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 34 

Abstract 35 

Reanalysis datasets are critical in climate research and weather analysis, offering consistent 36 

historical weather and climate data crucial for understanding atmospheric phenomena, and 37 

validating climate models. However, biases exist in reanalysis datasets that would affect their 38 

applications under circumstances. This study evaluates BARRA, which is a high-resolution 39 

reanalysis for the Australian region, and ERA5 in simulating mean precipitation and six 40 

selected precipitation extremes for their climatology, temporal correlation, coefficient of 41 

variation and trend. Both models reproduce spatial patterns of mean precipitation well with 42 

minor biases. ERA5 shows stronger temporal correlations, superior inter-annual precipitation 43 

accuracy, and lower biases in coefficient of variation compared to BARRA, especially in 44 

Northern Australia. However, both models exhibit substantial biases in trend, underestimating 45 

increasing trends in Northern Australia. ERA5 underestimates dry days and heavy rainfall, 46 

while BARRA tends to overestimate these extremes. Temporal correlations for extreme 47 

precipitation indices are weaker compared to mean annual precipitation. Notable differences 48 

exist in variability biases, with BARRA showing larger biases, especially for heavy 49 

precipitation in inland regions and Northern Australia. While both datasets replicate the main 50 

trends, biases persist. Overall, the evaluation results support application of both datasets for 51 

climatology analyses, but caution is advised for variability and trend analyses, particularly for 52 

specific extremes. 53 

 54 

Key words: BARRA, ERA5, extreme indices, temporal correlation, coefficient of variation, 55 

trend   56 
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1. Introduction  57 

Reanalysis dataset is created by combining historical observational data from various 58 

sources, such as weather stations, satellites, buoys, and more, with modern data assimilation 59 

techniques and numerical models (Kalnay, et al. 1996; Saha, et al. 2010; Dee et al. 2011; 60 

Kobayashi et al. 2015, Poli et al. 2016; Hersbach 2020). The fundamental aim of reanalysis is 61 

to construct a uniform and coherent historical archive of various atmospheric and 62 

environmental parameters, such as temperature, humidity and wind patterns, on either a 63 

regional or a global scale. 64 

These datasets are invaluable for climate studies, weather analysis and model validation 65 

as they provide a uniform representation of historical climate conditions. For instance, 66 

Quagraine et al. (2020) used five global reanalysis datasets to investigate the variability of West 67 

African summer monsoon precipitation, showing all datasets could represent the average 68 

rainfall patterns and seasonal cycle.  Dai et al. (2023) utilized the fifth-generation European 69 

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) data to estimate 70 

rainfall erosivity on the Chinese Loess Plateau, finding rainfall erosivity derived from ERA5 71 

was highly consistent with those derived from the meteorological stations. Cheung et al. (2023) 72 

employed ERA5 to evaluate storm conditions in regional climate simulations, demonstrating 73 

regional climate models can capture climatology of measurements of storm severity over land 74 

including their spatial patterns and seasonality. Numerous studies have used reanalysis datasets 75 

as inputs for regional climate models (RCMs) to evaluate the models' capability in replicating 76 

observed climatic patterns (Solman et al., 2013; Ji et al., 2016; Fita et al., 2016, Di Virgilio et 77 

al., 2019; Capecchi et al., 2023; Di Virgilio et al., 2024; Ji et al., 2024). 78 

While reanalysis datasets provide valuable insights into historical weather and climate 79 

conditions, they have limitations and uncertainties, given that they are modelled outputs rather 80 

than direct observations. Many studies have evaluated reanalysis data across various variables 81 
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and regions. For instance, Betts et al. (2019) assessed ERA5 biases in near-surface variables 82 

over Canada, highlighting its improved performance over ERA-Interim, though precipitation 83 

biases remained significant. Similarly, Hu and Yuan (2021) and Jiang et al. (2021) found that 84 

ERA5 precipitation accurately captured rainfall pattern over the Eastern Tibetan Plateau and 85 

mainland China, but under-estimated intensity. Izadi et al. (2021) found ERA5 performed 86 

better at monthly and seasonal timescales in Iran, underestimating coastal summer precipitation 87 

and overestimating it in mountains. Jiao et al. (2021) and Qin et al. (2021) found ERA5 88 

overestimated summer precipitation and frequency in China but underestimated intensity 89 

during the warm season. Lei et al. (2022) and Shen et al. (2022) noted ERA5's limitations in 90 

simulating extreme precipitation events in China, especially for high-end extremes.     91 

Comparisons between reanalysis datasets have also been conducted. Wang et al. (2019) 92 

found that both ERA5 and ERA-Interim exhibited warm biases over Arctic Sea ice, with larger 93 

biases in cold season than warm season. Lei et al. (2020) showed ERA5 improved cloud cover 94 

simulation over eastern China but not over the Tibetan Plateau, when compared to ERA-95 

