WA algorithms is nearly equal, and 35 

both outperform the CH and DH algorithms. Moreover, incorporating downstream water demand into the reservoir 
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algorithms does not necessarily improve modeling performance due to the high uncertainty in demand estimation. 

Therefore, to improve the modeling of reservoir storage and outflow in large-scale hydrological models, we recommend 

calibrating either the SA or the WA reservoir algorithm individually for each reservoir against remote sensing-based storage 

anomaly, unless in-situ storage data areis available, and to improve the reservoir inflow simulation. 40 

1 Introduction 

Globally, more thanover 58,000 large dams (at least 15 meters in height),high) capable of impounding 8300 km³,³ have 

been constructed to meet various human needs such as, including irrigation, flood control, hydropower generation, domestic 

water supply, and recreation (Chao et al., 2008; Perera et al., 2021). These dams annually store aboutapproximately one-

sixth of the annual streamflow in reservoirs (Hanasaki et al., 2006), significantly altering the global freshwater system by 45 

increasing evaporation and modifying downstream streamflow (Best, 2019; Tian et al., 2022). About 60% of the seasonal 

variability in Earth's surface water storage is attributed to human-managed reservoirs, i.e.., artificial reservoirs and regulated 

lakes, assince the water level of these reservoirs varies on average four times as much asmore than that of natural lakes 

(Cooley et al., 2021). Therefore, to accurately depict the hydrologic cycle, and assess the inclusionimpact of reservoir 

operations on water availability for humans and freshwater ecosystems, including the dynamics of human-managed 50 

reservoirs in hydrological models is crucial. This inclusion is supposed to enhance model performance, particularly 

regarding evapotranspiration and streamflow. At presentCurrently, six out of the 16 global hydrological models contributing 

to ISIMIP2 (The Inter-Sectoral Impact Model Intercomparison Project, www.isimip.org) simulate the dynamics of human-

managed reservoirs (Telteu et al., 2021).  

Whereas the outflow from a natural lake strongly depends on the lake's water level of the lake and thus the water 55 

storage in the lake, humans controlmanage the outflow from a reservoir. Even thoughAlthough human decisions 

onregarding the release of water from reservoirs dodepend, to some degree, dependextent, on reservoirthe reservoir's water 

storage, they are also influencedaffected by manyvarious other factors, such as downstream water demand, the demandneed 

for hydropower production, the need to protectflood protection for downstream regions from floodingareas, ecosystem 

requirementsneeds, and legal constraints (Jager and Smith, 2008; Dong et al., 2023).  Most reservoirs serve multiple 60 

purposes, making their simulation even more complex. However, since reservoir operationbecause the operational (i.e., 

release) rules of reservoirs and observations ofobserved data on reservoir inflow, outflow, and storage dynamics are rarely 

publicly accessibleavailable, large-scale hydrological models need tomust resort to calibration-free reservoir operation 

algorithms that only require information about the reservoir's storage capacity and surface water area. They These 

algorithms are considered calibration-free algorithms in the sense thatbecause they do not require the calibration of 65 

reservoir-specific algorithm parameters based on observations of model output variables. These calibration-freeWhile these 

algorithms can only very roughly simulate the decisions of reservoir operators and cannotto some extent, they do not account 

for the unique operationoperational patterns of each reservoir (Masaki et al., 2018; Turner et al., 2021; Steyaert and Condon, 

2024).  

All global hydrological models currently useemploy calibration-free reservoir operation algorithms, which differ 70 

regardingvary in their formulation and complexity (Telteu et al., 2021). Examples forof calibration-free reservoir operation 

algorithms proposed for large-scale hydrological modeling are described in Dong et al. (2022), Zajac et al. (2017), 

Haddeland et al. (2006), and Hanasaki et al. (2006) (herein referred to as H06). Dong et al. (2022) and Zajac et al. (2017) 
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employed different operationoperational rules for four distinct levels of reservoir storage in their algorithms, whereas 

Haddeland et al. (2006) developed a prospective optimization algorithm based ontailored to the reservoirreservoir's purpose. 75 

The H06 method is currently implemented in the global hydrological model H08 (Hanasaki et al., 2008) and, in a slightly 

modified form, in the global hydrological model WaterGAP, and. It also serves as the foundationbasis for the Dam-

Reservoir Operation model (DROP; Sadki et al., 2023).  While studies (e.g., Döll et al., 2009; Vanderkelen et al., 2022) 

clearly demonstrate that implementing the H06 algorithm leads to improved streamflow simulations compared to not 

consideringcompletely disregarding the reservoir as a surface water body at all, there is no consensus (please refer to Döll 80 

et al., 2009; Vanderkelen et al., 2022; Gutenson et al., 2020) on whether the H06 algorithm outperforms the natural lake 

outflow parameterization of Döll et al. (2003) (herein referred to as D03), which assumes that artificial reservoirs behave 

similarly to natural lakes.  It should be noted that simulatingthe simulated reservoir outflow and storage dynamics 

dependsdepend not only on the reservoir operation algorithm but also on the quality of the simulated inflow, making it 

difficultchallenging to assess the adequacy of the algorithm without inflow observations (Vanderkelen et al., 2020). 85 

Several studies have endeavored to fine-tune calibration-free algorithms by adjusting a single parameter for each 

reservoir, but the results have been unpromising. For example, Gutenson et al. (2020) found that adjusting only one 

parameter of H06 for 60 non-irrigation reservoirs across the US did not lead to better simulations compared to a calibrated 

D03. Shin et al. (2019) reported that a new algorithm based on H06, wherewith one parameter was calibrated for 27 

reservoirs, could not accurately capture the seasonality in reservoir storage and outflow. ConsequentlyAs a result, some 90 

studies have devised calibration-required algorithms with multiple parameters for each reservoir.  Turner et al. (2021) 

introduced the Inferred Storage Targets and Release Functions (ISTARF) approach, a reservoir operating policy 

withcomprising 19 parameters. This approach was applied to 1,930 reservoirs across the USU.S. and demonstrated robust 

improvements in both outflow and storage compared to the H06 model. Although the ISTARF approach is relatively 

parsimonious in terms of the number of parameters compared to other established calibration-required algorithms — such 95 

as those proposed by Yassin et al. (2019) and Turner et al. (2020), which feature 72 (six parameters for each month) and 

208 parameters per reservoir (four parameters for each week), respectively — the integration ofintegrating these approaches 

into large-scale models incurs substantial computational expensescosts. More importantly, this approach requires time 

series data of observed inflow, outflow, and reservoir storage, which can be difficult to obtain outside the US, rendering it 

infeasible for global-scale modeling. The same limitation applies to some machine learning approaches for simulating 100 

reservoir dynamics, such as the artificial neural network approach proposed by Ehsani et al. (2016) and the tree-based 

reservoir model ofdeveloped by Chen et al. (2022).  

Remotely sensed data on water levels and surface water area of reservoirs are increasingly available and. They are 

being used to derive time series of water storage anomalies or even absolute storage. With recent advancements in 

spaceborne data, such as the Surface Water and Ocean Topography (SWOT) mission, storage anomaliesanomaly data can 105 

now be gathered even for small reservoirs, providing a valuable source for enhancing resource modeling within large-scale 

hydrological models (Biancamaria et al., 2016). Examples include HydroSat (Tourian et al., 2022), the Global Reservoir 

Storage (GRS) dataset (Li et al., 2023), and GloLakes (Hou et al., 2024). This newly available information could be used 

to calibrate reservoir operation algorithms individually for each reservoir, which is expected to lead to an improved 

simulation of reservoir dynamics. Remote sensing-derived reservoir storage anomalies were shown to fit reasonably well 110 

towith in-situ observations, depending on the reservoir and satellite data product; storage. Storage anomalies, rather than 
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absolute water storage values, should be considered for both the simulated and remote sensing data (Otta et al., 2023). In 

this regard, Hanazaki et al. (2022) developed a targeted storage-and-release algorithm for global flood modeling, where the 

release is estimated for four storage zones based on the volume of each zone, flood discharge, and long-term average inflow. 

They estimated the volume of each storage zone using remote sensing data, while calculating flood discharge was calculated 115 

usingwith a probability distribution for 2,169 dams worldwide.  The authors reported a 62% improvement in Nash-Sutcliffe 

Efficiency compared to the version of the CaMa-Flood global hydrodynamic model that did not include the reservoir 

module. Recently, supported by remote sensing data and a machine learning approach, Shen et al. (2024) developed a 

satellite-based target storage reservoir operation scheme (SBTS) with seven parameters. This scheme simulates the outflow 

and storage of flood control reservoirs across four distinct storage zones, usingutilizing estimated flood storage capacity 120 

(FSC) data for 1,178 reservoirs, derived throughfrom machine learning, trained on reported FSC data from 436 reservoirs. 

They found that their approach, when using observed inflow, improves reservoir parameterizations, allowingenabling the 

SBTS to generally outperform the methods of Dong et al. (2022), Zajac et al. (2017), and Hanazaki et al. (2022).  However, 

they reported no improvement when the simulated inflow was used. Dong et al. (2023) demonstrated that simultaneous 

calibrations against reconstructed release and reservoir storage data (using remotely sensed data, model simulations, and 125 

in-situ data) considerably improved the performance of reservoir operation algorithms for the Ertan and Jinping I reservoirs 

in China.  However, for global-scale studies, release information is unavailable for most reservoirs. In such cases, calibrating 

against storage anomaly alone for parameter estimation may degrade outflow simulations due to potential trade-offs 

between calibrating against different variables (Döll et al., 2024,; Hasan et al., 2025). The recently published dataset of 

observed dynamics of US reservoirs, 'ResOpsUS' (Steyaert et al., 2022), which provides time series of daily observed 130 

storage, elevation, inflows, and outflows for up to 679 reservoirs across the contiguous US, offers an opportunity to explore 

this trade-off. 

