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 34 

Abstract 35 

Reanalysis datasets are critical in climate research and weather analysis, offering consistent 36 

historical weather and climate data crucial for understanding atmospheric phenomena, and 37 

validating climate models. However, biases exist in reanalysis datasets that would affect their 38 

applications under circumstances. This study evaluates BARRA, which is a high-resolution 39 

reanalysis for the Australian region, and ERA5 in simulating mean precipitation and six 40 

selected precipitation extremes for their climatology, temporal correlation, coefficient of 41 

variation and trend. Both datasets reproduce spatial patterns of mean precipitation well with 42 

minor biases. ERA5 shows stronger temporal correlations, superior inter-annual precipitation 43 

accuracy, and lower biases in coefficient of variation compared to BARRA, especially in 44 

Northern Australia. However, both models exhibit substantial biases in trend, underestimating 45 

increasing trends in Northern Australia. ERA5 underestimates dry days and heavy rainfall, 46 

while BARRA tends to overestimate these extremes. Temporal correlations for extreme 47 

precipitation indices are weaker compared to mean annual precipitation. Notable differences 48 

exist in variability biases, with BARRA showing larger biases, especially for heavy 49 

precipitation in inland regions and Northern Australia. While both datasets replicate the main 50 

trends, biases persist. Overall, the evaluation results support application of both datasets for 51 

climatology analyses, but caution is advised for variability and trend analyses, particularly for 52 

specific extremes. 53 

 54 

Key words: BARRA, ERA5, extreme indices, temporal correlation, coefficient of variation, 55 

trend   56 
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1. Introduction  57 

Reanalysis dataset is created by combining historical observational data from various 58 

sources, such as weather stations, satellites, buoys, and more, with modern data assimilation 59 

techniques and numerical models (Kalnay, et al. 1996; Saha, et al. 2010; Dee et al. 2011; 60 

Kobayashi et al. 2015, Poli et al. 2016; Hersbach 2020). The fundamental aim of reanalysis is 61 

to construct a uniform and coherent historical archive of various atmospheric and 62 

environmental parameters, such as temperature, humidity and wind patterns, on either a 63 

regional or a global scale. 64 

These datasets are invaluable for climate studies, weather analysis and model validation 65 

as they provide a uniform representation of historical climate conditions. For instance, 66 

Quagraine et al. (2020) used five global reanalysis datasets (European Centre for Medium-67 

Range Weather Forecasts Reanalysis ERA-Interim, Dee et al. 2011; ERA5, Herbach et al. 2020; 68 

JRA-55, Kobayashi et al. 2015); MERRA2, (Gelaro et al. 2017); and NCEP-R2, Kanamitsu et 69 

al. 2002) to investigate the variability of West African summer monsoon precipitation, showing 70 

all datasets could represent the average rainfall patterns and seasonal cycle. Dai et al. (2023) 71 

utilized ERA5 data to estimate rainfall erosivity on the Chinese Loess Plateau, finding rainfall 72 

erosivity derived from ERA5 was highly consistent with those derived from the meteorological 73 

stations. Cheung et al. (2023) employed ERA5 to evaluate storm conditions in regional climate 74 

simulations, demonstrating regional climate models can capture climatology of measurements 75 

of storm severity over land including their spatial patterns and seasonality. Numerous studies 76 

have used reanalysis datasets as inputs for regional climate models (RCMs) to evaluate the 77 

models' capability in replicating observed climatic patterns (Solman et al., 2013; Ji et al., 2016; 78 

Fita et al., 2016, Di Virgilio et al., 2019; Capecchi et al., 2023; Di Virgilio et al., 2024; Ji et al., 79 

2024). 80 
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While reanalysis datasets provide valuable insights into historical weather and climate 81 

conditions, they have limitations and uncertainties, given that they are modelled outputs rather 82 

than direct observations. Many studies have evaluated reanalysis data across various variables 83 

and regions. For instance, Betts et al. (2019) assessed ERA5 biases in near-surface variables 84 

over Canada, highlighting its improved performance over ERA-Interim (Dee et al. 2011), 85 

though precipitation biases remained significant. Similarly, Hu and Yuan (2021) and Jiang et 86 

al. (2021) found that ERA5 precipitation accurately captured rainfall pattern over the Eastern 87 

Tibetan Plateau and mainland China, but under-estimated intensity. Izadi et al. (2021) found 88 

ERA5 performed better at monthly and seasonal timescales in Iran, underestimating coastal 89 

summer precipitation and overestimating it in mountains. Jiao et al. (2021) and Qin et al. (2021) 90 

found ERA5 overestimated summer precipitation and frequency in China but underestimated 91 

intensity during the warm season. Lei et al. (2022) and Shen et al. (2022) noted ERA5's 92 

limitations in simulating extreme precipitation events in China, especially for high-end 93 

extremes.     94 

Comparisons between reanalysis datasets have also been conducted. Wang et al. (2019) 95 

found that both ERA5 and ERA-Interim exhibited warm biases over Arctic Sea ice, with larger 96 

biases in cold season than warm season. Lei et al. (2020) showed ERA5 improved cloud cover 97 

simulation over eastern China but not over the Tibetan Plateau, when compared to ERA-98 

