
 1 

Coupling the ParFlow Integrated Hydrology Model within the NASA Land 1 
Information System: A case study over the Upper Colorado River Basin 2 

 3 
1,4,7Peyman Abbaszadeh, 3Fadji Zaouna Maina, 1,4Chen Yang, 5Dan Rosen, 3Sujay Kumar, 4 

6Matthew Rodell, 1,2,4Reed Maxwell 5 
 6 
1Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA 7 

2High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA 8 
3Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA 9 

4Integrated GroundWater Modeling Center, Princeton University, Princeton, NJ USA 10 
5Climate & Global Dynamics Lab, The National Center for Atmospheric Research, Boulder, 11 

Colorado, USA 12 
6 Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA 13 

now at 7Department of Civil and Environmental Engineering, Hydrologic Modeling and 14 
Assimilation Lab, Portland State University, Portland, OR 15 

Corresponding author: Peyman Abbaszadeh, pabbaszadeh@princeton.edu, 16 
pabbaszadeh@pdx.edu 17 

 18 

Abstract 19 

Understanding, observing, and simulating Earth's water cycle is imperative for effective water 20 

resource management in the face of a changing climate. NASA's Land Information System 21 

(LIS)/Noah-MP and the ParFlow groundwater model are the two widely used modeling platforms 22 

that enable studying the Earth's land surface and subsurface hydrologic processes, respectively. 23 

The integration of ParFlow and LIS/Noah-MP models and harnessing their strengths can provide 24 

an opportunity to simulate surface terrestrial water processes and groundwater dynamics together 25 

while enhancing the accuracy and scalability of hydrological modeling. This study introduces 26 

ParFlow-LIS/Noah-MP (PF-LIS/Noah-MP), which is an integrated, physically based hydrologic 27 

modeling framework. PF-LIS/Noah-MP enables the user to simulate land surface processes in 28 

conjunction with subsurface hydrologic processes while considering the interactions between the 29 

two. In this study, we compared the results of the coupled PF-LIS/Noah-MP and standalone 30 

LIS/Noah-MP models with a suite of in-situ and satellite observations over the Upper Colorado 31 

River Basin (UCRB) in the United States. This analysis confirmed that integrating ParFlow with 32 

LIS/Noah-MP not only enhances the capability of LIS/Noah-MP in estimating land surface 33 

processes over regions with complex topography but also enables it to accurately simulate 34 

subsurface hydrologic processes. 35 
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1. Introduction  37 

The interaction of surface and subsurface hydrologic processes is complex and dynamic. 38 

Surface hydrologic processes include the movements of water on the land surface, such as runoff, 39 

while subsurface hydrologic processes include the movements of water below the ground, such as 40 

infiltration and groundwater flow. These surface and subsurface physical processes are 41 

interconnected through various mechanisms. For instance, precipitation that falls on the land 42 

surface can infiltrate the soil and become soil moisture or runoff into nearby streams and rivers. 43 

Soil moisture can either return to the atmosphere through evapotranspiration or percolate into the 44 

subsurface, replenishing groundwater storage. Streams and rivers can also recharge underlying 45 

groundwater aquifers, and groundwater can discharge into rivers and streams (Fleckenstein et al., 46 

2010; Kalbus et al., 2006; Kourakos et al., 2019; Ntona et al., 2022; Winter et al., 1998). 47 

The interaction of surface and subsurface hydrologic processes is particularly relevant to 48 

managing water resources in arid and semi-arid regions, where water resources are often limited 49 

(Deb et al., 2019; Scanlon et al., 2012; Tian et al., 2015; Wada et al., 2010). Climate change can 50 

impact surface and subsurface hydrologic processes and their interactions and feedback to the 51 

atmosphere. In particular, changes in precipitation patterns, temperature, and evapotranspiration 52 

rates can affect the balance and feedback between surface water and groundwater, affecting water 53 

availability and quality (Alley, 2007; Christensen et al., 2004; Oki and Kanae, 2006; Scanlon et 54 

al., 2012). Besides, human activities, such as irrigation and water pumping, can alter the natural 55 

behavior of surface–subsurface interactions (Boucher et al., 2004; Gordon et al., 2005; Leng et al., 56 

2014; Leung et al., 2011; Liang et al., 2003; Sacks et al., 2009; Tang et al., 2007; Tian et al., 2015), 57 

affect the land-atmosphere coupling (Harding and Snyder, 2012; Kawase et al., 2008; Lo and 58 

Famiglietti, 2013; Qian et al., 2013) and compromise the health of ecosystems and water quality 59 

(Green et al., 2011; Jasechko et al., 2017; Scanlon et al., 2012).  60 

Irrigation water use in the Upper Colorado River Basin (UCRB) is a substantial and 61 

growing demand on the region's limited water resources. UCRB includes parts of Colorado, 62 

Wyoming, Utah, and New Mexico and is home to a large agricultural sector. The region's irrigated 63 

agriculture mostly relies on groundwater (Hutson et al., 2004; Kenny et al., 2005). Studies show 64 

that due to the recent prolonged drought across the western US (Cook et al., 2015, 2021; Williams 65 

et al., 2022), water managers have increased their dependence on groundwater to secure public 66 

water supply and irrigate agricultural lands (Famiglietti et al., 2011, 2013; Taylor et al., 2013). 67 
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Groundwater pumping is an important source of water for agriculture in the UCRB, particularly 68 

when and where surface water availability is limited (Castle et al., 2014). Excessive pumping can 69 

lead to the depletion of aquifers, impacting water availability and the long-term sustainability of 70 

agricultural practices. To address these challenges, many states in the UCRB have implemented 71 

regulations and policies to manage groundwater use in agriculture, such as implementing 72 

groundwater monitoring programs and setting limits on the amount of water that can be pumped 73 

(Supplemental Environmental Impact Statement for Near-term Colorado River Operations; U.S. 74 

