
Response to reviewers 
 
Dear editor, dear reviewers, 
 
Thank you for your work on handling and reviewing our paper. Please find our responses to 
the reviewers’ comments below in blue. 
 
On behalf of all co-authors, 
 
Kind regards, 
 
Wouter Knoben 
 
 
Reviewer 1 
 
This is my first review of the manuscript, "How many models do we need to simulate 
hydrologic processes across large geographical domains?" I appreciate the authors’ work, 
which is both relevant and holds significant technical implications for the hydrological 
community. Sampling uncertainty is a critical issue, well-known to some but often 
overlooked by many. This study eIectively highlights its importance within the context of 
large-sample hydrology, which, thanks to the widespread availability of the CAMELS 
dataset, is rapidly gaining traction. 
 
Thank you for your comments. It has been particularly helpful to us that you outlined 
clearly which part of the methods did not work well on your first readthrough, and which 
elements were helpful to you to understand what we are doing in this paper. We have tried 
to clarify the methods to make things easier for future readers. 
 
The introduction is technically strong, well-written, and cites relevant literature. However, I 
suggest that the authors define “model” within the paper as a specific model configuration 
rather than a “modeling framework.” Clarifying this distinction early on would prevent 
confusion, ensuring readers understand that the paper focuses on specific model 
structures rather than broader frameworks. 
 
We have added sentences to clearly identify the use of the word “model” in the paper. See 
below where we discuss your individual comments. 
 
The methods section, however, falls below the expected standard for this type of paper. I 
found it challenging to follow the results due to the methods being insuIiciently described. 
Some concepts became clear only later, in the limitations paragraphs of the discussion 
section. To enhance clarity, I recommend adding a schematic of the procedure and clearly 
defining key terms like “model equivalent” and “best model,” which only become fully 
understood in the results section. The methods currently feel hastily written; a clearer 



presentation would significantly enhance the paper’s accessibility and relevance (I have 
included specific comments in the annotated PDF). Additionally, the problem statement is 
vague in places (notably in the initial statement), and it would be beneficial to restate the 
specific answers to these questions in the conclusion, eIectively closing the problem 
statement. 
 
The suggestions in this comment can be summarized as follows: 

- Improve the methods section, possibly by lifting elements from the first Discussion 
section into the methods, and/or adding a schematic of the procedure used. Also 
provide definitions of critical terms. 

- Improve the problem statement. 
- Return to the problem statement in the Conclusions. 

 
Briefly, we: 

- Substantially expanded to the Methods section, adding an explanation of the 
gumboot procedures, the model selection procedure, and an extra figure describing 
the most complex steps in the methodology. To the Introduction, we added 
definitions for the main terms used throughout the manuscript. 

- We rewrote the problem statement (research questions) to use the new definitions. 
These, in turn, are provided immediately before the research questions are 
presented to the reader. 

- We updated the text in the Conclusions to specifically return to the posed 
questions. Because this comment does not appear again below, we provide the 
changed text here. Changes in bold: 

 
Accounting for this sampling uncertainty reveals that it is often very diIicult to 
distinguish among competing models. If we were to select models based on 
their validation KGE scores only, almost all of the investigated 36 models would 
be selected 360 for at least a handful of basins. When we account for the 
sampling uncertainty in the KGE scores, we find that every model is close to 
the performance of the best model (i.e., performance-equivalent) in at least 
50 and up to 350+ basin (Research Question 1; Fig. 4a). Conversely, we find 
that in almost all basins at least 2 and up to all 36 models have similar 
performance (Research Question 2; Fig. 4b). Finally, when we account for 
the sampling uncertainty in the KGE scores, the number of models required to 
get performance-equivalent simulations on all basins drops drastically 
compared to selecting models based 365 on the best KGE in each basin. Only 
four models are needed to get simulations with acceptable accuracy in 95% of 
basins. 100% coverage is obtained with ten models, without accounting for 
further complicating factors such as data and parameter uncertainty (Research 
Question 3; Fig. 5). These findings hold for a diIerent objective function aimed 
at low flow simulation: the KGE of the reciprocal of flows. Compared to almost 
all models being selected based on validation KGE(1/Q) scores, only eight 



models are needed to cover 95% of basins and 19 models for 100% coverage 
(Fig. 6). 