Interim. Gleixner et al. (2020) found ERA5 reduced biases in temperature and precipitation 99 

over East Africa compared to ERA-Interim but still struggled with long-term trends. Song and 100 

Wei (2021) found both ERA5 and MERRA-2 (Gelaro et al. 2017) captured night precipitation 101 

peaks over North China, but only ERA5 accurately reflected the afternoon peak. Li et al. (2022) 102 

concluded that ERA5 performed better than ERA-Interim, JRA55 (Kobayashi et al. 2015), and 103 

MERRA-2 in capturing precipitation over the Poyang Lake Basin. A summary of the above 104 

literature review can be found in Table S1. 105 
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In Australia, reanalyses like NCEP (Kalnay et al., 1996), JRA-55 (Kobayashi et al., 106 

2015), ERA-Interim (Dee et al., 2011), and ERA5 (Hersbach et al., 2020) are commonly used, 107 

alongside the Australian Bureau of Meteorology's high-resolution (12 km) BARRA reanalysis. 108 

BARRA covers Australia, New Zealand, and Southeast Asia (Su et al., 2019), while BARRA-109 

C offers even higher-resolution (1.5 km) analysis for four capital cities (Su et al., 2021). 110 

May et al. (2021) found BARRA reliable, though it showed seasonal and diurnal biases. 111 

Other studies, like Pirooz et al. (2021), compared BARRA with global reanalyses, concluding 112 

BARRA performed better for precipitation and temperature in New Zealand but lagged behind 113 

ERA5 for high gust winds. Du et al. (2023) used BARRA for estimating daily precipitation in 114 

ungauged Australian catchments, while Hobeichi et al. (2023) employed BARRA to train 115 

statistical models for downscaling. Acharya et al. (2019, 2020) found BARRA's precipitation 116 

performance varied by region, with poorer results in tropical areas. Nishant et al. (2022) 117 

suggested higher resolution in BARRA-C didn’t always improve precipitation simulations, 118 

while Choudhury et al. (2023) noted ERA5 performed better for mean temperatures than 119 

extremes in Australia. These previous studies on BARRA and BARRA-C have also been 120 

summarized in Table S1. 121 

However, there is a gap in the existing studies concerning the intercomparison of 122 

various reanalyses, such as BARRA and ERA5, specifically in relation to precipitation 123 

extremes over Australia. In this study, we aim to bridge this gap by evaluating and comparing 124 

the performance of BARRA and ERA5 in capturing precipitation extremes. While the 125 

traditional evaluation methods focusing on climatology (long-term mean), here we also include 126 

temporal correlation, coefficient of variation and trend in evaluation to quantify their overall 127 

performance, which have not been examined before in previous studies. By assessing climate 128 

means and extremes and quantifying their biases, this study provides a valuable reference for 129 

selecting appropriate datasets for specific applications and cautions against treating reanalysis 130 
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data as observations. The paper is organized as follows: Section 2 introduces the reanalysis 131 

datasets and observational data used for evaluation. Section 3 outlines the climate extreme 132 

indices and evaluation methodology. Results are presented in Section 4, followed by further 133 

discussion in Section 5. Finally, Section 6 offers a summary and conclusions. 134 

  135 

2. Data 136 

2.1 ERA5 137 

ERA5 is a global atmospheric reanalysis dataset developed by ECMWF (Hersbach, et 138 

al. 2020). ERA5 provides hourly estimates of many atmospheric, land, and oceanic climate 139 

variables. The data is on a ~30 km horizontal grid and resolves the atmosphere using 137 levels 140 

from the surface up to a height of 0.01hPa (~80 km). 141 

ERA5 is constructed upon the foundation of the Integrated Forecasting System (IFS) 142 

Cy41r2. This allows ERA5 to benefit from a decade's worth of development in areas such as 143 

model physics, core dynamics, and data assimilation techniques. ERA5 is a significant 144 

advancement over its predecessors (e.g., ERA-Interim) due to its higher spatial and temporal 145 

resolution, improved assimilation techniques, and more sophisticated modelling components. 146 

It provides a detailed and accurate representation of various atmospheric variables, such as 147 

temperature, humidity, wind speed, pressure, and more. The dataset covers the entire globe and 148 

spans from 1940 to the present, making it valuable for various applications in climate research, 149 

meteorology, environmental science, and more. 150 

2.2 BARRA 151 

BARRA is a high-resolution regional atmospheric reanalysis dataset developed by the 152 

Australian Bureau of Meteorology, which is available from January 1990 to February 2019 (Su, 153 

et al. 2019). BARRA was constructed based on the Australian Community Climate Earth-154 

System Simulator (ACCESS) model with assimilation of a wide range of observational data to 155 



 6 

create a coherent and consistent representation of past weather and climate conditions. BARRA 156 

covers the Australian continent, New Zealand, part of Asia and some Pacific Islands with a 157 

horizontal resolution of 12 km and 70 vertical levels from the surface up to a height of 80 km. 158 

