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Abstract 8 

The last few years have witnessed the rise of Neural Networks (NNs) applications for hydrological time 9 

series modeling. By virtue of their capabilities, NN models can achieve unprecedented levels of 10 

performance when learn how to solve increasingly complex rainfall-runoff processes via data, making them 11 

pivotal for the development of computational hydrologic tasks such as flood predictions. The NN models 12 

should, in order to be considered practical, provide a probabilistic understanding of the model mechanisms 13 

and predictions and hints on what could perturb the model. In this paper, we developed two probabilistic 14 

NN models, i.e., Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and Network-15 

Based Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) and benchmarked them 16 

with long short-term memory (LSTM) for flood prediction across two headwater streams in Georgia and 17 

North Carolina, USA. To generate a probabilistic prediction, a Multi-Quantile Loss was used to assess the 18 

95th percentile prediction uncertainty (95PPU) of multiple flooding events. We conducted extensive flood 19 

prediction experiments demonstrating the advantages of hierarchical interpolation and interpretable 20 

architecture, where both N-HiTS and N-BEATS provided an average accuracy improvement of almost 5% 21 

(NSE) over the LSTM benchmarking model. On a variety of flooding events with different timing and 22 

magnitudes, both N-HiTS and N-BEATS demonstrated significant performance improvements over the 23 

LSTM benchmark and showcased their probabilistic predictions by specifying a likelihood parameter. 24 

Keywords: Probabilistic Flood Prediction; Neural Networks; N-HiTS; N-BEATS; LSTM; Headwater 25 

Stream. 26 

Short Summary  27 

Recent progress in neural network accelerated improvements in the performance of catchment modeling 28 

systems. Yet flood modeling remains a very difficult task. Focusing on two headwater streams, this paper 29 

developed Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and Network-Based 30 

Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) and benchmarked them with 31 

long short-term memory (LSTM) to predict flooding events. Analysis suggested that both N-HiTS and N-32 

BEATS outperformed LSTM for short-term (1 hour) flood predictions. We demonstrated how the proposed 33 
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N-HiTS and N-BEATS architectures can be augmented with uncertainty and sensitivity approaches to 34 

provide skilled flood predictions that are interpretable without considerable loss in accuracy. 35 

 36 

1. Introduction 37 

The last few years have been characterized by an upsurge in the Neural Networks (NN) models. As opaque 38 

NN models are increasingly being employed to make important predictions in hydrological systems, the 39 

demand for creating legitimate NN models is increasing in the hydrology community. However, 40 

maintaining coherence while producing accurate predictions can be a challenging problem (Olivares et al., 41 

2024). There is a general agreement on the importance of providing probabilistic NN prediction (Samadi et 42 

al., 2020), especially in the case of flood prediction (Martinaitis et al., 2023). 43 

Flood occurrences have witnessed an alarming surge in frequency and severity globally. Jonkman (2005) 44 

studied a natural disaster database (EM-DAT, 2023) and reported that over 27 years, more than 175000 45 

people died, and close to 2.2 billion were affected directly by floods worldwide. These numbers are likely 46 

an underestimation due to unreported events (Nevo et al., 2022). In addition, the United Nations Office for 47 

Disaster Risk Reduction reported that flooding has been the most frequent, widespread weather-related 48 

natural disaster since 1995, claiming over 600,000 lives, affecting around 4 billion people globally, and 49 

causing annual economic damage of more than 100 billion USD (UNISDR, 2015). This escalating trend 50 

has necessitated the need for better flood prediction and management strategies. Scholars have successfully 51 

implemented different flood models such as deterministic (Roelvink et al., 2009, Thompson and Frazier, 52 

2014; Barnard et al., 2014; Erikson et al., 2018) and physically based flood models (Basso et al., 2016; 53 

Chen et al., 2016; Pourreza-Bilondi et al., 2017; Saksena et al., 2019; Refsgaard et al., 2021) in various 54 

environmental systems over the past several decades. These studies have heightened the need for precise 55 

flood prediction, they have also unveiled limitations inherent in existing deterministic and physics-based 56 

models. While evidence suggests that both deterministic and physics-based approaches are meaningful and 57 

useful (Sukovich et al., 2014), their forecasts rest heavily on imprecise and subjective expert opinion; there 58 

is a challenge for setting robust evidence-based thresholds to issue flood warnings and alerts (Palmer, 2012). 59 

Moreover, many of these traditional flood models particularly physically explicit models rely heavily on a 60 

particular choice of numerical approximation and describe multiple process parameterizations only within 61 

a fixed spatial architecture (Clark et al., 2015). Recent NN models have shown promising results across a 62 

large variety of flood modeling applications (e.g., Nevo et al., 2022; Pally and Samadi, 2022; Dasgupta et 63 

al., 2023; Zhang et al., 2023) and encourage the use of such methodologies as core drivers for neural flood 64 

prediction (Windheuser et al., 2023).  65 

Earlier adaptations of these intelligent techniques showed promising results for flood prediction (e.g., Hsu 66 

et al., 1995; Tiwari and Chatterjee, 2010). However, recent efforts have taken NN application to the next 67 
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level, providing uncertainty assessment (Sadeghi Tabas and Samadi, 2022) and improvements over various 68 

spatio-temporal scales, regions, and processes (e.g., Kratzert et al., 2018; Park and Lee, 2023; Zhang et al., 69 

2023). Nevo et al., 2022 were the first scholars who employed long short-term memory (LSTM) for flood 70 

stage prediction and inundation mapping, achieving notable success during the 2021 monsoon season. Soon 71 

after, Russo et al. (2023) evaluated various NN models for predicting flood depth in urban systems, 72 

highlighting the potential of data-driven models for urban flood prediction. Similarly, Defontaine et al. 73 

(2023) emphasized the role of NN algorithms in enhancing the reliability of flood predictions, particularly 74 

in the context of limited data availability. Windheuser et al., (2023) studied flood gauge height forecasting 75 

using images and time series data for two gauging stations in Georgia, USA. They used multiple NN models 76 

such as Convolutional Neural Network (ConvNet/CNN) and LSTM to forecast floods in near real-time (up 77 

to 72 hours). In a sequence, Wee et al., 2023 used Impact-Based Forecasting (IBF) to propose a Flood 78 