Department of the Interior, 2021). In general, water management strategies can benefit from 75 

skillful hydrologic modeling that considers the land surface and subsurface physical processes in 76 

a coupled fashion. In this work, we introduce and test a coupled land surface-subsurface hydrology 77 

model (hereafter integrated hydrologic model) as one means to address this need. 78 

Integrated hydrologic models have been highly successful in a broad range of watershed-79 

scale studies (see Table 1 in Maxwell et al., 2014). These models represent observed surface and 80 

subsurface behavior, diagnose stream–aquifer and land–energy interactions, and enhance our 81 

understanding of how disturbances like changes in land-cover and human-induced climate change 82 

affect different layers of the hydrologic system (Maxwell et al., 2015). The importance of the 83 

interactions between groundwater and surface water and the use of integrated hydrologic models 84 

to better understand this connection has been the subject of many studies in the past decade 85 

(Barthel and Banzhaf, 2016; Brookfield et al., 2023; Kuffour et al., 2020; Lahmers et al., 2022; 86 

O’neill et al., 2021a; Wang and Chen, 2021; Yang et al., 2021). Until recently, integrated 87 

hydrologic models were mainly used at local to regional scales, as their implementation required 88 

extensive computational resources. However, recent advances in parallel High-Performance 89 

Computing (HPC) techniques, numerical solvers, and observational data have made it feasible to 90 

conduct large scale, high-resolution simulations of the terrestrial hydrologic cycle (Kollet et al., 91 

2010; Maxwell, 2013; Maxwell et al., 2015; Naz et al., 2023). This has opened up new possibilities 92 

for the practical application of integrated hydrologic models at regional to continental scales. Most 93 

previous large-scale subsurface studies have not accounted for surface processes explicitly (Fan et 94 

al., 2007, 2013; Miguez-Macho et al., 2007). Similarly, many continental to global-scale surface 95 

hydrology studies have ignored groundwater or used a highly simplified model, despite the 96 

importance of lateral groundwater flows (Krakauer et al., 2014). This limitation has been observed 97 

in studies such as those conducted by Döll et al. (2012), Maurer et al. (n.d.), and Xia et al. (2012). 98 
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The NASA Land Information System (LIS) is a software framework designed to facilitate 99 

the integration of land surface models and satellite remote sensing data for improved understanding 100 

and prediction of land surface processes (Kumar et al., 2006, 2008a; Peters-Lidard et al., 2007). 101 

LIS has been widely used for a variety of scientific and practical applications, including drought 102 

monitoring and prediction, water resource management, and flood forecasting, among others 103 

(Crow et al., 2012; Getirana et al., 2020; Li et al., 2019; Mocko et al., 2021; Nie et al., 2022). LIS 104 

has been integrated with other Earth system modeling systems. For example, a coupled high 105 

resolution land-atmosphere system has been developed by coupling LIS with the Weather 106 

Research and Forecasting (WRF) model (Kumar et al., 2008a). This coupled land-atmosphere 107 

system facilitates study of the interactions between the atmosphere and land surface processes. 108 

ParFlow is a robust and versatile groundwater model that integrates advanced numerical 109 

techniques to simulate both saturated and unsaturated flow conditions. This model has been 110 

coupled with different land surface and atmospheric models to better understand the interactions 111 

between the subsurface, surface, and atmospheric processes (Kollet and Maxwell, 2006; Maxwell 112 

et al., 2007, 2011, 2014b). Herein, we introduce a newly developed coupled land surface and 113 

subsurface hydrology model, ParFlow-LIS/Noah-MP (PF-LIS/Noah-MP) and study its 114 

effectiveness and usefulness for simulating land surface and subsurface hydrologic processes. We 115 

encourage the readers to refer to Fadji et al (2024) for more information about the coupled system. 116 

This paper has been under review at the time of writing this manuscript. Our primary objective is 117 

to study the degree to which the coupled PF-LIS/Noah-MP model (Fadji et al 2024) can contribute 118 

to better representation of surface and subsurface processes over UCRB. In particular, we study 119 

the extent to which the land surface water flux estimates in the LIS/Noah-MP model are improved 120 

by coupling it with the ParFlow groundwater model. For this purpose, we compared the coupled 121 

PF-LIS/Noah-MP and LIS/Noah-MP model estimates of soil moisture, streamflow, water table 122 

depth and terrestrial water storage with a suite of in-situ and satellite observations over the UCRB 123 

in the United States. 124 

The paper is organized as follows: first, we briefly describe the ParFlow and LIS/Noah-125 

MP model. Next, we discuss the coupling framework. In the results and discussion section of the 126 

paper, we provide a comparison of the model simulations against observations and explore how 127 

the coupled system could improve understanding of the land surface processes.   128 

 129 
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2. ParFlow 130 

ParFlow (PARallel Flow) (Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet 131 

and Maxwell, 2006) is an integrated, parallel model platform that simultaneously solves variably 132 

saturated three-dimensional Richards’ equation throughout the entire subsurface (Kollet and 133 

Maxwell, 2008). ParFlow does not separate the phreatic and vadose zones, it employs a unified 134 

solution by solving the compressible Richards’ equation everywhere in the subsurface. This 135 

inclusive methodology allows to obtain a realistic representation of groundwater dynamics, shaped 136 

by the underlying geology and topography. In addition to its capability to simulate subsurface 137 

flow, ParFlow also tackles the complexities of overland flow and surface runoff. This is 138 

accomplished through a combination of continuity or Manning’s equations, implemented in either 139 

kinematic or diffusive formats. By integrating these surface water flow components, ParFlow 140 

offers a fully integrated system that simultaneously solves the partial differential equations (PDEs) 141 

governing both surface water and subsurface flow (e.g. Kollet and Maxwell, 2006). Importantly, 142 

this integration is achieved in a globally implicit manner, ensuring the robust and efficient solution 143 

of these interconnected processes at each time step. The terrain following grid formulation in 144 