Interim. Gleixner et al. (2020) found ERA5 reduced biases in temperature and precipitation 96 

over East Africa compared to ERA-Interim but still struggled with long-term trends. Song and 97 

Wei (2021) found both ERA5 and MERRA-2 captured night precipitation peaks over North 98 

China, but only ERA5 accurately reflected the afternoon peak. Li et al. (2022) concluded that 99 

ERA5 performed better than ERA-Interim, JRA55, and MERRA-2 in capturing precipitation 100 

over the Poyang Lake Basin. A summary of the above literature review can be found in Table 101 

S1. 102 

In Australia, reanalyses like NCEP (Kalnay et al., 1996), JRA-55 (Kobayashi et al., 103 

2015), ERA-Interim (Dee et al., 2011), and ERA5 (Hersbach et al., 2020) are commonly used, 104 

alongside the Australian Bureau of Meteorology's high-resolution (12 km) BARRA reanalysis. 105 

4

https://doi.org/10.5194/hess-2024-286
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



BARRA covers Australia, New Zealand, and Southeast Asia (Su et al., 2019), while BARRA-106 

C offers even higher-resolution (1.5 km) analysis for four capital cities (Su et al., 2021). 107 

May et al. (2021) found BARRA reliable, though it showed seasonal and diurnal biases. 108 

Other studies, like Pirooz et al. (2021), compared BARRA with global reanalyses, concluding 109 

BARRA performed better for precipitation and temperature in New Zealand but lagged behind 110 

ERA5 for high gust winds. Du et al. (2023) used BARRA for estimating daily precipitation in 111 

ungauged Australian catchments, while Hobeichi et al. (2023) employed BARRA to train 112 

statistical models for downscaling. Acharya et al. (2019, 2020) found BARRA's precipitation 113 

performance varied by region, with poorer results in tropical areas. Nishant et al. (2022) 114 

suggested higher resolution in BARRA-C didn’t always improve precipitation simulations, 115 

while Choudhury et al. (2023) noted ERA5 performed better for mean temperatures than 116 

extremes in Australia. These previous studies on BARRA and BARRA-C have also been 117 

summarized in Table S1. 118 

However, there is a gap in the existing studies concerning the intercomparison of 119 

various reanalyses, such as BARRA and ERA5, specifically in relation to precipitation 120 

extremes over Australia. In this study, we aim to bridge this gap by evaluating and comparing 121 

the performance of BARRA and ERA5 in capturing precipitation extremes. While the 122 

traditional evaluation methods focusing on climatology (long-term mean), here we also include 123 

temporal correlation, coefficient of variation and trend in evaluation to quantify their overall 124 

performance, which have not been examined before in previous studies. By assessing climate 125 

means and extremes and quantifying their biases, this study provides a valuable reference for 126 

selecting appropriate datasets for specific applications and cautions against treating reanalysis 127 

data as observations. The paper is organized as follows: Section 2 introduces the reanalysis 128 

datasets and observational data used for evaluation. Section 3 outlines the climate extreme 129 
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indices and evaluation methodology. Results are presented in Section 4, followed by further 130 

discussion in Section 5. Finally, Section 6 offers a summary and conclusions. 131 

  132 

2. Data 133 

2.1 ERA5 134 

ERA5 is a global atmospheric reanalysis dataset developed by ECMWF (Hersbach, et 135 

al. 2020). ERA5 provides hourly estimates of many atmospheric, land, and oceanic climate 136 

variables. The data is on a ~30 km horizontal grid and resolves the atmosphere using 137 levels 137 

from the surface up to a height of 0.01hPa (~80 km). 138 

ERA5 is constructed upon the foundation of the Integrated Forecasting System (IFS) 139 

Cy41r2. This allows ERA5 to benefit from a decade's worth of development in areas such as 140 

model physics, core dynamics, and data assimilation techniques. ERA5 is a significant 141 

advancement over its predecessors (e.g., ERA-Interim) due to its higher spatial and temporal 142 

resolution, improved assimilation techniques, and more sophisticated modelling components. 143 

It provides a detailed and accurate representation of various atmospheric variables, such as 144 

temperature, humidity, wind speed, pressure, and more. The dataset covers the entire globe and 145 

spans from 1940 to the present, making it valuable for various applications in climate research, 146 

meteorology, environmental science, and more. 147 

2.2 BARRA 148 

BARRA is a high-resolution regional atmospheric reanalysis dataset developed by the 149 

Australian Bureau of Meteorology, which is available from January 1990 to February 2019 (Su, 150 

et al. 2019). BARRA was constructed based on the Australian Community Climate Earth-151 