Impact-Based Forecasting system (FIBF) using flexible fuzzy inference techniques, aiding decision-makers 79 

in a timely response. Zou et al. (2023) proposed a Residual LSTM (ResLSTM) model to enhance and 80 

address flood prediction gradient issues. They integrated Deep Autoregressive Recurrent (DeepAR) with 81 

four recurrent neural networks (RNNs), including ResLSTM, LSTM, Gated Recurrent Unit (GRU), and 82 

Time Feedforward Connections Single Gate Recurrent Unit (TFC-SGRU), and showed that ResLSTM 83 

achieved superior accuracy. While these studies reported the superiority of NN models for flood modeling, 84 

they highlighted a number of challenges, notably (i) the limited capability of proposed NN models to 85 

capture the spatial variability and magnitudes of extreme data over time, (ii) the lack of a sophisticated 86 

mechanism to capture different flood magnitudes and synthesize the prediction, and (iii) inability of the NN 87 

models to process data in parallel and capture the relationships between all elements in a sequential manner. 88 

Recent advances in neural time series forecasting showed promising results that can be used to address the 89 

above challenges for flood prediction. Recent techniques include the adoption of the attention mechanism 90 

and Transformer-inspired approaches (Fan et al. 2019; Alaa and van der Schaar 2019; Lim et al. 2021) 91 

along with attention-free architectures composed of deep stacks of fully connected layers (Oreshkin et al. 92 

2020).  All of these approaches are relatively easy to scale up in terms of flood magnitudes (small to major 93 

flood predictions), compared to LSTM and have proven to be capable of capturing spatiotemporal 94 

dependencies (Challu et al., 2022). In addition, these architectures can capture input-output relationships 95 

implicitly while they tend to be more computationally efficient. Many state-of-the-art NN approaches for 96 

flood forecasting have been established based on LSTM. There are cell states in the LSTM networks that 97 

can be interpreted as storage capacity often used in flood generation schemes. In LSTM, the updating of 98 

internal cell states (or storages) is regulated through a number of gates: the first gate regulates the storage 99 

depletion, the second one regulates storage fluctuations, and the third gate regulates the storages outflow 100 

(Tabas and Samadi, 2022). The elaborate gated design of the LSTM partly solves the long-term dependency 101 
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problem in flood time series prediction (Fang et al., 2020), although, the structure of LSTMs is designed in 102 

a sequential manner that cannot directly connect two nonadjacent portions (positions) of a time series. This 103 

indicates the fact that data dependencies can flow from left to right, rather than in both directions as in the 104 

case of the attention-based and Transformer approaches. 105 

In this paper, we take a step in this direction by developing attention-free architecture, i.e.  Neural 106 

Hierarchical Interpolation for Time Series Forecasting (N-HiTS; Challu et al., 2022) and Network-Based 107 

Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS; Oreshkin et al., 2020) and 108 

benchmarked these models with LSTM for flood prediction. We developed fully connected N-BEATS and 109 

N-HiTS architectures using multi-rate data sampling, synthesizing the flood prediction outputs via multi-110 

scale interpolation. 111 

We implemented all algorithms for flood prediction on two headwater streams i.e., the Lower Dog River, 112 

Georgia, and the Upper Dutchmans Creek, North Carolina, USA. We selected two study areas to ensure 113 

that the results are reliable. The results of N-BEATS and N-HiTS techniques were compared with the 114 

benchmarking LSTM to understand how these techniques can improve the representations of rainfall and 115 

runoff dispensing over a recurrence process. Notably, this study represents a pioneering effort, as to the 116 

best of our knowledge, it is the first instance in which the application of N-BEATS and N-HiTS algorithms 117 

in the field of flood prediction has been explored. The scope of this research will focus on: 118 

1.     Flood prediction in a hierarchical fashion with interpretable outputs: We built N-BEATS and N-HiTS 119 

for flood prediction with a very deep stack of fully connected layers to implicitly capture input-output 120 

relationships with hierarchical interpolation capabilities. The predictions also involve programming the 121 

algorithms with decreasing complexity and aligning their time scale with the final output through multi-122 

scale hierarchical interpolation and interpretable architecture. Predictions were aggregated in a hierarchical 123 

fashion that enabled the building of a very deep neural network with interpretable configurations. 124 

2.     Uncertainty quantification of the models by employing probabilistic approaches: a Multi-Quantile 125 

Loss (MQL) was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple flooding 126 

events. MQL was integrated as the loss function to account for probabilistic prediction. MQL trains the 127 

model to produce probabilistic forecasts by predicting multiple quantiles of the distribution of future values.  128 

3.     Exploring headwater stream response to flooding: Understanding the dynamic response of headwater 129 

streams to flooding is essential for managing downstream flood risks. Headwater streams constitute the 130 

uppermost sections of stream networks, usually comprising 60% to 80% of a catchment area. Given this 131 

substantial coverage and the tendency for precipitation to increase with elevation, headwater streams are 132 

responsible for generating and controlling the majority of runoff in downstream portions (MacDonald and 133 

Coe, 2007).  134 
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The remainder of this paper is structured as follows. Section 2 presents the case study and data, NN models, 135 

performance metrics, and sensitivity and uncertainty approaches. Section 3 focuses on the results of flood 136 

predictions including sensitivity and uncertainty assessment and computation efficiency. Finally, Section 4 137 

concludes the paper. 138 

 139 

2. Methodology 140 

2.1. Case Study and Data 141 

This research used two headwater gauging stations located at the Lower Dog River watershed, Georgia 142 

(GA; USGS02337410, Dog River gauging station), and the Upper Dutchmans Creek watershed, North 143 

Carolina (NC; USGS0214269560, Killian Creek gauging station). As depicted in Figures 1 and 2, the Lower 144 

Dog River and the Upper Dutchmans Creek watersheds are located in the west and north parts of two 145 

metropolitan cities, Atlanta and Charlotte. As shown in Figure 1, the Lower Dog River stream gauge is 146 

established southeast of Villa Rica in Carroll County, where the USGS has regularly monitored discharge 147 

data since 2007 in 15-minute increments. The Lower Dog River is a stream with a length of 15.7 miles 148 