ParFlow is important for accurately representing topography (Maxwell, 2013). By solving the 145 

three-dimensional Richards’ equation for variably saturated groundwater flow, the model 146 

simulates lateral groundwater flow and replicates the spatial and temporal variations of the water 147 

table. It is important to note that groundwater may take a longer time (for example compared to 148 

soil moisture) to reach a steady-state due to such a complicated subsurface configuration, which 149 

makes it a computationally intensive problem to solve (Maxwell et al., 2014a).  150 

3. LIS 151 

Since the LIS framework has already been extensively described in the original papers 152 

(Kumar et al., 2006; Peters-Lidard et al., 2007), here we only briefly review its main components 153 

and features. Land surface modeling within LIS relies on three key inputs: (1) initial conditions, 154 

describing the land surface's starting state; (2) boundary conditions, encompassing the atmospheric 155 

fluxes or 'forcings' (upper boundary condition) and soil fluxes or states (lower boundary 156 

condition); and (3) parameters, which represent the soil, vegetation, topography, and other land 157 

surface characteristics. Using these inputs, Land Surface Models (LSMs) available within LIS 158 

(e.g., Community Land Model (CLM), Noah-MP, Variable Infiltration Capacity (VIC), Mosaic 159 
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and Hydrology with Simple SIB (HySSIB)) solve the governing equations of the soil-vegetation-160 

snowpack medium, and estimate the surface fluxes (i.e., sensible and latent heat, ground heat, 161 

surface and subsurface runoff, and evapotranspiration) and states (i.e., soil moisture and 162 

temperature, snow water equivalent and depth). One of the significant features of LIS is its high-163 

performance land surface modeling and Data Assimilation (DA) infrastructure (Kumar et al., 164 

2008b). Its DA capability enables users to utilize a wide range of in-situ and satellite observations, 165 

integrating them into various land surface models (those mentioned above) to enhance their 166 

predictive skill while accounting for the different sources of uncertainty involved in different 167 

layers of simulation. The DA embedded within LIS provides a possibility to perform probabilistic 168 

simulations, which facilitate uncertainty characterization/quantification and help risk assessment 169 

and effective decision making in the case of studying extreme hydrologic processes, such as floods 170 

and droughts, among others.  171 

In this study, we used the Noah-MP LSM  (Niu et al., 2011) within LIS (LIS/Noah-MP). 172 

In LIS/Noah-MP, groundwater storage changes are represented using a simplified bucket-type 173 

linear reservoir approach. This method tracks variations in groundwater storage based on inflow, 174 

known as recharge, and outflows, which include capillary rise and base flow. It is important to 175 

note that this approach does not explicitly consider complex hydraulic properties such as hydraulic 176 

conductivity, a parameter typically used in soil moisture modeling and, by extension, groundwater 177 

recharge prediction (Li et al., 2021). 178 

 179 

4. ParFlow-LIS  180 

Here we describe how we coupled the ParFlow and LIS models. As we mentioned earlier, 181 

in the coupled system (PF-LIS/Noah-MP), when the precipitation reaches the ground and 182 

infiltrates the soil, LIS estimates the land surface processes (such as evaporation and transpiration) 183 

and then calculates the net downward water flux which is later used as input to feed the ParFlow 184 

model. It should be noted that the land surface model (LIS/Noah-MP) and groundwater model 185 

(ParFlow) share the top four soil layers as the coupled soil zone where the two systems 186 

communicate. ParFlow utilizes the Richards’ equation to estimate the soil moisture in the coupled 187 

zone and in the other soil layers down to the bottom layer. In the PF-LIS/Noah-MP system, in 188 

addition to the top four soil layers with depth ranges from 0-0.1m, 0.1-0.4m, 0.4-1m, and 1-2m, 189 

there are six additional layers, each with varying soil depths, ranging from 2-7m, 7-17m, 17-42m, 190 
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42-92m, 92-192m, to the bottom layer from 192-492m. By using saturation data generated by 191 

ParFlow as one of its outputs and incorporating the soil layer porosity values, the LIS/Noah-MP 192 

model calculates the soil moisture content (𝜃). This 3D moisture data, derived from ParFlow, 193 

replaces the 1D soil hydrology within the LIS/Noah-MP model, affecting the simulation of other 194 

land surface processes by LIS/Noah-MP. This is a two-way coupling; at each time step, LIS/Noah-195 

MP computes evaporation, transpiration, snowmelt, and throughfall and passes these to ParFlow 196 

and then ParFlow feeds back a new soil moisture field to LIS/Noah-MP. Figure 1 schematically 197 

illustrates the soil column, with red and green boxes delineating the control volumes for LIS/Noah-198 

MP and ParFlow, respectively.  Where these two areas overlap (shown with yellow arrow) is the 199 

coupled soil zone (top four soil layers). The initial soil moisture condition starts from the land 200 

surface with θ!"#$%&'( (θ can be any value depending on condition) and varies down to the water 201 

table depth, where the soil becomes saturated (θ#')&!')$*+). Above the water table, the pressure 202 

head is negative, while below the water table in the saturated soil zone, it becomes positive. 203 

ParFlow provides estimates of pressure head and soil saturation, which, along with soil-specific 204 

storage and porosity, are used to calculate subsurface storage. Through ParFlow, we can estimate 205 

groundwater storage and lateral flow, both of which significantly impact the land surface energy 206 

and water flux estimates within the land surface model. By integrating ParFlow with LIS/Noah-207 

MP, we can accurately estimate the groundwater storage and account for subsurface lateral flow, 208 

facilitating the communication between the land surface and subsurface hydrologic processes. 209 

