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Dear Reviewer, 

Thank you for your thoughtful review and insightful comments, which have helped us improve our manuscript. We 

have carefully revised the manuscript to address all your suggestions. Below, you will find our point-by-point 

responses to your comments (in blue). 

Reply to RC#1 

RC#1: This paper investigates whether storage anomalies, derived from remotely sensed data, can be used as data to 

enable the calibration of reservoir modules within large-scale hydrological models. This would enable improving the 

representation of reservoir within hydrological models for places where storage time series are not readily available 

(note this is never said explicitly in abstract or intro). 

It uses 4 simple release rules (3 of which can be calibrated) from well-known global hydrological model WaterGAP, 

and 100 reservoirs from a comprehensive database of reservoirs from the United States, and for which observed 

storage is also available. It compares storage anomalies as the basis for calibration, with three other candidate time 

series: observed inflows, observed outflows, and estimated storage. 

The idea is worthwhile, and the paper meets its main objective (TLDR: yes one can use storage anomalies). The 

beginning of Sections 4 and 5 suggest instead the focus was really on comparing reservoir release rules… but this in 

itself is a weaker contribution because there are many other release rules out there, why should we focus on these? To 

better reach the hydrological community beyond WaterGAP users, it would be best to instead show how the setup 

(different rules, observed vs. simulated inflows) shows that storage anomalies are a good choice of data, and the ability 

to get these for most reservoirs worldwide means rules presented in the paper can indeed be calibrated, and are of 

value (or in other words, the rules are basic and simple to calibrate, the existence of storage anomalies to carry out 

that calibration gives them value vs. the rest of the literature that they would not have otherwise). This will warrant 

rewriting quite a few bits. 

Response: We are pleased that you find the general idea of the paper worthwhile. We appreciate your feedback and 

have revised the text accordingly to align with your suggestions. Our primary focus is now on utilizing storage 

anomalies to fine-tune the reservoir algorithms. In the revised version, we will clarify why our focus is on using 

storage anomalies to calibrate reservoir modules and why we compared the selected reservoir algorithms. Notably, 

prior to calibration, we did not anticipate that the performance of the algorithms would not differ much in most cases. 

This highlights a common challenge for large-scale modelers: determining which algorithm is easiest to implement 

while still achieving performance comparable to more complex approaches. Although calibration is required for the 

SA and WA algorithms, they are easier to implement than the calibrated H06 and even outperform it in general. For 

this reason, we believe that comparing simple release rules should be a substantial part of the manuscript. The study 

aims will be reformulated as follows in the final paragraph of the introduction: 

“The main objective of this study is to investigate how monthly time series of observed reservoir-related data 

can improve the simulation of reservoir outflow and storage in continental or global hydrological models. We 

focus on the suitability of observed storage anomaly for calibrating reservoir release algorithms, as these 

anomalies can be obtained globally through remote sensing-based observations. We compare their 

informational value to that of scarcer outflow and absolute storage observations, as well as the simulation 

results achieved with an uncalibrated reservoir algorithm. We utilized in-situ storage and outflow data from 

the ResOpsUS dataset for 100 reservoirs in the US to calibrate three reservoir operation algorithms. All 

algorithms were implemented in the global hydrological model WaterGAP 2.2e (Müller Schmied et al., 2024). 

The parameters of the algorithms were estimated using as alternative calibration targets, 1) storage anomaly, 

2) estimated storage (calculated based on storage anomaly and GRanD reservoir capacity, detailed in section 

2.3), 3) storage, and 4) reservoir outflow. Calibration involved optimizing parameters individually for each 

reservoir, algorithm and calibration target. To explore, in addition, the sensitivity of the model results to the 

quality of the inflow data, we calibrated the algorithms for a subset of 35 reservoirs with available inflow 

measurements, using observed inflow instead of the inflow simulated by WaterGAP. Finally, for a subset of 21 

reservoirs, we determined the effect of incorporating, in the case of irrigation and water supply reservoirs, the 

downstream water demand in the reservoir algorithms.” 
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In addition, we will completely reformulate the conclusions and focus on the applicability of (remotely-sensed) 

reservoir storage anomaly for improving reservoir release algorithms. 

RC#1: Key result: the key result really is whether storage anomalies fare well vs. the other data the reservoir model 

can be calibrated / validated against, under different conditions (e.g., observed or simulated inflows). However, this 

simple key statement is absent from the abstract, and this means the other statements on results seem disconnected 

from the purported aim. 