(25.3 km; obtained from the U.S. Geological Survey [USGS] National Hydrography Dataset high-149 

resolution flowline data), an average elevation of 851.94 meters, and the watershed area above this gauging 150 

station is 66.5 square miles (172 km2; obtained from the Georgia Department of Natural Resources). This 151 

watershed is covered by 15.2% residential area, 14.6% agricultural land, and  ⁓70% forest (Munn et al., 152 

2020). Killian Creek gauging station at the Upper Dutchmans Creek watershed is established 153 

in Montgomery County, North Carolina, where the USGS has regularly monitored discharge data since 154 

1995 in 15-minute increments. The Upper Dutchmans Creek is a stream with a length of 4.9 miles (7.9 km), 155 

an average elevation of 642.2 meters (see Table 1), and the watershed area above this gauging station is 4 156 

square miles (10.3 km2) with less than 3% residential area and about 93% forested land use (the United 157 

States Environmental Protection Agency). 158 

  159 

The Lower Dog River has experienced significant flooding in the last decades. For example, in September 160 

2009, the creek, along with most of northern GA, experienced heavy rainfall (5 inches, equal to 94 mm). 161 

The Dog River, overwhelmed by large amounts of overland flow from saturated ground in the watershed, 162 

experienced massive flooding in September 2009 (Gotvald, 2010). The river crested at 33.8 feet (10.3 m) 163 

with a peak discharge of 59,900 cfs (1,700 m3/s), nearly six times the 100-year flood level (McCallum and 164 

Gotvald, 2010). In addition, Dutchmans Creek has experienced significant flooding in February 2020. 165 

According to local news (WCCB Charlotte, 2020), the flood in Gaston County caused significant 166 

infrastructure damage and community disruption. Key impacts included the threatened collapse of the 167 

Dutchman’s Creek bridge in Mt. Holly and the closure of Highway 7 in McAdenville.   168 
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 169 

Table 1.  Lower Dog River and Upper Dutchmans Creek’s physical characteristics. 170 

Watershed 
USGS Station ID 

Number  

Average Elevation 

(m) 

Stream Length 

(km) 

Watershed area 

(km2) 

Lower Dog River 

watershed, GA 
USGS02337410 851.9 25.3 172 

Upper Dutchmans Creek 

watershed, NC 
USGS0214269560 642.2 7.9 10.3 

 171 

 172 

Figure 1.  The Lower Dog River and The Upper Dutchmans Creek watersheds are located in GA and NC. 173 
The proximity of the watersheds to Atlanta and Charlotte (urban area) are also displayed on the map. 174 

 175 

To provide the meteorological forcing data, i.e., precipitation, temperature, and humidity, were extracted 176 

from the National Oceanic and Atmospheric Administration’s (NOAA) Local Climatological Data 177 

(LCD). We used the NOAA precipitation, temperature, and humidity data of Atlanta Hartsfield Jackson 178 

International Airport and Charlotte Douglas Airport stations as an input variable for neural network 179 

algorithms. The data has been monitored since January 1, 1948, and July 22, 1941, with an hourly interval 180 

which was used as an input variable for constructing neural networks. 181 
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To fill in the missing values in the data, we used the spline interpolation method. We applied this method 182 

to fill the gaps in time series data, although the missing values were insignificant (less than 1%). In addition, 183 

we employed the Minimum Inter-Event Time (MIT) approach to precisely identify and separate individual 184 

storm events. The MIT-based event delineation is pivotal for accurately defining storm events. This method 185 

allowed us to isolate discrete rainfall episodes, aiding a comprehensive analysis of storm events. Moreover, 186 

it provided a basis for event-specific examination of flood responses, such as initial condition and cessation 187 

(loss), runoff generation, and runoff dynamics. 188 

 189 

The hourly rainfall dataset consists of distinct rainfall occurrences, some consecutive and others clustered 190 

with brief intervals of zero rainfall. As these zero intervals extend, we aim to categorize them into distinct 191 

events. It's worth noting that even within a single storm event, we often encounter short periods of no 192 

rainfall, known as intra-storm zero values. In the MIT method, we defined a storm event as a discrete rainfall 193 

episode surrounded by dry periods both preceding and following it, determined by an MIT (Asquith et al., 194 

2005; Safaei-Moghadam et al., 2023). There are many means to determine an MIT value. One practical 195 

approximation is using serial autocorrelation between rainfall occurrences. MIT approach uses 196 

autocorrelation that measures the statistical dependency of rainfall data at one point in time with data at 197 

earlier, or lagged times within the time series. The lag time represents the gap between data points being 198 

correlated. When the lag time is zero, the autocorrelation coefficient is unity, indicating a one-to-one 199 

correlation. As the lag time increases, the statistical correlation diminishes, converging to a minimum value. 200 

This signifies the fact that rainfall events become progressively less statistically dependent or, in other 201 

words, temporally unrelated. To pinpoint the optimal MIT, we analyzed the autocorrelation coefficients for 202 

various lag times, observing the point at which the coefficient approaches zero. This lag time signifies the 203 

minimum interval of no rainfall, effectively delineating distinct rainfall events.  204 

2.2. Neural Network Algorithms  205 

2.2.1. LSTM 206 

LSTM is an RNN architecture widely used as a benchmark model for flood neural time series 207 

modeling. LSTM networks are capable of selectively learning order dependence in sequence prediction 208 

problems (Sadeghi Tabas and Samadi, 2022). These networks are powerful because they can capture the 209 

temporal features, especially the long-term dependencies (Hochreiter et al., 2001), and are independent of 210 

the length of the input data sequences meaning that each sample is independent from another one. 211 
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The memory cell state within LSTM plays a crucial role in capturing extended patterns in data, making it 212 

well-suited for dynamic time series modeling such as flood prediction. An LSTM cell uses the following 213 

functions to compute flood prediction. 214 

𝑖𝑡 =  𝜎(𝐴𝑖𝑥𝑡  +  𝐵𝑖ℎ𝑡−1 +  𝑐𝑖) (Equation 1) 

𝑓𝑡 =  𝜎(𝐴𝑓𝑥𝑡  +  𝐵𝑓ℎ𝑡−1 +  𝑐𝑓) (Equation 2) 

𝑜𝑡 =  𝜎(𝐴𝑜𝑥𝑡  +  𝐵𝑜ℎ𝑡−1 +  𝑐𝑜) (Equation 3) 