BARRA specifically focuses on providing detailed information about weather patterns and 159 

atmospheric variables over the Australian region, which provides about 100 parameters at 160 

hourly intervals.  161 

The ACCESS model, which was applied to generate BARRA, originated from the 162 

UKMO’s Unified Model (UM), which can be configured in global mode or regional mode. For 163 

regional simulations, the global version of ACCESS becomes ACCESS-R. ACCESS-R was 164 

initialized by ERA-Interim reanalysis data, which also provides boundary conditions during 165 

simulation. A series of observations have been assimilated into BARRA, including land and 166 

ship (buoy) synoptic observations, upper-air observations from radiosondes and wind profilers, 167 

satellite derived radiances and winds (Su et al. 2019). However, no precipitation observations 168 

were directly assimilated. 169 

2.3 AGCD 170 

The observational data in the study are from the Australian Gridded Climate Dataset 171 

(AGCD, Evans et al. 2020). The daily gridded maximum and minimum temperatures, and 172 

precipitation data has a spatial resolution of 0.05° (~ 5km) and is interpolated from observations 173 

at stations across the Australian continent. Most of those stations are in the more heavily 174 

populated coastal regions with far fewer stations inland and over high elevation areas. For 175 

example, there are very few station observations near the Gibson dissert region in Western 176 

Australia, making the gridded observations unreliable over that region. Thus, in the following 177 

figures that region has been masked and not considered for evaluation.  Since observations and 178 

reanalyses are not at the same spatial resolutions, we aggregate the observations to the native 179 

grid of ERA5 and BARRA respectively for comparison, including the performance of 180 
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statistical significance tests. For comparison purpose, we also interpolate reanalysis to AGCD 181 

grids using the conservative area weighted re-gridding scheme from the Climate Data 182 

Operators (Schulzweida et al., 2006), which will be shown in the Supplementary Information. 183 

The states and sub-regions in the Australian region we discuss in the following can be found 184 

in Figure S1. 185 

 186 

3. Methodology  187 

3.1 ET-SCI 188 

While extreme climate and weather events are generally multifaceted phenomena, in 189 

this study we evaluate climate extremes based on daily precipitation and temperature as defined 190 

by Expert Team on Sector-specific Climate Indices (ET-SCI; Alexander & Herold, 2015; 191 

Herold and Alexander, 2016). We use the ClimPACT version 2 software to calculate the ET-192 

SCI indices (https://climpact-sci.org/), focussing on daily precipitation.  193 

Although ClimPACT generates 14 precipitation-related core indices, we select seven 194 

(Table 1) based on the following considerations: 1) To capture key aspects of climate extremes, 195 

and 2) to capture extremes which have impacts on society and infrastructure such as agriculture, 196 

water resources and economy (Tabari, 2020; Pei et al., 2021). Accordingly, we include absolute 197 

indices such as the maximum 1-day precipitation (Rx1day) and total precipitation (PRCPTOT), 198 

a threshold-based index (e.g., number of heavy rain days, R10mm), percentile indices (e.g., 199 

total annual precipitation from very heavy rain days, R99p), and duration indices such as the 200 

consecutive wet (CWD) and dry days (CDD). 201 

With the above consideration, the seven aforementioned precipitation-related indices 202 

were calculated on native reanalysis grids and observation grids. While the availability of 203 

AGCD and ERA5 starts much earlier, the analysis period is 1990–2018, which is the duration 204 

of BARRA. Since the AGCD observations have the highest resolution, here we mainly show 205 
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the evaluation on the native grids of the reanalyses (i.e., the 12-km grid of BARRA and 30-km 206 

grid of ERA5). The extreme indices calculated from reanalysis data have also been regridded 207 

to the 5-km resolution using bilinear interpolation, which are included in the supplementary 208 

information to demonstrate that our conclusions are insensitive to the choice of evaluation 209 

resolution. 210 

 211 

3.2 Evaluation metrics 212 

We evaluate BARRA and ERA5 for their performance in capturing climatology (29 213 

years in our case), coefficient of variation (CV), temporal correlation, and trends of seven 214 

selected precipitation extreme indices. The CV is a valuable statistical tool representing the 215 

ratio of the (yearly) standard deviation to the mean, allowing for the comparison of variation 216 

between different data series, even when their means differ significantly. Temporal correlations, 217 

which are computed at an annual time step, of climate extremes measure the similarities 218 

between simulations and observations in terms of their inter-annual variabilities, with larger 219 

temporal correlations indicating better performance. For trend analyses, we applied simple 220 

linear trend line fitting to the yearly time series of climate indices. All the above metrics are 221 

computed at each grid point in the datasets’ native grids as well as the AGCD grid after re-222 

gridding. Differences between BARRA/ERA5 and AGCD then form the bias maps. After 223 

averaging over all grid points, the domain averages will then be discussed in the following. 224 

We use bias and domain-averaged absolute bias to quantify spatial differences between 225 

reanalyses and observations. Temporal correlation, coefficient of variation, and trend are used 226 

to quantify temporal similarities between reanalyses and observations. The non-parametric 227 