The mainprimary objective of this study is to investigate how monthly time series of observed reservoir-related data 

can improve the simulation of reservoir outflow and storage in continental or global hydrological models. We focus on the 

suitability of observed storage anomalyanomalies for calibrating reservoir releaseoperation algorithms, as these anomalies 135 

can be obtained globally through remote sensing-based observations. We compare their informational value to that of 

scarcer outflow and absolute storage observations, as well asalong with the simulation results achieved withobtained from 

an uncalibrated reservoir algorithm. We utilized in-situ storage and outflow data from the ResOpsUS dataset for 100 

reservoirs in the US to calibrate three reservoir operation algorithms.  All algorithms were implemented in the global 

hydrological model WaterGAP 2.2e (Müller Schmied et al., 2024). The parameters of the algorithms were estimated using 140 

asthe following alternative calibration targets,: 1) storage anomaly, 2) estimated storage (calculated based on storage 

anomaly and GRanD reservoir capacity, detailed in section 2.3), 3) storage, and 4) reservoir outflow.  Calibration involved 

optimizing parameters individually for each reservoir, algorithm, and calibration target. ToAdditionally, to explore, in 

addition, the sensitivity of the model results to the quality of the inflow data, we calibrated the algorithms for a subset of 

35 reservoirs with available inflow measurements, using observed inflow instead of the inflow simulated by WaterGAP. 145 

Finally, for a subset of 21 reservoirs, we determinedevaluated the effectimpact of incorporating, in the case of irrigation 

and water supply reservoirs, theincluding downstream water demand in the reservoir algorithms for irrigation and water 

supply reservoirs. 

2 Methods and Data 
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2.1 The global hydrological model WaterGAP  150 

WaterGAP simulates the dynamics of water flows and storages on the continents as impacted by human water use and 

human-managed reservoirs (Müller Schmied et al., 2021). It computescalculates sectoral water abstractions as well as, along 

with net abstractions (abstraction minus return flows)), from surface water bodies (such as reservoirs, lakes, and rivers) and 

from groundwater. The model has a spatial resolution of 0.5°×0.5° and a daily temporal resolution. However, the model 

output analysis is normally done at thetypically conducted on a monthly scale. The current version, 2.2e, has been calibrated 155 

in a basin-specific manner against the mean annual streamflow at 1,509 gauging stations worldwide (Müller Schmied et al., 

2024). Taking into account the commissioning years, WaterGAP simulates the dynamics of reservoirs with a storage 

capacity of at least 0.5 km3, referred to as 'global' reservoirs, using a slightly adapted version of the H06 algorithm (Döll et 

al., 2009). Smaller reservoirs (termed "local", referred to as 'local' reservoirs), are treated as natural lakes (Müller Schmied 

et al., 2021). A total of 1,255 global reservoirs, with a combined maximum capacity of 5,672 km3, are integrated into 160 

WaterGAP 2.2e, sourced from the GRanD (Lehner et al., 2011) and GeoDAR (Wang et al., 2022) datasets; in addition, 88 

regulated lakes are treated like global reservoirs (Müller Schmied et al., 2024). The water balance for a reservoir in 

WaterGAP is calculated as (Müller Schmied et al., 2021): 

𝑑𝑆

𝑑𝑡
= 𝐼 + 𝐴 ∙  (𝑃 − 𝐸𝑝𝑜𝑡) − 𝐺𝑊𝑅 − 𝑁𝐴𝑠 − 𝑂 (1) 

where S (m3) represents reservoir storage, I (m3/d) denotes inflow into the reservoir from upstream, A (m2) is the reservoir 

area, P (m/d) indicates precipitation, Epot (m/d) stands for potential evaporation, GWR (m3/d) denotes groundwater recharge 165 

(only in arid/semiarid regions), NAs (m3/d) represents potential net abstraction from the reservoir, and O (m3/d) is the 

reservoir outflow including release and spill. The surface area 𝐴 is computed daily as a fraction of the maximum area that 

depends on the current reservoir storage and its storage capacity. A is reduced by 15 % when S reaches 50% of the reservoir's 

capacity, and by 75% when S drops to 10% of the capacity (Müller Schmied et al., 2021). Abstraction from a reservoir is 

permitted only until the water storage level drops to 10% of its total capacity. The implementation of reservoir operation 170 

algorithms in WaterGAP is described below. For detailed information on WaterGAP, please refer to Müller Schmied et al. 

(2021, 2024). 

2.2 Reservoir operation algorithms 

2.2.1 Hanasaki algorithm as implemented in WaterGAP2.2e 

The calibration-free H06 method, in its original formulation, estimates monthly reservoir outflow by distinguishing between 175 

irrigation and non-irrigation reservoirs. For non-irrigation reservoirs, this outflow is determined by factors such as the 

storage at the beginning of the operational year (determined by analyzing the seasonal flow dynamics), the mean annual 

inflow into the reservoir, and the reservoirreservoir's storage capacity.  The long-term target for reservoir releases is the 

mean annual inflow. If reservoir storage at the beginning of an operational year is above normal, releases are 

increasedincrease throughout the year, and; conversely, if it is below normal, releases are decreaseddecrease. Therefore, 180 

the total release in an operational year depends on the storage level at the start of that year. In the case of irrigation reservoirs, 

the demand also influences the release (Hanasaki et al., 2006). The H06 algorithm was implemented in WaterGAP on a 

daily time scale, and the mean annual inflow was adjusted by adding the difference between precipitation and evaporation 
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over the reservoir. This modification aimed to provide a more accurate representation of the reservoir's water balance (Döll 

et al., 2009). 185 

The first step in the H06 algorithm involves determining the release coefficient for the operational year 'y' (𝑘𝑦) using 

the following equation: 

𝑘𝑦 =
𝑆𝑖𝑛𝑖

𝑎1 ∙ 𝐶
 (2) 

where Sini (km3) represents the reservoir storage at the start of the operational year; 𝐶 (km3) denotes the water storage 

capacity of the reservoir; and 𝑎1 is a parameter of the H06 method, recommended to be set to 0.85 in its standard form. In 

the second step, the provisional release is determined. For non-irrigation reservoirs, the provisional release is calculated as 190 

follows: 

𝑅𝑑
′ = 𝐼′̅ (3) 

in which 𝑅𝑑
′  (m3/s) is the provisional release for the day ’d’ and 𝐼′̅ (m3/s) is the mean annual inflow into the reservoir plus 

the difference between precipitation and evaporation over the reservoir (for this study, the period 1980-2009). For irrigation 

reservoirs, the provisional release is computed as follows: 

𝑅𝑑
′ = {

𝑎2 ∙ 𝐼′̅ ∙ [1 +  
𝑘𝑎𝑙𝑐 ∙ 𝑁𝐴𝑠𝑑

𝑁𝐴𝑠̅̅ ̅̅ ̅̅
]                𝑖𝑓  𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅  ≥  𝑎2 ∙ 𝐼′̅  

𝐼′̅ +  𝑘𝑎𝑙𝑐 ∙ 𝑁𝐴𝑠𝑑 −  𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 (4) 

in which 𝑁𝐴𝑠𝑑 (m3/s) represents the potential net abstraction from surface water bodies for downstream cells of the reservoir 195 

for day 'd'; 𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅  (m3/s) denotes the mean total annual potential net abstraction for downstream cells of the irrigation 

reservoir; 𝑘𝑎𝑙𝑐 is an allocation coefficient that distributes the abstraction to the upstream reservoirs based on the proportion 

of 𝐼′̅ into each reservoir (it equals one if there is only one irrigation reservoir upstream of the demand cells); and 𝑎2 is a 

parameter specifically for irrigation reservoirs that acts as a partitioner, leading to the use of different equations for 

reservoirs with a high demand-to-inflow ratio compared to those with a low demand-to-inflow ratio. With a default value 200 

of 0.5, this parameter sets the minimum provisional release at 50% of the mean annual inflow during non-crop months. 

During crop months, the fluctuations in provisional release for reservoirs with a high demand-to-inflow ratio (𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅  

exceeding 50% of mean annual inflow, first equation) correspond to fluctuations in daily net abstraction relative to 𝑁𝐴𝑠 ̅̅ ̅̅ ̅̅ . 

In contrast, reservoirs with a low demand-to-inflow ratio (as per the second equation) align their provisional releases with 

the daily net abstraction (Hanasaki et al., 2006). The downstream potential net abstraction associated with each reservoir is 205 

calculated based on surface water demand for a maximum of five grid cells downstream in the absence of other reservoirs. 

Otherwise, it extends to the next reservoir. The potential net abstraction information is obtained from the WaterGAP dataset. 

With the provisional release determined, the daily release is calculated using the following equation: 

𝑅𝑑 = {

𝑘𝑦 ∙ 𝑅𝑑
′                                                                𝑖𝑓   𝑐 ≥  𝑎3        

(
𝑐

𝑎3

)
2

∙ 𝑘𝑦 ∙ 𝑅𝑑
′ + {1 −  (

𝑐

𝑎3

)
2

} ∙  𝐼𝑑           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 (5) 

where 𝑐 represents the ratio of 𝐶 (km3) to 𝐼′̅ (km3/yr); 𝐼𝑑 (m3/s) is the daily inflow into the reservoir for the day 'd'; 𝑅𝑑 (m3/s) 

is the daily release from the reservoir; and 𝑎3 is a third parameter in the H06 approach, with default value of 0.5. This 210 

parameter is also a partitioner that results in the application of different equations for reservoirs with high capacity-to-

inflow ratios (c ≥ 𝑎3) compared to those with low capacity-to-inflow ratios. This implies that for reservoirs with high 

capacity-to-inflow ratios (first equation), release is independent of daily inflow, while for reservoirs with low capacity-to-
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inflow ratios (second equation), daily inflow influences the release (Hanasaki et al., 2006). In this study, H06 with default 

values for 𝑎1, 𝑎2, and 𝑎3 is referred to as the DH algorithm, while H06 with calibrated parameters is referred to as the CH 215 

algorithm. 

