
General Response for both reviewers.  

We would like to express our sincere gratitude to both reviewers for their valuable feedback, 
which greatly assisted in reorganizing the content and enhancing the presentation of the results 
and discussions. In response to the suggestions provided by both reviewers, we have made 
several significant revisions to the manuscript. We will first outline these changes in this general 
response to the reviewers and then provide a point-by-point response to each reviewer’s 
comments. Additionally, we would like to note that, in accordance with HESS guidelines, the 
manuscript revisions are not yet finalized, and we are still in the process of refining them. 
However, we have included the changes in their current form here to illustrate the revisions made 
thus far. Below are the main changes made to the manuscript for the sections with major 
changes.  

Introduction:  

We improved the introduction based on the recommendations made by both reviewers, and 
added background information on the IWAA program, referring to the new USGS report, 
introduced the bias adjusted conus404 dataset and why we performed this WRF-Hydro 
application. Below is the introduction text after making multiple edits to it:  

Water availability is crucial for sustaining life, supporting ecosystems, and driving economic 
development. However, the balance between water supply and demand is increasingly strained 
due to factors such as climate change, pollution, and over-extraction. Recognizing the critical 
importance of water availability, the U.S. Congress has mandated federal agencies to conduct 
regular, comprehensive assessments to monitor and evaluate water resources across the country. 
In response, the U.S. Geological Survey (USGS) published two preliminary reports (Alley et al., 
2013; Evenson et al., 2018), conducting Focused Area Studies and laying the groundwork  for 
comprehensive national initiative (Stets et al., 2025).  

The USGS Integrated Water Availability Assessments (IWAAs) is a comprehensive national 
initiative designed to evaluate water availability in the United States (U.S.) on a recurring basis. 
The inaugural cycle of this national water availability assessment has two primary objectives: 
firstly, to provide a status assessment of water availability for the period 2010 to 2020 on a 
national scale, and secondly to conduct a historical trend analysis exploring multi-decadal 
changes over time for the period 1980 to 2020. Subsequent USGS IWAAs will expand the 
assessment scope to include projections and undertake more focused regional studies (Miller et 
al., 2020). 

To enable continuous, nationwide analysis—even in regions with sparse observational data—two 
national-scale hydrological models were utilized in the IWAA framework. The first model is a 
national-scale implementation of the Precipitation Runoff Modeling System (PRMS, Regan et al. 



(2018)), while the second is The Weather Research and Forecasting (WRF) model hydrological 
modeling extension package (WRF-Hydro, Gochis et al. (2020)) which is discussed in detail in 
this paper. Stets et al. (2025) provides comprehensive insights into the IWAA, including the 
results from its initial activity, which assessed water availability over the water years 2010 to 
2020 (Gorski et al., 2025). While the IWAAs address various dimensions of water availability, 
including quantity, quality, use, and aquatic ecosystems (Stets et al., 2025), this paper 
specifically focuses on the water quantity aspect. 

Errors in simulated hydrologic components such as streamflow are aggregated errors emerging 
from errors in initial states, deficiencies in model structure, model parameter, and atmospheric 
forcing. Errors in the forcing dataset nonlinearly contribute to streamflow errors (Rafieeinasab 
et al., 2015) and, therefore, it is of great importance to choose the right forcing dataset for the 
application at hand. Ideally, one would like to force (and calibrate) the model using a dataset 
with an appropriate temporal and spatial resolution, a long-term data record, and physically 
consistent variables. The modeling applications used to support the first cycle of the IWAAs are 
forced by the state-of-the-art, CONUS404 dataset, a regional hydroclimate dataset over the 
conterminous United States (CONUS) developed through a collaborative initiative between the 
USGS and the National Center for Atmospheric Research (NCAR) (Rasmussen et al., 2023a). 
CONUS404 provides 40+ years of data at a spatial resolution of 4-km across CONUS and hence 
called CONUS404.  

Through better representation of fine-scale weather phenomena, such as mesoscale convective 
systems and orographic precipitation, CONUS404 is able to produce a relatively accurate 
distribution of rainfall and temperature over a large area and a long period. The CONUS404 
dataset provides an opportunity to study water-budget components at a relatively high spatial 
and temporal scale, which is of importance to hydroclimate studies. There is also a future 
scenario of CONUS404 providing an opportunity for studying climate change impacts on water 
budget components, making CONUS404 an appealing candidate for this study. Initial assessment 
of the CONUS404 dataset revealed some notable regional biases that could introduce inaccuracy 
in the hydrologic modeling and the model calibration procedure. Hence, in this study, the 
CONUS404  dataset (Rasmussen et al., 2023a) air temperature and precipitation are bias 
adjusted. The bias-adjusted CONUS404 is used to force (and calibrate) both IWAAs model 
applications (PRMS and WRF-Hydro, Stets et al. (2025)). 