 210 
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 211 
 212 
Figure 1. Schematic of the coupled PF-LIS/Noah-MP model. Single soil column representing the 213 

coupling zone between the LIS/Noah-MP and ParFlow. 214 
 215 

 216 

5. Study Area 217 

This study is conducted over the UCRB, a snow-dominated region covering approximately 218 

280,000 km2. Stretching from the river’s origins in the Rocky Mountains of Colorado and 219 

Wyoming to its endpoint at Lee's Ferry in Northern Arizona, the basin exhibits a significant 220 

variation in elevation, ranging from 4,320 meters to 937 meters (Figure 2). Throughout the winter 221 

season, which encompasses the period from October through the end of April, the snow covered 222 

area within the UCRB fluctuates between 50,000 km2 and 280,000 km2. This seasonal change in 223 

snow covered area plays a pivotal role in both the energy dynamics and hydrological cycle of the 224 

region (Liu et al., 2015; Painter et al., 2012). The Colorado River is the primary water source for 225 

over 35 million people in the United States and an additional 3 million in Mexico. A recent 226 

publication by the US Geological Survey (Miller et al., 2016) indicates that up to half of the water 227 

coursing through the rivers and streams within the Upper Colorado River Basin originates from 228 
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groundwater sources. Recognizing the extent of available groundwater and understanding its 229 

replenishment process holds significant importance for the sustainable management of both 230 

groundwater and surface water resources within the Colorado River basin. For more information 231 

about UCRB, its climatology and geology etc., we refer interested readers to Miller et al (2016). 232 

 233 

 234 
Figure 2. Topography of the Upper Colorado River Basin (UCRB) and its location in the US. 235 
 236 

6. In-situ Observations and Satellite Products 237 

In this section we describe all those in-situ observations and satellite products that are used 238 

for validation of model simulations. As for in-situ observations, we use soil moisture datasets 239 

available from multiple observation networks over UCRB, USGS streamflow stations and 240 

groundwater monitoring wells. The locations of these in-situ stations are shown in Figure 3. To 241 

employ the maximum number of soil moisture stations covering the region, we used datasets 242 

provided by ISMN (International Soil Moisture Network) which collected and compiled multiple 243 
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networks including, ARM (Atmospheric Radiation Measurement), PBO_H2O (Plate Boundary 244 

Observatory), SCAN (Soil Climate Analysis Network), SNOTEL (SNOw TELemetry), USCRN 245 

(U.S. Climate Reference Network), and iRON (Roaring Fork Observation Network). In total, we 246 

have data from 238 soil moisture stations in the UCRB and its vicinity (see Figure 3). The 247 

distribution of these stations by soil depth is as follows: Layer #1 (0-0.1 meters): 235 stations, 248 

Layer #2 (0.1-0.4 meters): 218 stations, Layer #3 (0.4-1 meter): 216 stations, Layer #4 (1-2 249 

meters): 41 stations. Having data from multiple depths improves the comparison with simulated 250 

soil moisture and hence the evaluation of the coupled PF-LIS system. The soil moisture datasets 251 

are publicly available at https://ismn.earth/en/. Streamflow and water table depth data are available 252 

at https://waterdata.usgs.gov/nwis/rt and https://waterdata.usgs.gov/nwis/gw, respectively. We 253 

made use of data from the period 2002 to 2022. In total, there are 374 UGSG stream stations and 254 

18 USGS groundwater monitoring wells in the UCRB with observations from 2002 to 2022. 255 

Measurements failing to meet the USGS quality control criteria (e.g., those flagged for potential 256 

measurement inconsistency or negative outlier values) were removed. 257 

In addition, we used two satellite products to investigate the effectiveness of PF-LIS/Noah-258 

MP in estimating the soil moisture and terrestrial water storage. For soil moisture, we use THySM 259 

(Thermal Hydraulic disaggregation of Soil Moisture; Liu et al (2022)). This is a downscaled 260 

version of SMAP (Soil Moisture Active Passive) satellite soil moisture data, which has 1-km 261 

spatial resolution and is available on a daily time scale. THySM shows higher accuracy than the 262 

SMAP / Sentinel-1 (SPL2SMAP_S) 1 km SM product when compared to in situ measurements. 263 

Anomalies of Terrestrial Water Storage (TWS), derived from Gravity Recovery and Climate 264 

Experiment (GRACE; Tapley et al., 2004) and GRACE Follow On (GRACE-FO; Landerer et al., 265 

2020) satellite observations, were compared to those from the coupled PF-LIS system. Launched 266 

in 2002 and 2018, GRACE and GRACE-FO have provided monthly, global maps of fluctuations 267 

in terrestrial water storage (i.e., the sum of groundwater, soil moisture, surface waters, snow and 268 

ice), based on precise monitoring of variations in Earth’s gravity field via its effects on the orbits 269 

of a pair of twin satellites (http://www2.csr.utexas.edu/grace/RL05_mascons.html). The dataset 270 

employed in this study, known as CSR Release-06 GRACE Mascon Solutions, was disseminated 271 

by the Center for Space Research (CSR) at the University of Texas, Austin (Save et al., 2016). A 272 

monthly TWS anomaly represents the current value minus the 2004 to 2010 mean. While GRACE 273 

can detect TWS anomalies relative to the long term mean, it cannot quantify the absolute water 274 
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mass stored. Due to its relatively coarse spatial resolution (> 100,000 km2) it has primarily been 275 

used to study major river basins and other large regions (Rodell and Reager, 2023; Scanlon et al., 276 

2016). UCRB with approximately 280,000 km² area meets this criterion. 277 

 278 

 279 
Figure 3. Location of in-situ soil moisture, USGS streamflow, and WTD stations. 280 

 281 
 282 

7. PF-LIS/Noah-MP Model Setup 283 

7.1. Input Datasets 284 
 285 

In this study, we classified model parameters into two categories: surface and subsurface 286 

characteristics. The surface parameters, which encompass topographic slopes and land cover data, 287 

were determined as follows: Topographic slopes were calculated using the Priority Flow toolbox 288 