2.2.2 New algorithms 

In this study, we introduce and compare two new reservoir operation algorithms that 1) require the reservoir-specific 

calibration of their parameters; 2) different from H06, utilize daily reservoir water storage as a critical factor in computing 

daily releases; and (3) do not require water use information to estimate the releases of irrigation reservoirs. Both algorithms 220 

include three parameters that are related to different levels of storage levels: above 70% of the reservoir capacity (level 1), 

between 40% and 70% of the reservoir capacity (level 2), and below 40% of the reservoir capacity (level 3). This 

classification is based on the observation that the operation rule curve of reservoirs often varies at different storage levels, 

typically corresponding to different seasons (Dang et al., 2020). Unlike the H06 approach, which employs a single release 

coefficient for a full year of operation, both new algorithms consider a daily filling ratio, i.e.., relative water storage (𝑆𝑟𝑒𝑙𝑑), 225 

as defined by the following equation: 

𝑆𝑟𝑒𝑙𝑑 =
𝑆𝑑

𝐶
 (6) 

 in which 𝑆𝑑 (km3) is the reservoir storage on day 'd', and 𝐶 (km3) indicates the water storage capacity of the reservoir. Both 

algorithms use 𝑆𝑟𝑒𝑙𝑑 for release estimation but apply different equations to calculate the release. The following sections 

describe the release estimation methods employed by these algorithms, i.e., Scaling algorithm (SA) and Weighting 

algorithm (WA). 230 

2.2.2.1 Scaling algorithm 

In the SA algorithm, the daily release at each specific storage level (Level 1, Level 2, or Level 3) is computed as a function 

of 𝑆𝑟𝑒𝑙𝑑, mean annual inflow (𝐼 ̅), daily inflow (Id), the 30-day mean inflow (𝐼3̅0𝑑), and a parameter associated with that 

level (Eq. 7). For this purpose, Id is scaled using the ratio of 𝐼 ̅to 𝐼3̅0𝑑. This ratio represents the general effect of reservoirs 

in altering the temporal variation of streamflow by storing excess wa ter during high-flow months and releasing it during 235 

low-flow months. The multiplication of 𝐼 ̅ with 𝑆𝑟𝑒𝑙𝑑  mimics a prompt response to extreme events where storage can fill 

up within a few days. The release in the SA algorithm, when water storage is at level 𝑛, is calculated as follows: 

𝑅𝑑 = 𝑝
𝑛

∙ [𝑆𝑟𝑒𝑙𝑑−1 ∙ 𝐼 ̅ + 𝐼 ̅

𝐼 ̅30𝑑
 ∙ 𝐼𝑑]       for  𝑛 = 1, 2, 3   (7) 

in which 𝐼̅30𝑑 (m3/s) represents the mean inflow into the reservoir during the last 30 days. The variable 𝑛 indicates the 

storage level at time d-1, and 𝑝𝑛 is the parameter assigned to storage level n (one parameter assigned to each storage level). 

Levels 1, 2, and 3 correspond to 𝑆𝑟𝑒𝑙 as follows: Level 1 for above 0.7, Level 2 for between 0.4 and 0.7, and Level 3 240 

for below 0.4. (see Fig. 1). The parameters valueparameter values need to be determined through the calibration process. 

These parameters enable us to adjust the mean release, while temporal variability is estimated inside the square brackets. 

2.2.2.2 Weighting algorithm 
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The WA areis the same as SA method in most partparts of the release calculation,; however, in contrast to the SA method, 

WA does not consider Id to compute the release and solely relies on 𝑆𝑟𝑒𝑙𝑑  for weighting 𝐼 ̅and 𝐼3̅0𝑑. Therefore, the 245 

contribution of long-term inflow is higher at higher storage levels, while its contribution decreases with loweras storage 

levels decrease. Conversely, the contribution of inflow from the last 30 days increases as storage decreases. A maximum 

of 30% of  𝐼3̅0𝑑 contributes to release estimation at higher storage levels (𝑆𝑟𝑒𝑙 ≥  0.7), while it reaches 100% when the 

reservoir is empty, which is identical to run-of-the-river flow. In the WA algorithm, when water storage is at level n, the 

release is estimated as follows: 250 

𝑅𝑑 = 𝑞𝑛 ∙ [𝑆𝑟𝑒𝑙𝑑−1 ∙ 𝐼 ̅ + (1 − 𝑆𝑟𝑒𝑙𝑑−1) ∙ 𝐼3̅0𝑑]          for  𝑛 = 1, 2, 3 (8) 

where 𝑞𝑛 is the parameter assigned to storage level n that needs to be determined (see Fig. 1). We opted for 𝐼3̅0𝑑 over 𝐼𝑑 

assuming that release decisions may rather be based on the past inflow over a longermore extended period and not on the 

inflow on just the previous day.  

Contrary to the H06 approach, where the release is independent of inflow in reservoirs with large storage capacity 

relative to the annual inflow (meaningresulting in a constant release throughout the year, see Eq. 5), both new algorithms 255 

consider the impact of inflow on release in all reservoirs. This impact varies with different seasons and storage levels, 

leading to variability in release throughout the year, which is more realistic (see Eq. 7 and Eq. 8). It should be noted that 

the new algorithms do not distinguish between irrigation and non-irrigation reservoirs; therefore, no water use data is 

required for their application, making their implementation easier than the H06 algorithm. This is because the estimation 

ofestimating downstream water demand aton a large scale is generallyusually very uncertain, and reservoirs are 260 

usuallytypically designed for multiple purposes. 

In each of the three algorithms, if 𝑆𝑑  falls below 10 percent of the storage capacity (𝐶), the calculated 𝑅𝑑 is adjusted to 

 0.1 ∙ 𝑅𝑑 if the available water is sufficient; otherwise, the entire 𝑆𝑑 will be released. Finally, the reservoir outflow is 

calculated as follows: 

𝑂𝑑 = 𝑅𝑑 + 𝑆𝑃𝑑  (9) 

where 𝑂𝑑   (m3/s) and 𝑆𝑃𝑑 (m3/s) are the reservoir outflow and the spill from the reservoir during day 'd', respectively. 𝑆𝑃𝑑  265 

is calculated as the difference between 𝑆𝑑 and 𝐶, where 𝑆𝑑 exceeds 𝐶; otherwise, it is zero. 
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Figure 1. Overview of the process to calculate reservoir release using the Hanasaki (H06), Scaling (SA) and Weighting 

(WA) algorithms, indicating the required inputs as well as the equation numbers where the complete equations can be found 

in the text. The left panel details the H06 algorithm implemented in WaterGAP, withoutlining the steps for calculating the 270 

release coefficient, provisional release, and release. The H06 algorithm requires reservoir capacity, storage values at the 

start of the operational year, daily inflow, precipitation, evaporation data, and daily potential net abstraction data for 

irrigation reservoirs. The right panel presents SA and WA, indicating the calculation of relative water storage and the release 

computation as a function of three reservoir water storage levels (n = 1, 2, or 3). SA and WA releasereleases are calculated 

based on reservoir capacity, daily storage, precipitation, evaporation, and inflow. The time-averaged variables are derived 275 

from daily data. For the H06 algorithm DH, the default values for a1, a2, and a3 are 0.85, 0.5, and 0.5, respectively.  

2.3 Data 

The ResOpsUS dataset (Steyaert et al., 2022), which served for calibratingwas used to calibrate and evaluatingevaluate the 

three algorithms in this study, encompasses daily in-situ records of inflow, storage, outflow, elevation, and evaporation for 

up to 679 US reservoirs. The available data spanscovers the years from 1930 to 2020, determined by each dam'sthe 280 

commissioning year of each dam and datathe availability of data. In this study, data on reservoir inflow (daily), outflow 

(monthly), and storage (monthly) from 1980 to 2019 were considered, divided into two distinct periods: a calibration phase 

spanning from 1980 to 2009, and a validation phase covering the years 2010 to 2019. Monthly data were computed from 

daily records, excluding months with more than one week of missing values. Subsequently, we applied filters to the dataset, 

considering only reservoirs with a minimum data length of five years, and a minimum reservoir capacity of 0.5 km3, as well 285 
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as ensuringkm³. Additionally, we ensured that there is only one reservoir per 0.5°× ° × 0.5 ° grid cell and that no negative 

values are present. This resulted in 100 reservoirs, with 35 having data for storage, inflow, and outflow, and 65 having data 

for storage and outflow only. The minimum number of monthly data values for the 65 (35) reservoirs was 111 (252) for the 

calibration period and 65 (59) for the validation period. The reservoirs'reservoir storage capacities (C) range from 0.5 km3 

to 36.7 km3 based on the GRanD dataset (Lehner et al., 2011). Out of the total 100 reservoirs, nine are irrigation reservoirs. 290 

Detailed information on each reservoir is provided in Table S1.  

Using in-situ storage data, we derived two additional storage-related variables: the time series of storage anomaly and 

estimated storage. These variables can also be estimated using remote sensing data. StorageThe storage anomaly time series 

for each reservoir is calculated by subtracting the mean storage during the calibration period from the in-situ storage data 

for each reservoir.  However, the storage anomaly lacks information about the bias term, and calibrating against it can result 295 

inlead to a simulated storage time series that significantly deviates from the observed water storage. Having actual absolute 

storage is advantageousbeneficial, as reservoirs are the only surface water bodies for which we can model absolute storage 

within the WaterGAP. To provide an alternative, we calculated the “estimated storage time series”; this term refers to 

storage values that are not observed directly but are estimated using storage anomaly and the reservoir capacity C. First, we 

determined the storage changeschange time series by subtracting the initial month's storage anomaly value from the monthly 300 

storage anomaly values. Assuming the reservoir reaches maximum capacity at least once between 1980 and 2009, we 

calculated the maximum monthly storage change, termedreferred to as Difmax. We then subtracted Difmax from the GRanD 

reservoir storage capacity to estimate the initial water storage for the first month. The estimated storage time series is then 

obtained by adding the storage changes to this estimated initial water storage. Since the data are monthly, and daily 

maximum storage is generally higher, we applied a 1.2 scaling factor to Difmax. This adjustment means that Difmax used in 305 

our calculations is 20% higher than the initially calculated value. This 20% increase is derived from the mean difference 

between the maximum daily storage and the monthly storage observed in 100 studied reservoirs (see Table S1). The 

calculation of estimated storage can be performed using either absolute storage or storage anomaly, as the time series of 

storage changes would remain the same in both cases. An example using GRanD ID 597 (Glen Canyon Dam, Lake Powell) 

clarifies the calculation of storage anomaly and estimated storage. The mean observed storage value between 1980 and 310 

2009 for Glen Canyon Dam is 22.45 km³. To obtain the storage anomaly time series for this reservoir, the value of 22.45 

km³ is subtracted from all storage data for the reservoir over the entire period (1980–2019). For calculating estimated 

storage, the Difmax is 6.6 km³, which occurred in July 1983 (see Fig. S1). This is calculated as the storage anomaly value in 

July 1983 minus the initial storage anomaly value in January 1980. The initial storage is estimated as 25.1 km³ (the reservoir 

capacity reported by GRanD) minus 7.9 km³ (6.6 km³×1.2). This gives an initial storage value of approximately 17.2 km³. 315 

Storage changes are then added to the estimated initial storage to obtain the time series of estimated storage (Fig. S1c), e.g., 

the estimated storage for July 1983 is 23.8 km³, which is the sum of 17.2 km³ and 6.6 km³. 