Mann-Kendall test is used to assess the statistical significance of differences and trends. Biases 228 

are assessed at an annual timescale for all extremes. 229 

  230 
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4. Results 231 

4.1 Mean climate 232 

This section evaluates and compares the annual mean of daily precipitation between 233 

BARRA and ERA5 against AGCD over Australia.  234 

4.1.1 Bias and temporal correlation 235 

We first evaluate precipitation simulated by BARRA and ERA5 against observations 236 

(AGCD). The mean annual precipitation from the three datasets and biases in BARRA and 237 

ERA5 compared to AGCD are shown in Figure 1 (and Figure S2 on the observation grid). 238 

Results show that both BARRA and ERA5 simulate the spatial patterns of mean annual 239 

precipitation very well with high rainfall in northern Australian, eastern Australia coast and 240 

western Tasmania and low rainfall inland, albeit with clear biases. Compared to AGCD, both 241 

BARRA and ERA5 underestimate precipitation up to 20% for Eastern Australian coast, 242 

southwest western Australia, and western Tasmania, but overestimate annual precipitation up 243 

to 30% inland (Figure S3). Some clear differences in biases between BARRA and ERA5 can 244 

be observed in central western Australia and northern Queensland where BARRA overestimate 245 

precipitation but ERA5 underestimate it. Domain averaged absolute bias in annual precipitation 246 

is about 0.17mm/day (~12.7% relative bias with respect to domain average) for BARRA and 247 

0.15 mm/day (~10.5% relative bias) for ERA5 (Table 2). 248 

The skill of simulated precipitation from BARRA and ERA5 are further demonstrated 249 

in the temporal correlations between BARRA/ERA5 and AGCD shown in Figure 2 (and Figure 250 

S4 on the observation grid). Temporal correlation of annual precipitation is larger in southeast 251 

Australia and northern Tasmania for both BARRA and EAR5, which is above 0.85. This 252 

indicates inter-annual variability of precipitation is well captured by BARRA and ERA5. In 253 

contrast, temporal correlation is weaker for western inland and northern Australia. ERA5 254 

generally has larger temporal correlation when compared with BARRA, especially for northern 255 
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Australia, where temporal correlation for BARRA is below 0.5. On average, temporal 256 

correlation for ERA5 is 0.85, which is larger than 0.77 for BARRA (Table 2).   257 

4.1.2 CV (coefficient of variation) and trend 258 

CV of annual precipitation for AGCD and biases between BARRA/ERA5 and AGCD 259 

are presented in Figure 3 (and Figure S5 on the observation grid). By its definition, CV helps 260 

capture the standard deviation in the dataset relative to its mean. In the observation, CV is 261 

generally smaller for coastal regions including Tasmania except for northwest West Australia 262 

and Tasmania than inland Australia, where annual rainfall is much smaller than coastal regions. 263 

Alternatively, regions with higher annual precipitation generally have smaller CV. Both 264 

BARRA and ERA5 reasonably capture the main feature of CV in observation. However, clear 265 

biases can be observed, especially in BARRA that has more than 50% large positive biases in 266 

Northern Australia, up to 20% positive biases for inland, and relatively smaller biases for 267 

southeastern Australia, southwest West Australia and Tasmania. In contrast, ERA5 does not 268 

have a clear bias pattern, and biases are relatively smaller when compared to BARRA.  269 

To further investigate the variability evident in observations and BARRA/ERA5 270 

simulations, we assess the trends in annual precipitation (Figure 4 and Figure S6 on the 271 

observation grid). AGCD shows strong increasing trends over Northern Australia and 272 

Northeast Australia coastal regions but decreasing trends over Northern Queensland, 273 

southwestern West Australia and southern Great Dividing Range including Victoria, although 274 

not all trends are significant. Most of inland regions have relatively small trend in annual 275 

precipitation. Both BARRA and ERA5 reproduce the major trend pattern reasonably well, 276 

however, clear biases can be observed over Northern Australia where both BARRA and ERA5 277 

underestimate trend more than 100% (i.e., trend of 0.08 mm/day per year with bias of similar 278 

magnitude).  BARRA overestimated decreasing trend over Northern Queensland but ERA5 279 

underestimate it (even increasing trend instead).   280 
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In summary, evaluation of annual mean precipitation indicates both BARRA and ERA5 281 

possess small biases (~20%) in the spatial precipitation patterns. ERA5 shows stronger 282 

temporal correlations than BARRA, particularly in northern Australia. Overall, ERA5 283 

demonstrates higher accuracy in capturing inter-annual precipitation variability. Both BARRA 284 

and ERA5 captured spatial distribution of coefficient of variation reasonably well but with 285 

large biases (~ 50%). BARRA shows much larger biases than ERA5 especially for Northern 286 

Australia.  Both BARRA and ERA5 roughly reproduce the pattern of trend but with very large 287 

biases (~100%), especially for Northern Australia where both substantially underestimate the 288 

increasing trend.  289 

 290 

4.2 Climate extremes 291 

This section evaluates the seven select precipitation extreme indices (Table 1) from 292 