System Simulator (ACCESS) model with assimilation of a wide range of observational data to 152 

create a coherent and consistent representation of past weather and climate conditions. BARRA 153 

covers the Australian continent, New Zealand, part of Asia and some Pacific Islands with a 154 
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horizontal resolution of 12 km and 70 vertical levels from the surface up to a height of 80 km. 155 

BARRA specifically focuses on providing detailed information about weather patterns and 156 

atmospheric variables over the Australian region, which provides about 100 parameters at 157 

hourly intervals.  158 

2.3 AGCD 159 

The observational data in the study are from the Australian Gridded Climate Dataset 160 

(AGCD, Evans et al. 2020). The daily gridded maximum and minimum temperatures, and 161 

precipitation data has a spatial resolution of 0.05° (~ 5km) and is interpolated from observations 162 

at stations across the Australian continent. Most of those stations are in the more heavily 163 

populated coastal regions with far fewer stations inland and over high elevation areas. For 164 

example, there are very few station observations near the Gibson dissert region in Western 165 

Australia, making the gridded observations unreliable over that region. Thus, in the following 166 

figures that region has been masked and not considered for evaluation.  Since observations and 167 

reanalyses are not at the same spatial resolutions, we aggregate the observations to the native 168 

grid of ERA5 and BARRA respectively for comparison, including the performance of 169 

statistical significance tests. For comparison purpose, we also interpolate reanalysis to AGCD 170 

grids using the conservative area weighted re-gridding scheme from the Climate Data 171 

Operators (Schulzweida et al., 2006), which will be shown in the Supplementary Information. 172 

The states and sub-regions in the Australian region we discuss in the following can be found 173 

in Figure S1. 174 

 175 

3. Methodology  176 

3.1 ET-SCI 177 

While extreme climate and weather events are generally multifaceted phenomena, in 178 

this study we evaluate climate extremes based on daily precipitation and temperature as defined 179 
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by Expert Team on Sector-specific Climate Indices (ET-SCI; Alexander & Herold, 2015; 180 

Herold and Alexander, 2016). We use the ClimPACT version 2 software to calculate the ET-181 

SCI indices (https://climpact-sci.org/), focussing on daily precipitation.  182 

Although ClimPACT generates 14 precipitation-related core indices, we select six 183 

(Table 1) based on the following considerations: 1) To capture key aspects of climate extremes, 184 

we include absolute indices such as the maximum 1 day precipitation (Rx1day) and total 185 

precipitation (PRCPTOT), threshold-based indices (e.g., number of heavy rain days, R10mm), 186 

percentile indices (e.g., total annual precipitation from very heavy rain days, R99p), and 187 

duration indices such as the consecutive wet (CWD) and dry days (CDD). 2) to capture 188 

extremes which have an impact on society and infrastructure, such as Rx1day, CDD, and CWD, 189 

which significantly affect agriculture, water resources and the economy (Tabari, 2020; Pei et 190 

al., 2021).  191 

With the above consideration, six precipitation-related indices were calculated on 192 

native reanalysis grids and observation grids. Since the AGCD observations have the highest 193 

resolution, here we mainly show the evaluation on the native grids of the reanalyses (i.e., the 194 

12-km grid of BARRA and 30-km grid of ERA5). The extreme indices calculated from 195 

reanalysis data have also been regrided to the 5-km resolution, which are included in the 196 

supplementary information to demonstrate that our conclusions are insensitive to the choice of 197 

evaluation resolution. 198 

3.2 Evaluation matrices 199 

We evaluate BARRA and ERA5 for their performance in capturing climatology, 200 

coefficient of variation (CV), temporal correlation, and trends of six selected precipitation 201 

extreme indices. The CV is a valuable statistical tool representing the ratio of the standard 202 

deviation to the mean, allowing for the comparison of variation between different data series, 203 

even when their means differ significantly. Temporal correlations of climate extremes measure 204 
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the similarities between simulations and observations in terms of their inter-annual variabilities, 205 

with larger temporal correlations indicating better performance. 206 

We use bias and domain-averaged absolute bias to quantify spatial differences between 207 

reanalyses and observations. Temporal correlation, coefficient of variation, and trend are used 208 

to quantify temporal similarities between reanalyses and observations. The non-parametric 209 

Mann-Kendall test is used to assess the statistical significance of differences and trends. Biases 210 

are assessed at an annual timescale for all extremes. 211 

  212 

4. Results 213 

4.1 Mean climate 214 

This section evaluates and compares the annual mean of daily precipitation between 215 

BARRA and ERA5 against AGCD over Australia.  216 

4.1.1 Bias and temporal correlation 217 

We first evaluate precipitation simulated by BARRA and ERA5 against observations 218 

(AGCD). The mean annual precipitation from the three datasets and biases in BARRA and 219 

ERA5 compared to AGCD are shown in Figure 1 (and Figure S2 on the observation grid). 220 