As mentioned above, WRF-Hydro (Gochis et al., 2020) is one of the two hydrological model 
applications used in the first cycle of the IWAAs (Stets et al., 2025). WRF-Hydro has been widely 
used in research and operations in configurations coupled to the atmosphere (e.g. Yucel et al., 
2015; Fredj et al., 2015; Senatore et al., 2015; Arnault et al., 2016; Givati et al., 2016; Kerandi 
et al., 2018; Naabil et al., 2017; Verri et al., 2017; Varlas et al., 2018) and uncoupled 
applications (e.g. Xiang et al., 2017; Yin et al., 2022, 2021; Mehboob et al., 2022; Lee et al., 
2022; Bao et al., 2022) where the model is forced by reanalysis or observational atmospheric 



data. One of the most prominent applications of WRF-Hydro is the National Oceanic and 
Atmospheric Administration (NOAA) National Water Model (NWM). A particular instance of 
WRF-Hydro has been running operationally as the NWM since August of 2016 (Cosgrove et al., 
2024; Read et al., 2023). Covering the CONUS along with parts of Canada and Mexico, the 
NWM significantly enhanced both temporal and spatial simulation resolutions of operational 
hydrological forecasting across the CONUS. The number of features for which forecasts are 
generated has increased from approximately 3,700 River Forecast Center prediction locations to 
over 2.7 million stream reaches derived from the National Hydrography Dataset NHDPlus 
version 2.1 (McKay et al., 2012). 

The WRF-Hydro instance used in this study aligns with the hydrography specifications of the 
NWM (Cosgrove et al., 2024) and uses similar physics options to NWMv3.0, with the exception 
of waterbody treatment. Waterbodies and water use are being represented in the IWAAs as a 
post-process, so the hydrologic models are estimating "natural" stream and waterbody inflows 
only. The IWAA application utilizes the bias-adjusted CONUS404 dataset. Therefore, it is  
necessary to calibrate the model to the new atmospheric forcing dataset and adjust the 
parameters accordingly. 

This paper focuses on providing an in-depth account of the WRF-Hydro modeling effort within 
the IWAAs, specifically delving into the details of the WRF-Hydro model configuration, 
describing calibration and regionalization procedures, and evaluating its performance. This 
paper offers model evaluations of not only streamflow, but also the evapotranspiration, soil 
moisture and snowpack that are key factors in assessing water availability. This study focuses on 
providing bulk statistics of model performance compared to the available observation or other 
widely used model estimates, while Gorski et al. (2025) offers in-depth analysis of water 
availability based on the model simulation produced in this study and compares WRF-Hydro and 
PRMS model simulations. 

Model Calibration and regionalization 

In an effort to reduce the text, and keep the manuscript focused we have only provided the 
essential information regarding the calibration and regionalization and moved the details to the 
main manuscript. To keep it consistent we also moved the first section, “Evaluation of 
Calibration Basins” including Figures 7 and 8 to the supplement. The reduced text in the paper 
us as follows:  

Conducting regional calibration for distributed models like WRF-Hydro is computationally 
expensive. One strategy to minimize this cost is to calibrate a select subset of basins, then 
extrapolating parameters to non-calibrated locations through a parameter regionalization 
process. We employ this strategy and calibrate 1,522 basins (Figure 5) which have minimal 
human impacts and are generally considered mostly natural flow basins, consistent with the 



WRF-Hydro IWAAs configuration’s exclusion of reservoirs, diversions, and other management. 
The core optimization algorithm used is the Dynamically Dimensioned Search (DDS) algorithm 
introduced by Tolson and Shoemaker (2007). In total, 17 WRF-Hydro model parameters (Table 
S1) are calibrated for the IWAAs configuration informed by a combination of pertinent scientific 
literature (Cuntz et al., 2016; Cosgrove et al., 2024; RafieeiNasab et al., 2025) and expert 
opinion. 

The optimization procedure exclusively employs streamflow observations, with the (minimized) 
calibration objective function defined as 1 minus the Kling-Gupta efficiency (KGE) of hourly 
streamflow, where KGE is as proposed by Gupta et al. (2009). KGE for daily streamflow is 
applied in instances where there are insufficient hourly flow measurements. The choice of  the 
hourly streamflow calibration and also use of KGE as the objective function is based on previous  
WRF-Hydro applications (Cosgrove et al., 2024; RafieeiNasab et al., 2025). Due to time 
limitations of the project, we did not experiment with any other temporal scale (daily or coarser) 
or a different objective function that might be more suitable for the water availability assessment 
than the current choices. The number of iterations in the DDS algorithm is set to 400 except for 
large domains (> 5,000 km2), where only 200 iterations are used for computational tractability. 

Before initiating the calibration process, a model run for each basin from October 2010 to 
October 2021 was spun up using default parameters. Subsequently, the "warm" model states 
from October 2021 serve as initial conditions for the calibration model runs, commencing from 
October 2012. While it is recognized that conditions in 2021 may differ from those in 2012, we 
assume that the seasonality and regional climate are similar. In addition to the single spin-up run 
with the default parameter, each calibration cycle incorporates a distinct 1-year acclimation 
period (from October 2012 to October 2013) with updated model parameters. This is to mitigate 
instabilities that could arise from the parameter change. The calibration phase spans a total of 
five water years (from October 2013 to October 2018). Independent validation period includes 2 
years preceding the calibration interval (October 2011 to October 2013) and 3 years succeeding 
the calibration period (October 2018 to October 2021). The error metrics of simulated 
streamflow for both calibration and validation periods are reported in the Supplement (Figure S2 
and S3).  