𝑚𝑡 =  𝑓𝑡  ⨀ 𝑚𝑡−1  + 𝑖𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝐴𝑔𝑥𝑡  +  𝐵𝑔ℎ𝑡−1 +  𝑐𝑔) (Equation 4) 

ℎ𝑡 =  𝑜𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝑚𝑡) (Equation 5) 

Where 𝑥𝑡 and ℎ𝑡  represent the input and the hidden state at time step t, respectively. ⊙ denotes element-215 

wise multiplication, 𝑡𝑎𝑛ℎ stands for the hyperbolic tangent activation function, and 𝜎 represents the 216 

sigmoid activation function. 𝐴, 𝐵, and 𝑐 are trainable weights and biases that undergo optimization during 217 

the training process. 𝑚𝑡  and ℎ𝑡 are cell states at time step t that are employed in the input processing for 218 

the next time step. 𝑚𝑡  represents the memory state responsible for preserving long-term information, while 219 

ℎ𝑡 represents the memory state preserving short-term information. The LSTM cell consists of a forget gate 220 

ft, an input gate it and an output gate ot and has a cell state mt. At every time step t, the cell gets the data 221 

point xt with the output of the previous cell ht−1 (Windheuser et al., 2023). The forget gate then defines if 222 

the information is removed from the cell state, while the input gate evaluates if the information should be 223 

added to the cell state and the output gate specifies which information from the cell state can be used for 224 

the next cells.  225 

We used two LSTM layers with 128 cells in the first two hidden layers as encoder layers, which were then 226 

connected to two multilayer perceptron (MLP) layers with 128 neurons as decoder layers. The LSTM 227 

simulation was performed with these input layers along with the Adam optimizer (Kingma and Ba, 228 

2014), tanh activation function, and a single lagged dependent-variable value to train with a learning rate 229 

of 0.001. The architecture of the proposed LSTM model is illustrated in Figure 2. 230 
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 231 

Figure 2. The structure of LSTM programmed in this research. We used tanh and sigmoid as activation functions 232 
along with 2 layers of LSTM, 2 layers of MLP, and 128 cells in each layer.  233 

 234 

2.2.2. N-BEATS 235 

N-BEATS is a deep learning architecture based on backward and forward residual links and the very deep 236 

stack of fully connected layers specifically designed for sequential data forecasting tasks (Oreshkin et al., 237 

2020). This architecture has a number of desirable properties including interpretability. The N-BEATS 238 

architecture distinguishes itself from existing architectures in several ways. First, the algorithm approaches 239 

forecasting as a non-linear multivariate regression problem instead of a sequence-to-sequence 240 

challenge.  Indeed, the core component of this architecture (as depicted in Figure 3) is a fully connected 241 

non-linear regressor, which takes the historical data from a time series as input and generates multiple data 242 

points for the forecasting horizon. Second, the majority of existing time series architectures are quite limited 243 

in depth, typically consisting of one to five LSTM layers. N-BEATS employs the residual principle to stack 244 

a substantial number of layers together, as illustrated in Figure 3. In this configuration, the basic block not 245 

only predicts the next output but also assesses its contribution to decomposing the input, a concept that is 246 

referred to as "backcast" (see Oreshkin et al. 2020). 247 
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 248 

 249 

 250 

 251 

The basic building block in the architecture features a fork-like structure, as illustrated in Figure 3 (bottom). 252 

The 𝑙-th block (for the sake of brevity, the block index 𝑙 is omitted from Figure 3) takes its respective input, 253 

𝑥𝑙, and produces two output vectors: 𝑥̂𝑙 and 𝑦̂𝑙. In the initial block of the model, 𝑥𝑙 corresponds to the 254 

overall model input, which is a historical lookback window of a specific length, culminating with the most 255 

recent observed data point. For the subsequent blocks, 𝑥𝑙 is derived from the residual outputs of the 256 

preceding blocks. Each block generates two distinct outputs: 1. 𝑦̂𝑙: This represents the forward forecast of 257 

the block, spanning a duration of H time units. 2. 𝑥̂𝑙: This signifies the block's optimal estimation of 𝑥𝑙, 258 

which is referred to “backcast.” This estimation is made within the constraints of the functional space 259 

available to the block for approximating signals (Oreshkin et al., 2020). 260 

Internally, the fundamental building block is composed of two elements. The initial element involves a 261 

fully connected network, which generates forward expansion coefficient predictors, 𝜃𝑙
𝑓
, and a backward 262 

expansion coefficient predictor, 𝜃𝑙
𝑏. The second element encompasses both backward basis layers, 𝑔𝑙

𝑏, and 263 

forward basis layers, 𝑔𝑙
𝑓

. These layers take the corresponding forward 𝜃𝑙
𝑓
and backward 𝜃𝑙

𝑏expansion 264 

coefficients as input, conduct internal transformations using a set of basis functions, and ultimately yield 265 

the backcast, 𝑥̂𝑙, and the forecast outputs, 𝑦̂𝑙, as previously described by Oreshkin et al. (2020). The 266 

following equations describe the first element: 267 

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙),    ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1),     ℎ𝑙,3 = 𝐹𝐶𝑙,3(ℎ𝑙,2),       ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3). (Equation 6) 

𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4),        𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4) (Equation 7) 

The LINEAR layer, in essence, functions as a straightforward linear projection, meaning 𝜃𝑙
𝑓

=  𝑊𝑙
𝑓

ℎ𝑙,4. As 268 

for the fully connected (FC) layer, it takes on the role of a conventional FC layer, incorporating RELU non-269 

linearity as an activation function.  270 

The second element performs the mapping of expansion coefficients 𝜃𝑙
𝑓
and 𝜃𝑙

𝑏 to produce outputs using 271 

basis layers, resulting in 𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) and 𝑥̂𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏). This process is defined by the following equation:  272 
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𝑦̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

dim (𝜃𝑙
𝑓

)

𝑖=1

,        𝑥̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

dim (𝜃𝑙
𝑏)

𝑖=1

 (Equation 8) 

