Supplementary Information for "Comparison of BARRA and ERA5 in replicating mean and extreme precipitation over Australia" by Cheung et al.

Study	Reanalysis Datasets	Variables	Major Findings
Quagraine et al (2020)	ERA-Interim ERA5	Precipitation	All represent monsoon
Quagranie et al. (2020)	JRA-55, MERRA2.	Treespranton	rainfall pattern and
	NCEP-R2		seasonal cycle well over
			west Africa
Dai et al. (2023)	ERA5	Precipitation	Rainfall erosivity over
	2.0.0		Loess Plateau consistent
			with station data
Cheung et al. (2023)	ERA5	Convective parameters	Applied to evaluate
	2.0.0	converse parameters	RCM simulations
Betts et al. (2019)	ERA-Interim, ERA5	Precipitation	Biases in ERA5 over
			Canadian Prairies
			smaller
Hu and Yuan (2021) and	ERA5	Precipitation	Overall spatiotemporal
Jiang et al. (2021)		1	patterns in Eastern Tibet
			Plateau captured, but
			under- (over-) estimated
			rain intensity (duration)
Jiao et al. (2021)	ERA5	Precipitation	High spatiotemporal
			correlation with
			observation in China, but
			over-estimated summer
			rainfall
Izadi et al. (2021)	ERA5	Precipitation	Monthly/seasonal
			rainfall matches with
			observation better than
			daily data in Iran
Qin et al. (2021)	ERA5	Precipitation	Over- (under-) estimated
			in China
Loi at al. (2022) and		Extrama alimata indiasa	III CIIIIa Moderate extremes
Let et al. (2022) and Shen et al. (2022)	LKAJ	Extreme chinate indices	better estimated than
			high-end extremes
Wang et al. (2019)	ERA-Interim ERA5	Surface temperature	Warm biases over Arctic
() ung et un (2019)		precipitation, snow	Sea. ERA5 has thinner
		F F	ice thickness
Lei et al. (2020)	ERA-Interim, ERA5	Cloud cover	ERA5 much better than
			ERA-Interim over east
			China but not Tibet
			Plateau
Gleixner et al. (2020)	ERA-Interim, ERA5	Temperature,	Biases smaller and
		precipitation	interannual variability
			improved over East
			Africa
Song and Wei (2021)	ERA5, MERRA-2	Precipitation	Both have reasonable
			diurnal cycle over north
			China, ERA5 has better
		D. I. I. I.	atternoon peak
L1 et al. (2022)	ERA-Interim, ERA5,	Precipitation	ERA5 generally better
	јказэ, MEKKA		than the other over the
			Poyang Lake Basin,
Mov et al. (2021)	ΒΑΡΡΑ	Surface variables	Unina High correlations with
111ay Ct al. (2021)			station data over
			Northern Australia

Table S1 Summary of literature review in Section 1

This study	BARRA, ERA5	Precipitation, climate extreme indices	Section 6
Choudhury et al. (2023)	ERA5	Extreme temperature	Mean temperature better than the extremes
Nishant et al. (2022)	BARRA, BARRA-C	Precipitation	High-resolution BARRA-C only better in specific locations
Acharya et al. (2019, 2020)	BARRA	Precipitation	Daily / sub-daily rain better over temperate Australia than tropical region
Su et al. (2019)	BARRA, ERA-Interim, MERRA-2	Surface temperature and pressure, winds, precipitation	Smaller biases over Australia in BARRA compared with the other two
Hobeichi et al. (2023)	BARRA, BARRA-C	Various	Applied to train statistical downscaling models
Du et al. (2023)	BARRA	Precipitation	Climatology for ungauged catchments in Australia
Pirooz et al. (2021)	ERA-Interim, ERA5, ERA5-land, BARRA	Winds, precipitation, temperature	BARRA better than the ERA's for precipitation and temperature, good gust wind speed but ERA5 the best in gust frequency

Figure S 1 Australia map with states and territories (left) with borders of the four "supercluster" averaging regions (right): Northern Australia (North), Rangelands, Southern Australia (South), Eastern Australia (East) and topography.

Figure S 2 Annual mean precipitation of AGCD, BARRA and ERA5 on AGCD grids.

Figure S 3 Relative bias (%) of precipitation in BARRA and ERA5 evaluated at 5-km resolution (AGCD grids).

Figure S 4 Temporal correlation coefficient of annual precipitation between BARRA/ERA5 and AGCD on AGCD grids.

Figure S 5 CV of annual precipitation for AGCD, BARRA and ERA5 on AGCD grids.

Figure S 6 Trend of annual precipitation for AGCD, BARRA and ERA5 on AGCD grids.

Figure S 7 Mean CDD, CWD, R10mm, R90p, R99p and Rx1day of AGCD, BARRA and ERA5 on AGCD grids.

Figure S 7 (continued).

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

heavy_precipitation_days heavy_precipitation_days No. No. 20S 20S 30S 30S 40S 40S BARRA ERA5 120E 120E 140E 140E

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Figure S 8 Biases in CDD, CWD, R10mm, R90p, R99p and Rx1Day in BARRA (left column) and ERA5 (right column) on AGCD grids.

-16 -12 -8 -4 0 4 8 12 16

Figure S 8 (continued).

Figure S 9 Temporal correlation of CDD, CWD, R10mm, R90p, R99p and Rx1Day between BARRA and AGCD (left column) and between ERA5 and AGCD (right column) on AGCD grids.

0.04 0.16 0.28 0.4 0.52 0.64 0.76 0.88 1

Figure S 9 (continued).

Figure S 10 CV of annual precipitation, CDD, CWD, R10mm, R90p, R99p and Rx1day for AGCD, BARRA and ERA5, on AGCD grids.

Figure S 10 (continued).

-0.32 -0.24 -0.16 -0.08 0 0.08 0.16 0.24 0.32

Figure S 11 Biases in CV of CDD, CWD, R10mm, R90p, R99p and Rx1Day for BARRA (left column) and ERA5 (right column) relative to AGCD, on AGCD grids.

Figure S 11 (continued).

Figure S 12 Trend of annual precipitation, CDD, CWD, R10mm, R90p, R99p and Rx1day for AGCD, BARRA and ERA5, on AGCD grids.

Figure S 12 (continued).

-0.48 -0.36 -0.24 -0.12 0 0.12 0.24 0.36 0.48

Figure S 13 Biases in trends of CDD, CWD, R10mm, R90p, R99p and Rx1Day for BARRA (left column) and ERA5 (right column) relative to AGCD, on AGCD grids.

-3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4

3.2

Figure S 13 (continued).