BARRA and ERA5 over Australia by comparing them against AGCD. Evaluations are 293 

performed primarily using spatial bias maps and temporal correlations. We also assess the 294 

interannual variability and trends in the simulated BARRA and ERA5 indices and compare 295 

these with AGCD to further investigate any discrepancies. 296 

4.2.1 Bias and temporal correlation 297 

Annual mean biases in six precipitation extremes are shown in Figure 5 (and Figure S8 298 

on the observation grid). For duration-related extremes (CDD and CWD), there is a clear north-299 

to-south gradient in AGCD (Figure S7) with longer duration of CDD and CWD in northern 300 

Australia than southern Australia (CWD also has a clear west-to-east gradient in Tasmania), 301 

which is well simulated in BARRA and ERA5 (Figure S7). While the spatial distributions are 302 

well captured, clear biases are evident in them (Figure 5). BARRA generally underestimates 303 

CDD especially for central inland and northwest West Australia where biases are up to 40%. 304 

ERA5 also under-estimates CDD for central inland, but in contrast its over-estimates CDD for 305 
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most of northwestern Australia, overall ERA5 has smaller absolute bias in CDD (6.9 days) than 306 

BARRA (14.5 days) (Table 2). Both BARRA and ERA5 have similar bias pattern for CWD, 307 

which generally overestimate CWD over most of regions except for southern Australian coast, 308 

southwest West Australia and western Tasmania. The positive biases over Northern Australia 309 

may reach 30%. Overall BARRA has slightly larger biases in CWD (2.3 days) than ERA5 (1.7 310 

days) (Table 2).  311 

For threshold-based extremes (PRCPTOT, R10mm, R90p, R99p, Rx1day), both 312 

BARRA and ERA5 also generally match the spatial distribution of heavy precipitation days 313 

and R90p (Figure S7) in AGCD with large values in Northern Australia, eastern seaboard and 314 

Australian Great Dividing Range, and western Tasmania. However, clear biases can be 315 

observed in BARRA and ERA5 for both R10mm and R90p (Figure 5). BARRA and ERA5 316 

have large negative biases in R10mm over Northern Australia, eastern seaboard, southwest 317 

Western Australia and western Tasmania, but biases in central inland and northwest West 318 

Australia are generally small. Overall, domain averaged absolute bias for ERA5 (1.7 days) is 319 

about half of that for BARRA (3.3 days). Both BARRA and ERA5 also have relatively large 320 

negative biases in R90p for most of northern Australia, eastern coasts, southwest West 321 

Australia and western Tasmania but small positive biases inland, especially for BARRA. 322 

Overall averaged absolute bias is 0.78 mm/day for BARRA and 0.44 mm/day for ERA5 (Table 323 

2).    324 

BARRA and ERA5 also reasonably captured the spatial patterns of R99p and Rx1day, 325 

however, quite large biases are in BARRA and ERA5 (Figure 5). BARRA generally 326 

overestimate R99p and Rx1day over northern Australia coasts and along the Great Dividing 327 

Range. In contrast, ERA5 generally underestimate R99p and Rx1day over northern and eastern 328 

coasts, southwest Western Australia and western Tasmania.  The domain averaged bias in R99p 329 
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is at similar magnitude for BARRA (4.09 mm/day) and ERA5 (3.67 mm/day), however biases 330 

in Rx1day is much larger for BARRA (20.3 mm/day) than ERA5 (7.9 mm/day) (Table 2).  331 

Figure 6 (and Figure S9 on the observation grid) presents the temporal correlations 332 

between BARRA/ERA5 and AGCD for the six precipitation extreme indices. Unlike the strong 333 

temporal correlation between BARRA/ERA5 and AGCD for mean annual precipitation (Figure 334 

2), the temporal correlations for these extreme indices are worse except for R90p (Figure 6). 335 

For extremes like R10mm and R90p, the correlation ranges from reasonably good (above 0.6) 336 

to pretty good (above 0.8) between BARRA/ERA5 and AGCD for most of the domain. 337 

Temporal correlation for CDD, CWD and R99p are not as good as R10mm and R99p. CDD 338 

has more regions with stronger correlations (0.5-0.6) or above than CWD and Rx1day, for the 339 

latter correlation is about ~0.5 or less over most of the domain. Compared to BARRA, ERA5 340 

has slightly stronger temporal correlations for those extremes (Table 2). 341 

 342 

4.2.2 CV (coefficient of variation) and trend 343 

The observed and simulated CV of precipitation extremes and biases in their CV for 344 

BARRA and ERA5 are shown in Figure S10 and Figure 7 (and Figure S11 on the observation 345 

grid), respectively. Generally, both BARRA and ERA5 have similar CV bias patterns and 346 

magnitude for CDD, CWD and R10mm. In contrast, BARRA is quite different from ERA5 for 347 

other three extremes. BARRA substantially under-estimated CV of R90p over most on inland 348 

regions but ERA5 has much smaller negative biases, even small positive biases, although both 349 

have small biases in CV of R90p along most coastal regions and Tasmania. BARRA 350 

systematically overestimate CVs of R99p and Rx1day over northern Australia but ERA5 has 351 

relatively small biases for them. Overall, BARRA has more than twice as much as CV biases 352 

in ERA5 for R90p, R99p and Rx1day (Table 2).  353 
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Trends of each of the precipitation extreme indices for the three datasets and biases in 354 

trend for BARRA and ERA5 are shown in Figure S12 and Figure 8 (and Figure S13 on the 355 

observation grid), respectively. Generally, both BARRA and ERA5 simulate the main pattern 356 

of trends for those extremes but with large biases. BARRA and ERA5 simulated CDD trend 357 

well for southern Australia but BARRA generally under-estimated trend in CDD over inland 358 