Results show that both BARRA and ERA5 simulate the spatial patterns of mean annual 221 

precipitation very well with high rainfall in northern Australian, eastern Australia coast and 222 

western Tasmania and low rainfall inland, albeit with clear biases. Compared to AGCD, both 223 

BARRA and ERA5 underestimate precipitation up to 20% for Eastern Australian coast, 224 

southwest western Australia, and western Tasmania, but overestimate annual precipitation up 225 

to 30% inland (Figure S3). Some clear differences in biases between BARRA and ERA5 can 226 

be observed in central western Australia and northern Queensland where BARRA overestimate 227 

precipitation but ERA5 underestimate it. Domain averaged absolute bias in annual precipitation 228 

is about 0.17mm/day (~12.7%) for BARRA and 0.15 mm/day (~10.5%) for ERA5 (Table 2). 229 
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The skill of simulated precipitation from BARRA and ERA5 are further demonstrated 230 

in the temporal correlations between BARRA/ERA5 and AGCD shown in Figure 2 (and Figure 231 

S4 on the observation grid). Temporal correlation of annual precipitation is larger in southeast 232 

Australia and northern Tasmania for both BARRA and EAR5, which is above 0.85. This 233 

indicates inter-annual variability of precipitation is well captured by BARRA and ERA5. In 234 

contrast, temporal correlation is weaker for western inland and northern Australia. ERA5 235 

generally has larger temporal correlation when compared with BARRA, especially for northern 236 

Australia, where temporal correlation for BARRA is below 0.5. On average, temporal 237 

correlation for ERA5 is 0.85, which is large than 0.77 for BARRA (Table 2).   238 

4.1.2 CV (coefficient of variation) and trend 239 

CV of annual precipitation for AGCD and biases between BARRA/ERA5 and AGCD 240 

are presented in Figure 3 (and Figure S5 on the observation grid). By its definition, CV helps 241 

capture the standard deviation in the dataset relative to its mean. In the observation, CV is 242 

generally smaller for coastal regions except for northwest West Australia and Tasmania than 243 

inland Australia, where annual rainfall is much smaller than coastal regions. Alternatively, 244 

regions with higher annual precipitation generally have smaller CV. Both BARRA and ERA5 245 

reasonably capture the main feature of CV in observation. However, clear biases can be 246 

observed, especially in BARRA that has more than 50% large positive biases in Northern 247 

Australia, up to 20% positive biases for inland, and relatively smaller biases for southeastern 248 

Australia, southwest West Australia and Tasmania. In contrast, ERA5 does not have a clear 249 

bias pattern and biases are relatively smaller when compared to BARRA.  250 

To further investigate the variability evident in observations and BARRA/ERA5 251 

simulations, we assess the trends in annual precipitation (Figure 4 and Figure S6 on the 252 

observation grid). AGCD shows strong increasing trends over Northern Australia and 253 

Northeast Australia coastal regions but decreasing trends over Northern Queensland, 254 
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southwestern West Australia and southern Great Dividing Range including Victoria, although 255 

not all trends are significant. Most of inland regions have relatively small trend in annual 256 

precipitation. Both BARRA and ERA5 reproduce the major trend pattern reasonably well, 257 

however, clear biases can be observed over Northern Australia where both BARRA and ERA5 258 

underestimate biases more than 100%.  BARRA overestimated decreasing trend over Northern 259 

Queensland but ERA5 underestimate it (even increasing trend instead).   260 

In summary, evaluation of annual mean precipitation indicates both BARRA and ERA5 261 

possess small biases (~20%) in the spatial precipitation patterns. ERA5 shows stronger 262 

temporal correlations than BARRA, particularly in northern Australia. Overall, ERA5 263 

demonstrates higher accuracy in capturing inter-annual precipitation variability. Both BARRA 264 

and ERA5 captured spatial distribution of coefficient of variation reasonably well but with 265 

large biases (~ 50%). BARRA shows much larger biases than ERA5 especially for Northern 266 

Australia.  Both BARRA and ERA5 roughly reproduce the pattern of trend but with very large 267 

biases (~100%), especially for Northern Australia where both substantially underestimate the 268 

increasing trend.  269 

 270 

4.2 Climate extremes 271 

This section evaluates the six select precipitation extreme indices (Table 1) from 272 

BARRA and ERA5 over Australia by comparing them against AGCD. Evaluations are 273 

performed primarily using spatial bias maps and temporal correlations. We also assess the 274 

interannual variability and trends in the simulated BARRA and ERA5 indices and compare 275 

these with AGCD to further investigate any discrepancies. 276 

4.2.1 Bias and temporal correlation 277 

Annual mean biases in the six precipitation extremes are shown in Figure 5 (and Figure 278 

