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Abstract. Typically, in finite element groundwater models, fractures are represented by two-dimensional triangular or 

quadrilateral elements. When embedded in a three-dimensional space, the Jacobian matrix governing the transformation from 

the global three-dimensional space to the local two-dimensional space is rectangular and thus not invertible. There exist 

different approaches to obtain a unique mapping from local to global space even though the Jacobian matrix is not invertible. 

These approaches are discussed in this study. It is illustrated that all approaches yield the same result and may be applied to 10 

curved elements. The mapping of anisotropic hydraulic conductivity tensors for possibly curved fracture elements is also 

discussed.  

 

1 Introduction 

The finite element method is well-suited for accommodating fractures in groundwater models. Typically, fractures are 15 

represented by discrete two-dimensional elements and these fracture elements can be embedded within a three-dimensional 

continuum consisting of three-dimensional elements. For example, within a tetrahedral mesh, fractures can be embedded by 

using triangular elements such that each triangle corresponds to a face shared by two adjacent tetrahedral elements. Similarly, 

quadrilaterals can be embedded within a hexahedral mesh. Indeed, such discrete-continuum models with embedded fractures 

are routinely applied (Blessent et al., 2011; Blessent et al., 2009; Li et al., 2020; Watanabe, 2011).  20 

 A key component in the finite element method is the mapping of the gradient matrix from local to global space, where 

the global space is typically defined by a standard orthogonal coordinate system. The local space within a finite element can 

be curvilinear and has the same dimension as the element itself. If the global space has the same dimension as the local space, 

then the mapping is defined by the inverse of the Jacobian matrix. However, in the case of two-dimensional fractures embedded 

in a global three-dimensional space, the Jacobian matrix is non-square and thus not invertible (Juanes et al., 2002; Perrochet, 25 

1995). A couple of different techniques enable a mapping from two-dimensional local to three-dimensional global space.  

A first approach is based on using contravariant base vectors and the contravariant metric tensor (Cornaton et al., 2004; 

Juanes et al., 2002; Kiraly, 1985; Perrochet, 1995). This approach requires some understanding of tensor calculus and the few 
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studies that describe this approach refer to mathematical textbooks for more details. Nonetheless, this approach yields a rather 

simple expression for the mapping and is directly applicable to curved elements.  30 

A second approach uses the right Penrose-Moore inverse of the Jacobian matrix. As shown in this study, the derivation of 

this pseudo-inverse is relatively straightforward. Within the field of finite elements, the left Penrose-Moore inverse has been 

applied for the reverse mapping from a three-dimensional global space to a two-dimensional local space (Rognes et al., 2013). 

One study mentions the pseudo-inverse for mapping finite elements to higher dimensions (Reichenberger, 2004), but only 

within the context of non-curved elements and without much further detail.  35 

A third approach is to introduce an intermediate mapping to an orthonormal two-dimensional space tangent to the fracture 

space. The Jacobian of such a mapping is invertible. A matrix of directional cosines is used for a subsequent mapping to the 

global space. This approach is widely used and the available literature is quite detailed (Diersch et al., 2005; Kolditz and Glenn, 

2002; Watanabe, 2011). However, the approach as discussed in available literature is only applicable to non-curved finite 

elements. 40 

The existence of multiple approaches, which are quite different from a mathematical point of view, makes it difficult to 

navigate the literature for those in need of implementing the mapping of a gradient matrix to higher dimensions. This study 

provides a comprehensive discussion of the three approaches. It is shown that all approaches yield the exact same result. It is 

illustrated that the third approach can be applied to curved elements by a minor adjustment. Although, rarely discussed, this 

study highlights that the right Penrose-Moore inverse is an elegant alternative approach to find the gradient matrix expressed 45 

in global coordinates.  