Within this context, 𝑣𝑖
𝑓

 and 𝑣𝑖
𝑏 represent the basis vectors for forecasting and backcasting, respectively, 273 

while 𝜃𝑙,𝑖
𝑓

 corresponds to the i-th element of 𝜃𝑙
𝑓
.  274 

The N-BEATS uses a novel hierarchical doubly residual architecture which is illustrated in Figure 3 (top 275 

and middle). This framework incorporates two residual branches, one traversing the backcast predictions 276 

of each layer, while the other traverses the forecast branch of each layer. The following equation describes 277 

this process: 278 

𝑥𝑙 =  𝑥𝑙−1 −  𝑥̂𝑙−1     ,     𝑦̂ = ∑ 𝑦̂𝑙

𝑙

 (Equation 9) 

As mentioned earlier, in the specific scenario of the initial block, its input corresponds to the model-level 279 

input 𝑥. In contrast, for all subsequent blocks, the backcast residual branch 𝑥𝑙 can be conceptualized as 280 

conducting a sequential analysis of the input signal. The preceding block eliminates the portion of the signal 281 

𝑥̂𝑙−1 that it can effectively approximate, thereby simplifying the prediction task for downstream blocks. 282 

Significantly, each block produces a partial forecast 𝑦̂𝑙 , which is initially aggregated at the stack level and 283 

subsequently at the overall network level, establishing a hierarchical decomposition. The ultimate forecast 284 

𝑦̂ is the summation of all partial forecasts (Oreshkin et al., 2020). 285 

The N-BEATS model has two primary configurations: generic and interpretable. These configurations 286 

determine how the model structures its blocks and how it processes time series data. In the generic 287 

configuration, the model uses a stack of generic blocks that are designed to be flexible and adaptable to 288 

various patterns in the time series data. Each generic block consists of fully connected layers with ReLU 289 

activation functions. The key characteristic of the generic configuration is its flexibility. Since the blocks 290 

are not specialized for any specific pattern (like trend or seasonality), they can learn a wide range of patterns 291 

directly from the data (Oreshkin et al., 2020). In the interpretable configuration, the model architecture 292 

integrates distinct trend and seasonality components. This involves structuring the basis layers at the stack 293 

level specifically to model these elements, allowing the stack outputs to be more easily understood. 294 

Trend Model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are polynomials of a small degree p, functions that vary slowly 295 

across the forecast window, to replicate monotonic or slowly varying nature of trends: 296 
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𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

𝑡𝑖

𝑝

𝑖=0

 (Equation 10) 

The time vector 𝑡 = [0, 1, 2, … , 𝐻 − 2, 𝐻 − 1]𝑇/𝐻 is specified on a discrete grid ranging from 0 to 297 

(H−1)/H, projecting H steps into the future. Consequently, the trend forecast represented in matrix form is: 298 

𝑦̂𝑠,𝑙
𝑡𝑟 = 𝑇𝜃𝑠,𝑙

𝑓
 (Equation 11) 

 299 

Where the polynomial coefficients, 𝜃𝑠,𝑙
𝑓

, predicted by an FC network at layer l of stack s, are described by 300 

Equations (6) and (7). The matrix T, consisting of powers of t, is represented as [1, 𝑡, . . . , 𝑡𝑝]. When p is 301 

small, such as 2 or 3, it compels 𝑦̂𝑠,𝑙
𝑡𝑟to emulate a trend (Oreshkin et al., 2020). 302 

Seasonality model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are periodic functions, to capture the cyclical and recurring 303 

characteristics of seasonality, such that 𝑦𝑡 = 𝑦𝑡−∆, where ∆ is the seasonality period. The Fourier series 304 

serves as a natural foundation for modeling periodic functions: 305 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

cos(2𝜋𝑖𝑡) + 𝜃𝑠,𝑙,𝑖+[𝐻/2]
𝑓

sin(2𝜋𝑖𝑡)

𝐻
2

−1

𝑖=0

 (Equation 12) 

 306 

Consequently, the seasonality forecast is represented in the following matrix form: 307 

𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 = 𝑆𝜃𝑠,𝑙

𝑓
 (Equation 13) 

𝑆 = [1, cos(2𝜋𝑡) , … , cos (2𝜋 [
𝐻

2
− 1] 𝑡) , sin(2𝜋𝑡), … , sin (2𝜋 [

𝐻

2
− 1] 𝑡) (Equation 14) 

 308 

Where the Fourier coefficients 𝜃𝑠,𝑙
𝑓

, that predicted by an FC network at layer l of stack s, are described by 309 

Equations (6) and (7). The matrix 𝑆 represents sinusoidal waveforms. As a result, the forecast 𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 310 

becomes a periodic function that imitates typical seasonal patterns (Oreshkin et al., 2020). 311 
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 312 

Figure 3. The N-BEATS modeling structure used in this research.  313 

 314 

2.2.3. N-HiTS 315 

N-HiTS builds upon the N-BEATS architecture but with improved accuracy and computational efficiency 316 

for long-horizon forecasting. N-HiTS utilizes multi-rate sampling and multi-scale synthesis of forecasts, 317 

leading to a hierarchical forecast structure that lowers computational demands and improves prediction 318 

accuracy (Challu et al., 2022). 319 

Like N-BEATS, N-HiTS employs local nonlinear mappings onto foundational functions within numerous 320 

blocks. Each block includes an MLP that generates backcast and forecast output coefficients. The backcast 321 

output refines the input data for the following blocks, and the forecast outputs are combined to generate the 322 

final prediction. Blocks are organized into stacks, with each stack dedicated to grasping specific data 323 

attributes using its own distinct set of functions. The network's input is a sequence of L lags (look-back 324 

period), with S stacks, each containing B blocks (Challu et al., 2022). 325 
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In each block, a MaxPool layer with varying kernel sizes (𝑘𝑙) is employed at the input, enabling the block 326 

to focus on specific input components of different scales. Larger kernel sizes emphasize the analysis of 327 

larger-scale, low-frequency data, aiding in improving long-term forecasting accuracy. This approach, 328 

known as multi-rate signal sampling, alters the effective input signal sampling rate for each block's MLP 329 

(Challu et al., 2022). 330 

Additionally, multi-rate processing has several advantages. It reduces memory usage, computational 331 

demands, the number of learnable parameters, and helps prevent overfitting, while preserving the original 332 

receptive field. The following operation is applicable to the input 𝑦𝑡−𝐿:𝑡,𝑙 of each block, with the first block 333 