S8 on the observation grid). For duration-related extremes, there is a clear north-to-south 279 
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gradient in AGCD (Figure S7) with longer duration of CDD and CWD in northern Australia 280 

than southern Australia (CWD also has a clear west-to-east gradient in Tasmania), which is 281 

well simulated in BARRA and ERA5 (Figure S7). While the spatial distributions are well 282 

captured, clear biases are evident in them (Figure 5). BARRA generally underestimates CDD 283 

especially for central inland and northwest West Australia where biases are up to 40%. ERA5 284 

also under-estimates CDD for central inland, but in contrast its over-estimates CDD for most 285 

of northwestern Australia, overall ERA5 has smaller absolute bias in CDD (6.9 days) than 286 

BARRA (14.5 days) (Table 2). Both BARRA and ERA5 have similar bias pattern for CWD, 287 

which generally overestimate CWD over most of regions except for southern Australian coast, 288 

southwest West Australia and western Tasmania. The positive biases over Northern Australia 289 

may reach 30%. Overall BARRA has slightly larger biases in CWD (2.3 days) than ERA5 (1.7 290 

days) (Table 2).  291 

Both BARRA and ERA5 also generally match the spatial distribution of heavy rainfall 292 

days and R90p (Figure S7) in AGCD with large values in Northern Australia, eastern seaboard 293 

and Australian Great Dividing Range, and western Tasmania. However, clear biases can be 294 

observed in BARRA and ERA5 for both R10mm and R90p (Figure 5). BARRA and ERA5 295 

have large negative biases in R10mm over Northern Australia, eastern seaboard, southwest 296 

Western Australia and western Tasmania, but biases in central inland and northwest West 297 

Australia are generally small. Overall, domain averaged absolute bias for ERA5 (1.7 days) is 298 

about half of that for BARRA (3.3 days). Both BARRA and ERA5 also have relatively large 299 

negative biases in R90p for most of northern Australia, eastern coasts, southwest West 300 

Australia and western Tasmania but small positive biases inland, especially for BARRA. 301 

Overall averaged absolute bias is 0.78 mm/day for BARRA and 0.44 mm/day for ERA5 (Table 302 

2).    303 
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BARRA and ERA5 also reasonably captured the spatial patterns of R99p and Rx1day, 304 

however, quite large biases are in BARRA and ERA5 (Figure 5). BARRA generally 305 

overestimate R99p and Rx1day over northern Australia coasts and along the Great Dividing 306 

Range, in contrast, ERA5 generally underestimate R99p and Rx1day over northern and eastern 307 

coasts, southwest Western Australia and western Tasmania.  The domain averaged bias in R99p 308 

is at similar magnitude for BARRA (4.09 mm/day) and ERA5 (3.67 mm/day), however biases 309 

in Rx1day is much larger for BARRA (20.3 mm/day) than ERA5 (7.9 mm/day) (Table 2).  310 

Figure 6 (and Figure S9 on the observation grid) presents the temporal correlations 311 

between BARRA/ERA5 and AGCD for the six precipitation extreme indices. Unlike the strong 312 

temporal correlation between BARRA/ERA5 and AGCD for mean annual precipitation (Figure 313 

2), the temporal correlations for these extreme indices are worse except for R90p (Figure 6). 314 

For extremes like R10mm and R90p, the correlation ranges from reasonably good (above 0.6) 315 

to pretty good (above 0.8) between BARRA/ERA5 and AGCD for most of the domain. 316 

Temporal correlation for CWD and R99p are not as good as R10mm and R99p, but they are 317 

comparatively stronger correlations (0.5-0.6) than CWD and Rx1day (~0.5 and less) over most 318 

of the domain. Compared to BARRA, ERA5 has slightly stronger temporal correlations for 319 

those extremes (Table 2). 320 

 321 

4.2.2 CV (coefficient of variation) and trend 322 

The observed and simulated CV of precipitation extremes and biases in their CV for 323 

BARRA and ERA5 are shown in Figure S10 and Figure 7 (and Figure S11 on the observation 324 

grid), respectively. Generally, both BARRA and ERA5 have similar CV bias patterns and 325 

magnitude for CDD, CWD and R10mm. In contrast, BARRA is quite different from ERA5 for 326 

other three extremes. BARRA substantially under-estimated CV of R90p over most on inland 327 

regions but ERA5 has much smaller negative biases, even small positive biases, although both 328 
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have small biases in CV of R90p along most coastal regions and Tasmania. BARRA 329 

systematically overestimate CVs of R99p and Rx1day over northern Australia but ERA5 has 330 

relatively small biases for them. Overall, BARRA has more than twice as much as CV biases 331 

in ERA5 for R90p, R99p and Rx1day (Table 2).  332 

Trends of each of the precipitation extreme indices for the three datasets and biases in 333 

trend for BARRA and ERA5 are shown in Figure S12 and Figure 8 (and Figure S13 on the 334 

observation grid), respectively. Generally, both BARRA and ERA5 simulate the main pattern 335 

of trends for those extremes but with large biases. BARRA and ERA5 simulated CDD trend 336 

well for southern Australia but BARRA generally under-estimated trend in CDD over inland 337 

