

Figure S1. Comparison of daily streamflow predicted using the mechanistic models (i.e., uncalibrated and calibrated SWAT models) and observed during the training period (July 12, 2013, to December 31, 2015).

Figure S2. Comparison of daily SS loads predicted using the mechanistic models (i.e., uncalibrated and calibrated SWAT models) and observed during the training period (July 12, 2013, to December 31, 2015).

Figure S3. Comparison of daily TN loads predicted using the mechanistic models (i.e., uncalibrated and calibrated SWAT models) and observed during the training period (July 12, 2013, to December 31, 2015).

Figure S4. Comparison of daily TP loads predicted using the mechanistic models (i.e., uncalibrated and calibrated SWAT models) and observed during the training period (July 12, 2013, to December 31, 2015).

Figure S5. Comparison of flow duration curves (FDC) predicted using the ML models and observed at the outlet of the WJ watershed.

Figure S6. Comparison of flow duration curves (FDC) predicted using the ML models and observed at the outlet of the HN watershed.

Figure S7. Comparison of flow duration curves (FDC) predicted using the ML models and observed at the outlet of the JS watershed.

Figure S8. Density (or frequency) distributions of observed SS concentrations during the training period. The SS concentrations were normalized from 0 to 1 for each watershed.

Figure S9. Density (or frequency) distributions of observed TN concentrations during the training period. The TN concentrations were normalized from 0 to 1 for each watershed.

Figure S10. Density (or frequency) distributions of observed TP concentrations during the training period. The TP concentrations were normalized from 0 to 1 for each watershed.

Study Watersheds	Average	Land uses and Covers (km ²)									
	Slope (%)	Urban	Field	Paddy field	Forest	Other	Total				
WJ	6.43	1.88 (5%)	6.63 (19%)	14.77 (43%)	8.45 (24%)	3.02 (9%)	34.75 (100%)				
HN	5.49	5.68 (13%)	9.28 (21%)	17.19 (38%)	9.33 (21%)	3.62 (8%)	45.09 (100%)				
JS	4.39	2.40 (31%)	1.21 (15%)	2.07 (26%)	1.73 (22%)	0.42 (5%)	7.83 (100%)				
РҮЈ	4.85	11.46 (19%)	22.36 (36%)	11.23 (18%)	11.45 (19%)	4.90 (8%)	61.40 (100%)				

Table S1. Land use and cover statistics of the study watersheds.

Variables	WS*	Unit	Min	Mean	Max	Std. Dev. **	CoV (%) ^{***}	Number of observations	
Р	-	mm	0.00	2.98	135.0	9.66	324.2	1,634	
AT	-	°C	-9.50	15.0	31.5	9.34	62.3	1,634	
WS	-	m/s	0.40	1.71	5.30	0.74	43.3	1,634	
RH	-	%	68.7 9 68.7		99.0	14.6	21.3	1,634	
SR	-	MJ/m ²	$(J/m^2) = 0.0 = 14.1 = 32$		32.1	7.06	50.1	1,634	
Е	-	mm	0.29	3.66	9.60	2.02	55.2	1,634	
Flow	WJ		0.09	0.68	27.7	1.89	276.9	1,634	
	HN	34	0.22	1.21	36.7	2.65	219.6	1,634	
	JS	m ³ /s	0.00	0.16	8.91	0.53	336.9	1,634	
	PYJ		0.24	1.69	70.0	3.75	221.6	1,634	
	WJ	mg/L	1.73	25.1	244.0	33.6	133.6	121	
66	HN		3.21	28.8	236.4	39.0	135.5	109	
55	JS		3.35	100.2	1,110.0	209.1	208.8	109	
	PYJ		1.70	25.1	384.6	43.7	174.1	229	
TN	WJ		0.08	2.29	6.52	0.83	36.1	121	
	HN		0.98	2.39	7.86	0.87	36.3	109	
	JS	mg/L	1.17	3.01	6.72	0.84	27.8	109	
	PYJ		0.70	2.19	5.74	0.69	31.4	229	
TP	WJ		0.01	0.17	1.70	0.16	94.0	121	
	HN	ma/I	0.04	0.18	1.13	0.13	72.7	109	
	JS	mg/L	0.02	0.20	0.82	0.12	61.2	109	
	PYJ		0.04	0.14	0.72	0.10	69.1	229	

Table S2. Descriptive statistics of observations and training data.

