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Abstract. East Africa frequently faces extreme weather events like droughts and floods, underscoring the need for improved 15 

hydrological simulations to enhance prediction and mitigate losses. One of the main challenges in achieving this is low-quality of 16 

precipitation data and limitations in modelling skills. Due to drought sensitivity, flood proneness and data availability, the upper 17 

and middle stream of the Tana River basin was used as a case to address some of the challenge. We performed convection-18 

permitting (CP) simulations using the Weather Research and Forecasting (WRF) model, and utilizing the CPWRF output as a 19 

driver we conducted WRF Hydrological modelling (WRF-Hydro) integrated with the lake/reservoir module. The CPWRF 20 

precipitation outperforms the ERA5 using IMERG as the benchmark, particularly for the precipitation amount over mountainous 21 

regions and light precipitation events (1-15 mm day-1) in the dry seasons. The improved precipitation especially alleviates the peak 22 

false, when comparing the well-calibrated lake-integrated model driven by CRWRF output (LakeCal) to that by ERA5, with an 23 

NSE increase of 0.53. Additionally, the lake/reservoir module effectively mitigates the model-data bias, especially for dry-season 24 

flow and peak flow, when comparing the lake-integrated model (LakeCal) to the model without the lake (LakeNan), with an NSE 25 

increase of 1.67. The lake module makes river discharge more sensitive to spin-up time and affects discharge through lake-related 26 

parameters. Adjustments to the lake-integrated model’s runoff infiltration rate, Manning’s roughness coefficient, and the 27 

groundwater component have minimal impact on the dry-season flows. Dividing by the total NSE increase, hydrological modelling 28 

improvement is 24 % and 76 % from CPWRF simulation and lake module, respectively. Our findings highlight the enhanced 29 

hydrological modelling capability with the lake/reservoir module and CPWRF simulations, offering a valuable tool for flood and 30 

drought predictability in data-scarce regions such as East Africa. 31 

1. Introduction 32 

The credibility of hydrological simulations in data-scarce regions is challenged by low-quality of precipitation data (regarding 33 

incomplete and unreliability, and poor in-suit coverage), and limitations of hydrological modelling given the underlay’s 34 

complexities. To make well-informed decisions with respect to flood/drought adaptation and loss mitigation, elected officials, 35 
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planners, and the public require relatively reliable information on flood and drought forecasts, which rely on skilled hydrological 36 

simulations. This issue could be particularly acute in drought/flood-prone and vulnerable areas such as East Africa. The economy 37 

and population in East Africa mainly depend on rain-fed agriculture and pastoralism, which suffers from frequent droughts and 38 

floods (Taye and Dyer, 2024). For example, the drought of 2022 triggered an exceptional food security crisis in Ethiopia, Somalia, 39 

and Kenya, pushing more than 20 million people into extreme hunger (NASA, 2022). Similarly, the flood in 2023 here killed more 40 

than 100 people and displaced over 700,000 (NASA, 2024). The highlighted risk in East Africa urges effective hydrological 41 

simulation for better hydrological extreme forecasts, thus supporting effective water resource planning and management, and 42 

aiding informed decision-making and loss mitigation for officials, planners, and the public. 43 

 44 

Obtaining even the present-day precipitation, especially in mountainous regions, is challenging due to poor in-situ coverage, and 45 

incomplete or unreliable records. Such data scarcity even complicates the evaluation of model output (Li et al., 2017). This issue 46 

is only further exacerbated as one decreases grid-spacing to km scales. Gridded precipitation productions tried to be an alternative, 47 

involving merged data [such as Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015)], 48 

reanalysis data [i.e. ERA-Interim (Dee et al., 2011)], and satellite-based data [i.e. Tropical Rainfall Measuring Mission (Adjei et 49 

al., 2015) and Integrated Multi-satellite Retrievals for GPM (IMERG) (Dezfuli et al., 2017)]. However, they present uncertainties, 50 

such as false detection of precipitation events and bias of precipitation amount (Bitew and Gebremichael, 2011; Ma et al., 2018; 51 

Dezfuli et al., 2017) limiting their suitability in the hydrometeorological application. The uncertainty is particular in mountainous 52 

regions (Li et al., 2018; Maranan et al., 2020; Zandler et al., 2019). Also, precipitation from coarse-resolution Global Climate 53 

Models shows limitations (Monsieurs et al., 2018; Kad et al. 2023), due to the model configuration, such as resolution and 54 

parameterization, which are crucial for a more realistic representation of processes (Kad et al., 2023a; Tao et al., 2020). 55 

 56 

High-resolution dynamical simulation is a promising tool with which one can generate precipitation with realistic regional detail, 57 

due to the capability of capturing realistic regional details, such as topography and local processes that influence orographic effects 58 

(Kad and Ha, 2023; Tao et al., 2020). In Kerandi's research (2017), WRF with a refined resolution of 25 km, better captured annual 59 

and interannual variability and spatial distribution of precipitation in the Tana River basin, than the coarse resolution of 50 km. 60 

Indeed, at relatively coarse resolution (such as >20 km resolution), RCMs generally fail to adequately represent precipitation and 61 

exhibit uncertainties when compared to reanalysis, rain gauges, and satellite observations (Biskop et al., 2012; Ji and Kang, 2013). 62 

A refined horizontal resolution has the potential to significantly improve precipitation simulation over Equatorial East Africa (Pohl 63 

et al. 2011).  64 

 65 

Convection-permitting regional climate models (CPRCMs, typically with < 5 km resolution) provide an explicit representation of 66 

convection and thus allow to capture precipitation extremes at the local scale, in comparison to coarse resolution (Kendon et al., 67 

2021; Schwartz, 2014; Weusthoff et al., 2010). The added value from CPRCMs relative to the parametrized regional climate 68 

models, involves improved representations of the intensity distribution (Senior, 2021; Berthou et al., 2019), diurnal cycle (Stratton 69 

et al., 2018) and storm size and duration (Crook et al., 2019). It is noteworthy that CPRCMs better capture surface heterogeneities 70 

and give more realistic climate simulations over mountains (Kawase et al., 2013; Rasmussen et al., 2014). Additionally, CPRCMs 71 

exhibit increased performance over Africa (Senior, 2021), in presenting rainy events, diurnal cycle and peak time for the Lake 72 

Victoria Basin of East Africa (Lipzi et al. 2023), and sub-daily rainfall intensity distribution (especially those related to the 73 

convective rainfall) in the tropics (Folwell et al. 2022). Therefore, CPRCM could be applied to generate more realistic precipitation 74 

with more regional details in East Africa. 75 
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 76 

Offline atmosphere-hydrological modelling is a commonly used approach for flood and drought simulation or prediction. Ideally, 77 

regional climate model (RCM) output data was directly used in hydrological applications. However, this can cause issues of 78 

physical inconsistency (Chen et al., 2011; Teutschbein and Seibert, 2012). A better approach would be to couple atmospheric and 79 

hydrological modelling systems to ensure physical consistency. A coupling of the Weather Research and Forecasting Model (WRF) 80 

and the WRF hydrological modelling system (WRF-Hydro; Gochis et al., 2018) shows advantages in hydrology simulations and 81 

hydrological extremes forecasting globally (e.g., Kerandi et al., 2018; Li et al., 2017), involving urban flood prediction over the 82 

Dallas-Fort Worth area of North America (Nearing et al. 024) and drought estimation in South Korea (Alavoine and Grenier 2023). 83 

In Africa, WRF-Hydro has also proven useful in discharge simulations in the Ouémé River of West Africa (Quenum et al. 2022) 84 

and the Tana River basin (Kerandi et al. 2018). Kerandi’s study showed minimal differences in precipitation between the stand-85 

alone and fully coupled, suggesting a limited impact of precipitation recycling and land-atmosphere feedback on soil moisture and 86 

discharge in Tana River basin. This could be seen from other regions, such as Crati River Basin in Southern Italy by Senatore et 87 

al. (2015) and United Arab Emirates by Wehbe et al. (2019). 88 

 89 

Even though WRF-Hydro shows potential, its use over East Africa needs to be refined through the implementation of more 90 

comprehensive hydrological processes. Many reservoirs have been built in East Africa (Palmieri et al., 2003), which can change 91 

magnitude and timing of natural streamflow, usually attenuating and delaying flows in the rain season, and also releasing water in 92 

dry periods (Zajac et al., 2017; Hanasaki et al., 2006). Incorporating lakes/reservoir processes in hydrological simulation is required 93 

for a reliable model when applied in the region with lakes (Hanasaki et al., 2006; Lehner et al., 2011). However, only a few 94 

hydrological simulations over East Africa are related to lakes (Oludhe et al., 2013; Naabil et al., 2017; Siderius et al., 2018). The 95 

study on the impact of reservoirs over East Africa was even fewer, let alone the hydrological modelling with meteorological-96 

hydrological links. Naabil (2017) used WRF-Hydro with the dam-water-balance model for dam-level simulation and water 97 

resource assessment in Tono dam basin. However, in this research, the reservoir module was not included in the WRF-Hydro 98 

system, preventing accurate capture of dam impact on discharge and other hydrological variables. Therefore, hydrological 99 

modelling coupled with its lake/reservoir module is required over East Africa for reliable flood and drought simulations. While the 100 