Australia and overestimate trend in northwest Australia. ERA5 only has large positive trend 338 

biases in northern central Australia. The overall domain averaged biases are similar between 339 

BARRA (0.584) and ERA5 (0.566). Both BARRA and ERA5 have small biases in CWD in 340 

central and southern Australia but similar biases pattern in Northern Australia. They also have 341 

similar overall biases in CWD (0.064 for BARRA and 0.060 for ERA5). Both BARRA and 342 

ERA5 under-estimated increasing trend in R10mm in northern Australia, but BARRA 343 

overestimate trend in most of southeast Australia. In contrast, ERA5 under-estimate trend over 344 

there. Overall, ERA5 has slightly larger biases (0.094) than BARRA (0.085). Like R10mm, 345 

both BARRA and ERA5 also underestimate trend of R90p in most of northern Australia but 346 

have small biases in central and southern Australia. They have almost the same overall biases 347 

in R90p.  BARRA/ERA5 has similar biases patterns for R99p and rx1day but biases for rx1days 348 

are much larger. Both BARRA and ERA5 have large biases in R99p and Rx1day but biases in 349 

BARRA are generally larger than ERA5.  350 

In summary, both BARRA and ERA5 reproduce spatial patterns of extremes well but 351 

display biases. ERA5 underestimates CDD and certain heavy rainfall events, while BARRA 352 

tends to overestimate these extremes. Both reanalyses show discrepancies in various 353 
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precipitation indices across different regions, with BARRA generally displaying larger biases 354 

compared to ERA5. Temporal correlations between BARRA/ERA5 and observations for 355 

extreme precipitation indices are weaker than those for mean annual precipitation, except for a 356 

few indices where ERA5 demonstrates slightly stronger correlations compared to BARRA.  357 

Both BARRA and ERA5 align in CV patterns and biases for certain extremes but differ notably 358 

in others. BARRA significantly underestimates very heavy precipitation variability over inland 359 

regions, while ERA5 presents smaller biases or even positive biases in these areas. Additionally, 360 

BARRA tends to overestimate extreme precipitation variability in Northern Australia 361 

compared to ERA5. Overall, BARRA shows more than double the biases in variability 362 

compared to ERA5 for specific extreme precipitation indices. Both reanalyses generally 363 

simulate the main trend patterns but exhibit considerable biases. BARRA underestimates or 364 

overestimates trends in certain regions and indices, while ERA5 demonstrates different biases, 365 

including smaller biases overall compared to BARRA across these precipitation extremes. 366 

 367 

5. Discussion 368 

In this study, we assessed the performance of BARRA and ERA5 in simulating mean 369 

precipitation and six selected precipitation extremes. While most previous evaluations have 370 

focused on the climatology of precipitation and its extremes, only a few studies have included 371 

the coefficient of variation (CV) (Teng et al., 2024). Our evaluation encompassed annual 372 

climatology, along with temporal correlation, CV, and trend analysis, providing a 373 

comprehensive assessment of the performance of these two reanalysis datasets. 374 

The results indicate that both BARRA and ERA5 demonstrate reasonable skill in 375 

simulating mean precipitation and certain precipitation extremes. However, they encounter 376 

challenges in accurately reproducing temporal correlation, CV, and trends for certain extreme 377 

events, highlighting significant uncertainties in their representation of extremes. 378 
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While acknowledging the capabilities of these reanalysis datasets, our study also 379 

identifies specific limitations and suggests potential directions for future research. A crucial 380 

consideration in model evaluation is the accuracy of observational data, which substantially 381 

influences evaluation outcomes. In this study, we used the AGCD dataset as the observational 382 

benchmark, which is based on interpolating data from in-situ stations (Evans et al., 2020). 383 

However, the AGCD dataset presents several limitations: 1) Spatial coverage: Sparse station 384 

coverage in northwest and central Australia, and limited observations in high-elevation areas, 385 

result in a concentration of stations in southeastern Australia, southwestern Western Australia, 386 

and eastern Tasmania. The arid interior is notably underrepresented. 2) Data completeness and 387 

homogeneity: Incomplete and inhomogeneous observations due to missing data, changes in 388 

observational techniques, or station relocations can affect the consistency of the dataset. 3) 389 

Interpolation uncertainties: The interpolation method used in AGCD (splining), instead of the 390 

ordinary kriging method used in its predecessor (AWAP), introduces uncertainties, particularly 391 

in areas with sparse data coverage for extreme events like heavy rainfall. 392 

These observational uncertainties may contribute to biases in the evaluation results. In 393 

particular, the limited number of monitoring sites over the Great Dividing Range and inland 394 

areas introduces significant uncertainties in estimated observed precipitation for these regions. 395 