Australia and overestimate trend in northwest Australia. ERA5 only has large positive trend 359 

biases in northern central Australia. The overall domain averaged biases are similar between 360 

BARRA (0.584) and ERA5 (0.566). Both BARRA and ERA5 have small biases in CWD in 361 

central and southern Australia but similar biases pattern in Northern Australia. They also have 362 

similar overall biases in CWD (0.064 for BARRA and 0.060 for ERA5). Both BARRA and 363 

ERA5 under-estimated increasing trend in R10mm in northern Australia, but BARRA 364 

overestimate trend in most of southeast Australia. In contrast, ERA5 under-estimate trend over 365 

there. Overall, ERA5 has slightly larger biases (0.094) than BARRA (0.085). Like R10mm, 366 

both BARRA and ERA5 also underestimate trend of R90p in most of northern Australia but 367 

have small biases in central and southern Australia. They have almost the same overall biases 368 

in R90p.  BARRA/ERA5 has similar biases patterns for R99p and Rx1day but biases for 369 

rx1days are much larger. Both BARRA and ERA5 have large biases in R99p and Rx1day but 370 

biases in BARRA are generally larger than ERA5.  371 

In summary, both BARRA and ERA5 reproduce spatial patterns of extremes well but 372 

display biases. ERA5 underestimates CDD and certain extreme precipitation indices (e.g., 373 

Rx1day), while BARRA tends to overestimate these extremes. Both reanalyses show 374 

discrepancies in various precipitation indices across different regions, with BARRA generally 375 

displaying larger biases compared to ERA5. Temporal correlations between BARRA/ERA5 376 

and observations for extreme precipitation indices are weaker than those for mean annual 377 

precipitation, except for a few indices where ERA5 demonstrates slightly stronger correlations 378 
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compared to BARRA.  Both BARRA and ERA5 align in CV patterns and biases for certain 379 

extremes (CV, R10mm, R90p) but differ notably in others (PRCPTOT, trend, CDD, R99p, 380 

Rx1day). BARRA significantly underestimates very heavy precipitation variability over inland 381 

regions, while ERA5 presents smaller biases or even positive biases in these areas. Additionally, 382 

BARRA tends to overestimate extreme precipitation variability in Northern Australia 383 

compared to ERA5. Overall, BARRA shows more than double the biases in variability 384 

compared to ERA5 for specific extreme precipitation indices. Both reanalyses generally 385 

simulate the main trend patterns but exhibit considerable biases. BARRA underestimates or 386 

overestimates trends in certain regions and indices, while ERA5 demonstrates different biases, 387 

including smaller biases overall compared to BARRA across these precipitation extremes. 388 

 389 

5. Discussion 390 

In this study, we assessed the performance of BARRA and ERA5 in simulating mean 391 

precipitation and six selected precipitation extremes. While most previous evaluations have 392 

focused on the climatology of precipitation and its extremes, only a few studies have included 393 

the coefficient of variation (CV) (Teng et al., 2024). Our evaluation encompassed annual 394 

climatology, along with temporal correlation, CV, and trend analysis, providing a 395 

comprehensive assessment of the performance of these two reanalysis datasets. 396 

The results indicate that both BARRA and ERA5 demonstrate reasonable skill in 397 

simulating mean precipitation and certain precipitation extremes (e.g., CWD and R90p). 398 

However, they encounter challenges in accurately reproducing temporal correlation, CV, and 399 

trends for certain extreme events, highlighting significant uncertainties in their representation 400 

of extremes. 401 

While acknowledging the capabilities of these reanalysis datasets, our study also 402 

identifies specific limitations and suggests potential directions for future research. A crucial 403 
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consideration in model evaluation is the accuracy of observational data, which substantially 404 

influences evaluation outcomes. In this study, we used the AGCD dataset as the observational 405 

benchmark, which is based on interpolating data from in-situ stations (Evans et al., 2020). 406 

However, the AGCD dataset presents several limitations: 1) Spatial coverage: Sparse station 407 

coverage in northwest and central Australia, and limited observations in high-elevation areas, 408 

result in a concentration of stations in southeastern Australia, southwestern Western Australia, 409 

and eastern Tasmania. The arid interior is notably underrepresented. 2) Data completeness and 410 

homogeneity: Incomplete and inhomogeneous observations due to missing data, changes in 411 

observational techniques, or station relocations can affect the consistency of the dataset. 3) 412 

Interpolation uncertainties: The interpolation method used in AGCD (splining), instead of the 413 

ordinary kriging method used in its predecessor (AWAP), introduces uncertainties, particularly 414 

in areas with sparse data coverage for extreme events like heavy rainfall. 415 

These observational uncertainties may contribute to biases in the evaluation results. In 416 

particular, the limited number of monitoring sites over the Great Dividing Range and inland 417 

areas introduces significant uncertainties in estimated observed precipitation for these regions. 418 