To successfully execute the model application with spatially varying parameters across the 
CONUS, it is imperative to assign appropriate parameters to each grid cell within the model 
domain through a parameter regionalization approach. The attributes of the cells in each 
calibration basin are summarized and compared to summaries of attributes of all 
(non-calibrated) cells in 200 each USGS 10-digit hydrologic unit code (HUC10) of the  
Watershed Boundary Dataset (Jones et al., 2022). For each HUC10, the parameters from the 
calibration basin with the most similar characteristics are assigned to the cells within the 
HUC10. Two different set of basins attributes are used here to define similarity, 1) the 
Hydrological Landscape Region (HLR) framework (Winter, 2001; Wolock et al., 2004; Liu et al., 



2008) 2) the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) 
dataset (Addor et al., 2017).   

Finally, since neither the HLR- or CAMELS-based regionalization approach exhibits universal 
superiority across all spatial contexts, we optimize the performance on a national scale across 
the CONUS by employing a mix-and-match strategy to select the better-performing approach 
(HLR or CAMELS). To do this, USGS 8-digit hydrologic unit codes (HUC8) are chosen as the 
spatial unit. For each HUC8 basin, we select the regionalization scenario that yields the best 
KGE calculated based on daily streamflow across the HUC8. Following the implementation of 
the mix-and-match approach and the establishment of the final configuration of the IWAAs 
WRF-Hydro CONUS model application, we conduct model simulations spanning the period from 
October 2009 to October 2021, encompassing the entire 10-year timeframe of the IWAAs 
program. More details on description of the regionalization are provided in Supplement.  

Result and Discussion:  

Considering the comments from both reviewers, we made the following changes to the sections.  

● Moved the first section, “Evaluation of Calibration Basins” including Figures 7 and 8 to 
the supplement.  

● Made modifications to “Regionalized Streamflow Evaluation” subsection, for readability 
and also addressing raised concerns and comments. Moved Figure 9 (c) to the supplement 
and removed the NSE part of Figure 10.  

● Snow, ET and SM verifications remained mostly as presented in the original manuscript 
version.  

● We have added a new section titled "Discussion of Water Budget Components" to 
provide a more detailed analysis of the water budget components. However, as noted in 
the introduction, a comprehensive water budget analysis has already been conducted by 
the USGS. Therefore, in this section, we focus on explaining the interactions between the 
water budget components, particularly those discussed in the previous sections, and 
propose potential solutions to address the identified shortcomings. Below is the newly 
added text, Figure N1 is suggested to be added to the main text, while Figure NS1, NS2 
and NS3 are newly suggested figures that will be added to the supplement.  

Discussion of Water Budget Components:  

In this section, we will discuss the model biases of SWE, ET, SM and streamflow and their 
interactions with each other. We will not perform detailed water budget analysis here as Gorski 
et al., 2025 provides a detailed analysis of all water budget components based on the simulations 
provided by this study and also compares the finding against the national-scale implementation 
of the Precipitation Runoff Modeling System (Regan et al., 2018) over the CONUS. Instead, we 



focus on providing reasoning of model behaviour and offering potential solutions for different 
regions across the US.  

We recognize that the current configuration of the IWAA may not be fully suitable for all water 
budget components, particularly the groundwater component. The existing setup is more 
appropriate for surface water analysis due to its simplified representation of groundwater and 
baseflow. Rummler et al. (2022) and Felfelani et al. (2024a) also emphasize the need for a more 
accurate representation of groundwater in the WRF-Hydro model. Ongoing research is exploring 
the integration of the U.S. Geological Survey’s modular finite-difference flow model 
(MODFLOW) with WRF-Hydro, a development that could lead to significant improvements in 
model performance (Felfelani et al., 2024b). Given the limitation of the current WRF-Hydro 
model in presenting groundwater, we do not evaluate this water budget component here. Gorski 
et al., 2025 also performed the groundwater analysis based on well observational data rather 
than model simulations, and highlighted the groundwater modeling as an area for improvement 
in future IWAA studies.  

Figure N1 shows the seasonal biases of ET, surface SM, root zone SM, SWE as well as 
streamflow. The streamflow bias for each month is the median percent bias of the GAGES-II 
reference basins in a given RFC. Figure N1 provides the mean across the years as the solid line, 
and the shaded area shows one standard deviation of a given quantity for that month. We also 
provided the scatter plots of percent bias of streamflow against ET, SWE, surface and root-zone 
soil moisture biases for each individual month during simulations period in Figure NS1 (RFCs 
with snow) and NS2 (RFCs with little to no snow). Correlation coefficients between streamflow 
biases and other water budget components are presented at each subpanel. Below we start with 
discussion points for the northeast US, then west U.S. and finally the great plains and southeast 
us.  

Despite very little to no biases in overall streamflow metrics in the east US, there is a strong 
seasonal streamflow pattern with overestimations of streamflow at the fall and winter followed 
by an underestimation in spring and summer.  While snow biases don't always align directly with 
streamflow biases, they do share a common trend. Notably, in regions like the NERFC, OHRFC, 
and MARFC, there is a noticeable drop in streamflow estimates during the melt season, 
following underestimation of snow water equivalent (SWE) values. Previous studies, such as 
Naple (2011), have identified this SWE underestimation in the region, which is typically linked to 
negative precipitation biases, positive temperature biases, and errors in precipitation 
partitioning (Naple, 2011; Minder et al., 2015). In our study, the initial CONUS404 dataset also 
showed low precipitation biases in this area, but these biases have been somewhat corrected in 
the adjusted CONUS404 dataset. Consequently, errors in model simulations are likely 
attributable to model settings (e.g., precipitation partitioning algorithm) and parameterization 
(calibrated parameters). It is possible that the phase partitioning has misclassified certain events 
as rain instead of snow, potentially due to temperature biases. As shown in Figure NS1, biases in 



streamflow for MARFC, OHRFC, and NERFC are negatively correlated with biases in ET. 
Specifically, low ET biases tend to occur when streamflow biases are high. This issue could 
potentially be addressed by adjusting the model parameter set to partition a larger portion of 
precipitation into ET during the fall and winter months. We recommend exploring a more 
granular calibration approach by calibrating each season individually, which could help identify 
the optimal partitioning and improve model performance or using a multiobjective function 
which takes into account the seasonal biases. 