The mapping of locally defined hydraulic conductivity tensors to the global space is also discussed. Although this mapping 

is discussed in existing literature for non-curved elements (Kolditz and Glenn, 2002), here a more general mapping is presented 

that is also applicable to curved fracture elements. This is useful, as such a mapping for curved elements is not discussed in 

existing literature. 50 

2 Preliminary on the geometry of a fracture finite element 

Figure 1 illustrates a curved quadrilateral fracture finite element. The orientation of the fracture element can be defined by the 

normal, strike and dip directions.  The local space within the curved quadrilateral is defined by local coordinates sk with

1 1ks−   . To describe this curved space, some differential geometry of surfaces is needed (Farrashkhalvat and Miles,  

2003; Itskov, 2007; Lebedev et al., 2010; Nguyen-Schäfer and Schmidt, 2014).  The covariant base vectors are tangent to the 55 

local coordinate axes and are given by:  

 
j

k jk

x

s


=


a e   (1) 

The contravariant base vectors ak are perpendicular to planes along which sk varies and are  given by: 
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Figure 1: Geometry of a curved fracture element 60 
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such that: 

 j i

i j = a a   (3) 

where 
i

j  is the Kronecker delta symbol. The contravariant base vectors and the covariant base vectors are related by: 65 

 

j

i ij

i ij

j

G

H

=

=

a a

a a
  (4) 
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where Gij and Hij are the covariant and contravariant metric tensor, respectively. These tensors are given by: 

 
1

ij i j

ij i j

ij

G

H G−

= 

=  =

a a

a a
  (5) 

The unit normal vector is simply defined by the cross product of the covariant base vectors: 

 1 2

1 2


=



a a
n

a a
  (6) 70 

Making use of Lagrange’s identity, the area of the element can be shown to equal the square root of the determinant of G: 

 ( )( ) ( )
2

1 2 1 1 2 2 1 2 det =   −  =a a a a a a a a G   (7) 

The local two-dimensional space can be expanded to a local three-dimensional space with the following base vectors all normal 

to the fracture surface: 

 3

3 = =a a n   (8) 75 

Then equation (3) implies that the contravariant base vectors can also be expressed as: 

 

( )

( )

( )

1

2 3

2

3 1

3

1 2

1

1

1

g

g

g

= 

= 

= 

a a a

a a a

a a a

  (9) 

where detg = G . It is noted that covariant and contravariant base vectors as well as metric tensors can similarly be defined 

for triangular finite elements. 

3 The basic mapping problem 80 

The finite element formulations for groundwater flow result in element matrices that require the element shape functions and 

their partial derivatives with respect to global Cartesian coordinates. These matrices also involve an integration over the finite 

element domain 
e . For the objective of this study, it suffices to consider the element conductance matrix for saturated 

groundwater flow:  
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e

T

ed


=   G NK N   (10) 85 

where K is the hydraulic conductivity tensor defined with respect to a global Cartesian coordinate system xi andN the 

gradient matrix often denoted by B (Perrochet, 1995): 

 n
ni i

N
B

x


=


  (11) 

where Nn is the nth nodal shape function. Typically, however, the shape functions are provided with respect to a local coordinate 

system sk. To find the partial derivatives of the shape functions with respect to global coordinates, the standard approach is to 90 

use the Jacobian matrix of the coordinate transformation between local and global space. Following the chain rule: 

 
i

n n

k i k

N N x

s x s

  
=

  
  (12) 

the Jacobian is defined as follows: 

 
i

ki k

x
J

s


=


  (13) 

The components of the Jacobian are computed using the derivates of the shape functions with respect to local coordinates and 95 

the nodal coordinates: 

 
i

in
nk k

Nx
x

s s


=

 
  (14) 

It can be observed that the Jacobian contains the covariant base vectors per row and equation (14) illustrates how to compute 

these vectors from local shape functions and nodal coordinates. If the Jacobian is invertible, then the derivatives with respect 

to global coordinates can be computed as follows: 100 

 T 1 *T−=B J B   (15) 

where B* denoted the gradient matrix with respect to local coordinates: 

 * n
nk k

N
B

s


=


  (16) 

Once BT has been computed, the matrix B can be computed easily by taking the transpose of BT. 

Typically, the element matrices are computed using Gaussian quadrature, although for a limited number of element 105 

types, the integration can be carried out analytically (Diersch, 2013). The advantage of numerical integration is that it can be 
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applied to any element type, including curved elements. To perform Gaussian quadrature, the integration limits need to be 

defined with respect to the local domain 
*d . If the Jacobian is invertible, then (Perrochet, 1995): 

 *det( )d d = J   (17) 

However, if the Jacobian is not a square matrix, then the Jacobian matrix it is not invertible and equation (15) and (17) cannot 110 

be used for the finite element computations. This occurs when the local space has a lower dimension than the global space. 