2.4 Model variants and calibration approach 

The three reservoir operation algorithms were implemented in WaterGAP. For each algorithm, the algorithm-specific 

parameters (𝑎1, 𝑎2, and 𝑎3 for the CH, 𝑝1, 𝑝2, and 𝑝3 for the SA and 𝑞1, 𝑞2, and 𝑞3 for the WA) were estimated by optimizing 320 

the Kling–Gupta Efficiency (KGE) (Kling et al., 2012), including the trend term (see Eq. 10). This optimization was 

performed through a single-objective calibration against the monthly time series of four variables: outflow, storage, storage 
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anomaly, and estimated storage (see Section 2.3). The parameters of each algorithm were calibrated using a grid search 

approach. Reservoir outflow and storage time series were simulated for all parameter sets listed in Table S2, and the 

parameter set corresponding to the highest KGE was selected. The parameter estimation using storage anomaly and 325 

estimated storage serves as the main experiment, as the primary emphasis of this study is on exploring the added value of 

incorporating storage anomaly (which facilitate the calibration of reservoir algorithms using remote sensing data in regions 

where in-situ storage time series are unavailable) into the calibration of reservoir operation algorithms. 

 As in previous studies by Dong et al. (2023), Turner et al. (2021), and Shin et al. (2019), the uncalibrated H06 (DH) 

is used as a benchmark. For comparison purposes, in all calibration experiments based on WaterGAP inflow, the inflow 330 

into reservoirs simulated by the DH algorithm was used to ensure that the same inflow data were applied across all 

algorithms. To achieve this, WaterGAP was first run with the DH algorithm to save the reservoir inflow data. These inflow 

data were then read from the saved files and used as the inflow source to model each reservoir independently. As a result, 

the inflow into all reservoirs, regardless of their position, was based on the DH algorithm when applying the CH, SA, and 

WA algorithms, meaning that the operations of upstream reservoirs did not affect those of downstream reservoirs. The 335 

calibration runs were initialized by running WaterGAP five times for the year 1979 to allow, allowing water storages to 

reach a relatively stable equilibrium state. 

In addition to the inflow simulated by WaterGAP, we also assessed the algorithms based on observed inflow where 

available. This was done to checkevaluate the performance of reservoir operation algorithms in the presence of high-quality 

inflow data, as poor inflow data can significantly impact the performance of thethese algorithms may be heavily impacted 340 

by poor inflow data (Vanderkelen et al., 2022). Moreover, we assessed the impact of distinguishing irrigation and supply 

reservoirs from other reservoirs. The distinction for irrigation reservoirs is the default approach for the H06 algorithm; 

however, here we also applied this distinction for supply reservoirs, as also their outflow also depends on downstream 

demand. To this end, we modeled 21 reservoirs (nine irrigation and 12 supply reservoirs) in two different ways for all 

algorithms: one includingthat included downstream demand and the other without consideringthat did not consider it. The 345 

purpose of this comparison is to evaluate whether including downstream demand, despite the high uncertainty in water 

demand estimation for the reservoirs, enhances the outflow and storage simulation, or whether it may not addadds value 

and instead introducewithout introducing unnecessary complexity. In the case of the SA and WA approaches for considering 

downstream demand, the process involves using the provisional release 𝑅𝑑
′  instead of 𝐼 ̅ in Eqs. 7 and 8. Therefore, similar 

to the DH algorithm, Eq. 4 was used with the default value for the parameter  𝑎2. However, instead of using 𝐼′̅,  to estimate 350 

𝑅𝑑
′ . Please note that, since the WA and SA approaches work with 𝐼 ̅  and not 𝐼′̅,  𝐼 ̅ was applied in Eq. 4. The resulting 𝑅𝑑

′  

from Eq. 4 then replaced  instead of 𝐼′̅ in the SA and WA approaches.𝐼 ̅ in Eqs. 7 and 8 for estimating 𝑅𝑑. 

Table 1 shows a summary of the different calibration variants. In Table 1, each calibration variant is characterized by 

a combination of a reservoir operation algorithm, a calibration variable, an inflow source, and whether or not downstream 

demand is considered or not. For example, calibrating the CH algorithm against outflow using inflow simulated by 355 

WaterGAP while considering downstream water demand represents one calibration variant. Thus, each reservoir operation 

algorithm comprises 12 calibration variants (eight utilizing WaterGAP inflow and four using observed inflow), leading to 

a total of 36 calibration variants. 

Table 1. Components of the different calibration variants, comprising 36 variants in total, with 12 variants for each 

algorithm. Each algorithm includes four variants usingthat use WaterGAP inflow with downstream demand considerations 360 
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(calibrated against outflow, storage, storage anomaly, and estimated storage), four variants usingthat use WaterGAP inflow 

without downstream demand, and four variants usingthat use observed inflow. Each calibration variant is defined by the 

combination of a reservoir operation algorithm, calibration variable, inflow source, and the consideration or non-

consideration of downstream demand. For CH, the default approach incorporates the downstream demand of irrigation 

reservoirs, while the opposite is true for SA and WA. Additionally, considering the downstream demand for supply 365 

reservoirs is not the default approach for any of the reservoir operation algorithms. For calibration variants that utilize 

observed inflow, only the default approach of each algorithm is considered.  

Operation algorithm Calibration variable Inflow source Downstream demand considered? 

CH Outflow 

Storage 

Storage anomaly 

Estimated storage 

WaterGAP 
Yes1 

No 

Observation Yes2 

SA  

WA 

Outflow 

Storage 

Storage anomaly 

Estimated storage 

WaterGAP 
Yes1 

No 

Observation No 

1 Water demand is considered for irrigation and supply reservoirs, i.e., 21 out of 100 studied reservoirs. 
2 Water demand is considered for irrigation reservoirs, i.e., two out of 35 studied reservoirs with observed inflow. 

 370 

2.5 Performance evaluation metrics 

The performance of the reservoir operation algorithms was evaluated using KGE and the normalized root mean square error 

(nRMSE). KGE is widely used for model calibration and evaluation, as it simultaneously considers multiple important 

aspects of model performance, providing a comprehensive assessment (Beck et al., 2019; Lamontagne et al., 2020). The 

use of nRMSE offers additional insights by focusing on the magnitude of errors. Following Hosseini-Moghari et al. (2020), 375 

we incorporated the trend component into the conventional KGE equation as follows: 

𝐾𝐺𝐸 = 1 − √(𝑅𝐾𝐺𝐸 − 1)2 + ( 𝐵𝐾𝐺𝐸 − 1)2 + (𝑉𝐾𝐺𝐸 − 1)2 + (𝑇𝐾𝐺𝐸 − 1)2  (10) 

𝑅𝐾𝐺𝐸 =
𝑐𝑜𝑣(𝑠𝑖𝑚, 𝑜𝑏𝑠)

𝜎𝑠𝑖𝑚 ∙ 𝜎𝑜𝑏𝑠

 (11) 

𝐵𝐾𝐺𝐸 =  
𝑠𝑖𝑚̅̅ ̅̅ ̅

𝑜𝑏𝑠̅̅ ̅̅ ̅
 (12) 

𝑉𝐾𝐺𝐸 =  

𝜎𝑠𝑖𝑚
𝑠𝑖𝑚̅̅ ̅̅ ̅⁄

𝜎𝑜𝑏𝑠

𝑜𝑏𝑠̅̅ ̅̅ ̅⁄
 (13) 

𝑇𝐾𝐺𝐸 =  
𝑇𝑠𝑖𝑚

𝑇𝑜𝑏𝑠

 (14) 

where 𝑅𝐾𝐺𝐸  represents the correlation coefficient between observed (obs) and simulated (sim) time series; 𝐵𝐾𝐺𝐸  denotes the 

bias of the mean simulated (𝑠𝑖𝑚̅̅ ̅̅ ̅) compared to the mean of observed (𝑜𝑏𝑠̅̅ ̅̅ ̅), 𝑉𝐾𝐺𝐸  is the variability component that denotes 

the ratio of the standard deviation of the simulated (𝜎𝑠𝑖𝑚) to the standard deviation of the observed (𝜎𝑜𝑏𝑠) time series, 

divided by their mean, and 𝑇𝐾𝐺𝐸   represents the ratio of the linear trend of the simulated time series (𝑇𝑠𝑖𝑚) to the observed 380 

one (𝑇𝑜𝑏𝑠). In the case of calibrating against storage anomaly, we did not divide 𝜎 by the mean, as the mean for storage 

anomaly is zero. Similarly, the 𝐵𝐾𝐺𝐸  component was not considered in calculating KGE related to storage anomaly. The 

optimal value for the KGE and its four components is 1. The KGE range is (−∞, 1], while 𝑅𝐾𝐺𝐸  ranges from -1 to 1; 𝐵𝐾𝐺𝐸 , 

𝑉𝐾𝐺𝐸  and 𝑇𝐾𝐺𝐸  can vary between −∞ and + ∞. Following Knoben et al. (2019), a KGE value above -0.73 indicates that 

the model performs better than the mean of observations if the trend component is included in the KGE.  385 

The normalized root mean square error (nRMSE) is calculated as:  
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𝑛𝑅𝑀𝑆𝐸 =  
√1

𝑇
∑ (𝑜𝑏𝑠𝑡 − 𝑠𝑖𝑚𝑡)2𝑇

𝑡=1

𝜎𝑜𝑏𝑠

 
(15) 

The perfect value for nRMSE is zero. Normalizing the RMSE with the standard deviation of observations brings this metric 

closer to the Nash-Sutcliffe Efficiency (NSE), but different from the NSE, the nRMSE cannot become negative (Turner et 

al., 2021). 