The NCRFC also exhibits similar snow underestimation. In this region, streamflow biases are 
also strongly correlated with snow biases, leading to a drop in streamflow values and 
underestimation during the spring and summer months. To address these low streamflow biases, 
improving snow simulations—either through more precise atmospheric forcing bias adjustments 
or enhanced phase partitioning—could prove beneficial. Unlike the above-mentioned RFCs 
(MARFC,  OHRFC and NERFC) streamflow biases in the NCRFC are positively correlated with 
ET, except during the fall season, where a similar pattern of positive streamflow and negative ET 
is observed. Throughout the season, soil moisture also exhibits a consistent low bias. The region 
as a whole could benefit from a more effective partitioning of available water between 
streamflow (both direct and indirect runoff) and other components, particularly during the fall 
season. Despite calibrating parameters, streamflow still shows an overall low bias, suggesting 
that calibration alone may not fully address the limitations of the atmospheric forcing or model 
deficiencies. One potential improvement for this region could be the inclusion of subsurface tile 
drainage, given the area's high agricultural water management density. Valayamkunnath et al. 
(2022) demonstrated that incorporating subsurface tile drainage in the region led to reductions 
in surface runoff (-7% to -29%), groundwater recharge (-43% to -50%), evapotranspiration 
(-7% to 13%), and soil moisture (-2% to -3%), significantly improving model performance. 
While this capability was not utilized in the WRF-Hydro IWAA application, it is strongly 
recommended for future applications, as calibration alone has limited potential to address the 
model's shortcomings. 

In the western U.S., the NWRFC exhibits unique behavior in terms of snow and streamflow 
biases. Snow biases in this region show a mix of positive and negative patterns: a slight positive 
snow bias at the start of the snow season, which shifts to a negative bias as the melt season 
begins. Interestingly, the streamflow bias is negatively correlated with snow biases, even when 
considering lagged time series correlations. However, both snow and streamflow biases are 
relatively small throughout most of the season, placing this region among the best-performing 
areas in the country. Note, the significant negative snow bias (~50%) observed in June, 
coinciding with the end of the melt season when snow water equivalent (SWE) values are 
typically low. The positive streamflow bias peaks at the end of the snow season and persists 
through the summer. This high streamflow bias can be attributed to the calibration adjustments 
made to account for exaggerated peak flows. These adjustments helped reduce the intensity of 
the peak flows, leading to a reduction in simulated streamflow biases and improving the KGE 



values across the region. However, this improvement in peak flow representation came with 
trade-offs. The calibration introduced higher streamflow estimates during the recession limb of 
the hydrograph, leading to an overestimation of baseflow (Figure NS3). Additionally, the model 
exhibited high biases in soil moisture during this period. These issues likely stem from 
inadequate groundwater representation in the model, with the calibration attempting to 
compensate for this shortcoming by misplacing water in the system. Another contributing factor 
could be the improper partitioning of evapotranspiration, as indicated by the persistent negative 
ET bias throughout the season. This issue warrants further attention to improve model accuracy. 

The CBRFC and CNRFC exhibit similar bias patterns across different components. Both regions 
perform well at the start of the snow season in representing the snowpack, but they have lower 
peak SWE values and experience an earlier peak compared to SNODAS. A key area for 
improvement is the faster snowmelt rate observed in these regions compared to SNODAS, which 
could be addressed through better calibration. Currently, the MFSNO parameter—representing 
the melt factor in the snow depletion curve—is calibrated using streamflow observations to 
optimize streamflow performance. However, this approach may negatively impact the snowmelt 
rate. An ideal approach would be a stepwise calibration process, where snow-related parameters 
are first calibrated using snow-specific observations to maximize snow performance metrics. 
Although stepwise calibration was tested on a small subset of basins and showed superior 
accuracy for both snow and streamflow, time constraints prevented its full implementation for the 
IWAA WRF-Hydro application. In addition to MFSNO, other snow-sensitive parameters in the 
NoahMP scheme could be fine-tuned to improve snow representation that we recommend for 
future work. Both RFCs also suffer from an underestimation of ET for most of the year, except 
during the summer. The combined low snowpack and ET lead to significant overestimates of 
root-zone soil moisture across all seasons, as the model compensates for the shortcomings in 
snow and ET. In high-elevation areas of these RFCs, similar calibration artifacts as those 
observed in the NWRFC exist, where reducing the high streamflow peaks results in elevated 
baseflow values. 