WRF-Hydro system, with its lake/reservoir module, shows promise for simulating water balance affected by reservoirs (Maingi 101 

and Marsh, 2002), its use in East Africa, especially in large river basins like the Tana River, remains limited. 102 

 103 

The Tana River basin in East Africa is ideal for enhanced hydrological modelling due to its proneness and vulnerability to droughts 104 

and floods, as well as the data available. The observational discharge records provide a benchmark for simulations despite some 105 

uncertainties. The basin supports vital ecosystem services for Kenya, including drinking water supply, hydro-electric power, 106 

agriculture and biodiversity, and is home to eight million people (Lange et al., 2015). However, the region faces increasing risks 107 

of drought and flood, which are likely exacerbated by climate change. Droughts occur approximately every five years, causing 108 

water shortages for drinking water, irrigation, and fishing (Bonekamp et al., 2018). The flood in 2018, overflowed the bank, 109 

damaged crops, homes, and infrastructure, and subsequently displaced thousands of people, contributing to outbreaks of 110 

waterborne diseases (such as cholera) (Kiptum et al., 2024). So, robust hydrological modelling in the Tana River basin is essential 111 

for accurate predictions of extreme events and risk assessment. Using this basin as a case, the present study aims to address some 112 

of the issue related to flood/drought risk mitigations, through a convection-permitting regional climate (CPCRM) simulation using 113 

WRF model and a more comprehensive hydrological model using lake-integrated WRF-Hydro system. We target the following 114 

sub-objectives: (1) to improve climate output (particularly focusing on precipitation) by CPCRM simulation and using the 115 

https://doi.org/10.5194/hess-2024-278
Preprint. Discussion started: 14 October 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

enhanced precipitation to advance the hydrological simulation; (2) to explore the potential of lake/reservoir module to improve the 116 

hydrological modelling; (3) to build an enhanced WRF-Hydro system and investigate the contributions of the two components to 117 

hydrological simulations. The research is to improve hydrological models for better water resource management and risk mitigation, 118 

supporting sustainable practices in regions vulnerable to water-related damages. 119 

2. Study area and data 120 

Located in the tropics, the Tana River Basin exhibits dual peaks of precipitation over time due to the biannual migration of the 121 

Intertropical Convergence Zone (ITCZ). The spatial pattern of the precipitation is profoundly modulated by the basin’s varied 122 

topography and atmospheric deep convection (Kad et al., 2023; Johnston et al., 2018), resulting in a gradient of arid to semi-humid 123 

conditions from the lowlands to the highlands and coastal areas (Knoop et al., 2012). The precipitation is also influenced by El 124 

Niño/Southern Oscillation (Otieno and Anyah, 2013; Anyah and Semazzi, 2006), IOD (Williams and Funk, 2011),  and rising 125 

atmospheric CO2 (Kad et al., 2023). 126 

 127 

For data availability, our study focuses on the upper and middle sections of the Tana River Basin (TRB), covering an area of 32,865 128 

km² upstream of Garissa city (S 1.25°~N 0.50°, E 36.50°-E 39.75°). This region includes famous mountain ranges such as the 129 

Mount Kenya massif and the Aberdare Range, alongside plain surfaces (Fig. 1 b). The region is characterized by a complex 130 

interplay between mountainous terrain and flat surface, with elevation ranging from 34 meters to excess of 4800 (Fig. 1 a). We 131 

classified the terrain into mountainous regions above 1,600 meters and plains below 1,600 meters. There are five reservoirs in the 132 

basin and along the Tana River (Table 1, Fig. 1 c). It is worth noting that the Garissa station is downstream Rukanga and the lakes 133 

between them are Masinga, Kamburu, Gitaru, Kindaruma, and Kiambere from the upstream to downstream. While the lakes don’t 134 

affect the streamflow at Rukanga, they do impact the discharge at Garissa. 135 
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 136 

Figure 1. Study basin location in East Africa. (a) The WRF domain with a resolution of 5 km (shown with the white frame) and the 137 

location of the inner region (a black frame) used as the domain of WRF-Hydro simulation (b) A zoomed view of the inner area showing 138 

topography, two major mountains, and the basin boundaries. (c) Drainage map of the upper and middle stream of the Tana River Basi, 139 

including the discharge stations, lake/reservoir water level stations and the stream orders for hydrological modelling in the WRF-Hydro 140 

model system. 141 

Table 1. Lakes/Reservoirs in upper and middle Tana River basin (TRB). 142 

Name 
Water level  

(max/min; unit: m） 

Water depth (m) 
Area (km2) Operating date 

KAMBURU 1007/996 1007 11.7 1974 

KINDARUMA 781/775 7811 2.1 1981 

MASINGA 1058/1035 1058 111.6 1981 

GITARU 925/917 9255 2.7 1978 

KIAMBERE 702/681 702 23.2 1981 

 143 

Here, we used a global satellite product of GPM_3IMERGDF (GPM IMERG precipitation version 6 at daily temporal resolution 144 

and 0.1 x 0.1 spatial resolution) (Huffman et al., 2020) for WRF precipitation evaluation, downloaded from the NASA website 145 

(https://gpm.nasa.gov/data-access/downloads/gpm, accessed on 28 Apr 2023). These climate data cover the period 2010-2014. 146 
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Discharge observations during 2011-2014 at two stations in TRB (Garissa and Rukanga), obtained from the Water Resources 147 

Authority of Kenya (WRA), are used for WRF-Hydro model discharge sensitivity analysis and calibration (Fig. 1). 148 

3. Methodology 149 

3.1. WRF domain design for convection-permitting WRF modelling 150 

To obtain convection-permitting modelling precipitation, we used the Advanced Research WRF (WRF-ARW) model of version 151 

4.4 (Skamarock et al., 2019) with the designed domain of 5 km spatial resolution (Fig. 1). The lateral boundaries were forced with 152 

the 6-hourly ERA5 reanalysis with a spatial resolution of 0.25 degrees (Hersbach et al., 2020). The model was set with 50 vertical 153 

levels up to 10hPa and running from 1 January 2010 to 1 January 2015 with the first year of spin-up. 154 

 155 

The Grell-Freitas Ensemble Scheme (Grell and Freitas, 2014) was used for the cumulus scheme (which is only for the outer domain, 156 

while the convection parameterization was turned off for the inner domain), the Mellor-Yamada Nakanishi Niino Level 2.5 157 

(MYNN2.5) Scheme (Nakanishi and Niino, 2006) for the planetary boundary layer, the RRTM scheme for longwave radiation 158 

(Mlawer et al., 1997) and the Dudhia Shortwave scheme for shortwave radiation (Jimy Dudhia, 1989). The Noah-MP Land Surface 159 

model (‘Noah-MP LSM’, Yang et al., 2011) was used for land surface scheme. 160 

3.2. Sensitivity analysis and calibration strategy for WRF-Hydro modelling 161 

3.2.1. WRF-Hydro modelling system and preliminary calibration 162 

For hydrological modelling, WRF-Hydro system (Gochis et al., 2018) of Version 5.3. was employed in an offline mode, using the 163 

CPWRF atmospheric simulations within a domain at 5 km resolution with 90×50 pixels over the TRB as the driver (Fig. 1). The 164 

sub-grid routing processes were executed at a 500 m grid spacing and surface physiographic files were generated by ArcGIS 10.6 165 

(Sampson and Gochis, 2015). The physiographic files included high-resolution terrain grids that specified the topography, channel 166 

grids, flow direction, stream order (for channel routing), a groundwater basin mask and the position of stream gauging stations 167 

(Fig. 1c). the first five stream orders are shown in Fig. 1c. We activated the saturated subsurface overflow routing, surface overland 168 

flow routing, channel routing and base-flow modules. The overland flow routing and channel routing were calculated by a 2-D 169 

diffusive wave formulation (Julien et al., 1995) and a 1-D variable time-stepping diffusive wave formulation, respectively. 170 

 171 

The model involves the five lake/reservoirs using a level-pool lake/reservoir module which calculates both orifice and weir outflow. 172 

Fluxes into a lake/reservoir object occur when the channel network intersects a lake/reservoir object. The level-pool scheme tracks 173 

water elevation over time, and water out of the lake/reservoir exits either through weir overflow  174 