Thus, for two-dimensional fracture elements embedded within a three-dimensional model space, the problem is that the 

Jacobian is not a square matrix. 

In equation (10), the hydraulic conductivity tensor for fractures is to be defined with respect to the global Cartesian space. 

However, in general it is more convenient to start with tensors which are defined with respect to the strike and dip direction 115 

along a fracture. The strike, dip and normal directions provide a locally orthogonal coordinate system. On curvilinear elements, 

this coordinate system varies from point to point.  

4 Gradient mapping using contravariant and covariant bases 

Similar to equation (12), it follows from the chain rule that: 

 
k

n n

i k i

N N s

x s x

  
=

  
  (18) 120 

This indicates that the gradient matrix with respect to global coordinates can be obtained using the contravariant base vectors. 

Introducing a matrix D in which the columns contain the contravariant base vectors: 

 
k

ik i

s
D

x


=


  (19) 

it follows that: 

 T * T = N D N   (20) 125 

The components in matrix D can be rewritten in terms of covariant vectors using equation (5):  

 ( ) ( )j jk

ij ki i
D H= =a a   (21) 

Since the Jacobian J contains the covariant vectors per row, this can be written as: 

 
T=D J H    (22) 
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The contravariant metric tensor H can also be written in terms of the Jacobian matrices: 130 

 ( )
1

1 T
−

−= =H G JJ   (23) 

where it is noted T
JJ is an invertible square matrix. Thus, the gradient matrix in global coordinates is 

given by:  

 T 1 * T( )T T − = N J JJ N   (24) 

The differential volume follows from equation (7) and is simply: 135 

 * *det( ) det( )Td d d =  = G JJ   (25) 

Although, this last expression is typically derived in existing literature using the metric tensors, it is interesting to observe that 

equation (9)  permits to write the matrix D to be written as: 

 

( ) ( )

( ) ( )

( ) ( )

2 3 3 11 1

2 3 3 12 2

2 3 3 13 3

1

g

  
 

=   
   

a a a a

D a a a a

a a a a

  (26) 

Using the vector triple product it can be shown that: 140 

 

( ) ( )( )

( ) ( )( )

1 2
2 3 2 2 2 1 2 1 2

1 2

1 2
3 1 1 1 1 2 1 2 1

1 2

1

1

g

g


 =  =  − 




 =  =  − 



a a
a a a a a a a a a

a a

a a
a a a a a a a a a

a a

  (27) 

Eventually, after expanding the cross products in equation (26) using the vector triple products in equation (27), it can be 

shown that this eventually yield the same result 
1( )T T −=D J JJ .  

5 Gradient mapping using the right Penrose-Moore inverse 

Equation (15) can also be written as: 145 

 T * T =J N N   (28) 

https://doi.org/10.5194/hess-2024-289
Preprint. Discussion started: 14 October 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

Since the Jacobian is rectangular, equation (28) represents an underdetermined system with infinite many solutions. However, 

the particular solution that represents the desired mapping needs to be a solution that lies in the row space of J.  Namely, the 

row space of J contains the covariant base vectors spanning the local fracture space. To reflect this condition, equation (28) is 

written as: 150 

 * TT =JJ M N   (29) 

where the matrix
T T =N J M  now lies within the row space of J. Equation (29) has a unique solution: 

 ( )
1

* TT
−

= M JJ N   (30) 

Thus, the same result as in equation (24) is obtained: 

 ( )
1

T * TT T
−

 = N J JJ N   (31) 155 

This can also be written as: 

 T † * T = N J N   (32) 

where J† is the so-called right Penrose-Moore inverse given by: 

 ( )
1

† T T
−

=J J JJ   (33) 

The Penrose-Moore inverse is widely used to solve over-determined and under-determined linear systems. By definition, the 160 

Penrose-Moore inverse satisfies the following conditions (Penrose, 1955): 

 

( )

( )

( ) ( )

( ) ( )

†

† †

† †

† †

I

T

T

II

III

IV

=

=

=

=

AA A A

A AA A

AA AA

A A A A

  (34) 

Condition (I) implies that 
†

A A  is idempotent (
† † †=A AA A A A ) and condition (IV) implies that 

†
A A is hermetian. 