 
The results are sound, and the discussion is well-articulated and engaging. 
 
Thank you, it’s good to hear that our points come across well. 
 
Based on these points, I recommend major revisions prior to publication. 
 
 
Reviewer 1 – pdf comments 
 
Line 23-27: Given the ability of many current models to work in multiparameterization 
mode (e.g., Noha-MP, NewAge GeoFrame, Summa) the authors shall mention probably the 
definition of model here, that I believe refers to a specific version of this large modelling 
framework. 
 
We have added the requested clarification (changes in bold): 
 

The need for robust predictions of water availability and threats across large spatial 
scales (i.e., national, continental, global) requires models that work well across a 
variety of landscapes, discretizations, and purposes. There are two main streams of 
thought on how this can be achieved. The first is the idea that a single model 
instantiation (i.e., a single set of equations) will be able to give accurate 
predictions everywhere, and that the main challenges in large-domain modeling are 
related to our ability to parametrize, initialize, configure and run models at ever finer 
resolutions (e.g., Freeze and Harlan, 1969; Wood et al., 2011; Bierkens et al., 2015; 
Arheimer et al., 2020). The second is the idea that there are limits to our ability to 
measure and model the real world, suggesting that the main challenges in large-
domain modeling are related to our ability to select and parametrize appropriate 
models for diIerent places under varying data availability (e.g., Kirchner, 2006; 
Clark et al., 2011, 2016, 2017; Addor and Melsen, 2019; Horton et al., 2022). This is 
sometimes referred to as the “uniqueness of place” (Beven, 2000), and in modeling 
terms suggests that one will need diOerent models (i.e., diOerent sets of 
equations) in diOerent places depending on each location’s dominant 
hydrologic processes.  

 
Line 62-64: This is much less true today. With Earth Observation data chances are that this 
limitation is attenuated (but not disappeared of course). 
 
We have clarified this statement. While we do have access to vast amounts of geospatial 
data, what we lack is a coherent way to derive a region’s dominant hydrologic processes 
from this data, and understanding of the dominant processes is the key piece that’s 
missing for model selection. Changes in bold: 



 
First, it is possible to use detailed understanding of a specific place to refine 
perceptual models of that location’s hydro- logic behaviour (e.g., Mcglynn et al., 
2002) and from such understanding derive models that strike an appropriate 
balance between realism and accuracy of the resulting simulations (e.g., Kirchner, 
2006; Fenicia et al., 2008, 2016). However, despite encouraging progress on 
synthesis eIorts of perceptual models used by hydrologists (McMillan et al., 2023), 
we currently lack a detailed understanding of how the spatial variability in the 
drivers of hydrologic behaviour (i.e., climate, topography, land cover and subsurface 
properties) translates to the spatial variability of dominant hydrologic processes 
across large domains. This prevents the use of these model development 
approaches for geographical domains much larger than individual research basins.  

 
Line 113-114: Can you be more precise here. It is a bit diIicult to grasp 
 
We have tried to clarify this statement by adding a diIerent explanation in addition to what 
was already there. The first explanation seems clear to us (but clearly was not to the 
reviewer), so it seems best to keep both. Changes in bold: 
 

For example, Clark et al. (2008) show that for a specific basin, only 10 out of 
approximately 4000 time steps contribute some 70% of the total model error (or, in 
other words, that 70% of the total model error is concentrated in 0.25% of the 
time steps).  

 
Line 132-133: a bit cryptic. I do not understand it. Can you improve it? 
 
Based on this and your other comments, we have added three key definitions to the start of 
Section 1.3 Problem Statement, before the research questions are introduced. This has 
necessitated some forward-referencing to the methodology section where the calculation 
of the uncertainty intervals is described, but it seems more helpful to have these 
definitions here and leave the details till later. New text: 
 
 In the remainder of this section and the paper, we rely on the following definitions:  

- Unless otherwise specified, "best model" for a given basin refers to the model 
with the highest performance score during model validation. Here, that 
performance score is the KGE.  