Independent studies, such as Chubb et al. (2016), found that daily precipitation is 419 

underestimated by at least 15% in some areas, which could suggest similar underestimation in 420 

BARRA and ERA5 for these regions. Similarly, the sparse gauge network in northwestern 421 

inland areas might miss localized extreme precipitation events. 422 

Our analysis focused on seven ET-SCI-defined precipitation extreme indices (including 423 

mean precipitation), widely used in various evaluation studies (Nishant et al., 2020; Ji et al., 424 

2024). However, recognizing the need for region-specific indices, we suggest future studies 425 

extend the analysis to incorporate additional extreme indices tailored to specific regions and 426 

applications. 427 
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Our findings emphasize that while both BARRA and ERA5 are competent in simulating 428 

the climatology of mean climate, temporal correlation, and CV, challenges remain in accurately 429 

capturing trends, particularly for certain extremes. Notably, ERA5 shows better overall 430 

performance compared to BARRA. Although higher resolution often correlates with better 431 

performance, recent studies have shown that increasing resolution alone does not always 432 

guarantee improvements (Nishant et al., 2022). Considering the critical role of driving data, 433 

model physics, and data assimilation, it may be valuable to update BARRA using the latest 434 

ERA5 data along with improved model physics and data assimilation techniques to enhance its 435 

performance. 436 

In this study, we evaluated ERA5 and BARRA on both their native resolutions and a 437 

common resolution (5 km) to match AGCD. The results showed that the evaluations were 438 

consistent across native and common resolutions, suggesting that the performance assessments 439 

were not highly sensitive to changes in resolution. 440 

  441 

6. Summary and Conclusion 442 

Reanalysis datasets play a crucial role in climate research, weather analysis, and various 443 

scientific investigations. Their ability to provide a consistent and comprehensive representation 444 

of historical weather and climate conditions makes them invaluable. These datasets are 445 

particularly essential for studying long-term climate trends, understanding atmospheric 446 

phenomena, and validating climate models. 447 

In this study, we evaluate BARRA and ERA5 for their capabilities to simulate mean 448 

precipitation and six selected precipitation extremes for their climatology, temporal correlation, 449 

coefficient of variation (CV) and trend to quantify their overall performance. We evaluated 450 

BARRA and ERA5 at their native resolutions, as well as at a common resolution (i.e., the 451 
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observation resolution). Both analyses yielded consistent results, indicating that the evaluation 452 

is not sensitive to the remapping process. 453 

The assessment of annual mean precipitation reveals that both BARRA and ERA5 454 

adeptly reproduce the spatial precipitation patterns, exhibiting minor biases of around 20%. 455 

Particularly, ERA5 showcases stronger temporal correlations compared to BARRA, especially 456 

evident in northern Australia. ERA5, overall, demonstrates superior accuracy in capturing 457 

inter-annual precipitation variability. However, both models depict the spatial distribution of 458 

the coefficient of variation reasonably well but with larger biases, roughly around 50%. 459 

Particularly, BARRA displays significantly higher biases, especially in Northern Australia. 460 

Regarding the replication of trend patterns, both models exhibit substantial biases, 461 

reaching approximately 100%. This is especially notable in Northern Australia, where they 462 

both notably underestimate the increasing trend. Furthermore, while both BARRA and ERA5 463 

possess about the right spatial patterns of extremes, biases are evident. ERA5 tends to 464 

underestimate consecutive dry days (CDD) and certain heavy rainfall events, while BARRA 465 

tends to overestimate these extremes. Discrepancies in various precipitation indices across 466 

regions are apparent, with BARRA generally displaying larger biases compared to ERA5. 467 

When examining temporal correlations for extreme precipitation indices compared to 468 

mean annual precipitation, both BARRA and ERA5 show weaker correlations, except for a 469 

few indices (CDD, R10mm, R90p) where ERA5 slightly outperforms BARRA. While both 470 

models align in coefficient of variation patterns and biases for certain extremes, notable 471 

differences arise in others. BARRA notably underestimates very heavy precipitation variability 472 

over inland regions, whereas ERA5 presents smaller biases or even positive biases in these 473 

areas. Moreover, BARRA tends to overestimate extreme precipitation variability in Northern 474 

Australia compared to ERA5. Specifically, BARRA showcases more than double the biases in 475 

variability compared to ERA5 for specific extreme precipitation indices. 476 
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In terms of trend patterns, both models generally replicate the observed trends but 477 

exhibit considerable biases. BARRA shows both underestimations and overestimations in 478 

certain regions and indices, while ERA5 displays different biases, including overall smaller 479 

biases compared to BARRA across these precipitation extremes. 480 

In summary, our findings suggest that both ERA5 and BARRA are reliable for 481 

climatological analyses, including mean precipitation and precipitation extremes, and can be 482 

confidently used by end-users for such purposes. However, as discussed in the introduction, 483 

caution is advised when using these datasets for variability and trend analyses, particularly for 484 

specific extreme events like Rx1day. The performance of these reanalyses is regionally 485 

dependent, and this should be considered when using them as observational references for 486 

evaluating other model simulations. Additionally, the biases in the variability and trends of 487 

climate extremes present in both datasets must be carefully accounted for when comparing 488 

them with other data sources. 489 

 490 

 491 
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 668 

Table 1 List of ET-SCI indices evaluated in this study. 669 

 670 

 671 

 672 

Table 2 Domain-averaged absolute biases and temporal correlation between BARRA/ERA5 673 
and AGCD for annual precipitation and precipitation extremes 674 