(Condon and Maxwell, 2019), employing elevation data from the hydrological data and maps 289 

derived from Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS) as detailed and 290 

tested in Zhang et al (2021). Land cover information was extracted from the National Land Cover 291 

Database (NLCD) at a 30-meter resolution and subsequently rescaled to match the model's 1-292 

kilometer resolution (see Figure S1 in the supplementary file). The land cover values are based on 293 
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the classifications of the International Geosphere-Biosphere Program (IGBP). Regarding the 294 

subsurface components of the ParFlow domain, they consist of four soil layers at the top (with 295 

depths of 0.1, 0.3, 0.6, and 1 m, starting from the surface and totaling 2 m) and six geology layers 296 

at the bottom (with depths of 5, 10, 25, 50, 100, and 200 m, starting from the surface and totaling 297 

390 m).  The development of the 3D subsurface, which includes soil, unconsolidated, a semi-298 

confining layer, bedrock aquifers, and the 3D model grid, is detailed in Tijerina-Kreuzer et al 299 

(2024).  The subsurface parameters (e.g. saturated hydraulic conductivity, porosity, and van 300 

Genuchten parameters for the soil and subsurface) are detailed in Tijerina-Kreuzer et al (2024) and 301 

Yang et al (2023). For the atmospheric forcing data, we use the phase-2 of the North American 302 

Land Data Assimilation System (NLDAS-2) product (https://ldas.gsfc.nasa.gov/nldas/v2/forcing). 303 

This dataset has eight variables: precipitation, air temperature, short-wave and long-wave 304 

radiation, wind speed in two directions (east-west and south-north), atmospheric pressure, and 305 

specific humidity. 306 

 307 

 308 

7.2. Model Spinup 309 
 310 

To be able to spinup the PF-LIS/Noah-MP model, we need to first spinup ParFlow and 311 

LIS/Noah-MP individually and make sure both systems have the most realistic initial conditions. 312 

The initial condition (i.e., pressure head) for the ParFlow model was directly obtained from Yang 313 

et al (2023). who spunup the ParFlow model over the entire CONUS. We subsetted the UCRB 314 

region from that initial pressure file. For more information about the ParFlow spinup process etc. 315 

we refer the interested readers to Yang et al (2023). To spin up the LIS/Noah-MP model over 316 

UCRB, we ran LIS/Noah-MP over 20 years (from 2002 to 2022) three times. To run the LIS/Noah-317 

MP model, we use the NASA Land surface Data Toolkit (Arsenault et al., 2018), to create the 318 

LIS/Noah-MP domain file that encompasses all the parameters that LIS/Noah-MP requires to run. 319 

Next, we use the initial conditions for both ParFlow and LIS/Noah-MP, to perform the PF-320 

LIS/Noah-MP model spinup. We ran the PF-LIS/Noah-MP over the period of water year 2005 (a 321 

normal water year, not dry and not wet) six times, which was sufficient to bring the PF-LIS/Noah-322 

MP system into quasi-equilibrium. 323 
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8. Results and Discussion 324 

In this section, we discuss the results of the PF-LIS/Noah-MP model simulations and aim to 325 

gain a comprehensive understanding of how the coupled system can enhance the modeling of land 326 

surface processes and provide an accurate representation of groundwater storage. Using the initial 327 

conditions derived from the model's spinup process, we ran the PF-LIS/Noah-MP model over a 328 

20-year period, spanning from 2002 to 2022. Concurrently, we ran the LIS/Noah-MP model for 329 

the same time frame, facilitating a comparative analysis of the two model outputs. All model setup 330 

and simulations were executed on the NASA Discover High-Performance Computing (HPC) 331 

cluster. On average, a one-year simulation utilized approximately 295,000 core hours, resulting in 332 

roughly one day of wall-clock time. The entire 20-year simulation consumed approximately 6 333 

million core hours of computing time, extending over approximately 1.5 months of wall-clock 334 

time.  335 

 336 

8.1. Soil Moisture Analysis 337 

Here, we study the extent to which the coupled system contributes to an improved 338 

representation of soil moisture in the top four soil layers (referred to as the coupling soil zone), 339 

where the two models interact. Figure 4 illustrates the topsoil moisture (with ~10 cm depth) as 340 

simulated by the LIS/Noah-MP model (left panel) and the PF-LIS/Noah-MP model (right panel). 341 

Note that the PF-LIS/Noah-MP simulations are limited to the UCRB region, which accounts for 342 

the similarity in model results beyond the boundaries of this region. The results indicate that the 343 

soil moisture output from the LIS/Noah-MP model generally aligns with the patterns of soil texture 344 

and land cover. However, the soil moisture data generated by the PF-LIS/Noah-MP model 345 

represents soil moisture distribution in a manner that closely correlates with topographical and 346 

land surface characteristics. In a broad sense, both models demonstrate wet conditions across the 347 

eastern UCRB and drier conditions towards the western regions. PF-LIS/Noah-MP provides soil 348 

moisture data with higher spatial representativeness, which can be crucial for many applications. 349 

For example, such finer spatial representations can be useful irrigation management applications, 350 

which allows farmers to make better decisions about when and how much to irrigate, leading to 351 

efficient water use and potentially higher crop yields. 352 
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 353 
Figure 4. Spatial pattern of topsoil layer moisture estimated by LIS/Noah-MP (left panel) and 354 

PF-LIS/Noah-MP (right panel). This result is reported for 01/23/2002. 355 
 356 

To further study the model simulation results, we conducted a comparative analysis 357 

between PF-LIS/Noah-MP and LIS/Noah-MP-estimated soil moisture values and the satellite-358 

based soil moisture product obtained from SMAP. As previously noted, our analysis employed 359 

downscaled soil moisture data with a spatial resolution of 1 kilometer, which is consistent with the 360 

resolution of the model simulation, thereby enhancing the accuracy of our comparative analysis. 361 