One of the deficiencies of the WRF-Hydro model in low-elevation semiarid regions of the 
Southwest is its lack of channel infiltration, which can be an important component of the water 
balance. Lahmers et al. (2019) introduced a conceptual channel infiltration function into the 
WRF-Hydro model architecture and found that accounting for channel losses not only improved 
streamflow performance but also reduced ET biases. However, high biases in soil moisture 
persisted in their simulations. Although this approach has shown promising results for the 
limited number of basins studied by Lahmers et al., it has yet to be tested on a regional or 
large-scale level. This capability may not need to be activated across the entire CONUS and 
currently, there is no study to determine where it should be implemented. It's also worth noting 
that in the implementation by Lahmers et al. (2019), the infiltrated water is lost from the system 
and does not contribute to soil moisture or groundwater recharge, meaning the water budget will 
not close if applied as-is. Given the time constraints of the current project, we have not 



implemented the channel infiltration loss in the IWAA WRF-Hydro configuration. However, this 
approach may offer potential improvements for simulating water balance in the semiarid regions 
of the western U.S. 

The MBRFC, ABRFC, and WGRFC share several common features. All three regions exhibit 
spatially varied model performance, with poor simulations in the western areas and more 
reasonable performance along the eastern boundary. These regions are characterized by 
extensive agricultural land use, a large number of water diversions, active reservoirs (National 
Inventory of Dams, NID), and significant groundwater pumping (Scanlon et al., 2012). However, 
none of these factors are adequately represented in the current WRF-Hydro application. 
Previous studies using WRF-Hydro have shown similar challenges in model performance 
(Cosgrove et al., 2024), and difficulties in representing this area are not exclusive to 
WRF-Hydro. Other models also struggle with accurately simulating the region's behavior 
(Towler et al., 2022). Missing physical processes, such as water diversions and active reservoir 
management, as well as inadequate representation of groundwater, make it difficult to calibrate 
the model effectively. As shown in Figure S1, while calibration reduces high biases during the 
calibration period for the basins in these areas, these improvements do not persist during the 
validation period. Furthermore, after regionalization, the model still displays unsatisfactory 
performance, with high streamflow biases. Root zone soil moisture also shows a positive bias in 
these regions, suggesting that the model is incorrectly placing excess surface runoff into the soil. 
ET estimates are mostly unbiased, except in late spring and summer when significant biases are 
observed. Overall, the model struggles to partition water correctly within its current structure 
and requires modifications to better represent missing or poorly captured phenomena. As an 
example, the WRF-Hydro development team has been recently working toward adding diversion 
into the model code that could have a great potential, but it is still at the early stage of research. 
Another area of active research is the coupling of MODFLOW and WRF-Hydro which was 
mentioned earlier, and could enhance the quality of model simulations in this region to some 
degree.  

LMRFC is among the RFCs with reasonable overall performance, for this region the ET biases 
are mostly the opposite sign of ET biases, suggesting the region could potentially be improved 
with a refined calibration process and improved partitioning of the available water. SERFC is a 
unique area also, with high streamflow biases before the calibration which was reduced with 
parameter estimation. However, the parameters did not transfer very well and southern Florida 
still suffers from high streamflow biases. The biases of the other water budget components, low 
soil moisture estimates along with low ET estimates, suggest this could be improved across the 
region with an improved water partitioning.  

https://nid.sec.usace.army.mil/#/


 

Figure N1. Time series of percent bias of monthly SWE, ET, surface SM, root-zone SM, and 
streamflow for each RFC region. The shaded area reflects the standard deviation of each variable 
across the years (2009-10 to 2021-10).   



 

 



Figure NS1. Scatter plot of percent bias of monthly SWE, ET, surface SM, root-zone SM, against 
the streamflow bias (water years 2010-21) for each RFC region that receives large seasonal snow 
accumulation (> 5mm peak annual SWE). Color coding shows different months of the year.  

 

 

Figure NS2. Scatter plot of percent bias of monthly SWE, ET, surface SM, root-zone SM, against 
the streamflow bias (water years 2010-21) for RFC regions with insignificant seasonal snow 
accumulation (< 5mm peak annual SWE). Color coding shows different months of the year.  



 

 

Figure S3. Two sample hydrographs in the NWRFC with the default (in blue) and calibrated 
parameters (in orang) against the streamflow observations (in black) during the calibration period 
(2013-10 to 2018-10) and validation period (2011-10 to 2013-10 and 2018-10 to 2021-10).  
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Response to Reviewer 2: review posted on Dec 20th.  

Thank you so much for the detailed review, and providing helpful comments. We have made 
changes throughout the manuscript to hopefully address your concerns and also moved some of 
the text to Supplement in an effort to reduce the length of the main manuscript and keep the point 
of the study clear. We also added a new section called “Discussion of Water Budget 
Components” to address multiple raised concerns about the discussion section. The significant 
changes made to the manuscript are mentioned in the general response to the reviewers, and 
below we provide point-by-point responses to the questions and comments. The text from the 
manuscript is in italic and the newly added text is provided in bold.  

The manuscript titled "A WRF-Hydro based retrospective simulation of water resources for US 
integrated water availability assessment" by Rafieeinsasab et al. discusses a nationwide setup of 
the WRF-Hydro modeling system aimed at assessing water resources and availability in the 
United States. The paper is well written and clearly structured; however, it seems more like a 
report than an exploration of scientific questions. There are already numerous studies available 
that describe the calibration of WRF-Hydro. What's new here is the parameter regionalization 
approach but it seems to have a limited applicability for some of the regions. The discussion of 
the calibration results doesn't highlight potential starting points for improvements of the model 
(or does touch the sore spots).  