Response: We will revise the abstract accordingly and update the manuscript text based on your previous comments. 

The key results are now easier to follow. Below, please find the revised abstract: 

“Human-managed reservoirs alter water flows and storage, impacting the hydrological cycle. Modeling 

reservoir outflow and storage is challenging because it depends on human decisions, and there is limited access 

to data on reservoir inflows, outflows, storage, and operational rules. Consequently, large-scale hydrological 

models either exclude reservoir operations or use calibration-free algorithms for modeling reservoir dynamics. 

Nowadays, remotely-sensed information on reservoir storage anomalies is a potential resource for calibrating 

reservoir operation algorithms for a large number of globally distributed reservoirs. However, it is not yet clear 

what impact calibration against storage anomaly has on simulated reservoir outflow and absolute storage. In 

this study, we address this question using in-situ outflow and storage data from 100 reservoirs in the USA 

(ResOpsUS dataset) to calibrate three reservoir release algorithms, the well-established Hanasaki algorithm 

(CH) and two new storage-based algorithms, the Scaling algorithm (SA) and the Weighting algorithm (WA). 

These algorithms were implemented in the global hydrological model WaterGAP, with their parameters 

estimated individually for each reservoir and four alternative calibration targets: monthly time series of (1) 

storage anomaly, (2) estimated storage (calculated based on storage anomaly and GRanD reservoir capacity), 

(3) storage, and (4) outflow. The first two variables can be obtained from freely available global datasets, while 

the last two variables are not publicly available for most reservoirs worldwide. We found that calibration 

against outflow does not lead to skillful storage simulations in most reservoirs and improves the outflow 

simulations only slightly more than calibration against the three storage-related calibration targets. Compared 

to the results of the non-calibrated Hanasaki Algorithm (DH), calibration against both storage anomaly and 

estimated storage improved the storage simulation and slightly improved the outflow simulation. Calibration 

against storage anomaly resulted in 64 (39), 68 (45), and 66 (45) skillful storage simulations for CH, SA, and 

WA, respectively, during the calibration (validation) period, as compared to only 16 (15) for DH. Utilizing 

estimated storage instead of storage anomaly does not provide added benefit, primarily due to inconsistencies 

in observed maximum water storage and storage capacity data from GRanD. Findings show that the default 

parameters of the Hanasaki algorithm rarely matched the calibrated parameters, highlighting the importance 

of calibration. Using observed instead of simulated inflow has a more significant effect on improving outflow 

simulation than calibration, whereas the opposite is true for storage simulation. Overall, the performance of 

the SA and WA algorithms is nearly equal, and both outperform the CH and DH algorithms. Moreover, 

incorporating downstream water demand into the reservoir algorithms does not necessarily improve modeling 

performance due to the high uncertainty in demand estimation. Therefore, to improve the modeling of reservoir 

storage and outflow in large-scale hydrological models, we recommend calibrating either the SA or the WA 

reservoir algorithm individually for each reservoir against remote sensing-based storage anomaly, unless in-

situ storage data are available, and to improve reservoir inflow simulation.” 

RC#1: Description of methods. Several points there. First, there is no clear and concise explanation of how storage 

anomalies datasets are constructed. Similarly, it is never clear what the point of estimated storage is: it is constructed 

from monthly storage observations, is this something as readily available as storage anomalies? This should be added 

to 2.3 and 2.4, along with examples (maybe from the same 3 reservoirs from the results?) of how observed storage, 

storage anomalies and estimated storage compare for the U.S. 

Response: We had briefly mentioned the method for calculating storage anomalies in line 271 of the first version: 

'For the storage anomaly, the mean storage during the calibration period is subtracted from the data. ' In the revised 

version, we will clarify this as follows: 
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“Storage anomaly time series for each reservoir is calculated by subtracting the mean storage during the 

calibration period from the in-situ storage data for each reservoir.” 

In lines 274–284 of the first version, we had provided an explanation for the estimated storage calculations. Storage 

anomalies do not account for the bias term, which can lead to a calibrated absolute storage time series that deviates 

significantly from the actual absolute water storage. We evaluate the use of estimated storage instead of storage 

anomaly because it facilitates calibration against (an estimated values of) absolute storage rather than storage anomaly. 