(𝑙 = 1) using the network-wide input, where 𝑦𝑡−𝐿:𝑡,1  ≡  𝑦𝑡−𝐿:𝑡. 334 

𝑦𝑡−𝐿:𝑡,𝑙 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑦𝑡−𝐿:𝑡,𝑙 , 𝑘𝑙) (Equation 15) 

In many multi-horizon forecasting models, the number of neural network predictions matches the horizon's 335 

dimensionality, denoted as H. For instance, in N-BEATS, the number of predictions |𝜃𝑙
𝑓

| =  𝐻. This results 336 

in a significant increase in computational demands and an unnecessary surge in model complexity as the 337 

horizon H becomes larger (Challu et al., 2022).  338 

To address these challenges, N-HiTS proposes the use of temporal interpolation. This model manages the 339 

parameter counts per unit of output time (|𝜃𝑙
𝑓

| = ⌈𝑟𝑙  𝐻⌉) by defining the dimensionality of the interpolation 340 

coefficients with respect to the expressiveness ratio 𝑟𝑙. To revert to the original sampling rate and predict 341 

all horizon points, this model employs temporal interpolation through the function g: 342 

𝑦̂𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑓

), ∀𝜏 ∈  {𝑡 +  1, . . . , 𝑡 +  𝐻}, (Equation 16) 

𝑦̃𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑏), ∀𝜏 ∈  {𝑡 −  𝐿, . . . , 𝑡}, (Equation 17) 

𝑔(𝜏, 𝜃) =  𝜃[𝑡1] + (
𝜃[𝑡2] −  𝜃[𝑡1]

𝑡2 −  𝑡1
) (𝜏 −  𝑡1) (Equation 18) 

𝑡1  = arg min
𝑡∈𝜏:𝑡≤𝜏

𝜏 − 𝑡 ,      𝑡2 =   𝑡1 + 1/𝑟𝑙 (Equation 19) 

The hierarchical interpolation approach involves distributing expressiveness ratios over blocks, integrated 343 

with multi-rate sampling. Blocks closer to the input employ more aggressive interpolation, generating lower 344 

granularity signals. These blocks specialize in analyzing more aggressively subsampled signals. The final 345 

hierarchical prediction, 𝑦̂𝑡+1:𝑡+𝐻, is constructed by combining outputs from all blocks, creating 346 
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interpolations at various time-scale hierarchy levels. This approach maintains a structured hierarchy of 347 

interpolation granularity, with each block focusing on its own input and output scales (Challu et al., 2022). 348 

To manage a diverse set of frequency bands while maintaining control over the number of parameters, 349 

exponentially increasing expressiveness ratios are recommended. As an alternative, each stack can be 350 

dedicated to modeling various recognizable cycles within the time series (e.g., weekly, or daily) employing 351 

matching 𝑟𝑙. Ultimately, the residual obtained from backcasting in the preceding hierarchy level is 352 

subtracted from the input of the subsequent level, intensifying the next-level block's attention on signals 353 

outside the previously addressed band (Challu et al., 2022). 354 

𝑦̂𝑡+1:𝑡+𝐻  = ∑ 𝑦̂𝑡+1:𝑡+𝐻,𝑙

𝐿

𝑙=1

 (Equation 20) 

𝑦𝑡−𝐿:𝑡,𝑙+1  = 𝑦𝑡−𝐿:𝑡,𝑙 −  𝑦̃𝑡−𝐿:𝑡,𝑙 (Equation 21) 

 355 

Figure 4. The structure of N-HiTS model programmed in this study. The architecture includes several 356 
Stacks, each Stack includes several Block, where each block consists of a MaxPool layer and a multi-357 

layer which learn to produce coefficients for the backcast and forecast outputs of its basis. 358 
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2.3. Performance Metrics  359 

To comprehensively evaluate the accuracy of flood predictions, we utilized a suite of metrics, including 360 

Nash-Sutcliffe Efficiency (NSE), persistent Nash-Sutcliffe Efficiency (persistent-NSE), Root Mean Square 361 

Error (RMSE), Mean Absolute Error (MAE), Peak Flow Error (PFE), and Time to Peak Error (TPE; Evin 362 

et al., 2023; Lobligeois et al., 2014). These metrics collectively facilitate a rigorous assessment of the 363 

model's performance in reproducing the magnitude of observed peak flows and the shape of the hydrograph.   364 

The Nash–Sutcliffe model efficiency coefficient (NSE; Nash and Sutcliffe, 1970) measures the model's 365 

ability to explain the variance in observed data and assesses the goodness-of-fit by comparing the observed 366 

and simulated hydrographs. In hydrological studies, the NSE index is a widely accepted measure for 367 

evaluating the fitting quality of models (McCuen et al., 2006). It is calculated as: 368 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖
)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜

̅̅̅̅ )
2𝑛

𝑖=1

 (Equation 22) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, 𝑄𝑜
̅̅̅̅  is the mean 369 

observed values and n is the number of data points. An NSE value of 1 indicates a perfect match between 370 

the observed and modeled data, while lower values represent the degree of departure from a perfect fit. 371 

As the models are designed to predict one hour ahead, the persistent-NSE is essential for evaluating their 372 

performance. The standard NSE measures the model's sum of squared errors relative to the sum of squared 373 

errors when the mean observation is used as the forecast value. In contrast, persistent-NSE uses the most 374 

recent observed data as the forecast value for comparison (Nevo et al., 2022). The persistent-NSE is 375 

calculated as: 376 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 − 𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖
)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜𝑖−1

)
2𝑛

𝑖=1

 (Equation 23) 

Where 𝑄𝑜𝑖
 represents the observed value at time 𝑖, 𝑄𝑠𝑖

 represents the simulated value at time 𝑖, 𝑄𝑜𝑖−1
is the 377 

observed value at the last time step (𝑖 − 1) and n is the number of data points. RMSE quantifies the average 378 

magnitude of errors between observed and modeled values, offering insights into the absolute goodness-of-379 

fit, while MAE is a measure of the average absolute difference between the modeled values and the 380 

observed values and provides a measure of the average magnitude of errors. RMSE is calculated as: 381 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑄𝑜𝑖

− 𝑄𝑠𝑖
)2

𝑛

𝑖=1

 (Equation 24) 

and MAE is calculated as: 382 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑄𝑜𝑖