(Outfloww) or orifice-controlled flow (Outflowo) following Eq. (1) and (2). 175 

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑤 = {
𝐶𝑤𝐿ℎ

3/2, ℎ > ℎ𝑚𝑎𝑥

0, ℎ ≤ ℎ𝑚𝑎𝑥

                                                                                                                                                             (1) 176 

where h is the water elevation (m), hmax is the maximum height before the weir begins to spill (m), Cw is the weir coefficient, and 177 

L is the length of the weir (m). 178 

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑜 = 𝐶𝑜𝑆𝑜√2𝑔ℎ                                                                                                                                                                    (2) 179 

where Co is the orifice coefficient, So is the orifice area (m2), and g is the acceleration of gravity (m s-2). 180 
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 181 

For the sensitivity analysis and model optimization, we initially calibrated the WRF-Hydro system without the lake/reservoir 182 

module. Two key hydrological parameters, REFKDT and MannN, were tuned using the auto-calibration Parameter Estimation 183 

Tool (PEST, http://www.pesthomepage.org). The optimization is performed by maximizing the discharge simulation accuracy, 184 

indicated by Nash-Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe, 1970) of the Garissa discharge. The primarily 185 

calibrated model was mentioned as LakeNan in the following. 186 

3.2.2. Experiments designed for sensitivity analysis in WRF-Hydro system modelling with lake/reservoir module 187 

To optimize WRF-Hydro modelling over TRB, we facilitated a comprehensive sensitivity analysis, involving spin-up time, 188 

hydrological parameters, groundwater components, and lake-related parameters. Groundwater component tunning focuses on the 189 

parameter GWBASEWCTRT (an option for groundwater mode). Hydrological parameters include Manning roughness parameter 190 

(MannN) and runoff infiltration coefficients (REFKDT). Lake-related parameters cover the elevation of maximum lake/reservoir 191 

height (LkMxE, unit: m), weir elevation (WeirE, unit: m), weir coefficient (WeirC, ranging from zero to one), weir length 192 

(WeirL, unit: m), orifice area (OrificeA, unit: m2), orifice coefficient (OrificeC, ranging from zero to one), orifice elevation 193 

(OrificeE, unit: m), and lake/reservoir module area (LkArea, unit: m2). 194 

 195 

For sensitivity analysis of the specific parameter, we conducted a set of experiments. In each experiment, only the focused 196 

parameter was changed while others were maintained at their default (Table 2). The defaults of lake-related parameters were 197 

obtained from WRF-Hydro GIS pre-processing toolkit (Gochis et al., 2018), while the others were obtained from the preliminary 198 

calibrated WRF-Hydro without lake/reservoir module (LakeNan, Sect. 3.2.1). 199 

Table 2. The default values for sensitivity experiments.  200 

Group Parameters The default value 

Others Spin-up time 
restart with a 10-year spin-up time using the initial file from a 10-

year simulation covering January 2005 to December 2014. 

Hydrological 

parameters 

REFKDT 5 

MannN 
(0.55,0.35,0.15,0.1,0.07, 0.05, 0.04, 0.03, 0.02, 0.01) for the ten 

stream orders 

Groundwater GWBASEWCTRT 

“GWBASESWCRT_Sink” for sensitivity tests of spin-up and 

hydrological parameters; 

“GWBASESWCRT_Passthrough” for sensitivity tests of lake-

related parameters, and the subsequent calibration. 

Lake-related 

parameters 

LkMxE -9,957,781,074,917,690 

WeirE (990.5,775.9,1067.9,915.3,689.1) 

WeirC (0.4,0.4,0.4,0.4,0.4) 

WeirL (10,10,10,10,10) 

OrificeA (1,1,1,1,1） 

OrificeC (0.1,0.1,0.1,0.1,0.1) 

OrificeE (965,764,1033.3,905.7,644.3) 

LkArea (11.7,2.1,111.6,2.7,23.2) 

REFKDT and MannN default values are from the preliminary calibration for LakeNan model. The MannN value is different for each stream 201 
order from 1 to 10. (Value1, Value2, Value3, Value4, Value5) indicate value for the five reservoirs (KAMBURU, KINDARUMA, MASINGA, 202 
GITARU, KIAMBERE), obtained from WRF-Hydro GIS pre-processing toolkit. Two options for the groundwater component were involved in 203 
the experiments. Groundwater component with “GWBASESWCRT_Sink” option creates a sink at the bottom of the soil column and water 204 
draining from the bottom of the soil column leaves the system into the sink, while that with “GWBASESWCRT_Passthrough” bypasses the 205 
bucket model and dumps all flow from the bottom of the soil column directly into the channel. 206 

Sensitivity to spin-up time 207 

https://doi.org/10.5194/hess-2024-278
Preprint. Discussion started: 14 October 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

To obtain a stable hydrological simulation, a spin-up time is required. Insufficient spin-up for initialization introduces unnecessary 208 

uncertainty into hydrological simulations, which may affect the subsequent sensitivity analysis and hydrological modelling 209 

assessments. Previous studies have shown that spin-up time affects initial conditions such as the soil moisture content, surface 210 

water, lake/reservoir module water level, and groundwater, which subsequently influences the fidelity of model simulations (Ajami 211 

et al., 2014a; Ajami et al., 2014b; Bonekamp et al., 2018; Seck et al., 2015). For example, groundwater simulation even needs more 212 

than 10 years-spin-up to get stable (Ajami et al., 2014a). Since the shortest spin-up time likely depends on the quality of the model 213 

input (especially soil data) and likely on local conditions, the impact of the spin-up time needs to be assessed on per-case basis. 214 

Therefore, we first investigated the spin-up time sensitivity to get the shortest time for stable modelling and computable saving. 215 

 216 

In our study, we conduct experiments of 17 different spin-up times (Table 3) to investigate their impacts on peak flow, average 217 

discharge, and water levels of reservoirs in TRB, respectively for WRF-Hydro systems with (LakeRaw) and without lake/reservoir 218 

module (LakeNan). To analyze the sensitivity of peak flow, we designated the starting point of the simulation as the observed 219 

peak-flow day (26 November 2011), with spin-up times ranging from 1 day to 12 years. In the spin-up experiments, the restart date 220 

precedes January 1th 2010 which is absent in WRF drivers, so we employ data in 2010 substituting the driving climate for each 221 

preceding year (i.e. 2000, 2001,…,2009). In all experiments of LakeRaw, the parameters are set as the default shown in Table 2. 222 

Table 3. Overview of 17 spin-up time experiments 223 

Experiment name Restart date Spin-up time 

1 spin-up 25 November 2011 1 day 

3 mon spin-up 26 November 2011 3 months 

6 mon spin-up 26 May 2011 6 months 

9 mon spin-up 26 February 2011 9 months 

1 year spin-up 26 December 2010 1 year 

15 mon spin-up 26 August 2010 15 months 

18 mon spin-up 26 May 2010 18 months 

21 mon spin-up 26 February 2010 21 months  

3 year spin-up 1 January 2009 3 years 

4 year spin-up 1 January 2008 4 years 

5 year spin-up 1 January 2007 5 years 

6 year spin-up 1 January 2006 6 years 

7 year spin-up 1 January 2005 7 years 

8 year spin-up 1 January 2004 8 years 

9 year spin-up 1 January 2003 9 years 

10 year spin-up 1 January 2002 10 years 

11 year spin-up 1 January 2001 11 years 

12 year spin-up 1 January 2000 12 years 

 224 

The initialization time for one model to reach equilibrium was calculated as the time required for the temporal changes in the 225 

model output variable to decrease to a specific threshold value (Cosgrove et al., 2003). In our study, this threshold value was set 226 

as half the standard deviation of hydrological variables from the last experiments (i.e. 9, 10, 11, and 12-year spin-up experiments). 227 

The temporal changes were measured as the difference of a hydrological variable between the two adjacent experiments. 228 

Sensitivity to hydrological parameters 229 

MannN and REFKDT have been demonstrated to significantly influence the simulated river discharge (Ryu et al., 2017; Yucel et 230 

al., 2015). Therefore, REFKDT and MannN for the first five stream orders were chosen for the sensitivity test, separately. For each 231 
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of the tests, the parameter values range from minimum to maximum, creating ten values with nearly equal intervals and generating 232 

ten experiments (Table 4). Among them, MannN should be larger than 0, so the minimum scaling was  0.1, instead of 0. 233 

Table 4. Sensitivity analysis (SA) experiments designed for the two key hydrological parameters REFKDT. 234 

Experiments for REFKDT SA Value 

REFKDT_1 0.02*default 

REFKDT_2 0.13*default 

REFKDT_3 0.24*default 

REFKDT_4 0.35*default 

REFKDT_5 0.46*default 

REFKDT_6 0.56*default 

REFKDT_7 0.67*default 

REFKDT_8 0.78*default 

REFKDT_9 0.89*default 

REFKDT_10 1*default 

Note: The default is obtained from the WRF-Hydro GIS pre-processing toolkit. * indicates multiplication. 235 