Figure 5 illustrates the outcomes, with the first row depicting the correlation coefficients and the 362 

second row showing the unbiased root mean square error (ubRMSE). The ubRMSE serves as a 363 

metric that SMAP utilizes for reporting product accuracy. The SMAP mission requirement for soil 364 

moisture product accuracy sets the ubRMSE at 0.040 m3/m3 (Chan et al., 2016). Due to the 365 

temporal coverage of the SMAP satellite, we calculated both performance metrics over the period 366 

of April 2015 to December 2022.  To perform this, we used the NASA Land surface Verification 367 

Toolkit (LVT; Kumar et al. 2012), which enables rapid evaluation of model simulations by 368 

comparing against a comprehensive suite of in-situ, remote sensing, and model and reanalysis data 369 

products (https://lis.gsfc.nasa.gov). As shown in Figure 5, in general, both performance measures 370 

from both models show a similar spatial pattern across the UCRB. Further analysis revealed that, 371 
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particularly in regions characterized by higher altitudes and complex topography, PF-LIS/Noah-372 

MP-derived soil moisture values closely follow the SMAP observations, outperforming the 373 

performance of LIS/Noah-MP-derived soil moisture.  374 

 375 
Figure 5. The correlation coefficient and ubRMSE between the simulated topsoil 376 

moisture and the SMAP product at 1-km spatial resolution. This result is reported for the period 377 
of April 2015 to December 2022. 378 

The results also reveal that, in general, when we coupled ParFlow with LIS/Noah-MP, it 379 

resulted in soil moisture fields with more spatial detail while keeping the accuracy in the same 380 

range as compared to the LIS/Noah-MP standalone soil moisture estimates. ParFlow and 381 
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LIS/Noah-MP use a form of Richards’ equation with some different assumptions. LIS/Noah-MP 382 

uses a different function for retention (not the van Genuchten function used within ParFlow) and 383 

it is 1D (one-dimensional).  The main difference between PF-LIS/Noah-MP and LIS/Noah-MP is 384 

the deeper subsurface in PF-LIS/Noah-MP and the fact that it accounts for lateral flow, resulting 385 

in a more physically realistic representation of water movement through the soil. This enables the 386 

PF-LIS/Noah-MP model to capture the complex influence of topography and specific land surface 387 

features on soil moisture. 388 

Figure 6 illustrates the comparison between soil moisture estimates from the LIS/Noah-389 

MP and PF-LIS/Noah-MP models against in-situ networks in the UCRB and its adjacent regions. 390 

In this section, we focus on presenting the comparison results for the topsoil (Figure 6) and root 391 

zone (Figure 7) soil moisture, while the analysis for other soil depths can be found in the 392 

supplementary file (Figures S2 and S3). The soil moisture comparison analysis was conducted 393 

separately for each soil depth to study the effectiveness and utility of the coupled PF-LIS/Noah-394 

MP model in estimating soil moisture within the coupling soil zone. The 20-year simulation results 395 

suggest that, across all four soil depths, the soil moisture values estimated by the PF-LIS/Noah-396 

MP model closely resemble those generated by the LIS/Noah-MP model. The regions’ topography 397 

(see Figure 2) and the results shown in Figure 5 collectively reveals that the coupled system 398 

improves the accuracy of soil moisture estimates across the high altitudes with complex 399 

topography in the UCRB. PF-LIS/Noah-MP utilizes the three-dimensional Richards’ equation, 400 

which is well-suited for accurately modeling soil moisture dynamics in regions with complex 401 

topography due to its inherent features and mathematical formulation. The numerical solution of 402 

the equation provides flexibility to handle complex boundary conditions in irregular terrains, while 403 

its ability to incorporate spatial variability in hydraulic conductivity is vital for representing 404 

changing soil properties across challenging landscapes. Moreover, it considers capillary rise and 405 

gravitational effects, which are critical factors in areas with elevation changes. These attributes 406 

collectively enable the PF-LIS/Noah-MP model to accurately simulate soil moisture dynamics in 407 

regions characterized by complex topography. The results confirm that integrating the ParFlow 408 

groundwater model with LIS/Noah-MP not only maintains the modeling performance of 409 

LIS/Noah-MP but also enhances its ability to represent the spatial variability of land surface 410 

processes, as previously demonstrated in Figures 4 and 5. 411 
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 412 
Figure 6. The Spearman’s correlation coefficient and RMSE between the simulated and observed 413 

soil moisture at the soil depth of 0-0.1 m. This result is reported based on 20-year model 414 
simulation and observation data, from January 2002 to December 2022. 415 

 416 
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 417 
Figure 7. The Spearman’s correlation coefficient and RMSE between the simulated and observed 418 

soil moisture at the soil depth of 1-2 m. This result is reported based on 20-year model 419 
simulation and observation data, from January 2002 to December 2022. 420 

 421 
8.2. Streamflow Analysis 422 

To calculate the streamflow at the location of the USGS stations, we used ParFlow 423 

hydrology module available on ParFlow GitHub page. For more information, we refer the 424 

interested readers to this page (https://github.com/parflow/parflow/tree/master/pftools). In 425 

particular, we used calculate_overland_flow_grid that requires different parameters to operate, 426 

these include pressure, slopex, slopey, mannings, grid size and the flow method (which is 427 

OverlandKinematic here). Figure S4 illustrates the total runoff over the study area for a certain 428 

day. We utilized two performance measures, namely Spearman’s correlation (Rho) and Total 429 