− 𝑄𝑠𝑖
|

𝑛

𝑖=1

 (Equation 25) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, and n is the number 383 

of data points. RMSE and MAE provide information about the magnitude of modeling errors, with smaller 384 

values indicating a better model fit.  385 

PFE quantifies the magnitude disparity between observed and modeled peak flow values. The PFE metric 386 

is defined as:  387 

𝑃𝐹𝐸 =  
|𝑄𝑜 𝑚𝑎𝑥

−  𝑄𝑠 𝑚𝑎𝑥
|

𝑄𝑜 𝑚𝑎𝑥

 (Equation 26) 

Where 𝑄𝑜 𝑚𝑎𝑥
 represents the observed peak flow value, and 𝑄𝑠 𝑚𝑎𝑥

 signifies the simulated peak flow value. 388 

The PFE metric, expressed as a dimensionless value, provides a quantitative measure of the relative error 389 

in predicting peak flow magnitudes concerning the observed values. A smaller PFE denotes more accurate 390 

modeling of peak flow magnitudes, with a value of zero indicating a perfect match. 391 

TPE assesses the temporal alignment of peak flows in the observed and modeled hydrographs. The TPE 392 

metric is computed as: 393 

𝑇𝑃𝐸 =  |𝑇𝑜 𝑚𝑎𝑥
−  𝑇𝑠 𝑚𝑎𝑥

| (Equation 27) 

Where 𝑇𝑜 𝑚𝑎𝑥
 signifies the time at which the peak flow occurs in the observed hydrograph, and 𝑇𝑠 𝑚𝑎𝑥

 394 

represents the time at which the peak flow occurs in the simulated hydrograph. TPE that is measured in 395 

units of time (hours), provides insight into the precision of peak flow timing. Smaller TPE values indicate 396 

a superior alignment between the observed and modeled peak flow timing, while larger TPE values indicate 397 

discrepancies in the temporal occurrence of peak flows. 398 

The utilization of these five metrics, PFE, persistent-NSE, TPE, NSE, and RMSE, collectively provides a 399 

robust and multifaceted assessment of flood prediction performance. This approach ensures that both the 400 
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magnitude and timing of peak flows, as well as the overall hydrograph shape, are accurately calibrated and 401 

validated. 402 

2.4. Sensitivity and Uncertainty Analysis  403 

When implementing NN models, it's crucial to understand how each parameter affects the model's 404 

performance or outputs. To achieve this, we systematically excluded each parameter from the model one 405 

by one (the Leave-One-Out method). For each exclusion, we retrained the model without that specific 406 

parameter and then tested its performance against a test dataset. This method helps in understanding which 407 

parameters are most critical to the model's performance and which ones have a lesser impact. It also allows 408 

us to identify any parameters that may be redundant or have little effect on the overall outcome, thus 409 

potentially simplifying the model without sacrificing accuracy. 410 

In this study, we utilized probabilistic approaches to quantify the uncertainty in flood prediction. This 411 

method is rooted in statistical techniques employed for the estimation of unknown probability distributions, 412 

with a foundation in observed data. More specifically, we leveraged the Maximum Likelihood Estimation 413 

(MLE) approach, which entails the determination of parameter values that optimize the likelihood function. 414 

The likelihood function quantifies the probability of parameters taking particular values, given the observed 415 

realizations. 416 

Within our models, we incorporated the MQL as a probabilistic error metric. MQL performs an evaluation 417 

by computing the average loss for a predefined set of quantiles. This computation is grounded in the 418 

absolute disparities between predicted quantiles and their corresponding observed values. The limited 419 

behavior of MQL serves as an apt metric for assessing the accuracy of predictive distribution 𝐹̂𝑡, facilitated 420 

through the Continuous Ranked Probability Score (CRPS). The computation of CRPS involves a numerical 421 

integration technique that discretizes quantiles and applies a left Riemann approximation for CRPS integral 422 

computation. This process culminates in the averaging of these computations over uniformly spaced 423 

quantiles.  424 

MQL (𝑄𝜏 , [𝑄̂𝜏
𝑞1  , … , 𝑄̂𝜏

𝑞𝑖]) =  
1

𝑛
 ∑  QL (𝑄𝜏 , 𝑄̂𝜏

𝑞𝑖)

𝑞𝑖

 (Equation 28) 

CRPS (𝑄𝜏 , 𝐹̂𝜏) =  ∫ QL (𝑄𝜏 , 𝑄̂𝜏
𝑞𝑖)𝑑𝑞

1

0

 (Equation 29) 
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QL (𝑄𝜏 , 𝑄̂𝜏
𝑞

) =  
1

𝐻
 ∑ ((1 − 𝑞) (𝑄̂𝜏

𝑞
 −  𝑄𝜏) + 𝑞(𝑄𝜏  −  𝑄̂𝜏

𝑞
 ))

𝑡+𝐻

𝜏=𝑡+1

 (Equation 30) 

Where 𝑄𝜏 represents observed value at time 𝜏, 𝑄̂𝜏
𝑞
 represents simulated value at time 𝜏, q is the slope of the 425 

quantile loss, and H is the horizon of forecasting. 426 

 427 

Figure 5. The MQL function which shows loss values for different parameters of q when the true value is 428 
𝑄𝜏. 429 

Furthermore, we employed two key indices, the R-factor and the P-factor, to rigorously assess the quality 430 

of uncertainty performance in our hydrological modeling. These metrics are instrumental in quantifying the 431 

extent to which the model's predictions encompass the observed data, thereby providing valuable insights 432 

into the model's predictive accuracy and reliability. 433 

The P-factor, or percentage of data within a 95PPU, is the first index used in this assessment. The P-factor 434 

quantifies the percentage of observed data that falls within the 95PPU, providing a measure of the model's 435 

predictive accuracy. The P-factor can theoretically vary from 0% to a maximum of 100%. A P-factor of 436 

100% signifies a perfect alignment between the model's predictions and the observed data within the 437 

uncertainty band. In contrast, a lower P-factor indicates a reduced ability of the model to predict data within 438 

the specified uncertainty range. 439 
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𝑃 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑟𝑎𝑘𝑒𝑡𝑒𝑑 𝑏𝑦 95𝑃𝑃𝑈