Therefore 
†

A A is an orthogonal projection matrix. Using the right Penrose-Moore inverse ( )
1

† T T
−

=A A AA as used for an 

under-determined system, 
†

A A is expressed as: 165 

 ( )
1

† T T
−

=A A A AA A   (35) 
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This last expression illustrates that
†

A A  is the orthogonal projection matrix 
( )TA

P onto the column space or range of AT 

(Strang, 2022) which equals the row space or range of A and as such †−I AA  is the orthogonal projection matrix 
( )AP onto 

the nullspace of A: 

 
( )

†

†

( )

TA

A

=

= −

P A A

P I A A

  (36) 170 

Using these orthogonal projection matrices, a solution to an under-determined system Ax=b can thus be expressed as: 

 ( ) ( ) ( )† † † †= + − = + −x A A x I A A x A b I A A x   (37) 

This illustrates that the right Penrose-Moore inverse provides the solution 
†=x A b  that lies within the row space of A. 

6 Gradient mapping using directional cosines 

For each point on a possibly curved two-dimensional discrete element, it is possible to construct a two-dimensional 175 

orthonormal coordinate system tangent to the fracture defined by unit vectors 1ê and 2ê . There are several possibilities, but 

here the procedure starts with taking the vector 1ê  parallel to the first covariant basis a1: 

 1
1

1

ˆ =
a

e
a

  (38) 

The vector 
2ê can be easily obtained making use of the normal n. 

 2 1
ˆ ˆ= e e n   (39) 180 

This two-dimensional orthonormal coordinate system can be expanded into three dimensions by adding a third unit vector: 

 3
ˆ =e n   (40) 

The transformation from new coordinate system ˆ ix  to the global coordinate system, is given by a 3 by 3 matrix of directional 

cosines: 

 3 3 ˆˆ ˆ ˆcos( , )
i

x i j

ij i j

j

x
T x x

x


= =  =


e e   (41) 185 

Such that: 
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 ˆˆ i j

ijx T x=   (42) 

The gradient matrix with respect to the new two-dimensional orthonormal coordinate system 
^ T N  is given by: 

 ^ 1 *ˆT T− = N J N   (43) 

where the Jacobian matrix is an invertible 2 by 2 matrix: 190 

 2 3ˆˆ ˆˆ
i

i x jn n
ki n ij nk k k

N Nx
J x T x

s s s

 
= = =
  

  (44) 

This implies: 

 *ˆdet( )d d = J   (45) 

The gradient matrix with respect to global coordinates is finally obtained by applying a rotation: 

 ( )3 2 1 *ˆ ˆ
T

T x T− = N T J N   (46) 195 

This expression looks quite different compared from the expressions obtained using the first and second approach. However, 

it can be illustrated that the result is identical. Introducing the matrix: 

 ˆ
ˆ

i

ij j

x
T

x


 =


  (47) 

and using the chain rule: 

 ( )1 2 3ˆ x− =J T D   (48) 200 

it follows: 

 ( ) ( ) ( )3 2 1 * 3 2 2 3ˆ ˆ ˆ ˆ
T T

x T x x−  = =T J N T T D D   (49) 

Since the covariant bases are used to create to construct a two-dimensional orthonormal coordinate system, the approach as 

discussed here is applicable to curved fracture elements. In existing literature (Diersch, 2013; Kolditz and Glenn, 2002; 

Watanabe, 2011), the two-dimensional orthonormal space is constructed using the edges of non-curved fracture elements. That 205 

is, the unit normal is constructed from two element edges, the first unit vector is taken parallel to the first edge and finally a 

cross product of the unit normal and the first unit vector is used to compute the second unit vector. Such an approach assumes 

that the two-dimensional orthonormal space is constant across the fracture element, which is only valid for non-curved fracture 
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elements. Analytical integration for certain non-curved elements avoids the need to define the local space. In that case, the 

gradient matrix 
^ T N  is directly computed from the nodal coordinates in the two-dimensional orthonormal coordinate 210 

system. 