- "Uncertainty bounds", "(sampling) uncertainty interval" and related terms refer 
to the 5th to 95th objective function sampling uncertainty interval calculated for 
the best model (details on how this is done can be found in Section 2).  

- "Performance-equivalent" and related phrases refer to any model with a 
validation KGE score that is within the uncertainty bounds of the best model in a 
given basin. In other words, performance-equivalence is meant to indicate that 
when objective function sampling uncertainty is considered, two models are 



eIectively indistinguishable in terms of their performance scores because one 
score falls within the uncertainty interval of the other.  

 
Given the newness of the work we are doing, we have also added alternative phrasing to the 
research questions, so that the reader is given two possible ways to understand the point 
of each question. Changes in bold: 
 

These definitions of sampling uncertainty may not be intuitive. In an eOort to 
enhance clarity, we therefore phrased each research question twice using 
diOerent combinations of the definitions listed above:  
- For a given model, in how many basins does that model’s performance score fall 

within the uncertainty bounds of the best model in that basin? Phrased 
diOerently, in how many basins is each model performance-equivalent with 
the best model in that basin?  

- For a given basin, how many models show performance scores within the 
uncertainty bounds of the best model in that basin? Phrased diOerently, how 
many models are performance-equivalent in each basin?  

- What is the minimum number of models needed to obtain simulations with 
performance that is within the sampling uncertainty interval of the best 
model in each basin? Phrased diOerently, what is the minimum number of 
models needed to obtain performance-equivalent simulations across the 
full domain?  

 
Line 151: provide some at least. 
 
We added some. The interested reader can find the full list by looking at the references we 
list in the end of this paragraph, but it seems a bit much to expand the paper by the 50 or so 
citations needed to cover all models. Changes in bold: 
 

The 36 models mimic existing published models such as IHACRES (Littlewood et 
al., 1997), TOPMODEL (Beven and Kirkby, 1979) and HBV-96 (Lindström et al., 
1997), and thus cover a wide range of configurations, varying from a simple 1 store 
(i.e., state variable), 1 parameter bucket model to relatively complex configurations 
with up to 6 stores and 15 parameters.  

 
Line 157: It would be helpful to include a scheme for the procedure. This is not always 
straightforward. 
 
We added a figure that provides more detail about steps 2 and 3 in the methodology. Steps 
1 (convert streamflow into mm/day) and 4 (repeat steps 2-3 with a diIerent objective 
function) don’t seem as complex as steps 2 and 3, and were therefore not included in an 
eIort to keep the paper uncluttered. New figure: 



 

 
 
Line 164: So this is considered the best model right? 
 
Yes. We changed the text a bit to more clearly use these definitions. Changes in bold: 
 

For simplicity, we only calculate the KGE uncertainty bounds for the best model 
(i.e., the model with the highest validation KGE score) in each basin, … 

 
Line 168-170: Did you set a threshold on how many models to retain for a basin to be 
considered meaningful for the analysis. That is if you have only 5 models with score above 
the 5th of the best model in that basin, did you consider that basin for the analysis? 
 
We did not set such a threshold because how many models are within the uncertainty 
bounds of the best model is part of the questions we wish to address in this paper. If only 1 
(out of 36) model is within the uncertainty bounds that is a meaningful finding, because it 
suggests that in this basin there is a clear best model. We don’t perform any statistical 
analysis that would rely on a certain minimal sample size that could be aIected by the 
number of performance-equivalent models for a given basin. Hopefully the addition of 
definitions and clarifications to the research questions and methodology have been 
enough to clarify this. 
 
Line 172-173: Can you be more precise here? 
 