Independent studies, such as Chubb et al. (2016), found that daily precipitation is 396 

underestimated by at least 15% in some areas, which could suggest similar underestimation in 397 

BARRA and ERA5 for these regions. Similarly, the sparse gauge network in northwestern 398 

inland areas might miss localized extreme precipitation events. 399 

Our analysis focused on six ET-SCI-defined precipitation extreme indices, widely used 400 

in various evaluation studies (Nishant et al., 2020; Ji et al., 2024). However, recognizing the 401 

need for region-specific indices, we suggest future studies extend the analysis to incorporate 402 

additional extreme indices tailored to specific regions and applications. 403 
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Our findings emphasize that while both BARRA and ERA5 are competent in simulating 404 

the climatology of mean climate, temporal correlation, and CV, challenges remain in accurately 405 

capturing trends, particularly for certain extremes. Notably, ERA5 shows better overall 406 

performance compared to BARRA. Although higher resolution often correlates with better 407 

performance, recent studies have shown that increasing resolution alone does not always 408 

guarantee improvements (Nishant et al., 2022). Considering the critical role of driving data, 409 

model physics, and data assimilation, it may be valuable to update BARRA using the latest 410 

ERA5 data along with improved model physics and data assimilation techniques to enhance its 411 

performance. 412 

In this study, we evaluated ERA5 and BARRA on both their native resolutions and a 413 

common resolution (5 km) to match AGCD. The results showed that the evaluations were 414 

consistent across native and common resolutions, suggesting that the performance assessments 415 

were not highly sensitive to changes in resolution. 416 

  417 

6. Summary and Conclusion 418 

Reanalysis datasets play a crucial role in climate research, weather analysis, and various 419 

scientific investigations. Their ability to provide a consistent and comprehensive representation 420 

of historical weather and climate conditions makes them invaluable. These datasets are 421 

particularly essential for studying long-term climate trends, understanding atmospheric 422 

phenomena, and validating climate models. 423 

In this study, we evaluate BARRA and ERA5 for their capabilities to simulate mean 424 

precipitation and six selected precipitation extremes for their climatology, temporal correlation, 425 

coefficient of variation (CV) and trend to quantify their overall performance. We evaluated 426 

BARRA and ERA5 at their native resolutions, as well as at a common resolution (i.e., the 427 
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observation resolution). Both analyses yielded consistent results, indicating that the evaluation 428 

is not sensitive to the remapping process. 429 

The assessment of annual mean precipitation reveals that both BARRA and ERA5 430 

adeptly reproduce the spatial precipitation patterns, exhibiting minor biases of around 20%. 431 

Particularly, ERA5 showcases stronger temporal correlations compared to BARRA, especially 432 

evident in northern Australia. ERA5, overall, demonstrates superior accuracy in capturing 433 

inter-annual precipitation variability. However, both models depict the spatial distribution of 434 

the coefficient of variation reasonably well but with larger biases, roughly around 50%. 435 

Particularly, BARRA displays significantly higher biases, especially in Northern Australia. 436 

Regarding the replication of trend patterns, both models exhibit substantial biases, 437 

reaching approximately 100%. This is especially notable in Northern Australia, where they 438 

both notably underestimate the increasing trend. Furthermore, while both BARRA and ERA5 439 

possess about the right spatial patterns of extremes, biases are evident. ERA5 tends to 440 

underestimate consecutive dry days (CDD) and certain heavy rainfall events, while BARRA 441 

tends to overestimate these extremes. Discrepancies in various precipitation indices across 442 

regions are apparent, with BARRA generally displaying larger biases compared to ERA5. 443 

When examining temporal correlations for extreme precipitation indices compared to 444 

mean annual precipitation, both BARRA and ERA5 show weaker correlations, except for a 445 

few indices where ERA5 slightly outperforms BARRA. While both models align in coefficient 446 

of variation patterns and biases for certain extremes, notable differences arise in others. 447 

BARRA notably underestimates very heavy precipitation variability over inland regions, 448 

whereas ERA5 presents smaller biases or even positive biases in these areas. Moreover, 449 

BARRA tends to overestimate extreme precipitation variability in Northern Australia 450 

compared to ERA5. Specifically, BARRA showcases more than double the biases in variability 451 

compared to ERA5 for specific extreme precipitation indices. 452 
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In terms of trend patterns, both models generally replicate the observed trends but 453 

exhibit considerable biases. BARRA shows both underestimations and overestimations in 454 

certain regions and indices, while ERA5 displays different biases, including overall smaller 455 

biases compared to BARRA across these precipitation extremes. 456 

In summary, our findings suggest that both ERA5 and BARRA are reliable for 457 

climatological analyses, including mean precipitation and precipitation extremes, and can be 458 

confidently used by end-users for such purposes. However, as discussed in the introduction, 459 

caution is advised when using these datasets for variability and trend analyses, particularly for 460 

specific extreme events like Rx1day. The performance of these reanalyses is regionally 461 

dependent, and this should be considered when using them as observational references for 462 

evaluating other model simulations. Additionally, the biases in the variability and trends of 463 

climate extremes present in both datasets must be carefully accounted for when comparing 464 

them with other data sources. 465 

 466 

 467 
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Table 1 List of ET-SCI indices evaluated in this study. 