Estimated storage can be calculated using either storage anomaly (from remotely sensed or in-situ data) or absolute 

storage, along with the water storage capacity of the reservoir. Since storage anomalies are available globally through 

remote sensing data, and the GRanD dataset includes capacity information for reservoirs, estimated storage can be 

easily calculated for each reservoir. To improve clarity, we will revise the text as follows [Lines 273-298]: 

“Using in-situ storage data, we derived two additional storage-related variables: the time series of storage 

anomaly and estimated storage. These variables can also be estimated using remote sensing data. Storage 

anomaly time series for each reservoir is calculated by subtracting the mean storage during the calibration 

period from the in-situ storage data for each reservoir. However, the storage anomaly lacks information about 

the bias term and calibrating against it can result in a simulated storage time series that significantly deviates 

from the observed water storage. Having actual absolute storage is advantageous, as reservoirs are the only 

surface water bodies for which we can model absolute storage within the WaterGAP. To provide an alternative, 

we calculated the “estimated storage time series”; this term refers to storage values that are not observed 

directly but are estimated using storage anomaly and the reservoir capacity C. First, we determined the storage 

changes time series by subtracting the initial month's storage anomaly value from the monthly storage anomaly 

values. Assuming the reservoir reaches maximum capacity at least once between 1980 and 2009, we calculated 

the maximum monthly storage change, termed Difmax. We then subtracted Difmax from the GRanD reservoir 

storage capacity to estimate the initial water storage for the first month. The estimated storage time series is 

then obtained by adding the storage changes to this estimated initial water storage. Since the data are monthly, 

and daily maximum storage is generally higher, we applied a 1.2 scaling factor to Difmax. This adjustment 

means that Difmax used in our calculations is 20% higher than the initially calculated value. This 20% increase 

is derived from the mean difference between the maximum daily storage and the monthly storage observed in 

100 studied reservoirs (see Table S1). The calculation of estimated storage can be performed using either 

absolute storage or storage anomaly, as the time series of storage changes would remain the same in both cases. 

An example using GRanD ID 597 (Glen Canyon Dam, Lake Powell) clarifies the calculation of storage anomaly 

and estimated storage. The mean observed storage value between 1980 and 2009 for Glen Canyon Dam is 22.45 

km³. To obtain the storage anomaly time series for this reservoir, the value of 22.45 km³ is subtracted from all 

storage data for the reservoir over the entire period (1980–2019). For calculating estimated storage, the Difmax 

is 6.6 km³, which occurred in July 1983 (see Fig. S1). This is calculated as the storage anomaly value in July 

1983 minus the initial storage anomaly value in January 1980. The initial storage is estimated as 25.1 km³ (the 

reservoir capacity reported by GRanD) minus 7.9 km³ (6.6 km³×1.2). This gives an initial storage value of 

approximately 17.2 km³. Storage changes are then added to the estimated initial storage to obtain the time 

series of estimated storage (Fig. S1c), e.g., the estimated storage for July 1983 is 23.8 km³, which is the sum of 

17.2 km³ and 6.6 km³.” 

RC#1: Second, the rationale for selecting 100 reservoirs is not super clear: why use geographical spacing on a 0.5 x 

0.5-degree grid? That does not guarantee we have reservoirs that are not on upstream / downstream of one another. 

Response: The 0.5 × 0.5-degree grid is the resolution of the WaterGAP global hydrology model. We use this model 

because simulated streamflow data are needed, as observed inflow data are not available everywhere and in practice 

the reservoir operation algorithm should use simulated inflow for operation.  Several filters were applied, resulting in 

the selection of only 100 reservoirs out of the 679 reservoirs listed in the ResOpsUS dataset, as outlined in Section 

“2.3 Data.” The filters included: 

1. A minimum of five years of storage and outflow data. 

2. Storage capacity above 0.5 km³. 
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3. Ensuring only one reservoir per 0.5 × 0.5-degree grid (WaterGAP simulates all reservoirs within a single 

0.5 × 0.5-degree grid as a single object). 

Out of the 100 reservoirs, 51 are the most upstream reservoirs (see Table S1), meaning there are no global reservoirs 

upstream of them within the WaterGAP model. However, inflow into all reservoirs, regardless of their position, is 

based on the DH algorithm, where simulated inflow data by WaterGAP is first saved and then read from the saved 

files for all calibration experiments (as mentioned in lines 235–236 of the first version). This approach ensures that all 

calibrated algorithms use the same inflow data, preventing the operations of upstream reservoirs from affecting 

downstream reservoirs. We will clarify this further as follows [Lines 311-316]: 

“For comparison purposes, in all calibration experiments based on WaterGAP inflow, the inflow into reservoirs 

simulated by the DH algorithm was used to ensure that the same inflow data were applied across all algorithms. 