We agree that there are multiple studies on the WRF-Hydro calibration. In an effort to address 
the concern of yours we moved most of the details of the calibration and regionalization to the 
supplement as well as the results and kept the essential part of it only in the text. One of the 
regionalization scenarios is similar to Cosgrove et al. 2024 and the other approach (CAMEL 
based) is a newly developed approach and not reported in any other manuscript and therefore we 
detailed the whole process in this paper. We have made several comments on the limitations of 
the calibration strategy in the newly added section called “Discussion of Water Budget 
Components” in response to your comments and in an attempt to explain the model performance. 
Please refer to the general comments to review the changes made and the raised points related to 
the calibration/regionalizations deficiencies. In the same section, we also added more details on 
the model itself, the current deficiencies, and areas for improvement.  

On the other hand, the water budget study remains quite general with only long-term average 
analyses and no in depth discussion of the model's applicability to the different climatic 
conditions of the CONUS. Thus, the study's objective is ambiguous as it is neither a proper 
physically based  analysis of the model itself nor an detailed examination of the model's 
capability to simulate water budgets under various climatic conditions. Therefore, I'd like to 
invite the authors to focus more on one of these aspects and I would recommend to do this in 
favor of a more nuanced analysis of the model's capability and shortcomings to simulate water 
budgets and resources.       



This was a very helpful recommendation. The newly added section to the results entitled 
“Discussion of Water Budget Components” attempts to address the concern raised. Please refer 
to the general response to the reviewer to see the changes made. We also added the reference to 
the newly released USGS report based on the model simulations of this work as well as the 
PRMS model in the text for readers who would like to see more in-depth analysis of each water 
budget component and also comparison against the PRMS model.  

Specific comments: 

Here the model was used in a similar setup as it has been developed for the NWM which 
primarily addresses discharge prediction. However, since this study aims to examine water 
budgets – also on a longer term perspective – it is worth questioning whether the chosen 
NWM-based setup is appropriate for the task. Groundwater, for instance, is considered only in 
terms of a discharge contribution, approximated by a conceptual linear reservoir model. 
However, for water resources assessment Groundwater represents an important storage body. As 
shown in Rummler et al. (2022, https://doi.org/10.1002/hyp.14510) a more sophisticated 
description of groundwater processes WRF-Hydro can lead to significantly improved discharge 
estimates. Further improvements to the model were demonstrated in a study focused on semi-arid 
environments, in which even some of the co-authors were involved (Lahmers et al. 2019, 
https://doi.org/10.1175/JHM-D-18-0064.1). However, these findings were not considered here 
even though they could have enhanced simulations for the southwestern regions.  

Thank you for raising the concern. While the NWM was developed to represent processes 
beyond just discharge, we agree with the statement made by the reviewer that groundwater plays 
a critical role in water supply and the current configuration of the model is mostly suitable for 
surface water analysis. In the recently released USGS report, which the IWAA simulations was 
performed for, GW analysis is being performed using observational data from groundwater wells 
instead (https://doi.org/10.3133/pp1894B). In the same report, incorporation of groundwater flow 
processes and groundwater surface water interactions is identified as an area of potential 
improvement for future water supply assessments. That being acknowledged, the WRF-Hydro 
group is currently working on coupling the MODFLOW with WRF-Hydro, which could address 
the issues with GW simulations to some extent in the future studies. The offline coupling results 
have been published in Felfelani et al. 2024 
(https://www.sciencedirect.com/science/article/abs/pii/S0022169424000970), and the full 
coupling using BMI was presented by Felfelani at AGU 2024 
(https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1639136) and a manuscript is in 
preparation. To address the raised concerns, we added the following to the new section before 
diving into verification of other components.  

“We recognize that the current configuration of the IWAA may not be fully suitable for all 
water budget components, particularly the groundwater component. The existing setup is more 

https://www.sciencedirect.com/science/article/abs/pii/S0022169424000970
https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1639136


appropriate for surface water analysis due to its simplified representation of groundwater and 
baseflow. Rummler et al. (2022) and Felfelani et al. (2024a) also emphasize the need for a 
more accurate representation of groundwater in the WRF-Hydro model. Ongoing research is 
exploring the integration of the U.S. Geological Survey’s modular finite-difference flow model 
(MODFLOW) with WRF-Hydro, a development that could lead to significant improvements in 
model performance (Felfelani et al., 2024b). Given the limitation of the current WRF-Hydro 
model in presenting groundwater, we do not evaluate this water budget component here. 
Gorski et al., 2025 also performed the groundwater analysis based on well observational data 
rather than model simulations, and highlighted the groundwater modeling as an area for 
improvement in future IWAA studies.” 

Regarding the comment made about Lahmers et al. 2019, we agree with the reviewer that this 
work has shown benefit in semiarid regions. However, the work has been tested on only a few 
basins and we have not done testing of the model performance on regional to CONUS-scale 
simulations. Also, in the current configuration implemented by Lahmers, infiltrated water 
through the channel is lost, and does not feed back into the soil or groundwater, and therefore the 
water budget will not close. This enhancement/capability needs a careful strategy where to 
implement it to be consistent with local conditions and not mask other important processes, and 
this analysis was beyond the scope of the IWAA project. For the IWAA project, we had to 
operate under a very tight timeline for the production of the model simulations, which didn't 
allow for that broader assessment of where channel losses would be active. To address the 
concern of the reviewer the following paragraph in the newly added section (discussion) of the 
manuscript.  