We substantially expanded on the initial description and added a reference to the GitHub 
repository that contains the exact code we used for this paper. Changes in bold: 
  

The sampling uncertainty obtained from gumboot provides enough information to 
answer the first two research questions. To answer the third research question, we 
need to identify the minimum number of models needed to get performance- 
equivalent simulations in each basin. One way to find this minimum 
combination of models is to iteratively trial every possible combination of 
models, and identify the first combination of models for which we obtain 
performance- equivalent simulations in all basins. Such a brute-force approach 
is guaranteed to be accurate but slow, and proved infeasible for this work. A 
faster way is to rewrite the problem as a linear programming problem, where 
the goal is to find the minimum number of subsets needed to provide coverage 
for the full set. In our case, we have 36 subsets (one for each model) where each 
subset contains the basin identifiers where a given model is performance-
equivalent with the best model. The full set contains the identifiers for all 559 
basins, and the optimizer is tasked with finding the smallest number of subsets 
(i.e., models) needed to cover the full set (i.e., all basins). We refer the reader to 
our GitHub repository for further implementation details (Knoben, 2024). 

 
Line 173-175: I have some confusion here as you previously excluded models below 5th 
percentile but now you calculate the minimum number of models are within the best 
model uncertainty bounds so I would say that this step is linked with the previous one 
 
Agreed. The changes listed in response to your previous comment, as well as the 
definitions we now provided earlier in the paper and the new methodology figure, should 
(hopefully) clarify this issue. 
 
Line 194: Improve the legend. Grey lines are not in it. 
 
The grey lines are merely guidelines that extend the 5th to 95th interval across the full width 
of the figure. We updated the caption the clarify this. Changes in bold: 
 

Figure 2. Example basins to illustrate the methodology. (a) Observations and 
simulations for the gauge with the lowest KGE sampling uncertainty within the 555 
tested basins. (b) Model scores during validation, as well as sampling uncertainty 
ranges for the best model in basin 12035000. Grey lines show how the uncertainty 
range compares to each individual model’s KGE score. (c) Observations and 
simulations for the gauge with the highest KGE sampling uncertainty within the 555 
tested basins. (d) Model scores during validation, as well as sampling uncertainty 
ranges for the best model in basin 08082700. Grey lines show how the uncertainty 
range compares to each individual model’s KGE score. 

 



Line 204: Maybe you could unify panel a and c in a single figure representing the 
uncertainty as size of the marker. This would improve the visualization of the results. 
 
We think the 2x2 layout works well and worry that merging two of the figures into one would 
lead to information overload for the reader. Because the exact mapping of maximum KGE 
and associated uncertainty into geographical space (i.e., on a map) is not the focus of this 
study we prefer to keep the figure as is. The more general pattern that there is a (rough) 
inverse relation between maximum model performance and associated uncertainty can 
already be seen in Figure 2d. 
 
Line 205-206: It would have been better to define this in the method section as this 
concept returns many times below. 
 
Agreed. See responses to your earlier comments. We changed the text here to remove the 
definition and ensure better flow. Changes in bold: 
 

Figure 4a shows the number of basins in which each model achieves a performance 
score that falls with the uncertainty bounds of the best model for each respective 
basin or, in other words, the number of basins for which a model is 
performance-equivalent with the best model in a given basin. 

 
Line 209-213: Can the bootstrapping have an impact here when it samples from snowy and 
non-snowy periods? 
 
No, because the bootstrapping samples blocks of full water years. The changes we made 
to the Methods section in response to reviewer 2’s comments clarify this. 
 
Line 218-222: You could exclude snowy dominated basin in a separated experiment 
 
We expect this comment was mostly informed by the lack of clarity about how the 
bootstrapping works. If the bootstrapping were to sample blocks of less than a year, than it 
might be biased either towards snow or rain-dominated conditions and thus give a skewed 
impact of each model’s relative suitability for a basin. However, the bootstrapping samples 
water years (see reply to reviewer 2) and there is thus no chance of a model without a snow 
module being judged acceptable in a snow-dominated basin: the bootstrap samples of a 
snow-dominated basin will always include snow accumulation and melt processes. Given 
this, we think separating basins into snow- and rain-dominated ones will likely make the 
paper more complicated (and add an arbitrary choice of where to draw the line between 
snow- and rain-dominated), without adding any clarity. The results wouldn’t change. 
Hopefully our new explanation of the bootstrapping procedure (see reply to reviewer 2) 
suIiciently addresses this concern.  
 