To achieve this, WaterGAP was first run with the DH algorithm to save the reservoir inflow data. These inflow 

data were then read from the saved files and used as the inflow source to model each reservoir independently. 

As a result, inflow into all reservoirs, regardless of their position, was based on the DH algorithm when applying 

the CH, SA, and WA algorithms, meaning that the operations of upstream reservoirs did not affect downstream 

reservoirs.” 

RC#1: Third, the explanation for the release rule would warrant separate paragraphs / sub-sections for each. Things 

are abstract and quite difficult to follow as such. SA and WA should reference the original paper(s) that introduced 

them. To clarify, do these rules use demand estimates to adjust releases the way H06 does? I would also urge authors 

to better explain the practical difference between the rules, e.g., with diagrams showing release as a function of storage. 

Response: We will revise the text and add subsections for each reservoir algorithm. This paper introduces two new 

algorithms, SA and WA, for the first time; therefore, no prior references are available. These algorithms estimate 

releases without requiring water demand data. We will make it clearer in the revised version as follows [Lines 240-

243]: 

“It should be noted that the new algorithms do not distinguish between irrigation and non-irrigation reservoirs; 

therefore, no water use data is required for their application, making their implementation easier than the H06 

algorithm. This is because the estimation of downstream water demand at a large scale is generally very 

uncertain, and reservoirs are usually designed for multiple purposes.” 

Additionally, we will include a diagram (Figure 1 in the revised version) to illustrate the release estimation process 

for each algorithm.  

RC#1: Four, a little bit more on calibration would be great. In practice, do you simulate N parameter sets and select 

the one with highest KGE? If so, how many parameter sets do you try? If not, what do you do? 

Response: A more detailed explanation of the calibration process will be provided in section 2.4, “Model Variants and 

Calibration Approach.” We considered N parameter sets for each algorithm, though the number of parameters varies 

across algorithms. For irrigation reservoirs, 5,800 parameter sets were used for the Hanasaki algorithm, while 8,000 

parameter sets were applied for the SA and WA algorithms. Table S2 presents the number of parameter sets under 

different conditions for each algorithm, along with the range of each parameter. The following will be added to section 

2.4 [Lines 300-306]:  

“The three reservoir operation algorithms were implemented in WaterGAP. For each algorithm, the algorithm-

specific parameters (𝒂𝟏, 𝒂𝟐, and 𝒂𝟑 for the CH, 𝒑𝟏, 𝒑𝟐, and 𝒑𝟑 for the SA and 𝒒𝟏, 𝒒𝟐, and 𝒒𝟑 for the WA) were 

estimated by optimizing the Kling–Gupta Efficiency (KGE) (Kling et al., 2012), including the trend term (see 

Eq. 10). This optimization was performed through a single-objective calibration against the monthly time series 

of four variables: outflow, storage, storage anomaly, and estimated storage (see Section 2.3). The parameters of 

each algorithm were calibrated using a grid search approach. Reservoir outflow and storage time series were 

simulated for all parameter sets listed in Table S2, and the parameter set corresponding to the highest KGE 

was selected.” 
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RC#1: Results. Several points to consider. SA vs. WA, the evidence for SA being better doesn’t seem very robust, as 

(unless I have missed it) there’s little evidence that the small nRMSE difference in favor of SA is statistically 

significant. I would instead, present SA and WA as equivalent throughout the paper (starting with the abstract). 

Response: We agree with you that there is no definitive superiority of SA over WA. Our aim was to provide the reader 

with a clear choice, so we initially decided to conclude that, based on nRMSE, SA can be considered better than WA. 

However, based on your feedback, we have revised the text to indicate that SA and WA are equivalent. 

RC#1: Figures 3 and 4: whilst it is great to see examples of reservoirs, the size of the figures and the choice of color 

/ line style make this very difficult to read and understand. Please (1) use full page width (and even better, landscape 

page orientation) for each panel, and (2) adjust line width and line style, rather than using color codes that are not 

inclusive. 

Response: Thank you for your feedback. In the revised version, we have plotted storage and outflow in separate 

figures, as suggested by the second reviewer, and adjusted the line width for the observations and the DH algorithm, 

improving clarity. 

Thank you again for sharing your helpful comments and insights. 