“One of the deficiencies of the WRF-Hydro model in low-elevation semiarid regions of the 
Southwest is its lack of channel infiltration, which can be an important component of the 
water balance. Lahmers et al. (2019) introduced a conceptual channel infiltration function 
into the WRF-Hydro model architecture and found that accounting for channel losses not 
only improved streamflow performance but also reduced ET biases. However, high biases in 
soil moisture persisted in their simulations. Although this approach has shown promising 
results for the limited number of basins studied by Lahmers et al., it has yet to be tested on a 
regional or large-scale level. This capability may not need to be activated across the entire 
CONUS and currently, there is no study to determine where it should be implemented. It's also 
worth noting that in the implementation by Lahmers et al. (2019), the infiltrated water is lost 
from the system and does not contribute to soil moisture or groundwater recharge, meaning 
the water budget will not close if applied as-is. Given the time constraints of the current 
project, we have not implemented the channel infiltration loss in the IWAA WRF-Hydro 
configuration. However, this approach may offer potential improvements for simulating water 
balance in the semiarid regions of the western U.S." 



For the bias correction, what is the reasoning for using a "day-of-the-year" approach? Is it that 
you want to do a kind of climatological bias correction? You stated that Daymet is only available 
until 2017. Looking to the data portal, one can find data until 2023. So data including 2021 
should have been available at the time of your analysis. Nevertheless, using a long term 
climatological correction does not account for inter-annual variability (e.g., enduring 
extraordinary drought periods) and may further disregard fundamental changes in climate 
between the overall averaging period (1980-2017) and the study period (2010-2021). With the 
available data you could have pursued a more time-variant approach. 

The reviewer is correct that Daymet data are available for more recent dates in the portal, and our 
use of Daymet data up to 2017 at the time of the processing was based on quite some analyses 
through trial and error. First, we obtained the original PRISM data and examined CONUS404 
bias structures in reference to PRISM and we noticed large biases especially in the snow 
dominated regions. We consulted the literature and also compared PRISM with SNOTEL data 
and we realized that there might be some inherent biases in PRISM (e.g., related to snow 
undercatch in some of the observational datasets as well as cold biases at the SNOTEL sites). 
Then we were informed about the availability of a better quality PRISM dataset with some of the 
biases corrected and we purchased the better quality PRISM up to 2017 and we indeed noticed 
some improvements in the better quality PRISM compared to the original version. Subsequently, 
we obtained and examined Daymet and compared CONUS404 with both Daymet and better 
quality PRISM and we got quite similar bias structures between Daymet and PRISM. Since 
Daymet has a high spatial resolution of 1-km compared to PRISM’s 4-km, we decided to use 
Daymet (up to 2017 similar to PRISM) as the reference dataset for doing the bias corrections. We 
have since obtained Daymet up to the present time and also the better quality PRISM up to 2022, 
however, the data used at the time of the study was limited to 2017.  We now have added 
additional wording to the text to read:  

“This time frame and Daymet were used based on extensive analyses of the CONUS404 bias 
structures in reference to a number of observational datasets including Daymet and PRISM 
and also the time frame covered the concurrent dates from the Daymet, PRISM and 
CONUS404 datasets we had available in our local repository.”   

As the reviewer suspected, we chose to do a day-of-year correction to adjust for how the mean 
bias changes climatologically throughout the year. We now better describe this with a new 
sentence (in bold here):  

“The day-of-year biases were then calculated at every pixel by averaging the biases for each day 
of the year from the 38-year data set, applying a 31-day smoothing to both precipitation and 
temperature biases to remove anomalous day-to-day fluctuations in calculated biases. This was 
done to account for how the bias varies climatologically on an annual basis; interannual 



variability was not considered, since there was more uncertainty in its sign and magnitude. 
Figure 3 shows the domain-averaged temperature and precipitation biases.”   

We opted not to do an inter-annual variability correction, as there would have been greater 
uncertainty in how much of the residual bias is from inter-annual variability, and how much is 
from other factors.  We also address this in the text (see new sentence above.) 

Concerning the selection of relevant parameters (Table 1) it is mentioned that it also relies also 
on literature review; however, the extensive Noah MP parameter study by Cuntz et al. (2016, 
https://doi.org/10.1002/2016JD025097) is not considered or at least not mentioned. How has the 
relevance of the parameters been assessed in general?  In terms of calibration results it would be 
interesting to learn about the ranges, patterns, and relationships of the optimized values but this 
relates to my initial comment about the focus of this study –whether it should concentrate more 
on the model itself or on the budget analysis. 

Thank you for the comment. The focus of the paper is introduction of the application in hand, 
and evaluating the model performance against the widely used products, to highlight the 
potential of the models for water availability study. Therefore, we avoid shifting the discussion 
toward in-depth analysis of the model parameters and how the calibration is impacting the 
parameter range. Following the concerns of both reviewers, we have reduced the 
calibration/regionalization section, cited Cosgrove et al. 2024 and Rafieeinasab et al. 2025 
(https://doi.org/10.1029/2024WR038048) where possible, and moved content to the Supplement. 
Also we agree with the reviewer that Cuntz et al. 2016 has been a leading paper in sensitivity 
analysis of the NoahMP parameters and we added the missing citation to the manuscript.  

Why do you consider hourly measures for the evaluation of the calibration basins and daily 
measures for the regionalized stream flow? 