7 Gradient mapping using directional cosines 

Here, it is assumed that a hydraulic tensor is initially provided with respect to the local strike and dip directions for each 

fracture element. On curvilinear elements, the strike and dip directions vary from point to point. Given the normal n, which 

also varies from point to point within a curved fracture element and a vertical unit vector v, the unit vector in the strike direction 215 

is given by: 

 
1 = e n v   (50) 

The unit vector in the dip direction follows directly from the following cross product: 

 
2 1= e n e   (51) 

Finally, the unit vector normal to the fracture is given by: 220 

 3 =e n   (52) 

The transformation from the orthonormal local coordinate system aligned with the strike and dip direction to the global 

coordinate system is then defined by: 

 ˆi j

ijx Q x=   (53) 

with Q a 3 by 3 matrix of directional cosines: 225 

 ij i jQ = e e   (54) 

Denoting the two-dimensional hydraulic conductivity tensor in local coordinates by 
2D

locK  , the hydraulic conductivity tensor 

in global coordinates is given by: 

 ( )3 2 2D 3 2

loc

T
 =K Q K Q   (55) 

Alternatively, a three-dimensional hydraulic conductivity tensor 
3D

locK may be defined that includes a dummy component in 230 

the normal direction. In that case: 

 3D

loc

T=K QK Q   (56) 
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For curved elements the normal is to be computed from the covariant vectors using equation (6). For non-curved elements, the 

normal is constant across the element and can be computed by taking the cross-product between two element edges.  

 235 

6 Discussion and conclusion 

The mapping of the gradient matrix from a two-dimensional local space to a global three-dimensional space can be constructed 

using different approaches. In existing literature, the approach based on an intermediate mapping to a two-dimensional 

orthonormal space and a subsequent rotation to the global space is implemented such that it only applies to non-curved finite 

elements. However, in this work it is shown that a minor adjustment is sufficient such that this approach can be applied to 240 

curved elements. This result is important as this approach may be deemed simpler from a mathematical point of view vis-à-

vis the alternative approaches. Hence, existing implementations of this approach can be easily modified to handle curved 

elements provided that numerical integration is applied.  

As illustrated using the right Penrose-Moore inverse yields the same expression for the mapping as the approach 

based on covariant and contravariant vectors. In comparison, the approach based on an intermediate mapping to a two-245 

dimensional orthonormal space and a subsequent rotation to the global space seem to yield a different expression for the 

mapping but is identical as discussed. Thus, since the resulting mapping is identical regardless of the approach, one could 

simply implement the mapping expression which is the easiest to implement in a code. Since the Jacobian is typically readily 

available, it is evident that the expression derived from the right Penrose-Moore inverse or from approach based on covariant 

and contravariant vectors is the easiest to implement. Implementing the expression derived from using intermediate mapping 250 

to a two-dimensional orthonormal space and a subsequent rotation to the global space is more complicated as it involves setting 

up an intermediate orthonormal space and two subsequent mappings. In essence, while the later approach may be easier to 

understand, it may be more complicated to implement. However, it is noted that analytical integration avoids the need to define 

the local space and as such the Jacobian J is not defined. Thus, if analytical integration is used, then there is no alternative for 

implementing the intermediate mapping to a two-dimensional orthonormal space and the subsequent rotation to the global 255 

space. In general, however, it can be argued that numerical integration is to be preferred, since it is far easier to implement 

(even without considering the mapping problem for fracture elements). Moreover, numerical integration is more general as it 

can be applied to all finite element types including curved elements.  

 It is shown in this work that applying the right Penrose-Moore inverse is an efficient, elegant and relatively simple 

alternative to find an expression to map the gradient matrix. This alternative avoids the use of tensor calculus or the use of 260 

cumbersome rotation matrices. Instead, it uses the concept of subspaces associated with matrices.         

 Finally, this work includes a general approach, applicable to curved elements, to map hydraulic tensors as defined in 

a local orthonormal coordinate system aligned with the strike, dip and normal directions to the global coordinate system. 
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