Table 5. Sensitivity analysis (SA) experiments designed for the two key hydrological parameters MannN of the first five stream orders. 236 

Experiments for MannN SA Value 

MannN_1 0.1*default 

MannN_2 0.44*default 

MannN_3 0.89*default 

MannN_4 1.33*default 

MannN_5 1.78*default 

MannN_6 2.22*default 

MannN_7 2.67*default 

MannN_8 3.11*default 

MannN_9 3.56*default 

MannN_10 4.00*default 

Note: The default is obtained from the WRF-Hydro GIS pre-processing toolkit. * indicates multiplication. 237 

Sensitivity to groundwater component 238 

We investigate the sensitivity of groundwater components by tunning GWBASWCTRT, with two options in two experiments. 239 

Groundwater component with “GWBASESWCRT_Sink” option creates a sink at the bottom of the soil column and water draining 240 

from the bottom of the soil column leaves the system into the sink, while that with “GWBASESWCRT_Passthrough” bypasses 241 

the bucket model and dumps all flow from the bottom of the soil column directly into the channel. It's important to note that with 242 

the option “GWBASESWCRT_Sink”, water draining from the bottom of the soil column will not achieve water balance closure. 243 

Sensitivity test of lake/reservoir parameters 244 

Morris (Morris, 1991) was employed to analyze the sensitivity order of the seven lake-related parameters, due to its low 245 

computational cost and ease of interpretation (Wei, 2013), which is widely used as a global sensitivity analysis method in 246 

hydrological models, particularly in computationally expensive models (Song et al., 2013; Wei, 2013). In the study, the sensitivity 247 

analysis was simultaneously performed on the five lakes to reduce computational cost. In the Morris experiment, the eight main 248 

lake-related parameters of the five lakes were normalized to a range of 0-1, by subtracting the minimum value and dividing by the 249 

maximum minus the minimum (Table 5). Based on the eight normalized values with a lower value of zero and an upper of one, 250 

we generated all samples for Morris screening, where the number of replications R, level p and sample size N were set as 10 and 251 
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4, and 90 (i.e. 90 parameter sets for 90 runs), respectively. For each sample (corresponding to a WRF-Hydro simulation), the eight 252 

parameters for each lake/reservoir were obtained by inverse-normalization. The other parameters were kept as default. Parameter 253 

sensitivity was evaluated by analyzing the influence of parameter change on varying degrees of model output, which was measured 254 

by the order of importance (Francos et al., 2003). 255 

Table 6. Sensitivity analysis experiments designed for the 8 lake/reservoir-related parameters. 256 

Parameters Value_min Value_max 

OrificeC 0.01*default 10*default 

WeirL 0.01*default 1.2*default 

WeirC 0.001*default 0.25*default 

OrificeA 0.001*default 1000*default 

Dam_Length 0.001*default 20*default 

LxMkE Wlmax-Wd*0.5 Wlmax+Wd*0.5 

WeirE OrificeE_default Wlmax+Wd*0.5 

OrificeE Wlmin*0.5 Wlmin 

Note: Wlmax, Wlmin, Wd, and OrificeE_default indicate the max water level, min water level, water depth, and OrificeE default value, 257 
respectively. The default is obtained from WRF-Hydro GIS pre-processing toolkit. 258 

We also compared the sensitivity among the five lakes to simulated discharge. To conserve computing resources, the test was 259 

conducted based on the simulations from the calibration. For each lake test, there is a set of more than 30 simulations. Each of the 260 

sets involves the seven parameters (LkMxE, WeirE, OrificeE, WeirC, WeirL, OrificeC, and Damlength). In all the sets, the values 261 

of seven parameters synchronously change linearly from the minimum to the maximum shown in Table 6. 262 

 263 

In the parameter setting, we make some rules to constrain the three parameters (LkMxE, WeirE, and OrificeE), to make the 264 

simulation result reasonable: (1) LkMxE should be larger than WeirE and OrificeE; (2) OrificeE was suggested to be smaller than 265 

WeirE. To satisfy these constraints, the OrificeE is set to be below the minimum water level, WeirE ranges from the OrificeE 266 

default value to the maximum water level plus half water depth, and LkMxE changes from the maximum water level minus haft 267 

depth to maximum water level plus half depth (Table 1). Besides, OrificeC and WeirC should be kept between zero and 1 which 268 

should be a constraint. The setting of maximum and minimum values, and experiment count are flexible, provided they make sense 269 

and the simulation result is reasonable. 270 

3.2.3. Final calibration for WRF-Hydro system modelling with lake/reservoir module 271 

Based on the sensitivity analysis, we developed a comprehensive calibration strategy for the WRF-Hydro system incorporating the 272 

lake/reservoir module. Based on the preliminary calibration (Sect. 3.2.1), we re-tuned the lake-related parameter sets for the five 273 

lakes. Each lake was calibrated sequentially from upstream to downstream, with its parameter set undergoing more than 30 274 

experimental iterations. Once the upstream lake/reservoir was calibrated, its parameters were fixed as the optimized, and we 275 

proceeded to calibrate the parameters for the next downstream lake. Subsequently, we focused on re-tuning REFKDT and MannN, 276 

each subjected to 30 experimental iterations. The parameter sets for each experimental iteration were generated according to Sect. 277 

3.2.2. Throughout the step, we get a well-calibrated WRF-Hyro model (LakeCal) with the optimal parameter set of the best NSE, 278 

calculated over Garrissa discharge from January 2011 to December 2014 against the observation. 279 

3.3. Peak flow, dry-season flow and rain-season flow 280 

To measure modelling performance, we obtained the flow from the long rain season of March-May (MAM) and short rain season 281 

of October-December (OND), and the dry season of January-February (JF) and June-September (JJAS), as well as the peak flow. 282 
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The max of the daily discharge over 2010-2014 at Garissa station occurred on 26 November 2011 (844 m3 s-1) and is used as a 283 

peak-flow case for evaluation. Since the model cannot capture the peak at the exact date, the simulated peak flow corresponding 284 

to the observation, s set as the largest daily discharge during the 21 days which covers the observed peak in the center. The peak 285 

in a certain year is set as the largest daily discharge during this year. Additionally, water level observations from five lakes within 286 

the TRB, obtained from Kenya's Ministry of Energy (KenGen) for the period 2011-2014, are used to assist in model sensitivity 287 

analysis and calibration. 288 

4. Results 289 

4.1. WRF Precipitation refinement 290 

Using IMERG precipitation as a benchmark, we assessed the performance of convection-permitting WRF precipitation at a 5 km 291 

resolution in TRB, through the comparison to ERA5 reanalysis (the input of our WRF simulation). The evaluation focused on 292 

average seasonal precipitation during the long rain season (MAM) and short rains (OND) from 2010-2014. Here, we also calculated 293 

precipitation bias for WRF and ERA5 against IMERG as shown in Fig. 2. 294 
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 295 

Figure 2. Season precipitation of March-May (MAM, long rain season, a-c), October-December (OND, short rain season, f-h), and the 296 
JF (January-February, k-m), and JJAS (June-August, p-r) over the upper and middle stream of Tana River Basin (TRB), as well as its 297 
bias (d-e, i-j, n-o, and s-t). (a, f, k, p), (b, g, i, q), and (c, h, m, r) indicate IMERG, WRF, and ERA5 data. (d, i, n, s) and (e, j, o, t) donates 298 
the bias of WRF and ERA5 against IMERG. The seasonal precipitation (MAM, OND, JF, and JJAS) is calculated based on daily data 299 
(in March-May, October-December, January-February, and June-August) over 2010-2014. The gray polygon indicates the boundary of 300 
the upper and middle sections of the Tana River basin. 301 

The WRF model captures the spatial pattern of precipitation and its seasonal variations over TRB presented in IMERG (Fig. 2 and 302 