 390 

3 Results  

3.1 Performance of calibration variants in the case of simulated inflow into reservoirs 

We found that calibrating against observed water storage, water storage anomaly, or estimated water storage (derived from 

storage anomaly and GRanD storage capacity) improves the very poor simulation of storage by the calibration-free 

algorithm (DH) forduring both the calibration and validation periods in the case of for all three algorithms (Table 2).  In the 395 

case of DH, storage simulation is skillful, i.e. with a KGEstorage > -0.73, for only 16% of the 100 reservoirs duringin the 

calibration period, and for 15% duringin the validation period. Calibration of the H06 reservoir operation algorithm (CH) 

achieves skillful storage simulations for 64% (39%) of the reservoirs when calibrated against storage anomaly and for 69% 

(32%) of the reservoirs when calibrated against estimated storage during the calibration (validation) period. Both SA and 

WA outperformperform better than CH in storage simulation when calibrated against storage-related variables for both the 400 

calibration and validation periodperiods (Table 2 and Fig. 2).  However, the fit of simulated to observed storage remains 

poor during the validation period, in particularparticularly after calibration against the storage anomaly and estimated 

storage (Table 2 and Fig. 2). 

Table 2. The number of reservoirs out of 100 in which KGE values are greater than the benchmark thresholds of -0.73 

during the calibration (validation) phase. All algorithms were calibrated against outflow, storage, storage anomaly, as well 

asand estimated storage, using KGE as the objective function. The inflow data is sourced from the WaterGAP model. 

Calibrated variable  Algorithm 
 KGE > -0.73 

 Outflow  Storage 

—  DH  63 (56)  16 (15) 

Outflow  CH  78 (68)  22 (30) 

 SA  86 (71)  14 (24) 

 WA  86 (69)  20 (30) 

Storage  CH  68 (69)  91 (46) 

 SA  66 (67)  98 (68) 

 WA  67 (66)  100 (55) 

Storage anomaly  CH  67 (69)  64 (39) 

 SA  67 (69)  68 (45) 

 WA  71 (70)  66 (45) 

Estimated storage  CH  70 (69)  69 (32) 

 SA  65 (68)  69 (46) 

 WA  67 (70)  74 (41) 

 

Calibration againstCalibrating for storage-related variables only slightly improves the mostly poor simulations of 405 

reservoir outflow during the calibration period and shows a bit more improvement, with slightly better outcomes observed 

in the validation period (Table 2 and Fig. 2).  Skillful outflow simulations were achieved for 86% of the reservoirs when 

either SA or WA were calibrated against outflow, compared to 78% for CH and 63% for DH during the calibration phase. 

However, skillful storage simulations were observed in only 14% (24%) and 20% (30%) of the reservoirs for SA and WA, 
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respectively, compared to 22% (30%) for CH and 16% (15%) for DH in the calibration (validation) phase (Table 2). The 410 

performances of outflow simulations with CH, SA, and WA are very similar induring both the calibration and validation 

periods, except in the case of calibrationwhen calibrating against observed outflow forin the calibration period. In this case, 

SA and WA achieved positive KGEoutflow, with medians of 0.15 for SA and of 0.13 for WA.  Calibrating againstwith respect 

to outflow improves the correlation, variability, and trend of the simulated outflow comparedrelative to DH foracross all 

three algorithms, while the bias is not affected muchremains largely unchanged (Figs. S2-S5).  On average, outflow trends 415 

are underestimated. Calibrating against outflow worsens both the correlation and variability of storage simulations across 

all three algorithms during the calibration phase, though it notably improves the bias component (Figs. S2-S4). Model 

performance regardingrelated to storage is not affected in a relevant manner by calibration against outflow and remains 

very poor. When algorithms are calibrated against outflow, the mean observed storage generally remainsis usually a better 

estimator than the simulated storage. 420 

 
Figure 2. Letter-value plots of KGE for outflow and storage of 100 studied reservoirs for DH, CH, SA, and WA algorithms 

for the calibration period (1980-2009, in blue) and validation period (2010-2019, in yellow). All algorithms are calibrated 

against outflow (first column), storage (second column), storage anomaly (third column), as well asand estimated storage 

(fourth column)), using KGE as the objective function. The values at the top of the panels are the median KGE (indicated 425 

by the horizontal line). KGE values below the benchmark threshold of -0.73 are set to -0.73. The widest box contains 50% 

of the 100 data points, the second widest 25% of the data (12.5% in the upper box and 12.5% in the lower box), the third 

widest 12.5%, and so on. The inflow data is sourced from the WaterGAP model. 

 

 430 

Calibrating against storage (Fig. 2, second column of Fig. 2) leads to) yields the highest KGEstorage values;, with a 

median KGEstorage of 0.29, SA outperforms CH and WA, while the KGEoutflow and its component values foracross the three 

algorithms are similar (Figs. S2-S5). CalibratingCalibration against storage anomaly (third column in Fig. 2) or estimated 

storage (fourth column in Fig. 2) improves both storage and outflow simulations as compared to DH, but the fit to observed 

storage is considerably worse than in the case of calibration against storage. While theThe median KGEstorage in the case of 435 

for calibration against storage anomaly is slightly better than when calibrated against exceeds that for estimated storage, 
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the widest box of yet the letter-value plot related to calibration against shows the widest box for estimated storage, which 

containsindicating 50% of the data, is above the onethat for calibration against storage anomaly. The improvement of 

storageStorage simulation is mainly throughimprovement largely stems from bias adjustment (Fig. S3). The DH algorithm 

hasshows a median BKGE of 1.90 for storage during the calibration period. This value decreases, dropping to 0.92 (1.04, 440 

0.99), 0.71 (0.91, 1.18), and 1.25 (1.44, 1.32) for calibrationcalibrating against storage, storage anomaly, and estimated 

storage of the CH (SA, WA) algorithm, respectively. The correlation is improved in the case ofalgorithms. Correlation 

improves for SA and WA but only in theduring calibration period (Fig. S2). The variability is improved for calibration 

Variability improves when calibrating against storage anomaly, while calibration againstwhereas estimated storage leads to 

an underestimation of storageunderestimates variability (Fig. S4). By calibration Trends of KGEstorage improve significantly 445 

when calibrating against storage, storage anomaly, and estimated storage, the trend component of KGEstorage strongly 

improves as compared to DH for the calibration period but the trend is on average still, though trends are generally 

underestimated (Fig. S5). Assessing theEvaluating KGEstorage_anomaly when calibrating with different variables shows less 

degradation duringin the validation phase (Fig. S6). For example, the number ofinstance, skillful simulations for storage 

reached 17 (18), 93 (44), 98 (59), and 99 (55) when calibrating using storage anomaly with DH, CH, SA, and WA, 450 

respectively (see Table 2 for comparison).for DH, CH, SA, and WA, respectively, when calibrated with storage anomalies 

(see Table 2 for comparison). The fit to observed storage variables is less improved for validation than calibration (Table 

2, Fig. 2). Comparing calibration against storage anomaly and estimated storage shows SA and WA are preferred over CH 

and DH, even though the differences from CH are minor during validation. Differences between KGEstorage values of SA 

and WA are small for all calibration variables in both calibration and validation periods.  455 

The fit to observed storage-related variables is much less improved as compared to DH for the validation period than 

for the calibration period (Table 2 and Fig. 2). Comparing calibration against storage anomaly and estimated storage, which 

are the available options when using only remote sensing data, reveals that SA and WA are preferable to CH and DH, even 

though the differences from CH are small during the validation period. Differences between the KGEstorage values of SA and 

WA are small for all calibration variables for both calibration and validation periods.  460 

Examining the empirical cumulative distribution functions (eCDFs) for nRMSE reveals that the eCDFs for outflow are 

much closer across different algorithms compared tothan those for storage (see Fig. 3). This suggests thatimplies calibration 

has a more significant impact on storage than on outflow. CalibrationCalibrating against any storage-related variable 

generally enhances outflow performance at lower nRMSEoutflow levels (in approximatelyabout 60% of the reservoirs), while. 

In comparison, at higher nRMSEoutflow rangeslevels, a slight degradation is observedoccurs in aboutroughly 35% of 465 

reservoirs (with probabilities ranging from less than 0.60 to 0.95, mainly concentrated between 0.860 and 0.995). When 

calibrating against outflow, there is generally improvement in nRMSEstorage generally improves for CH and WA algorithms, 

whilebut no clear improvementenhancement is seen for SA. Moreover, the error in outflow simulation is reduced in 

Additionally, the nRMSEoutflow decreases for over 40% of reservoirs where the nRMSEoutflow was already lower compared 

to others.. For nRMSEoutflow greater than 0.98, there is almost no discernible improvement observed when calibrating 470 

algorithmscalibration against outflow shows nearly no improvement, as indicated by the eCDFs. The calibrationCalibration 

against the storage anomaly, which is the main calibration variant, especially in the validation phase, reveals that SA slightly 

performs better than WA. SA shows outperforms WA, with lower nRMSEstorage lower and nearly similar nRMSEoutflow 

compared to WA. Disregarding . Regardless of the magnitude of the error, the eCDF for validation hasexhibits a shape 
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similar to that of the calibration period, suggestingindicating that the error distribution for the algorithm isremains consistent 475 

across both periods.   