Absolute Relative Bias, to assess the performance of our model on timeseries data. As explained 430 
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in Maxwell and Condon (2016), Tran et al., (2022), O'Neill et al., (2021) and Tijerina-Kreuzer et 431 

al., (2021) plotting a graph (hereafter referred to as Condon Diagram) that visualizes these metrics 432 

against each other provides a concise representation of the model's capability to accurately 433 

simulate the timing and magnitude of streamflow. Spearman’s Rho was employed to evaluate 434 

disparities in timing between simulated and observed streamflow, while relative bias measured 435 

differences in their volumes. A high Spearman’s Rho value and a low relative bias value are 436 

indications of when simulations closely match observations. If Spearman's Rho is less than 0.5 and 437 

Total Absolute Relative Bias is less than 1, the model simulation produces accurate overall flow 438 

estimates but does not match the hydrograph peaks well. Conversely, if Spearman's Rho is greater 439 

than 0.5 and Total Absolute Relative Bias is less than 1, the model simulation is representing the 440 

hydrograph shape (i.e. timing) with low flow bias. However, if Spearman's Rho is less than 0.5 441 

and Total Absolute Relative Bias is greater than 1, the model simulation does not reproduce either 442 

the flow magnitude or timing. On the other hand, if Spearman's Rho is greater than 0.5 and Total 443 

Absolute Relative Bias is greater than 1, the model simulation represents the flow timing well but 444 

not the overall flow magnitude. We excluded observations from stations influenced by human 445 

activities (Falcone, 2011). While small drainage area basins may experience water withdrawals 446 

and irrigation ditches, their susceptibility to anthropogenic influences is significantly lower 447 

compared to larger drainage area basins, especially when considering monthly or annual scales 448 

(Hao et al., 2008; Zhang et al., 2012). Therefore, we set a drainage area threshold of 500 km², and 449 

stations with drainage areas exceeding this threshold underwent manual inspection. For example, 450 

we removed the station at Lee's Ferry (drainage area: 289,560 km²), located just downstream of 451 

the Glen Canyon Dam, from the analysis.  452 

The left panel in Figure 8 shows the Condon Diagram, which summarizes the performance 453 

of the PF-LIS/Noah-MP model in estimating streamflow across the USGS stations within the 454 

UCRB region. The results indicate that the coupled system has reasonable skill in simulating the 455 

streamflow. The right panel in this figure shows the spatial distribution of the USGS stations where 456 

the model performance was evaluated. Figure S5 shows the simulated streamflow versus observed 457 

streamflow over the period of 20 years at the monitoring location 9066510, which is associated 458 

with a stream in Eagle County, Colorado (Spearman's Rho = 0.83 and RMSE=3.65 CMS). Overall, 459 

the PF-LIS/Noah-MP model is able to adequately capture the magnitude and timing of streamflow 460 

observations. This can be attributed to the robustness of the developed hydrology model, which 461 
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excels in precisely simulating base flow and its impact on overall streamflow. This lies in the 462 

model's comprehensive integration of surface and subsurface hydrological processes. By 463 

seamlessly incorporating both surface water and groundwater dynamics, the model achieves a level 464 

of accuracy that allows it to effectively simulate streamflow time series, capturing the complex 465 

interaction between the surface and subsurface physical processes. The low bias in model 466 

simulations also indicates that the model is not systematically overestimating or underestimating 467 

streamflow. This further suggests that the model's structure appears to be well-tailored to capture 468 

the lateral and vertical water flow and its interaction with the land surface processes.  469 

 470 
Figure 8. Left panel: The Condon-diagram streamflow performance plot. Right panel: the 471 

performance category of each gauge within the UCRB domain. This result is reported based on 472 
20-year model simulation and observation data, from January 2002 to December 2022. 473 

 474 
 475 
8.3. Water Table Depth Analysis 476 

As mentioned earlier, the most important capability of the PF-LIS/Noah-MP model lies in 477 

its ability to estimate groundwater levels up to 392 meters below the land surface. In this study, 478 

we employed 10 soil layers with a cumulative depth of 392 meters. However, this depth can be 479 

adjusted by the user based on the availability of geological information for the study region. Our 480 

comparison of water table depth estimates from the PF-LIS/Noah-MP model with those observed 481 

in USGS wells (refer to Table 1) reveals a general agreement between model simulations and 482 

observations. However, in some locations the model performance is marginal due to the complex 483 
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topography of the UCRB. The higher bias observed can likely be attributed to the spatial resolution 484 

of the PF-LIS/Noah-MP model. Deeper wells are typically located in mountainous regions 485 

characterized by complex topography. It is important to note that all wells were assigned to the 486 

nearest grid cell center without any additional adjustments. For example, the USGS station 487 

382427107491401 is associated with a well in Montrose County, Colorado. This well, with a depth 488 

of ~5 meters, is situated in close proximity to agricultural lands and central pivot systems 489 

characterized by a predominantly flat topography. The dataset has been accessible since 2014, and 490 

the reported values for Rho and bias stand at 0.65 and 0.34, respectively. However, at the USGS 491 

station 395136108210000, linked to a well in Rio Blanco County, Colorado, with a depth of ~195 492 

meters, located in a region characterized by more complex terrain and topography, the model's 493 

performance is marginal. Water data has been accessible since 1975. Generally, the model's 494 

performance is contingent upon the geographical locations of the stations. Stations located in 495 

topographically complex surroundings tend to yield lower model performance compared to those 496 

in areas with smoother and flatter environments. Some of the low skill values (reported in Table 497 

1) could be a result of groundwater pumping impacts which are not represented within the 498 

modeling framework. 499 

Table 1: Spearman correlation (Rho) and Total Absolute Relative Bias (TARB) 500 
calculated between the water table depth estimated by PF-LIS/Noah-MP and observed by 501 
USGS wells. 502 