Table 7). WRF simulation shows that the precipitation is primarily concentrated in mountainous regions (such as Mount Kenya 303 

and Aberdare Range in Fig. 1 a), with significantly less precipitation in the plain area (Fig. 2). The annual mean precipitation is 304 

approximately 1500 mm in the mountainous terrain compared to less than 500 mm in the plain area (Table 7). During the rain 305 

seasons (MAM and OND), the total precipitation is 976 mm a-1 over the terrain area and 327 mm a-1 over the plain area, in contrast 306 

with 417 mm a-1 and 33 mm a-1 during the dry season (JF and JJAS). This spatial and seasonal pattern is also reflected in IMERG 307 

data (Figs 2 a, f, k, and p), indicating a distinct orographic and seasonal dominance. WRF-simulated precipitation exhibits a smaller 308 

model-data bias in the mountainous areas compared to the plains and during the wet period compared to the dry seasons. The bias 309 

in precipitation over the mountainous area is 47 % (133 mm a-1) in dry seasons and 8 % (77 mm a-1) in wet seasons, while in the 310 

plains, it is -49 % (-33 mm a-1) and -46 % (-279 mm a-1). The better skill over the mountain area is more pronounced during the 311 

wet season, with a bias of 4% compared to -45 % in the dry season. Compared to ERA5, WRF precipitation shows better 312 

performance over mountainous areas. For example, the model-data bias from WRF is 210 mm a-1 (18 %) for the whole year, while 313 

ERA5 shows a bias of 681 mm a-1 (58 %) as shown in Table 7. During the rain season of MAN or OND, WRF’s bias is 29 mm a-314 
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1 (7 %) or 48 mm a-1 (10 %), whereas ERA5’s is 161 mm a-1 (37 %) or 100 mm a-1 (22 %). Moreover, the area with the larger bias 315 

(with bias exceeding 60 %) from WRF simulation is much smaller than ERA5. In MAM, OND JF, and JJAS, the regions with 316 

larger biases are 618.2 km2 (1.9 %), 711.0 km2 (2.2 %), 680.0 km2 (2.1 %), and 3431.0 km2 (10.4 %) respectively, while ERA5’s 317 

corresponding areas are 1545.5 km2 (4.7 %), 1545.5 km2 (4.7 %), 10818.3 km2 (32.9 %), and 8500.1 km2 (25.9 %). Although a 318 

slightly larger negative precipitation bias exists in the plain area, WRF precipitation doesn’t show significantly decreased kills 319 

compared to ERA5 (Table 7). 320 

Table 7. Seasonal and annual precipitation averaged over the terrain (elevation > 1600 mm) and plain (elevation < 1600 mm) area. 321 
Precipitation 

(mm) 

terrain Area Plain Area 

Annual MAM OND JF JJAS Annual MAM OND JF JJAS 

WRF 1393 505 471 87 330 359 153 174 16 17 

ERA5 1864 557 603 230 474 593 219 278 48 49 

IMERG 1183 457 442 91 193 669 279 326 36 28 

WRF-IMERG 210(18%) 48(10%) 29(7%) -5(-5%) 138(72%) -310(-46%) -126(-45%) -152(-47%) -20(-56%) -11(-39%) 

ERA5-IMERG 681(58%) 100(22%) 161(37%) 139(152%) 281(146%) -75(-11%) -61(-22%) -48(-15%) 12(34%) 22(79%) 

Note: Precipitation from IMERG is the benchmark to evaluate that from WRF simulation. 322 

Monthly averaged precipitation from WRF simulation, calculated over 2010-2014, aligns well with IMERG data (Fig. S1). The 323 

precipitation from WRF well captures the wet-dry season pattern, with precipitation largely falling during long (MAM, 219 mm a-324 

1, 40 % of the total annual precipitation) and short rains (OND, 229 mm a-1, 42 %) over the TRB. WRF accurately shows the 325 

rainfall peaks in April during the long rain season and November during the short rain season, with simulated values of 95 mm and 326 

178 mm per month, respectively. While both WRF and ERA5 display positive biases in rain seasons and negative biases in dry 327 

seasons against IMERG, WRF offers improved precipitation estimates, distinct in mountainous areas. In the mountainous region, 328 

the WRF-simulated results exhibit superior agreement against IMERG, compared to ERA5 (Figs. 2 d-e, i-j, n-o, s-t, and S1). The 329 

determined coefficient (r2) and biases of WRF-simulated monthly precipitation against IMERG, are 0.71 and 18 mm per month 330 

(15 % of IMERG’s regional average), compared to 0.21 and 57 mm per month (58 %) for ERA5 (Table S1). The decreased WRF-331 

IMERG bias indicates that WRF simulation could alleviate the overestimation from ERA5 in the mountain area, and thus refine 332 

precipitation. Despite no significant improvement in the plain area, no apparent decreased skill exists in WRF simulation, compared 333 

to ERA5. 334 

 335 

The probability distribution of regionally averaged daily precipitation from WRF simulation during 2010-2014 (Fig. 3 and Table 336 

8) also exhibits reasonable correspondence to IMERG. Both WRF and ERA5 overestimate the small precipitation events (0-20 337 

mm day-1) and underestimate extreme precipitation events (> 20 mm day-1), against IMERG. However, WRF aligns more closely 338 

with IMERG for the small precipitation events and extreme precipitation events, particularly for the light precipitation events (1-339 

15 mm day-1) during dry seasons (Fig. 3 c-d and Table 8). The probability of 1-15 mm day-1 events from WRF is 0.24, compared 340 

to ERA’s 0.49 and IMERG’s 0.26. This improvement is also observed in the rain seasons, although not as pronounced. The WRF 341 

simulated probability of light precipitation events is 0.34, compared to 0.66 and 0.38 from ERA and IMERG, respectively. 342 
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 343 

Figure 3. The distribution (a, c and e) and cumulative distribution (b, d and f) of daily precipitation from WRF-simulation, ERA5, against 344 
the IMERG (2010-2014) over the whole period, dry season and wet season. (a, b), (c, d) and (e, f) indicate the daily precipitation 345 
distribution over the whole period, dry season and wet season, respectively. 346 

Table 8. Cumulative distribution of daily precipitation regionally averaged over TRB, from WRF simulation, IMERG, and ERA5. 347 

Precipitation Whole period Dry period Wet period 

(mm day-1） IMERG WRF ERA5 IMERG WRF ERA5 IMERG WRF ERA5 

0–20 0.981 0.991 0.995 0.999 0.999 0.999 0.962 0.982 0.991 

>20 0.019 0.009 0.005 0.001 0.001 0.001 0.038 0.018 0.009 

1–15 0.255 0.242 0.489 0.126 0.146 0.317 0.381 0.337 0.658 

 348 
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Despite some deviation of the daily fluctuations between WRF simulation and IMERG, it is important to recognize that the IMERG 349 

itself has its uncertainties in representing precipitation over East Africa. These include low-intensity false alarms and 350 

overestimating rainfall amount from weak convective events (Maranan et al., 2020). Therefore, we believe that the potential 351 

advantages of the WRF simulation are likely greater than what we have demonstrated by our result. However, using IMERG as 352 

the benchmark, the WRF simulation exhibited a significant improvement, with the model-data bias of 15 % over mountainous 353 

areas compared to 58 % from ERA5, despite slightly degraded performance over the plains (Table S1). Future work could benefit 354 

from incorporating more reliable observational data to enhance precipitation evaluation. 355 

4.2. WRF-Hydro model optimization with lake module 356 

4.2.1. A preliminary investigation of the lake/reservoir impact on discharge 357 

To assess the impact of the lake/reservoir module on hydrological simulation, we compared simulated discharges from different 358 

WRF-Hydro modelling experiments against the observations. These included WRF-Hydro with (LakeRaw) and without the 359 

lake/reservoir module (LakeNan) shown in Fig. 4 and Table S2. The WRF-Hydro model with lake/reservoir module (LakeRaw) 360 

improves discharge simulation compared with the version without (LakeNan), even without model calibration. LakeRaw achieved 361 

an NSE of 0.01 and a bias of 40 %, compared to -1.09 and -53 % from the LakeNan. The inclusion of lake/reservoir module 362 

addresses the underestimation of dry-season flow. However, the lake/reservoir module (in the LakeRaw) tends to induce 363 

overestimation, particularly during the dry season of February-March and August-September which amounts to approximately 81 % 364 

of the annual average dry-season flow. The overestimation in LakeRaw is likely due to uncalibrated parameters, including spin-up 365 

time, the hydrological parameters, groundwater component, and lake-related parameters. The hydrological parameters, which were 366 

based on the model without lake/reservoir module (LakeNan), and the groundwater component and lake-related parameter set as 367 

the default from GIS pre-41.processing (Methodology), need to be re-tuned when the lake/reservoir is included in WRF-Hydro 368 

system. To further improve the WRF-Hydro modelling with lake/reservoir module, the potential of the above parameters was 369 

explored. 370 
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 371 

Figure 4. The simulated daily discharges from WRF-Hydro modelling without the lake/reservoir module (LakeNan, the grey line) and 372 
that with the lake/reservoir module using parameters from the LakeNan (LakeRaw, the brown line) against the observations (the black 373 
line), as well as the daily precipitation from convection-permitting WRF simulation (Pcp_WRF, the blue bar). 374 

4.2.2. Spin-up time 375 

The spin-up sensitivity is highlighted in the evolution of discharge during 2011-2014 from the 17 spin-up experiments (Fig. 5 and 376 