Indices Absolute biases in 
annual mean 

Temporal 
correlation 

Absolute biases in 
CV 

Absolute biases in 
trend 

BARRA ERA5 BARRA ERA5 BARRA ERA5 BARRA ERA5 

Annual 
pr 

0.169 0.149 0.771 0.854 0.063 0.037 0.008 0.007 

CDD 14.543 6.913 0.578 0.650 0.050 0.045 0.584 0.566 

CWD 2.346 1.714 0.446 0.527 0.061 0.059 0.064 0.060 

R10mm 3.265 1.700 0.688 0.761 0.081 0.053 0.085 0.094 

R90p 0.777 0.439 0.761 0.827 0.211 0.082 0.023 0.023 

R99p 4.093 3.668 0.562 0.625 0.121 0.060 0.206 0.162 

Rx1day 20.333 7.916 0.380 0.486 0.219 0.107 0.848 0.542 

 675 

  676 

Index Definition Units Timescale Sectors 
PRCPTOT Total wet-day precipitation (Sum of 

daily precipitation >= 1.0 mm) 
mm Annual/Monthly Agriculture and food security, 

water, water resources and 
food security, forestry/GHGs 

CDD Consecutive dry days (Maximum 
number of consecutive dry days 
(when precipitation < 1.0 mm)) 

days Annual Health, agriculture and food 
security, water resources and 

food security, disaster risk 
reduction, forestry/GHGs 

CWD Consecutive wet days (Maximum 
annual number of consecutive wet 

days (when precipitation >= 1.0 mm)) 

days Annual Coasts, agriculture, transport 
operations 

R10mm Days when precipitation is at least 
10mm 

days Annual/Monthly Coasts 

R90p Total annual precipitation from very 
heavy precipitation days (Annual sum 

of daily precipitation > 90th 
percentile) 

mm Annual Coasts, transport operations 

R99p Total annual precipitation from very 
heavy precipitation days (Annual sum 

of daily precipitation > 99th 
percentile) 

mm Annual Coasts, transport operations 

Rx1Day Amount of precipitation from very 
wet days (Maximum 1-day 

precipitation) 

mm Annual/Monthly Agriculture and food security, 
water, coasts, disaster risk 
reduction, forestry/GHGs 
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 678 

 679 
 680 

Figure 1 Annual mean precipitation of AGCD, BARRA and ERA5 (upper panels) and annual 681 
mean biases between BARRA/ERA5 and AGCD (lower panels). The regions with 682 
low density of station observations in AGCD has been masked and not considered in 683 
all subsequent evaluation. Unit: mm/day. Stippling indicates areas with biases that 684 
are statistically significant at 95% confidence level.  685 

  686 



 27 

 687 

 688 

 689 

 690 

Figure 2 Temporal correlation coefficient of annual precipitation between BARRA/ERA5 691 
and AGCD. A black contour at value 0.85 has been added for reference. 692 
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 695 

 696 

 697 

Figure 3 CV of annual precipitation for AGCD, BARRA and ERA5 (upper panels) and biases 698 
in CV between BARRA/ERA5 and AGCD (lower panels).  699 

  700 
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 702 

 703 

 704 

Figure 4 Trend of annual precipitation for AGCD, BARRA and ERA5 (upper panels) and 705 
biases in trend between BARRA/EAR5 and AGCD (lower panels).  706 
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 708 

 709 

 710 

Figure 5 Biases in CDD, CWD, R10mm, R90p, R99p and Rx1Day in BARRA (left column) 711 
and ERA5 (right column). Stippling indicates areas with biases that are statistically 712 
significant at 95% confidence level. A black contour at 40% has been added to the 713 
panels for Rx1day (last row) for reference. 714 
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Figure 5 (continued). 720 
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 723 

 724 
 725 

Figure 6 Temporal correlation of CDD, CWD, R10mm, R90p, R99p and Rx1Day between 726 
BARRA and AGCD (left column) and between ERA5 and AGCD (right column). 727 
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Figure 6 (continued). 732 
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 735 

 736 

Figure 7 Biases in CV of CDD, CWD, R10mm, R90p, R99p and Rx1Day for BARRA (left 737 
column) and ERA5 (right column) relative to AGCD.  738 
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Figure 7 (continued). 743 
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 746 

Figure 8 Biases in trends of CDD, CWD, R10mm, R90p, R99p and Rx1Day for BARRA (left 747 
column) and ERA5 (right column) relative to AGCD.  748 
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 751 

Figure 8 (continued). 752 