Rho TARB Latitude Longitude USGS Station ID 
0.196 0.98 36.490834 -109.94817 362936109564101 
-0.79 0.98 36.647222 -110.17068 363850110100801 
-0.29 0.81 36.715389 -108.09297 364255108053202 
0.62 0.97 36.727221 -110.26319 364338110154601 
0.65 0.34 38.4075 -107.82056 382427107491401 
0.59 0.08 38.448931 -107.83547 382656107500701 
0.63 0.20 38.488056 -107.80861 382917107483101 
0.54 0.20 38.496389 -107.78278 382947107465801 
0.06 0.48 38.514167 -107.88194 383051107525501 
-0.32 0.77 38.554167 -107.88111 383315107525201 
-0.28 0.41 38.607222 -107.97083 383626107581501 
0.75 0.19 38.685556 -107.985 384110107591801 
-0.07 0.47 38.711111 -108.00194 384240108000701 
-0.78 0.92 39.86 -108.35111 395136108210000 
-0.25 0.94 39.86 -108.35028 395136108210001 
-0.63 0.91 39.860133 -108.35096 395136108210004 
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0.98 0.98 39.964444 -108.35417 395755108211400 
0.98 0.98 39.964722 -108.35361 395755108211401 

 503 

Figure 9, for example, illustrates the water table depth simulated by the PF-LIS/Noah-MP 504 

model for a certain day over the UCRB. In general, our observations of water table depth maps 505 

over UCRB show more deep water table depth in eastern areas with complex topography, such as 506 

hilly or mountainous areas. These areas are often prone to localized variations in the water table. 507 

However, regions with smoother topography, like plains, tend to have a more uniform water table 508 

pattern, with gradual changes over larger distances. Human activities, such as drainage systems 509 

and urbanization, can introduce variability in both types of environments. Overall, water table 510 

dynamics are shaped by the interplay of topography, geology, and human influence, with complex 511 

topography often contributing to more localized variations compared to smoother environments. 512 

 513 

 514 
Figure 9. Water table depth simulated by PF-LIS/Noah-MP model across the UCRB.  515 

 516 
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 517 
8.4. Terrestrial Water Storage Analysis  518 

A comparison between changes in water storage from GRACE and GRACE-FO and the 519 

PF-LIS/Noah-MP simulation for the period 2002 to 2022 is shown in Figure 10. The GRACE-520 

derived water storage anomalies were calculated by subtracting the mean water storage from 2004 521 

to 2010. The same procedure was applied to the PF-LIS/Noah-MP outputs to maintain consistency 522 

in the comparison. The two products demonstrated strong agreement throughout the period from 523 

2002 to 2012, effectively capturing the drought years of 2003 and 2004, as well as the wet years 524 

of 2005, 2008, and 2011. However, starting from 2013, there is a noticeable decline in the 525 

agreement between the two time series, and this disparity becomes more pronounced during the 526 

years 2020, 2021, and 2022. The observed disparity is likely attributed to the recent increased 527 

anthropogenic effects on groundwater in the UCRB. The increased demand for water, driven by 528 

population growth and agricultural expansion, has contributed to a decline in groundwater levels 529 

(Carroll et al., 2024; Castle et al., 2014b; Miller et al., 2021; Tillman et al., 2022; Tran et al., 2022). 530 

While this trend is accurately captured by the GRACE satellites, PF-LIS/Noah-MP underestimated 531 

it. The integration of data assimilation into the coupled system can help to reconcile differences 532 

between simulated and observed TWS. LIS already incorporates a data assimilation feature. In our 533 

future work, we will study the extent to which the data assimilation capability embedded within 534 

LIS improves the representation of the coupled system's response to TWS dynamics. 535 

 536 
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 537 
Figure 10. Time series of the total water storage anomaly from the PF-LIS/Noah-MP model 538 

simulations and the GRACE and GRACE-FO observations. 539 
 540 

9. Conclusions 541 

In this study, we introduced a coupled surface-subsurface hydrology model, PF-LIS/Noah-542 

MP and studied its performance in estimating different hydrologic variables. This study was 543 

conducted in the UCRB, a region heavily dependent on groundwater to supply water for millions 544 

of people in the western United States. With an anticipated increase in drought occurrences due to 545 

climate warming, the region faces a heightened risk of groundwater depletion in the future. 546 

Understanding the dynamics of land surface and subsurface water in the UCRB is crucial for 547 

effective water resource management and policymaking. In this study, we employed the recently 548 

developed integrated surface-subsurface hydrology model, PF-LIS/Noah-MP, to assess key 549 

components such as soil moisture, streamflow, water table depth, and total water storage anomaly 550 

across the UCRB. These estimations were then compared with a comprehensive set of in-situ and 551 

satellite observations, encompassing soil moisture data from various networks, USGS streamflow 552 

and well observations, as well as satellite data from SMAP for soil moisture and GRACE for 553 

groundwater. The findings demonstrate that the integration of ParFlow with LIS/Noah-MP 554 

expands the physics represented by the LIS/Noah-MP model.  These increased process 555 
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representations have two main advantages: better performance of land surface fluxes, especially 556 

in regions with complex topography, and accurate estimations of subsurface hydrologic processes, 557 

including water table depth. PF-LIS/Noah-MP presents a viable approach to studying land surface 558 

and subsurface hydrologic processes and their interactions across different scales. This research 559 

contributes valuable insights for informed decision-making in the management of water resources 560 

in the UCRB, particularly in the face of future climate challenges. The more detailed representation 561 

of subsurface processes within the PF-LIS/Noah-MP system also allows for improved utilization 562 

of remote sensing information through data assimilation. For example, to-date, the assimilation of 563 

GRACE terrestrial water storage observations has only been demonstrated within models that have 564 

a shallow groundwater representation and without the representation of lateral subsurface moisture 565 

transport processes (e.g., Kumar et al., 2016). The ongoing development will extend LIS’ data 566 

assimilation capabilities to PF-LIS, to enable better exploitation of the information from remote 567 

sensing.  568 
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