Table 3). The simulated discharge at the Garissa station on the first day (26 November 2011, the observed peak-flow day) differs 377 

between almost every experiment. More specifically, the simulated peak-flow at the Garissa station decreases as the spin-up time 378 

gets shorter, which reaches 485 m3 s-1 in the 12-year spin-up experiment (12y spin-up in Fig. 5a) but only 211 m3 s-1 in the 1-day 379 

spin-up experiment (1d spin-up) from the LakeRaw simulation. The reduction of first-day discharge suggested that, without enough 380 

spin-up time, runoff is compensated more to soil moisture and groundwater which hasn’t yet reached equilibrium. Generally, runoff 381 

of the simulated peak-flow becomes slightly larger with increased spin-up time, until the 6-year spin-up (Fig. 5 b). The simulated 382 

average discharge also shows distinct sensitivity to different spin-up times (Figs. 5 d-e). The average discharge at Garissa over the 383 

whole, wet and dry seasons during 2011-2014 increased from the underestimation of -49 %, -44 % and -52 % in 1-day spin-up 384 

experiment to the overestimation of 21 %, 54 % and 7 % in 12-year spin-up experiment, respectively. It generally takes 385 

approximately four years of initialization for the annual discharge at the Garissa station to stabilize. (Figs. 5 d-e).386 
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 387 

Figure 5. Sensitivity analysis results from 17 different spin-up experiments. (a) indicates the simulated discharge with spin-ups (the 388 
colored lines) ranging from 1 day (1d spin-up) to 12 years (12y spin-up), against the observations (Obs, the black line). The blue bars 389 
indicate the daily precipitation from convection-permitting WRF simulation. (b-e) donates the model-data bias of simulated discharge 390 
at Garissa (a and c), Rukanga (b and d) with the increase of spin-up time, which are from LakeNan (WRF-Hydro simulation with 391 
lake/reservoir module, solid line) and LakeRaw (WRF-Hydro simulation without lake/reservoir module using parameters from LakeNan, 392 
dashed line) for the whole year (black line), wet season (MAM and OND, blue line) and dry season (JF and JJAS, red line). The dots 393 
indicate the spin-up time required for LakeRaw (red) or LakeNan (grey) to reach equilibrium. Therein, peak-flow (Peakflow) is the 394 
largest daily discharge during the 21 days which covers the observed peak (largest observed daily discharge over 2011-2014) in the center. 395 

The initial time differs spatially, with shorter spin-up in the upstream area than in the downstream. In the LakeNan simulation, the 396 

initialization time of discharge metrics (i.e. peak-flow, average discharge, rain-season flow, and dry-season flow) at Rukanga 397 

station upstream is less than 2 years but could be 3 years at Garissa station downstream. The longer spin-up in the downstream 398 

area might be ascribed to the larger drainage area which needs a longer convergence time, compared to the upstream. The 399 

prolongation of spin-up time is more distinct in the simulation with lake/reservoir module than the one without. In the LakeRaw 400 

simulation, the initialization time at the upstream (Rukanga station) remains less than 2 years for discharge metrics, while the 401 

initialization time for peak-flow at the downstream (Garissa station) extends to 6 years. This stronger prolongation of spin-up time 402 

indicates the lake/reservoir affection. 403 

 404 

Lake/reservoir module seems to prolong the necessary spin-up time for the downstream area (Fig. 5b). Besides the peak-flow, the 405 

spin-up time for whole-period, dry-season, and rain-season flow is prolonged to 4 years in the LakeRaw simulation, compared to 406 

the 3, 0 and 3 years in the LakeNan simulation. The larger spin-up difference in dry-season discharge between the LakeRaw (3 407 

years) and LakeNan (0 years) simulations demonstrate a larger sensitivity of dry-season to the lake/reservoir module, compared to 408 

the rain-season. 409 

 410 

The water levels of the five lakes show the same spin-up time. However, a larger lake seems to require more time to reach 411 

equilibrium. The lakes are interconnected, so the initialization time is determined by the longest spin-up. Therefore, despite the 412 

disparate sizes, the initialization times of the five lakes are the same. The bias from the LakeRaw simulation is considerable (> 413 

80 %). This is due to that the parameters used in the LakeRaw are from the primarily calibrated LakeNan Model or GIS pre-414 

processing (Methodology), which needs further calibration for the WRF-Hydro system. 415 
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4.2.3. Sensitivity analysis from hydrological parameters  416 

The MannN parameter exhibits a substantial impact on the peak flow, with lower values corresponding to higher discharge peaks 417 

(Fig. 6 a and Table S3). As MannN scale decreases from 4 to 0.1, the average discharge at Garissa increases from 294 m3 s-1 to 418 

297 m3 s-1 and peak-flow increases from 975 m3 s-1 to 1309 m3 s-1. In addition, the smaller MannN value delays the arrival of peak 419 

flows, shifting the peak-flow date from 6 December 2011 to 2 December, advancing by four days, with MannN ranging from being 420 

scaled up by 4 to 0.1. This impact is due to MannN representing channel roughness, which affects streamflow transit time and 421 

volume. 422 

 423 

Figure 6. The simulated WRF-Hydro discharge at Garissa from January 2011 to June 2013 from Manning roughness parameter (MannN) 424 
and runoff infiltration coefficients (REFKDT) sensitivity tests, against the observation (Obs). MannN (or REFKDT) test consists of ten 425 
simulations, with the MannN (or REFKDT) ranging from a near-zero (or 0.02) scale in MannN_1 (or REFKDT_1) experiment to a scale 426 
of 4 (or 1) in MannN_10 (or REFKDT_10) with nearly equal intervals throughout. Precipitation from the WRF simulation (Pcp_WRF) 427 
is shown at the top. 428 

Similarly, the REFKDT parameter also significantly impacts peak discharge in response to heavy rain. An increase in REFKDT 429 

generally results in decreased discharge (Fig. 6 b and Table S4). Specifically, when the REFKDT scaling factor changes from 0.02 430 

(REFKDT equals 0.1) to 1 (REFKDT equals 5), the peak-flow decreases from 7229 m3 s-1 to 1092 m3 s-1. In the WRF-Hydro 431 

modelling system, the REFKDT parameter governs surface infiltration by partitioning runoff into the surface and subsurface 432 

components (Schaake et al., 1996), meaning a higher REFKDT value allows more water into the subsurface, therefore reducing 433 

surface runoff and peak discharge. 434 

 435 

However, both MannN and REFKDT have minimal effects on alleviating the underestimation of dry-season flow in the above 436 

WRF-Hydro simulations with the lake/reservoir module (LakeRaw), which remains largely unchanged despite variations of the 437 

two parameters. 438 

4.2.4. Sensitivity analysis from groundwater components 439 

Overall, adjusting groundwater component options could slightly alleviate the overestimation of dry-season flow (Fig. 7 and Table 440 

S5). The dry-season flows from the two experiments all remain large overestimation with a considerable bias of 122 (81 %) and 441 
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161 (107 %) m3 s-1. However, among the two experiments, the simulated discharge fluctuation in the 442 

GWBASESWCRT_Passthrough experiment aligns better with the observation, compared to the GWBASESWCRT_Sink 443 

experiment. The correlation coefficient (r2) of the simualed discharge against the observation is 0.56 and 0.33 in 444 

GWBASESWCRT_Passthrough and GWBASESWCRT_Sink experiment, respectively. The discrepancies in waveform led to an 445 

earlier prediction of flood retreat. Given the enhanced performance of GWBASESWCRT_Passthrough experiment, we selected 446 

the pass-through bucket module for the subsequent sensitivity analysis and calibration experiment. 447 

 448 

Figure 7. The discharge evolution of the two experiments and the observation. One experiment creates a sink at the bottom of the soil 449 
column, where water drains out of the system (GWBASESWCRT_Sink), while the other bypasses the bucket model and directly channels 450 
all flow from the bottom of the soil column into the stream (GWBASESWCRT_Passthrough). Precipitation from the WRF simulation 451 
(Pcp_WRF) is shown at the top. 452 

4.2.5. Sensitivity analysis from lake-related parameters 453 

From the Morris result (Fig. 8 and Table S6), lake-related parameters (i.e., LkMxE, WeirE, WeirC WeirL, OrificeA, OrificeC, 454 

and OrificeE) show a distinct influence on the discharge at Garissa. The overestimation of discharge was mitigated in the best 455 

simulation with the largest NSE (the red line in Fig. 8 a). Among the eight lake-related parameters, the WeirE turns out to be the 456 

most sensitive, as indicated by its top sensitivity rank (Fig. 8 b). Altering the WeirE from its maximum (maximum water level plus 457 

half water depth) to its minimum (the default Orifice elevation) in the LakeRaw model with other parameters at their default (Table 458 
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S6), resulted in an average discharge varying from 311 m3 s-1 to 38 m3 s-1, with model-data bias from 19 % to less than -85 %. This 459 

sensitivity is particularly notable during the dry-season, causing a bias difference of 244 m3 s-1 averaged in the dry season during 460 