 

 

 

Table 2 Domain-averaged absolute biases and temporal correlation between BARRA/ERA5 
and AGCD for annual precipitation and precipitation extremes 

Indices Absolute biases in 
annual mean 

Temporal 
correlation 

Absolute biases in 
CV 

Absolute biases in 
trend 

BARRA ERA5 BARRA ERA5 BARRA ERA5 BARRA ERA5 

Annual 
pr 

0.169 0.149 0.771 0.854 0.063 0.037 0.008 0.007 

CDD 14.543 6.913 0.578 0.650 0.050 0.045 0.584 0.566 

CWD 2.346 1.714 0.446 0.527 0.061 0.059 0.064 0.060 

R10mm 3.265 1.700 0.688 0.761 0.081 0.053 0.085 0.094 

R90p 0.777 0.439 0.761 0.827 0.211 0.082 0.023 0.023 

R99p 4.093 3.668 0.562 0.625 0.121 0.060 0.206 0.162 

Rx1day 20.333 7.916 0.380 0.486 0.219 0.107 0.848 0.542 

 

  

Index Definition Units Timescale Sectors 
PRCPTOT Total wet-day precipitation (Sum of 

daily precipitation >= 1.0 mm) 
mm Annual/Monthly Agriculture and food security, 

water, water resources and 
food security, forestry/GHGs 

CDD Consecutive dry days (Maximum 
number of consecutive dry days 
(when precipitation < 1.0 mm)) 

days Annual Health, agriculture and food 
security, water resources and 

food security, disaster risk 
reduction, forestry/GHGs 

CWD Consecutive wet days (Maximum 
annual number of consecutive wet 

days (when precipitation >= 1.0 mm)) 

days Annual Coasts, agriculture, transport 
operations 

R10mm Days when precipitation is at least 
10mm 

days Annual/Monthly Coasts 

R90p Total annual precipitation from very 
heavy precipitation days (Annual sum 

of daily precipitation > 90th 
percentile) 

mm Annual Coasts, transport operations 

R99p Total annual precipitation from very 
heavy precipitation days (Annual sum 

of daily precipitation > 99th 
percentile) 

mm Annual Coasts, transport operations 

Rx1Day Amount of precipitation from very 
wet days (Maximum 1-day 

precipitation) 

mm Annual/Monthly Agriculture and food security, 
water, coasts, disaster risk 
reduction, forestry/GHGs 
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Figure 1 Annual mean precipitation of AGCD, BARRA and ERA5 (upper panels) and annual 
mean biases between BARRA/ERA5 and AGCD (lower panels). The regions with 
low density of station observations in AGCD has been masked and not considered in 
all subsequent evaluation. Unit: mm/day. Stippling indicates areas with biases that 
are statistically significant at 95% confidence level.  
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Figure 2 Temporal correlation coefficient of annual precipitation between BARRA/ERA5 
and AGCD. 
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Figure 3 CV of annual precipitation for AGCD, BARRA and ERA5 (upper panels) and biases 
in CV between BARRA/ERA5 and AGCD (lower panels).  
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Figure 4 Trend of annual precipitation for AGCD, BARRA and ERA5 (upper panels) and 
biases in trend between BARRA/EAR5 and AGCD (lower panels).  
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Figure 5 Biases in CDD, CWD, R10mm, R90p, R99p and Rx1Day in BARRA (left column) 
and ERA5 (right column). Stippling indicates areas with biases that are statistically 
significant at 95% confidence level.  
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Figure 5 (continued). 
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Figure 6 Temporal correlation of CDD, CWD, R10mm, R90p, R99p and Rx1Day between 
BARRA and AGCD (left column) and between ERA5 and AGCD (right column). 
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Figure 6 (continued). 
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Figure 7 Biases in CV of CDD, CWD, R10mm, R90p, R99p and Rx1Day for BARRA (left 
column) and ERA5 (right column) relative to AGCD.  
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Figure 7 (continued). 
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Figure 8 Biases in trends of CDD, CWD, R10mm, R90p, R99p and Rx1Day for BARRA (left 
column) and ERA5 (right column) relative to AGCD.  
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Figure 8 (continued). 
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