Line 291: Thanks to this explanation I have clearer now some steps of the paper. 
 



We designed out methodology figure partly with the text in this paragraph in mind. 
Hopefully this increases clarity for future readers. 
 
Line 309-312: As mentioned, you could do a separated exercise considering only rainy 
dominated basins. 
 
See above. 
 
Reviewer 2 
 
This study is a synthesis of (1) observed and simulated data from a study using the 
CAMELS dataset and a subset of models from the Modular Rainfall RunoI Modelling 
Toolbox (MARRMoT) [1], and (2) the gumboot-methodology for postprocessing the 
residuals errors models using a mixture of Bootstrap and Jacknife methods [2] of the 
calibration and validation periods based on NSE and KGE performance metrics. The 
postprocessing reveals a high variability of the sampling uncertainty among the models. 
This can be used as an additional criterion to assess the model quality, and it supports 
the selection process when large domains are modeled with a lower spatial resolution. 
The results of this study are particularly significant, as the single use of integrated 
metrics such as NSE and KGE often leads to significant equifinality among potential 
models, which makes model selection diIicult. The statistical method used to analyze 
diIerences in performance and sampling uncertainty may improve model selection and, 
thus, good modeling practice in the future. This study shows evidence of the applicability 
of the concept for large domains modeled with a lower spatial resolution. 
 
The paper is within the scope and very interesting for the readers of HESS. The authors 
address a topic of high relevance, which significantly contributes to improving good 
modeling practice. 
 
The authors have done a commendable job presenting the scientific results concisely 
and well-structured. I have only minor issues which should be addressed before 
publication: 
 
Thank you for your comments. It is good to know you see merit in this work. Please see our 
responses to your individual comments below. 
 
INTRODUCTION: 
- I see “Bayesian model averaging and selection” as a paradigm of equal 
importance as the “single model approach” and the “multi-model mosaic 
approach”. The latter diIers from the more rigorous “multi-model Bayesian 
paradigm” because it seems based more on professional expertise than statistics. 
So, the Bayesian paradigm should already be discussed in Section 1.1. 
 



We see the diIerence between “one model for all places” and “diIerent models for 
diIerent places” as the main theme of Section 1.1. Bayesian model averaging and 
selection seems more related to the question of whether to use one or multiple models for 
a single place (basin). We therefore think the mention of Bayesian methods is better placed 
in Section 1.2 where we outline diIerent approaches to model selection. 
 
- The introduction mainly focuses on the challenges when only streamflow 
observations are considered output variables. This limitation should be 
highlighted here or in the LIMITATIONS-Section. 
 
We added this to the final paragraph of the introduction to emphasize this for the reader. 
Changes in bold: 
 

Despite increasing attention for model structure uncertainty, and improved 
understanding of which models work well in diIerent locations, selecting 
appropriate model structures across large geographical domains is an open 
challenge and actual implementations of a "multi-model mosaic" paradigm for 
hydrologic prediction are still rare. Our aim with this paper is to highlight a core 
challenge such implementations will need to overcome in order to fulfil their goal of 
providing locally relevant, realistic, and optimally performant simulations. We focus 
our analysis on streamflow simulations only, but the concepts discussed in this 
work could be applied more broadly to hydrologic model evaluation. 

 
LINE 165: 
- Reformat “gumboot” 
 
Done. 
 
LINE 161: 
- Please give the full configuration of the application of the gumboot-methodology, 
such as time period, block size, number of blocks, number of samples … Is the 
time period diIerent from the one used in [2]? 
 