2011-2014, corresponding to -163 % of observations. This indicates that adjusting the lake-related parameters could alleviate the 461 

overestimation of dry-season flow, showing potential to improve the model’s performance. Notably, the eight parameters exhibit 462 

distinct interdependence, as indicated by the large value of sigma/u (> 0.5) (Fig. 8 c), suggesting that parameter optimization should 463 

be conducted globally rather than locally. 464 

 465 

Figure 8. The Morris result, including simulated discharge from 90 experiments against the observation (a), the sensitivity ranking (b) 466 
and parameter interdependence (c). Nash-Sutcliffe Efficiency (NSE), coefficient of determination (r2), bias (Bias, unit: %), and Kling-467 
Gupta Efficiency (KGE) are calculated based on the best-simulated discharge at Garissa (with the largest NSE; shown in red) against 468 
the observation. The u* donates the sensitivity of a given parameter, with a higher value indicating greater sensitivity. The large value 469 
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of σ/u* indicates stronger dependencies with other parameters. The sensitivity order is generated based on the model-data bias of the 470 
simulated discharge at Garissa. 471 

Although adjusting lake-related parameters can alleviate the overestimation of dry-season flow, it induces another issue: the rain-472 

season flow discharge decreases synchronously, leading to its underestimation. Changes in the WeirE (in the LakeRaw modelling 473 

with the other parameters as the default) cause rain-season flow from positive bias (52 m3 s-1, 19 %) to negative (-197 m3 s-1, -474 

71 %). This bias change is also observed in the peak-flow, which varied from an overestimation of 165 m3 s-1 (20 %) to an 475 

underestimation of -127 m3 s-1 (-16 %). Fortunately, the rain-season flow underestimation could be re-tuned by REFKDT or MannN, 476 

as well as the peak-flow. 477 

 478 

Lakes with larger surface areas seem to play a dominant role in affecting discharge biases, as shown in Fig. S3. Adjusting 479 

parameters for larger lakes, such as MASINGA, KAMBURU, and KIAMBERE, tends to cause greater variations, indicated by 480 

larger standard deviations, compared to the small lakes, such as GITARU and KINDARUMA. Among the five lakes, MASINGA 481 

(the largest, with an area of 111.6 km²) exhibits the most significant impact on discharge, with standard deviations of 21 % for 482 

peak flow, 23.7 % for average discharge, 19 % for rain-season flow, and 34 % for dry-season flow. Conversely, KINDARUMA 483 

(the smallest with an area of 2.1 km²) exhibits the least impact on discharge, with standard deviations of near zero (0.1 %, 0.3 %, 484 

0.2 %, and 0.6 %), respectively. 485 

4.2.6. The optimized results of WRF-Hydro modelling with lake/reservoir module 486 

Based on the sensitivity analysis result, we conducted a calibration involving the parameters outlined above, and the results are 487 

shown in Fig. 9 and Table S2. Calibration of WRF-hydro modelling system with lake/reservoir module greatly improves the 488 

simulation of river discharges in the TRB. The simulated discharge from LakeCal with a KGE of 0.70 and a bias of 9 %, is more 489 

consistent with the observed flow process, compared to LakeRaw with a KGE of 0.35 and a bias of 40 %. The significant 490 

overestimation of discharge in the LakeRaw (Sect. 4.2.1) model was notably reduced through the calibration of the lake/reservoir 491 

module, although a slight overestimation still exists. 492 
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 493 

Figure 9. The simulated discharges from three WRF-Hydro simulations against the observation. The three include WRF-Hydro 494 
simulation without lake/reservoir module (LakeNan in grey), WRF-Hydro with lake/reservoir module based on parameters from the 495 
LakeNan (LakeRaw, in brown) and the well-calibrated WRF-Hydro with lake/reservoir module (LakeCal, in blue). Precipitation from 496 
the WRF simulation (Pcp_WRF) is shown at the top. 497 

Notably, the modelling performance of WRF-Hydro simulation with the lake/reservoir module (LakeCal) is much better than that 498 

without lake/reservoir module (LakeNan). The KGE and bias are 0.16 and -53 in LakeNan simulation, in contrast to 0.70 and 9 % 499 

in LakeCal simulation. The improvement is especially for dry-season flow and peak-flow simulation, despite a slight 500 

overestimation of dry-season flow. The calibration of WRF-Hydro modelling system with lake/reservoir module corrects the 501 

overestimation of dry-season flow by 71 m3 s-1, reducing the dry-season flow from 271 m3 s-1(with a bias of 81 %) to 200.1 m3 s-1 502 

(with a bias of 34 %). Besides, the deviation in peak-flow, indicated by a bias of 174 % (144 m3 s-1) decreased in LakeCal compared 503 

to the bias of 24 % (206 m3 s-1) in the LakeRaw. Consistently, the overestimation of averaged discharge in both the dry-season and 504 

rain-season flow was reduced, with the bias changing from 81 % and 22 % to 34 % and -2 %. Due to this improvement in dry-505 

season flow and peak-flow simulation, LakeCal better captures seasonal variation than the other two models. The r2 is 0.75 in the 506 

LakeCal model, calculated over the monthly discharge against the observation, compared to 0.66 in the LakeNan simulation. 507 

Furthermore, the LakeCal could better capture the hydrograph shape during the rise and recession of floods, as indicated by the 508 

improved r2 of 0.59, compared to 0.30 in the LakeNan and 0.33 in the LakeRaw. For example, during the MAM period in 2012 509 

and 2013, the simulated onset and recession times of flooding by LakeCal were closer to the observed, than those from the LakeRaw 510 

and LakeNan. The earlier estimation of flood onset times in the LakeRaw was significantly alleviated in the LakeCal. The better 511 
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fit of the simulated discharge against the observation during flood rising and falling times in the WRF-Hydro system with 512 

lake/reservoir module, indicates a promising ability to accurately forecast floods. 513 

4.3. Attribution of hydrological simulation enhancement 514 

The above skilled WRF-Hydro simulation driven by WRF precipitation (LakeCal, Fig. 9) could be attributed to the integration of 515 

convection-permitting WRF simulation and the inclusion of lake/reservoir module. To qualify the contributions from CPWRF 516 

simulation and lake module, we compared the well-calibrated WRF-Hydro simulation with lake/reservoir module driven by 517 

CPWRF output (LakeCal) to the calibrated WRF-Hydro modelling without lake module forced by CPWRF output (LakeNan) and 518 

the well-calibrated WRF-Hydro simulation with lake module driven by ERA5 (LakeCal-ERA5), shown in Figs. 9,10a and Table 519 

S2. 520 

 521 

The well-calibrated lake-integrated model forced by CPWRF output (LakeCal), outperforms both LakeNan driven by CPWRF 522 

output and lake-integrated model forced by ERA5 (LakeCal-ERA5). Comparing LakeCal to LakeCal-ERA5, the WRF-improved 523 

precipitation notably enhances the WRF-Hydro modelling performance, especially reducing the peak false (Fig. 10 a). The 524 

simulation skill indicated by NSE, rises from 0.04 (LakeCal-ERA5) to 0.57 (the LakeCal) (Table S2), resulting in an NSE increase 525 

of 0.53. Comparing the LakeCal to LakeNan, the inclusion of the lake/reservoir module significantly improves the WRF-Hydro 526 

performance, distinct in alleviating under estimation of the dry-season flow and the overestimation of the peak flow. The NSE 527 

rises from -1.10 (LakeNan) to 0.57 (LakeCal), which reflects an NSE increase of 1.67. Dividing by the total of the two increases, 528 

improvements in hydrological simulation could be attributed 24 % (an NSE increase of 0.53) to WRF-refined precipitation and 529 

76 % (an NSE increase of 1.67) to the inclusion of lake/reservoir module. 530 

 531 

 532 

Figure 10. The precipitations from WRF (Pcp_WRF, solid line on the top) and ERA5 (Pcp_ERA5, dash line on the top), as well as the 533 
simulated daily discharge evolution from WRF-Hydro driven by WRF precipitation (solid line at the bottom colored blue in a and grey 534 
in b) and ERA5-precipitation (dashed line at the bottom) against the observation (black dashed line). (a) and (b) indicate the results from 535 
WRF-Hydro simulation with and without the lake/reservoir model, respectively. 536 
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5. Discussion 537 