* WS: Study Watershed, ** Std. Dev.: Standard Deviation, *** CoV: Coefficient of Variation.

ML Models	Training Data Sets	Flow		SS	5	TI	N	TP		
		ME	ТЕ	ME	ТЕ	ME	ТЕ	ME	TE	
	WD+UC	0.009	5.583	0.003	1.645	0.011	4.674	0.023	2.473	
RF	WD+C	0.017	1.240	0.002	1.046	0.025	2.994	0.021	4.161	
	All	0.014	1.571	0.015	2.137	0.012	3.368	0.017	1.562	
SVM	WD+UC	0.031	9.222	0.062	3.913	0.012	1.807	0.019	2.936	
	WD+C	0.048	4.033	0.140	3.527	0.031	2.825	0.036	7.264	
	All	0.027	2.046	0.061	3.654	0.016	2.174	0.030	3.435	
ANN	WD+UC	0.010	0.777	0.021	2.004	0.041	2.215	0.021	0.564	
	WD+C	0.018	1.470	0.074	2.033	0.070	4.453	0.053	3.007	
	All	0.011	0.968	0.036	1.513	0.033	4.063	0.031	2.417	

Table S3. Information use efficiency achieved by ML models trained with the different combinations of training data sets (unit: none or fraction). The highest efficiency statistics are in bold.

Watershed	Training	Flow			SS			TN	TN			TP		
	Data Sets	RF	SVM	ANN										
	WDO	0.299	0.315	0.265	0.385	0.210	0.174	0.215	0.240	0.276	0.174	0.281	0.246	
WI	WD+UC	0.304	0.348	0.451	0.190	0.297	0.214	0.223	0.214	0.388	0.207	0.314	0.315	
WJ	WD+C	0.394	0.486	0.485	0.294	0.415	0.381	0.263	0.327	0.312	0.210	0.335	0.340	
	All	0.424	0.529	0.469	0.535	0.539	0.514	0.253	0.315	0.324	0.404	0.367	0.349	
HN	WDO	0.290	0.328	0.378	0.282	0.173	0.125	0.251	0.173	0.167	0.349	0.375	0.101	
	WD+UC	0.395	0.345	0.467	0.291	0.449	0.218	0.325	0.284	0.323	0.382	0.533	0.535	
	WD+C	0.439	0.509	0.457	0.461	0.433	0.432	0.312	0.420	0.274	0.387	0.488	0.456	
	All	0.472	0.637	0.535	0.527	0.536	0.487	0.387	0.528	0.353	0.620	0.598	0.606	
	WDO	0.354	0.355	0.333	0.333	0.225	0.213	0.368	0.379	0.173	0.365	0.258	0.137	
10	WD+UC	0.337	0.415	0.451	0.358	0.325	0.423	0.403	0.499	0.370	0.435	0.364	0.370	
JS	WD+C	0.481	0.470	0.482	0.447	0.511	0.394	0.485	0.531	0.439	0.409	0.343	0.285	
	All	0.502	0.589	0.567	0.375	0.424	0.527	0.425	0.558	0.411	0.443	0.466	0.424	
РҮЈ	WDO	0.314	0.386	0.376	0.345	0.358	0.191	0.281	0.351	0.400	0.285	0.337	0.218	
	WD+UC	0.432	0.459	0.496	0.455	0.419	0.311	0.446	0.454	0.534	0.526	0.430	0.475	
	WD+C	0.417	0.429	0.449	0.402	0.450	0.361	0.316	0.400	0.461	0.413	0.358	0.355	
	All	0.479	0.581	0.596	0.588	0.563	0.490	0.403	0.457	0.531	0.524	0.461	0.439	

Table S4. Summary statistics of TE of the training data sets by the watersheds with different machine learning algorithms.