We use the defaults as provided by [2], and have clarified this in the text. We also used this 
opportunity to clarify reviewer 1’s questions about the sampling strategy w.r.t. snow 
processes. Changes in bold:  

Using the observations and model simulations, we can calculate the KGE scores 
and quantify their associated uncertainty with the gumboot package (Clark and 
Shook, 2021; Clark et al., 2021). Briefly, gumboot returns various statistics, such as 
the 5th, 50th and 95th percentile estimates of the KGE score through a “non-
overlapping block” bootstrapping method that creates a sample of water years 
based on the data period provided. Each bootstrapped realization is based on 
random sampling with replacement of water years in the data period. Using 
water years as the non-overlapping blocks in the bootstrap ensures that each 



bootstrapped realization consists of hydrologically independent sub-periods. 
We use gumboot’s default settings determined by Clark et al. (2021). This 
creates 1000 bootstrapped realizations, with October as the first month of the 
water year; a water year must contain at least 100 valid (larger than 0) flow 
values. For simplicity, we only calculate the KGE uncertainty bounds for the best 
model (i.e., the model with the highest validation KGE score) in each basin, and use 
these bounds to inform our analysis. We can use gumboot in 555 out of 559 basins. 
The remaining four basins contain years with no observed flow, and this interferes 
with the computation of standard deviations and correlations during gumboot’s 
bootstrapping procedure. These four basins are excluded from further analysis. For 
the remainder of basins, we exclude all models with eIiciency scores below the 5th 
percentile estimate of the KGE score of the best model in a given basin from further 
analysis, and thus only keep those models with eIiciency scores that fall within the 
uncertainty bounds of the best model in each basin. 

 
LINE 171: 
- Please give a formal definition of the linear program solved here. 
 
We substantially expanded on the initial description and added a reference to the GitHub 
repository that contains the exact code we used for this paper. Changes in bold: 
  

The sampling uncertainty obtained from gumboot provides enough information to 
answer the first two research questions. To answer the third research question, we 
need to identify the minimum number of models needed to get performance- 
equivalent simulations in each basin. One way to find this minimum 
combination of models is to iteratively trial every possible combination of 
models, and identify the first combination of models for which we obtain 
performance- equivalent simulations in all basins. Such a brute-force approach 
is guaranteed to be accurate, but slow. A faster way is to rewrite the problem as 
a linear programming exercise, where the goal is to find the minimum number of 
subsets needed to provide coverage for the full set. In our case, we have 36 
subsets (one for each model) where each subset contains the basin identifiers 
where a given model is performance-equivalent with the best model. The full 
set contains the identifiers for all 559 basins, and the optimizer is tasked with 
finding the smallest number of subsets (i.e., models) needed to cover the full 
set (i.e., all basins). We refer the reader to our GitHub repository for further 
implementation details (Knoben, 2024). 

 
LINE 181: 
- I suggest moving the following lines to RESULTS-Section. 
 
This part of the text and the accompanying figure is meant to help the reader understand 
the methods, and not a main result in its own right. We have updated the text to make this 
clear. Changes in bold: 



 
To aid in understanding the methods used here, Figure 2 illustrates the sampling 
uncertainty and model filtering described in step 2 for the basin with the lowest (Fig. 
2a,b) and highest (Fig. 2c,d) sampling uncertainty respectively. Figure 2a shows the 
observations and simulations in a basin with a strongly seasonal and relatively 
regular flow regime. 

 
FIGURE 2d: 
- Could you highlight the best “performance-equivalent” models in red? 
 
The models in this figure are only the best model in each basin. There are only 559 dots in 
total (one for each basin), not 36*559. We updated the caption to clarify this, using the 
definitions we added in response to reviewer 1’s comments. Changes in bold: 
 

Figure 3. Model results for 555 CAMELS basins. (a) maximum KGE score obtained 
per basin for the evaluation period. (b) Model that obtains the maximum evaluation 
KGE score shown in (a). (c) Sampling uncertainty in KGE scores obtained from 
gumboot, with the color axis capped at either end for clarity. (d) Scatter plot showing 
the relation between the KGE of the best model in each basin and its associated 
uncertainty interval. Borders here, and in later Figures, from Commission for 
Environmental Cooperation (CEC) (2022). 

 
I suggest that the authors consider the above points before final publication. This will 
ultimately benefit the manuscript and the overall study. 
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