 
Figure 3. Empirical cumulative distribution functions of nRMSE for storage and outflow of the 100 studied reservoirs are 

based on the DH, CH, SA, and WA algorithms for the calibration period (1980-2009) and the validation period (2010-

2019). All algorithms are calibrated against outflow (first column), storage (second column), storage anomaly (third 480 

column), and estimated storage (fourth column)), using KGE as the objective function. The x-axis hasuses a logarithmic 

scale. If nRMSE is largergreater than 1, the mean error is larger thanexceeds the standard deviation of the observational 

values. The inflow data is sourced from the WaterGAP model. 

3.2 Illustrative calibration results for three reservoirs 

As an example, we plotted the time series of storage and outflow for the Glen Canyon Dam (Lake Powell) in FigFigs. 4 485 

and Fig. S7, respectively. This dam is one of the largest in our study, with several dams located upstream. The WaterGAP 

dataset includes four upstream reservoirs as global reservoirs, with storage capacities ranging from 0.57 to 4.3 km³. 

CalibratingResults for this reservoir suggest that calibrating the H06 algorithm againstbased on outflow did not lead toyield 

better results compared to outcomes than the DH model (Fig. 4a, Fig. S7a). However, someSome improvement was 

observednoted in the outflow simulation for SA and WA during the calibration period, though; however, this led toresulted 490 

in a worse outflow simulation during the validation phase (Fig. S7). Despite this, with a KGE > -0.73, all outflow 

simulations demonstrated skillful performance. Calibration against outflow did not degradenegatively impact storage 

simulation comparedrelative to the DH, except for SA, particularly during the validation phase, where the variability of the 

simulated time series was more thanover three times higher than the observed onevalues (Table S3). During the calibration 

phase, against storage-related variables, simulated storage levels are mainly aboveprimarily exceed 40% (10 km³) of the 495 

total capacity, with a sharp decline between 40% and 70%, and smaller changes when the reservoir is filled above 70% 

(17.5 km³).. This pattern leads toresults in storage levels belowunder 40% not being adequately considered ininadequately 

handled during the parameter selection process. As a resultfor the SA and WA algorithms. Consequently, when storage 

dropslevels drop below 10 km³ during the validation phase, the outcomes are not promising (Fig. 4). The large 



 

17 

 

differenceFigs. 4c, 4d). Furthermore, the discrepancy between the capacity reported capacity by GRanD (25 km³) and the 500 

maximum observedrecorded daily storage (31.7 km³) results in poorer performance in storage negatively impacts the 

simulation outcomes for all calibrated algorithms basedthat rely on estimated storage compared toversus storage 

anomalyanomalies (see Fig. S1). This ~approximately 20% differencediscrepancy between the reported capacity and the 

maximum observed storage introduces a 20% bias, which directly impactsinfluences the bias and variability components 

of KGEstorage (Table S3). However, there is The outflow shows almost no bias in the outflow, thanksdue to the use of data 505 

from the Lees Ferry station, located just downstream of the dam, which is used in thefor bias adjustment ofin WaterGAP's 

streamflow simulations in WaterGAP throughvia a simple calibration approach. (see Müller Schmied et al., 2024, for more 

details). 
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 510 

Figure 4. Monthly time series of observed and simulated storage values from DH, CH, SA, and WA algorithms for Glen 

Canyon dam, GRanD ID 597, calibrated against (a) outflow, (b) storage, (c) storage anomaly, and (d) estimated storage 

using KGE as the objective function. The dashed black lines distinguish between the calibration and validation periods. The 

dashed gray lines indicate the relative storage levels (Srel), categorizing GRanD storage into three categories: above 70% of 

storage capacity, between 40% and 70% of storage capacity, and below 40% of storage capacity for the reservoir. The 515 

maximum observed storage (31.7 km³) exceeds the capacity reported in the GRanD dataset (25 km³). The inflow data is 

sourced from the WaterGAP model. The time series for outflow is plotted in Figure S7. 

Very poorThe storage simulation with a much higher seasonal magnitude compared to observed storage is seen for the 

Yellowtail Dam (GRanD ID = 355), an irrigation reservoir with different calculations in the DH, GRanD ID = 355) and CH 

algorithms compared to the SA and WA algorithms, and for the Harry S. Truman Dam (GRanD ID = 989), which is a 520 

hydropower reservoir, GRanD ID = 989) is poor, with a higher seasonal magnitude compared to the observed data. (Fig. 
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5). Calibrating againstusing storage anomaly can lead to time series of storage with considerableintroduce significant bias 

in absolute storage simulation (Fig. 5c). This issue can also occur whenSimilarly, calibrating againstwith estimated storage 

may cause issues if there is an offset between the estimated storage and the a mismatch with in-situ observationobservations 

(Fig. 4d). The time series related toFor the Yellowtail Reservoir reveals that, SA and WA, which do not consider the 525 

irrigation purpose of this reservoir, canaccount for downstream water demand, simulate reservoir storage bettermore 

accurately than DH and CH, which explicitly take into account theconsider downstream water demand (Fig. 5a). However, 

the opposite is true for outflow simulation, where the uncalibrated DH performs the best (Fig. S8a).  

From theseThese examples, we found show that calibrating solelyonly against storage-related variables does not 

necessarily lead to poorerworsen outflow simulations (Fig. S8). However, other factors, such asattention to inaccuracies in 530 

reservoir capacity data (e.g., for the Glen Canyon Dam) and discrepancies between actual available water and the reported 

static storage value in the GRanD dataset — which may include dead storage (see Table S1 for Yellowtail and Harry S. 

Truman dams) — are important considerationsis critical when evaluating the performance of the reservoir operation 

algorithmperformance. In suchthese cases, comparing storage anomalyanomalies may offerprovide a more 

reasonableaccurate assessment than comparingrelying solely on absolute storage. This storage simulation error in storage 535 

simulation may also affectimpact outflow simulations, where input data inaccuracies in input data are the primary factor 

leading to inaccurateprimarily lead to incorrect storage levels being maintained during the validation phase (Fig. 4c). 
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Figure 5. Monthly time series of observed and simulated storage values from DH, CH, SA, and WA algorithms for 540 

Yellowtail/Harry S. Truman reservoirs, GRanD IDs 355/989, calibrated against (a, c) storage anomaly and (b, d) estimated 

storage using KGE as the objective function. The primary purposes of the Yellowtail Dam and the Harry S. Truman Dam 

are irrigation and hydropower, respectively. The dashed black lines distinguish between the calibration and validation 

periods. The inflow data is sourced from the WaterGAP model. The time series for outflow is plotted in Figure S8. 

 545 

3.3 Impact of using observed streamflow as input to the reservoir operation algorithms 

Comparing the results The comparison of the modeling results using WaterGAP inflow and observed inflow is 

presentedshown in Fig. 6 for 35 reservoirsout of the 100 studied ones. Based onreservoirs. Fig. 6, there is shows no overall 

improvement or deteriorationconsiderable change in storage simulation when usingwith either observed or WaterGAP 

inflow data, except for the WA algorithm, which demonstratesperforms better performance with observed inflow than with 550 

simulated streamflow. This is evident as most of the circles are positioned above the y=x line inflow (Fig. 6c). However, 

Nonetheless, the performance of WA in storage simulation with observed inflow isdoes not better than the 
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performanceexceed that of SA. In contrast, there is a considerable improvement inConversely, using observed inflow data 

considerably enhances the reservoir outflow simulation when utilizing observed inflow data. For instance, KGEoutflow below 

-1 achieved with WaterGAP inflow can approach 1 with observed inflow (Fig. 6f). In most cases, KGEoutflow between 0-0.5 555 

based on WaterGAP inflow reaches 0.5-1 based on observed inflow. The most substantial improvement is observed forseen 

in the WA algorithm, where the median of KGEoutflow across various calibration objectives, ranging from [-0.27, 0.14], 

increasesrises to [0.56, 0.69] upon replacing WaterGAP inflow with observed data. ItThis implies that the WA is more 

sensitive to the quality of inflow data than other algorithms. The same pattern is reiterated duringDuring the validation 

period, with the the same pattern is repeated, showing a median KGEoutflow of [0.38, 0.56] compared to [-0.87, -0.41]], based 560 

on observed inflow compared toversus WaterGAP inflow across all calibration variants (Fig. S9). Using Utilizing the 

observed inflow improves almostenhances nearly all components of KGEoutflow, but the main components that are improved 

arewith the most notable improvements seen in the variability and trend components (see Figs. S10-S17). 

 

Figure 6. The relationship between the KGE of (a-c) storage and (d-f) outflow is obtained from modeling reservoirs using 565 

WaterGAP inflow and the observed inflow to the reservoirs forduring the calibration period (1980-2009) for 35 reservoirs 

with observed inflow. KGE values less than -1 are set to -1. The KGE values for storage anomaly and estimated storage are 

not showndisplayed. The circle size of the circles indicates the reservoir capacity. The values above each panel indicateshow 

the median KGE, with the top values achieved with WaterGAP inflow and the bottom values withderived from observed 

inflow. The dashed red lines indicaterepresent the KGE benchmark threshold of -0.73. 570 

 

 

 

 

3.4 Impact of considering downstream water demand  575 

We evaluatedassessed the benefitadvantages of distinguishingdifferentiating irrigation and water supply reservoirs from 

others by counting how many times estimating the outflow of irrigation reservoirs (9 reservoirs) and supply reservoirs (12 

reservoirs) using Eq. 4 (the default approach for irrigation reservoirsresults in the H06 algorithm, which takes into account 
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the seasonality of downstream water demand) leads to a more skillfulaccurate simulation compared to disregardingignoring 

water demand in the modeling of reservoir dynamics. We found that there is no general advantage in distinguishing 580 

irrigation and supply reservoirs from other reservoirs, in particularparticularly when calibrating against storage anomaly or 

estimated storage using the overall superior WA and SA algorithms. While in the caseIn terms of calibration against 

estimated storage, the SA algorithm performs better for outflow withwhen considering downstream demand; however, the 

opposite is true for storage. ForIn the WA algorithm, the same number of reservoirs achieve better or worse streamflow 

performance if taking into accountwhen downstream water demand whileis considered. However, storage performance is 585 

better ifenhanced when demand is not considereddisregarded (Table 3).  