5.1. Hydrological modelling improvement from convection-permitting WRF-simulated precipitation – Effect of 538 

precipitation forcing 539 

Dynamic downscaling with refined resolution, especially in the convection-permitting scale, allows for a more reasonable 540 

representation of precipitation processes, particularly in mountainous areas (Schumacher et al., 2020; Li et al., 2020). The 541 

convection-permitting WRF simulation tends to improve local (e.g., mesoscale) scale processes and interactions between local and 542 

large-scales, especially over complex terrain (Kendon et al., 2021; Guevara Luna et al., 2020; Schmidli et al., 2006). Woodhams 543 

et al.'s research (2018) demonstrates that the convection-permitting WRF model shows greater skill than the global model, in 544 

particular on sub-daily time scales and for storms over land. It thus potentially contributes to added value in precipitation simulation. 545 

In our study, the WRF simulation improves the precipitation simulation (Sect. 4.1), especially, reducing the overestimation of light 546 

rainfall (1-15 mm day-1) events compared to ERA5 (Fig. 3 and Table 8). Consequently, the hydrological simulation with the 547 

lake/reservoir module, using WRF precipitation as input (LakeCal), showed significant improvement, particularly in reducing false 548 

peak events, compared to that using ERA5 precipitation (LakeCal-ERA5) (Fig. 10a). This improvement related to peak flow is 549 

also evident in the WRF-Hydro simulation without the lake/reservoir module (Fig. 10b). 550 

5.2. Hydrological modelling improvement from convection-permitting WRF-simulated precipitation – Effect of 551 

lake/reservoir module 552 

The lake/reservoir module is crucial for improving hydrological simulations over TRB in East Africa. Possible factors contributing 553 

to the overestimation issues that can occur even with sufficient spin-up time. Factors such as the groundwater component, key 554 

hydrological parameters, and lake-related parameters. Despite some adjustments, the groundwater component (Sect. 4.2.4) and key 555 

hydrological parameters (Sect. 4.2.3) have a limited ability to alleviate the overestimation of dry-season flow in WRF-Hydro 556 

simulation without lake/reservoir module (LakeNan). In contrast, tuning lake-related parameters could significantly influence 557 

downstream discharge (Sect. 4.2.6). This underscores the important role of lake/reservoir module in enhancing hydrological 558 

simulations in the data scarcity regions that contain lakes or reservoirs. 559 

 560 

Lake/reservoirs play a crucial regulatory role, storing water during the wet season (especially peak-flow) and releasing water during 561 

the dry season (Zajac et al., 2017; Hanasaki et al., 2006). In our study, hydrological simulations without lake/reservoir module in 562 

the TRB, which includes five lakes, show significant underestimation (-78 %) in dry-season flow and overestimation (24 %) in 563 

peak-flow. These biases (dry-season flow underestimation and peak-flow overestimation) are common issues in East Africa, as 564 

highlighted by Arnault et al., (2023). Previous studies demonstrated that enhancing reservoir hydrological processes can improve 565 

simulation accuracy (Hanasaki et al., 2006; Lehner et al., 2011) for basins with reservoirs or lakes. Our results confirm that the 566 

well-calibrated WRF-Hydro system with the lake/reservoir module significantly reduces the underestimation of dry-season flow 567 

and overestimation of peak-flow. The lake/reservoir module helps to correct the underestimation of dry-season flow, adjusting the 568 

dry-season flow bias from -78 % in LakeNan simulation to 34 % in the LakeCal, despite some positive bias. Additionally, the 569 

peak-flow bias in the lake/reservoir simulation decreased to 17 %, compared to the value of 24 % in LakeNan simulation. 570 

5.3. Uncertainties of the hydrological modelling 571 
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Although the lake module improves WRF-Hydro simulation, the model expressed as a water balance equation with a simple level-572 

pool scheme could induce uncertainties in the hydrological simulation, due to the insufficient physical mechanism, lack of 573 

consideration for human activities and small tributaries in the upstream of lakes. For example, lake water levels may be not well 574 

presented (Fig. S4 and Table S6). In the LakeCal simulation, the water level devotion can reach -191m (-28 % of the water level 575 

observation averaged over 2011-2015) at KIAMBERE. Moreover, the water level fluctuations between the simulations and 576 

observation show large differences, with r2 ranging from near zero (0.005) to 0.25 for the five lakes. 577 

 578 

The groundwater component may cause uncertainties, as we used a pass-through bucket module that directs all flow from the soil 579 

column into the channel without recharging groundwater. This approach might not capture the intermittent groundwater recharge 580 

from seasonal rainfall in the TRB (Taylor et al., 2013). This leads to potential inaccuracies in simulating groundwater processes 581 

and their interaction with surface water in East Africa. 582 

 583 

The benchmark data in the data scarcity area (East Africa) presents challenges for model evaluation. For example, uncertainty from 584 

IMERG precipitation over East Africa (Dezfuli et al., 2017), may complicate precipitation evaluation. WRF precipitation shows 585 

an underestimation of extreme precipitation (i.e. 90-100 quantiles) against the IMERG (Fig. 3), while the simulated discharge from 586 

LakeCal driven by WRF-precipitation does not show a distinct underestimation of extreme flow (against the observation) as 587 

expected (Fig. 10b). The absence of the underestimation of extreme flow suggests a potential overestimation of extreme 588 

precipitation from IMERG against the real. The overestimation of IMERG precipitation in Africa has been demonstrated in 589 

previous research (Maranan et al., 2020; Dezfuli et al., 2017), which consequently creates the illusion of some underestimation in 590 

WRF precipitation (Fig. 2 and Table 7). Such erroneous underestimation of WRF precipitation was also indicated by the general 591 

overestimation of extreme flow in LakeCal simulation (Fig. 10 a-b). 592 

 593 

Future work will focus on refining the hydrological simulation over East Africa with an advanced dynamical lake/reservoir module 594 

(Wang et al., 2019) and an enhanced groundwater component. Bias correction of hydrological output variables could also be 595 

considered to improve the hydrological simulation (Tiwari et al., 2022). Besides, reliable benchmarks in East Africa will be crucial 596 

for evaluating WRF simulation performance. 597 

6. Conclusion 598 

In this article, we presented a seamless, consistent meteorological-hydrological modelling system for hydrological simulation in 599 

East Africa. The hydrological simulation is enhanced by CPWRF and lake module, through a case study in the TRB. 600 

(1) The refined precipitation from CPWRF simulation improves the hydrological simulation, which makes an NSE increase of 601 

0.53 when comparing LakeCal to LakeCal-ERA5, contributing to a 24 % enhancement in the hydrological simulation. The 602 

CPWRF simulations produce more accurate precipitation estimates than ERA5, particularly for the precipitation amount over 603 

mountainous regions and light precipitation events (1-15 mm day-1) in the dry seasons (JF and JJAS). The well-calibrated 604 

lake-integrated simulaiton driven by CRWRF output (LakeCal) was improved especially alleviating the peak false, compared 605 

to that by ERA5 (Lake-ERA5). 606 

 607 

(2) Additionally, the incorporation of the lake/reservoir module in the WRF-Hydro system mitigates the bias of dry-season flow 608 

and peak flow when comparing LakeCal to that without lake (LakeNan), with an NSE increase of 1.67, contributing to a 76 % 609 
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improvement in hydrological simulation. The lake module could distinctly affect discharge through lake-related parameters. 610 

The lake module makes river discharge more sensitive to spin-up time, which prolongs the spin-up time required for the 611 

streamflow simulation to achieve stability, with dry-season flow exhibiting higher sensitivity compared to the rain-season 612 

flow. Adjustments to the lake-integrated model’s parameters (runoff infiltration rate, Manning’s roughness coefficient, and 613 

the groundwater component) have minimal impact on he dry-season flows.  614 

 615 

Our study marks the improved streamflow simulation using WRF-Hydro modelling system by integrating with a lake/reservoir 616 

module and convection-permitting WRF simulation. This approach offers a promising tool for conducting reliable hydrological 617 

simulations in data-scarce regions of East Africa. Previous studies have rarely addressed the sensitivity analysis and parameter 618 

tuning of the lake/reservoir module within the WRF-Hydro system. Our findings offer new insights into the impacts of 619 

lake/reservoirs on hydrological simulations, providing valuable benchmarks for optimizing hydrological modelling, especially 620 

those involving lake/reservoir components. 621 

 622 

Utilizing the lake/reservoir module and convection-permitting modelling, our approach could address some of the challenges 623 

related to flood/drought simulation uncertainty and lay the groundwork for more sophisticated hydrological modelling related to 624 

more complex water cycles. This enhancement from the approach has the potential for more accurate flood and drought 625 

predictability, facilitating more informed decision-making in water resource management, as well as flood and drought risk 626 

mitigation. Ultimately, this supports sustainable environmental stewardship in regions susceptible to hydrological variability and 627 

change. 628 
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