Due to time constraints in the start of the project we performed hourly calibration, which is the 
common time resolution most WRF-Hydro applications use, and did not have enough time to 
experiment with other temporal resolutions or other objective functions. However, as we 
proceeded into the project, we decided to put less emphasis on the sub-daily error metrics given 
the goal of the project is water availability assessment, and performed regionalization and also 
verifications of streamflow at the daily time step. One could argue that the calibration also 
should have been done at a daily timescale and that is fair; therefore, we added the following to 
the text to add context for the reader.  

The choice of the hourly streamflow calibration and also use of KGE as the objective function 
is based on previous WRF-Hydro applications (Cosgrove et al. 2024, RafieeiNasab et al. 
2025). Due to time limitations of the project, we did not experiment with other temporal scales 
(daily or coarser) or different objective functions.  



That being acknowledged, even though the first use of the model simulation is at a coarse spatial 
(HUC12) and temporal (monthly) scale by USGS for water availability assessment (Stets et al. 
2024: https://doi.org/10.3133/pp1894A), we foresee other applications could benefit from the 
sub-daily calibration and sub-daily outputs.  

It is anticipated that for the basins with regionalized parameter sets performance will be reduced. 
Have you considered employing also other regionalization approaches, such as proposed by  
Schweppe et al. (2022, https://doi.org/10.5194/gmd-15-859-2022)? 

Yes, we have considered this work in the past. MPR provides smoother parameter fields, 
however, according to Mizukami et al. 2017, the performance at the calibration sites using 
individual basin calibration slightly outperforms the model performance using MPR approach 
(Figure 5 and 6, in particular the NSE error metric). Also, there is not enough guidance on 
transfer function forms and geophysical predictors to be used for each parameter and we usually 
calibrate a relatively large number of parameters (impacting soil, vegetarian, snow and runoff). 
So we decided to calibrate all basins with reliable streamflow data (and limited human 
interference) and then transfer the calibrated parameters from these basins to uncalibrated areas 
based on catchment similarity.  

In section 5.2 it would be very interesting to read more about the physical reasons for the 
mismatch of the simulations. Perhaps this could also be discussed in a final overarching 
interpretation of the results that includes all the different water budgets analyzed in this study. 

Thank you for the comment. This is now discussed more in depth along with other water budget 
components in the newly added section. Please refer to the general response to the reviewers.  

The rest of the analysis for snow, evaporation, soil moisture only shows that the model can 
reproduce a 10-year climatological mean. This may also be achievable from an reanalysis. Here I 
would expect a more in-depth analysis of the water budgets, regional features, the shortcomings 
of the model and potential for improvement, as well as the benefits of simulating the water 
budgets at such high resolution and over this large spatial extent. Additionally, the general 
suitability of the model in its current configuration for longer-term trend analysis and future 
water availability projections as is intended by the IWAA initiative should be discussed. 

Thank you so much for the useful comment. In order to address multiple concerns raised by both 
reviewers, we have added a discussion section to explain further the impact of different processes 
on the streamflow error metrics. 

Finally, my last point is about long term storage, i.e. groundwater. There is no evaluation of the 
changes in terrestrial water storage which I assume is important for water budget analysis and 
water balance closure. GRACE derived deviations should be well suited for such an analysis 
given the large spatial extent of the study region.  

https://doi.org/10.5194/gmd-15-859-2022


Thank you for the comment. To address your comments earlier, we mentioned in the discussion 
section that the GW simulation in this study is based on a simple GW conceptualization, and so 
the USGS assessment report is using well observations for the groundwater analysis instead. 
That being acknowledged, another colleague is currently working on verification of the total 
water storage of IWAA (as well as other models such as NWM) against GRACE, which he plans 
to publish in a different manuscript and, therefore, we refrain from bringing that into this 
manuscript.  

Minor comments: 

● L263: There are several studies that point out the ineptitude of NSE as a goodness of fit 
measure for daily to subdaily hydrographs. 

○ NSE is a widely used metric and generally we do not see any issue in using it as a 
verification error metric along other metrics such as bias, correlation and KGE. 
We agree that there are studies questioning the suitability of using NSE as an error 
metric and that is one of the reasons for using KGE as the objective function in 
the calibration process. We did not use NSE in the optimization or 
decision-making anywhere in the process, and only presented it as part of a suite 
of supplementary error metrics for model evaluation. However, during the 
revision effort, to shorten the paper and figures, we dropped all the instances 
where we report NSE values from the paper.  Therefore, NSE error metrics have 
been removed from Figure 8 (now Figure S3) and Figure 10 (now Figure 7) and 
text has been edited accordingly.  

● L263-275: There's no information about the temporal resolution used for model 
validation. 

○ The following text has been added to the manuscript to address the raised 
concern. “Since calibration of model parameters is performed using hourly 
streamflow, the verification of the results presented in the Supplement is also 
presented at the hourly time step. However, given the main model application is 
focused on water availability assessment, the regionalized streamflow 
verification is performed at the daily time step. The verification of other 
variables such as evapotranspiration, soil moisture and snowpack is performed 
at the monthly time scale.” 

● Figs. 7 & 8: Captions doe not include information about the time period used for the 
analysis. 

○ Figure 7 and 8 are now in the Supplement and labeled as Figure S2 and Figure S3. 
As suggested, the time period has been added to the captions.  

● Figs. 14–19: Captions doe not include information about the time period used for the 
analysis. 

○ Time period of the verification is added to the caption of all figures.  
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