Table 3. The numberComparison of irrigation and supply reservoirs (out of 21) where KGE values for the calibration phase 

are higher when reservoir simulation performance using different algorithms, both with and without considering 

downstream water demand than when neglecting downstream demand. Improvements are only identified if the achieved 

KGE value is larger than -0.73, i.e. the simulation is skillful. The values infor 21 irrigation and supply reservoirs. Numbers 590 

outside parentheses indicate the number of reservoirs (out of 21) where performance improves when downstream demand 

is taken into account. In contrast, values inside parentheses represent reservoirs where neglectingignoring downstream 

demand leads to higher KGE values. Improvements are noted only for skillful simulations achieving a KGE value greater 

than -0.73.  All algorithms are calibrated against outflow, storage, storage anomaly, and estimated storage using KGE as 

the objective function. The inflow data is sourced from the WaterGAP model. 595 

Calibrated variable 
  CH  SA  WA 

  Outflow Storage  Outflow Storage  Outflow Storage 

Outflow   4 (5) 1 (3)   10 (6) 1 (3)   8 (8) 3 (4) 

Storage   7 (6) 7 (2)   5 (6) 11 (10)   6 (6) 7 (14) 

Storage anomaly   6 (6) 3 (3)   7 (6) 7 (10)   8 (6) 7 (9) 

Estimated storage   6 (4) 6 (1)   9 (3) 6 (10)   6 (6) 3 (12) 

4 Discussion 

4.1 Calibration variables 

Calibrating against outflow does not necessarily improve storage simulations and may even lead tocause their 

degradationdeterioration during the calibration phase. In contrast, calibrating against all types of storage-related variables 

slightly improves outflow compared to the DH algorithm (see Fig. 2 and Table 2). Thus, calibrating against storage-related 600 

variables is more effective than calibrating against outflow when aiming to improve the simulation of both variables through 

a single-objective calibration. Additionally, comparingFurthermore, an analysis of the KGE values offor the compromise 

solution (—defined as the solutionone with the minimumsmallest Euclidean distance from the optimalideal KGE value of 

1 for both storage and outflow) with KGE values from calibrations against storage and outflow indicate—reveals that the 

KGE results offrom calibration against storage are considerably closer to the compromise solution compared tothan those 605 

for outflow (seerefer to Fig. S18). A similar pattern is observed forseen in calibrations against both storage anomaly and 

estimated storage. This suggests that calibrating solely against storage-related variables yields results closer to the 

compromise solution than calibrating against outflow alone. One reason for this is the lower sensitivity of that outflow 

simulations are less sensitive to calibration compared to storage simulations. This finding is encouraging because, unlike 

outflow data, storage anomaly can be estimated using remotely sensed data. The data length should exceed five years to be 610 

used effectively for this purpose (Otta et al., 2023). Although our results indicate that, in general, calibrating against storage 



 

23 

 

anomaly improves the simulation of storage, using the absolute simulated storage from such calibrations should be done 

carefully, as these calibrations should be approached with caution, as they do not always guaranteeensure an improvement 

in absolute storage.  

Calibrating against estimated storage does not outperform calibrating against storage anomaly (see Fig. 2 and Table 2), 615 

although). Although theoretically, it should provideyield results closer to calibrationthose of calibrating against actual 

storage. The reason for this, besides the , aside from inherent error in storage estimation, can be traced to  errors, lies in the 

discrepancies between theGRanD's capacity information from GRanD data and the maximum daily observedrecorded 

storage (, with a median difference equals to ~25%). The maximum observed storage should be less than or equal to capacity 

unless during an overtopping period. However, comparing maximum daily storage data from ResOpsUS with reservoir 620 

capacity from GRanD shows notable differences in several cases (see of about 25% (refer to Table S1). Steyaert and Condon 

(2024) also reported that, due to GRanD's omission of overtopping and potential inclusion of inaccurate data, led to 100 out 

of the 679 dams listed in the ResOpsUS dataset havehaving maximum storage values exceeding the reservoir capacities 

reported by GRanD. Inconsistencies are also reported for the reservoir area; Dong et al. (2023) reportedindicated that the 

actual reservoir polygons of Ertan Reservoir and Jinping I ReservoirReservoirs are 69% and 50% larger, respectively, than 625 

the GRanD polygons. Therefore, for those reservoirs, modeling reservoir Consequently, simulating the operation usingof 

reservoirs that have inaccurate GRanD information should not leaddata is unlikely to goodyield favorable results, 

particularly forespecially in terms of absolute storage simulation. Consequently, Thus, an absolute storage comparison may 

not be a fair approach for assessing model performance assessment, although it remains validstill holds validity for 

comparing different algorithms. An assessmentevaluation of the degradation in KGE values obtained from, comparing 630 

calibration against estimated storage compared towith calibration against actual storage reveals, indicates that the results 

from estimated storage align closely matchwith those from actual storage when the differencediscrepancy between the 

reservoir capacity reported by GRanD and the maximum daily observed storage is minimal. However, asAs this difference 

increases, the discrepancy between the results of the two calibration variants also grows (Fig. S19). It is important to note 

that calibrationcalibrating against storage anomaly does not exhibitshow a direct relationship with these differences in 635 

storagesstorage. 

To the best of our knowledge, there are currently two global datasets — the Global Reservoir Storage (GRS) introduced 

by Li et al. (2023) and the GloLakes dataset by Hou et al. (2024) — that provide monthly time series of estimated absolute 

storage using remotely sensed information, along with either a geostatistical model or a volume-elevation/area-volume 

relationship. We assessedevaluated the quality of their estimates for the absolute storage of the studied reservoirs. GRS 640 

covers all 100 studied reservoirs, while GloLakes includes only 57 of those 100 reservoirs. The median KGEstorage (without 

the trend component) was 0.26 for GRS and 0.14 for GloLakes, indicatingshowing that neither dataset provides offers 

reliable estimates accurate enough to be considered reliable for calibrating reservoir operation algorithms against their 

estimatedbased on absolute storage (see Table S4).  The BKGE components for GRS, with exhibit a median of 0.84, 

rangevarying from significantmarked underestimation — such as —for example, at Norfork Dam (GRanD ID 1042), where 645 

the meanaverage estimated storage is onlymerely 2% of the observed value — —to substantialconsiderable overestimation, 

such as forseen at Albeni Falls Dam (GRanD ID 305), where the meanaverage estimated storage is 45 times greater than 

the observed value. GloLakes, with a median BKGE of 1.49, performs slightly better in terms of extreme bias; the largestmost 

considerable underestimation occurs at Santa Rosa Dam (GRanD ID 1086), where the mean estimated storage is only 35% 
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of the observed value. MaximumThe maximum overestimation for GloLakes is observed at the same dam (Albeni Falls 650 

Dam)), but it is less extreme compared to GRS, thoughalthough still substantial. The RKGE and VKGE components of KGE 

for storage are better than BKGE in terms of extreme values. HoweverNonetheless, with medians of 0.63 and 0.84 for GRS 

and 0.71 and 0.47 for GloLakes, respectively, RKGE and VKGE for both datasets are still not sufficiently promising, indicating 

uncertainty in estimates of remotely sensed storage anomaly estimatesanomalies. 

 655 

 

4.2 Value of calibration and choice of reservoir operation algorithm 

ApplyingBy using streamflow simulated byfrom the global hydrological model WaterGAP 2.2e as inflow to 100 US 

reservoirs, we found that the outflow generated by the calibration-free algorithm DH is a better alternative to the mean 

observed outflow. HoweverConversely, the opposite is trueholds for simulated reservoir storage (see Fig. 2), 660 

underscoringhighlighting the need for reservoir-specific calibration. Our findings indicate thatshow all three calibrated 

algorithms generally perform better than DH in terms offor storage, but thetheir effect on reservoir outflow simulation is 

negligible. The degree of improvement varies considerablyImprovements vary substantially between reservoirs, and inwith 

some cases, no improvements are seenshowing none, as also reportednoted by Turner et al. (2021) with a more complex 

reservoir operation algorithm. Among the calibrated algorithms, SA and WA performs better thanoutperform CH when 665 

calibrated against storage, storage anomaly, and estimated storage. Thus,-related variables. CH may only be preferred over 

SA and WA in the case offor irrigation reservoirs with rather good water demand informationdata or if computational 

resources are very limited, as CH requires the estimation ofit estimates only two parameters instead of three parameters for 

non-irrigation reservoirs. WhileAlthough KGE cannot distinguish the performance of SA and WA cannot be distinguished 

by KGE, nRMSE indicates a suggests that SA performs slightly better performance of SA in the case of calibrationwhen 670 

calibrated against storage anomaly (Fig. 3). 

Calibration of H06 revealsshows that default parameters are rarely included in the calibrated parameter sets (Fig. S20), 

especially noticeableparticularly for irrigation reservoirs, where parameter 𝑎2  almost always remains at itsthe lower bound 

of 0.1.  According to Eq. 4, this impliessuggests that calibration prioritizes using emphasizes the use of a scaled version of 

long-term inflow rather thaninstead of directly integrating demand through addition. The demand estimation is not accurate 675 

enough for reservoir operations, resulting in increasedwhich increases complexity with limited benefitbenefits when 

distinguishing irrigation and supply reservoirs from other types of reservoirs (Table 3). Vanderkelen et al. (2022) similarly 

observed minimal additional value in includingincorporating irrigation demand ininto the reservoir operations.  

4.3 Relevance of the quality of simulated reservoir inflow and reservoir storage capacity data 

We found that the quality of inflow data quality is more importantcrucial than the reservoir operation algorithms for outflow 680 

simulation, while itbut has less impact on storage simulation. This finding aligns with Vanderkelen et al. (2022), who 

attributed the similar performance of natural lake parameterization and H06 to poorpoorly simulated streamflow in the 

Community Land Model. UsingComparing observed inflow as a substitute for simulated outflow (ignoring the dam) and 

comparing it withand observed outflow revealsshows that the DH algorithm, with median KGEoutflow values of 0.42 

(calibration) and 0.02 (validation), results in generates worse outflow simulations compared to ignoring the observed inflow, 685 

whichdam. DH has median KGEoutflow values of 0.42 (calibration) and 0.02 (validation) while observed inflow shows 
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median KGEoutflow values of 0.57 (calibration) and 0.36 (validation). This is in linealigns with Vora et al. (2024), who 

reported that ignoring reservoirs in modeling may lead to better outflow simulations than DH in some cases. However, 

some skill is observed in other algorithms, particularly SA, where the median KGEoutflow values for CH, SA, and WA are 

0.68 (0.46), 0.75 (0.52), and 0.69 (0.56) for calibration (validation), respectively, when calibrated against outflow (see Figs. 690 

6 and S9). In contrast to Unlike Vanderkelen et al. (2022), our study foundshowed that using observed inflow did not lead 

to a clear improvement insignificantly improve storage simulation. One possible reason is the errorThis may be due to errors 

in GRanD data, withwhich has a median difference of ~about 14% between GRanD data andfrom the maximum daily 

observed storage for reservoirs with observed inflow data. Another potentialpossible reason couldmight be the 

impactinfluence of initial storage on simulation outcomesresults, which varies dependingdiffers based on the level of 695 

regulatory level of reservoir operations, as reportedstated by Yassin et al. (2019). In summary, our results suggest that 

enhancing the quality of inflow data is more crucial than calibrating reservoir operation algorithms, particularly when the 

objective is to achieve accurate outflow simulation. Only calibrating against storage anomaly as the main calibration variant 

willanomalies does not result in accurate outflow simulations unless the quality of inflow data is significantly 

improvedensure better outflow predictions. 700 

 

4.4 Complexities of reservoir operations and dynamics 

In addition toBesides poor inflow data and inaccurate capacity information, other factors also impactaffect the performance 

of reservoir operation algorithms. Incorporating human decision-making into the model is very challenging, despite its 

critical importance (Rougé et al., 2021). This complexity arises because human decisions do not always follow operational 705 

rules due to evolvingchanging conditions, such as changesvariations in water demand (Shah et al., 2019) or during droughts 

and floods (Nazemi and Wheater, 2015). For example, the Hoover Dam (Lake Mead) and Glen Canyon Dam (Lake Powell) 

are interconnected, and historically, Glen Canyon could release enough water to meet downstream needs until 2014. 

However, due to a drought in 2012 and 2013, the releasereleases from Glen Canyon Dam in 2014 dropped to itsthe lowest 

level since the initial filling of Lake Powell in 1963 (Arizona Water Resource, 2013; Colorado River Drought, 2019). This 710 

reduction in release was aimed at recoveringto recover Lake Powell's storage, which had fallen to ~around 40% of its 

capacity (NASA Earth Observatory, 2014). Additionally, climate change and increases in water demand can lead toresult 

in non-stationary situations, meaning that calibrated algorithms may not perform as well compared to the calibration period. 

This trend is observed in the ResOpsUS dataset, where there is a generally a decreasing trend in reservoir storage, which 

also impacts release (Steyaert and Condon, 2024). For example, the Hoover Dam has experienced a continuous negative 715 

trend in its capacitystorage since 2000 (see Fig. S21). Understanding these trends is crucial for assessing the degradation of 

the studied algorithms during the validation period, where the connection between observed inflow and outflow also 

becomes weaker. 

4.5 Limitations  

In thisThis study, we modeled each reservoir reservoirs independently, which may affect the quality of the have potentially 720 

affected analysis. In practice, a quality. A calibrated upstream reservoir would lead to differentcan alter inflows to athe 

downstream reservoir. However, since Nevertheless, as the calibration has not had a considerable impact onsignificantly 

influenced the outflow simulation, it is expected that the overall conclusions would be similar. Forwill remain comparable. 
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In the case of the SA and WA algorithms, a reservoir may reachmight attain relative storage level(s) (seelevels (refer to 

Eqs. 7 and 8) during the validation phase that were not observed during the entire calibration period. ConsequentlyAs a 725 

result, the parameters for these unseenunobserved relative storage levels cannot be determinedremain indeterminate and are 

set toassigned the lowestminimum value (0.1 for both SA and WA). As a result, the performance of the algorithm for those 

reservoirs during the validation phase is affectedinfluenced by setting these undetermined parameters to thetheir lowest 

value. In the case of the SA algorithm, this issue occurs foraffects at most four reservoirs across the calibration variants, 

while for the WA algorithm, it occurs forimpacts up to nine reservoirs (see Table S5). Moreover, although Yassin et al. 730 

(2019) suggestindicate that a five-year spin-up period is generally sufficient to fully stabilizefor complete stabilization, even 

for large dams, and. In our study, we usedconducted five simulations of 1979 as our spin-up period,. However, using a 

longer run extending further backspin-up duration before 1980 could result in different initial storage conditions. 

Consequently, this couldmight affect the performance of the operational algorithm. ThisThese potential 

limitationlimitations should be acknowledged, as itthey may impactinfluence the accuracy and generalizability of the 735 

results. 

5 Conclusions 

In thisThis study, we assessed whether monthly time series of observed reservoir storage anomaly, which, unlike time series 

of storage and outflow, areanomalies, available for many reservoirs worldwide fromglobally via remote sensing, are suitable 

as targets for calibrating reservoir operation algorithms in large-scale hydrological models. To achieveaccomplish this, we 740 

integrated aincorporated the well-established reservoirHanasaki algorithm andalong with two newly developednew ones , 

namely, WA and SA, into the global hydrological model WaterGAP, calibrating . We calibrated them against storage 

anomaly, estimated storage, storage, and outflow data sourced from ResOpsUS for 100 U.S. reservoirs. For 35 of these 

reservoirs in the USA. For 35 out of the 100 reservoirs with availablewith observed inflow data, both observed and simulated 

inflows were usedincluded in the analysis. Our findings lead to the following conclusions: 745 

• Using observed storage-related variables, i.e., storage anomaly, estimated storage, or storage, for calibration of 

theto calibrate reservoir algorithms results in a clear improvement in storage simulation and a slight improvement 

inslightly enhances outflow simulation during the calibration phase, particularly when calibration is performed, 

especially against storage. However, the performance of the algorithms for storage during the validation phase 

remains worse than their performance regarding outflow. It should be notedis still inferior to that calibration using 750 

the rarely availablefor outflow. Calibration with scarce outflow data leads to improvementsimproves only inthe 

simulated outflow and does not noticeably affect , leaving the simulated storage, which remains very distinctly 

poor. 

• AmongOf the three calibrated reservoir operation algorithms, the two newly introducednew algorithms, WA and 

SA, perform similarly andor better in storage simulation than CH, i.e., the calibrated version of the Hanasaki 755 

algorithm. 

•  If observations of either storage, storage anomaly or outflow are available for a reservoir, the parameters of the 

reservoir algorithm should be adjusted, as we found that the default parameter set of the DH algorithm, particularly 

the irrigation reservoir parameter, is seldom the optimal parameter set. For the reservoirs without observations, a 

calibration-free algorithm such as DH has to be used. 760 
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• Considering water demand in the modeling ofModeling irrigation and water supply reservoirs with water demand, 

as done in DH, doesmay not necessarily improveenhance reservoir simulation, potentially due to high uncertainty 

in demand estimation. We therefore recommend disregardingignoring downstream water demand, even in the case 

of irrigation and water supply for these reservoirs. 

• We found that using observed inflow instead of simulated inflow considerably improves the performance of the 765 

reservoir operation algorithms in terms ofregarding outflow simulation, butalthough it does not have muchhas 

minimal impact on their performance in storage simulation. 

• For mostmany reservoirs, none of the three relatively simple reservoir operation algorithms can accurately 

representdepict the dynamics of both reservoir outflow and storage, even afterdespite calibration againstwith 

observations of outflow or storage-related variables and even withusing observed inflow used in the simulation. 770 

The complexity of human decision-making cannot be captured byeludes algorithms that rely solely on globally 

available information, even if theirwhen parameters are adjusted through calibration. 

• To improveenhance large-scale hydrological modeling, we suggest leveragingrecommend utilizing recent and 

upcoming spaceborne informationdata on reservoir water storage anomalyanomalies by implementingemploying 

the SA or WA reservoir operation algorithms, which enables. These algorithms facilitate reservoir-specific 775 

calibration against observed storage anomaly. These algorithms showed, afteranomalies. After calibration, athey 

demonstrated slightly betterimproved performance thanover the CH algorithm and are more suitablesuited for 

large-scale applications thancompared to algorithms such aslike those offrom Chen et al. (2022) and Turner et al. 

(2021) that), which require daily inflow, storage, and outflow data — data that are rarely available—information 

that's seldom accessible outside the US.  780 

• AsDue to the strong biases often exhibited by the currently available time series of absolute reservoir storage 

derived from remote sensing-based water storage anomaly often exhibit strong biases, and considering that 

calibration against estimated storage diddoes not outperform calibration against storage anomaly, we recommend 

to estimateestimating the parameters of the SA or WA algorithm using globally available, remote sensing-based 

monthly time series of reservoir water storage anomaly (and in-situ storage and outflow  time series where 785 

available). This approach is expected to particularly enhance the quality of simulated reservoir storage. 

ImprovingAlthough the algorithms introduced in this study outperform the conventional DH algorithm, there remains 

scope for improvement. For example, integrating knowledge-based equations with deep learning in hybrid machine learning 

methods could be beneficial for simulating reservoir dynamics. However, improving the accuracy of inflow simulations 

and validating reservoir-related characteristics are consideredis very likely more important for achieving better reservoir 790 

outflow and storage simulations than solely improvingrefining the algorithm itself. Nevertheless, hybrid machine learning 

approaches, e.g. combining knowledge-based equations with deep learning, should be investigated for simulating reservoir 

dynamics. Finally, to further evaluate the impact of calibration approaches on the performance of reservoir operation 

algorithms, we suggest using more advanced parameter optimization methods than the grid search method we applied in 

this study.  795 
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