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
× 100 (Equation 31) 

The R-factor can be computed by dividing the average width of the uncertainty band by the standard 440 

deviation of the measured variable. The R-factor, with a minimum possible value of zero, provides a 441 

measure of the spread of the uncertainty relative to the variability of the observed data. Theoretically, the 442 

R-factor spans from 0 to infinity, and a value of zero implies that the model's predictions precisely match 443 

the measured data, with the uncertainty band being very narrow in relation to the variability of the observed 444 

data. 445 

𝑅 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 95𝑃𝑃𝑈 𝑏𝑎𝑛𝑑

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
× 100 (Equation 32) 

In practice, the quality of the model is assessed by considering the 95% prediction band with the highest P-446 

factor and the lowest R-factor. This specific band encompasses the majority of observed records, signifying 447 

the model's ability to provide accurate and reliable predictions while effectively quantifying uncertainty. A 448 

simulation with a P-factor of 1 and an R-factor of 0 signifies an ideal scenario where the model precisely 449 

matches the measured data within the uncertainty band (Abbaspour et al., 2007). 450 

Figure 6 shows the workflow of programming N-BEATS, N-HiTS, and LSTM for flood prediction. As 451 

illustrated, the initial step involved cleaning and preparing the input data, which was then used to feed the 452 

models. The workflow for each model and their output generation processes are depicted in Figure 6. We 453 

segmented the storm events using the MIT approach, as previously described. Following this, we conducted 454 

a sensitivity analysis using the Leave-One-Out method and performed uncertainty analysis using the MLE 455 

approach to construct the 95PPU band. This rigorous methodology ensures a robust evaluation of model 456 

performance under varying conditions and highlights the models' predictive reliability and resilience. We 457 

employed the “NeuralForecast” Python package to develop the N-BEATS, N-HiTS, and LSTM models. 458 

This package provides a diverse array of NN models with an emphasis on usability and robustness.  459 

 460 
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 461 

 462 

Figure 6. The workflow of N-BEATS, N-HiTS, and LSTM implementation. The upper section of the 463 
figure illustrates multiple steps from data preprocessing to model evaluation. The lower section provides a 464 
detailed view of the workflow and implementation for each model, highlighting the specific processes and 465 
methodologies employed in generating the outputs. Backpropagation Through Time (BPTT) trains LSTM 466 
by unrolling the model through time, computing gradients for each time step, and updating weights based 467 

on temporal dependencies. 468 

 469 

3. Results and Discussion 470 

3.1. Independent Storms Delineation 471 

MIT’s contextual delineation of storm events laid the groundwork for in-depth evaluation of rainfall events, 472 

enabling isolation and separation of rainfall events that led to significant flooding events. The nuanced 473 

outcomes of the MIT assessment contributed significantly to the understanding of rainfall variability and 474 

distribution as the dominant contributor to flood generation. 475 
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During modeling implementation, the initial imperative was the precise distinction of storm events within 476 

the precipitation time series data of each case study. Our findings demonstrate that on average a dry period 477 

of 7 hours serves as the optimal MIT time for both of our case studies. This outcome signifies that when a 478 

dry interval of more than 7 hours transpires between two successive rainfall events, these subsequent 479 

rainfalls should be considered two distinct storm events. This determination underlines the temporal 480 

threshold necessary for distinguishing between individual meteorological phenomena in two case studies. 481 

3.2. Hyperparameter Optimization 482 

In the context of hyperparameter optimization, we systematically considered and tuned various 483 

hyperparameters for the N-HiTS, N-BEATS, and LSTM. Following extensive exploration and fine-tuning 484 

of these hyperparameters, the optimal configurations were identified (see Table 2). For the N-HiTS model, 485 

the most favorable outcomes were achieved with the following hyperparameter settings: 2000 epochs, 486 

"identity" for scaler type, a learning rate of 0.001, a batch size of 32, input size of 24 hours, "identity" for 487 

stack type, 512 units for hidden layers of each stack, step size of 1, MQLoss as loss function, and "ReLU" 488 

for the activation function. As shown in Table 2, the N-HiTS model demonstrated superior performance 489 

with 4 stacks, containing 2 blocks each, and corresponding coefficients of 48, 24, 12, and 1, showcasing 490 

the significance of these settings for flood prediction.  491 

This hyperparameter optimization was also conducted for the N-BEATS model. In this model, we 492 

considered 2000 epochs, 3 stacks with 2 blocks, “identity” for scaler type, a learning rate of 0.001, a batch 493 

size of 32, input size of 24 hours, “identity” for stack type, 512 units for hidden layers of each stack, step 494 

size of 1, MQLoss as loss function, and “ReLU” for the activation function.  495 

Moreover, the LSTM as a benchmark model yielded its best results with 5000 epochs, an input size of 24 496 

hours, "identity" as the scaler type, a learning rate of 0.001, a batch size of 32, and "tanh" as the activation 497 

function. Furthermore, the LSTM's hidden state was most effective with two layers containing 128 units, 498 

and the MLP decoder thrived with two layers encompassing 128 units. These meticulously optimized 499 

hyperparameter settings represent the culmination of efforts to ensure that each model operates at its peak 500 

potential, facilitating accurate flood prediction. 501 

Table 2. Optimized values for models hyperparameters. 502 

Hyperparameter N-HiTS N-BEATS LSTM 

Epoch 2000 2000 5000 

Scaler type identity identity standard 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



23 

 

Learning rate 0.001 0.001 0.001 

Batch size 32 32 32 

Input size 24 hours 24 hours 24 hours 

Stack type 
Seasonality, trend, 

identity, identity 

Seasonality, 

trend, identity 
* 

Number of units in each 

hidden layer 
512 512 128 

Loss function MQLoss MQLoss MQLoss 

Activation function ReLU ReLU tanh 

Number of stacks 4 3 * 

Number of blocks in each 

stack 
2 2 * 

Stacks’ coefficients 48,24,12,1 * * 

*Not applicable 503 

In Table 2, "epoch" refers to the number of training steps, and "scaler type" indicates the type of scaler used 504 

for normalizing temporal inputs. The "learning rate" specifies the step size at each iteration while optimizing 505 

the model, and the "batch size" represents the number of samples processed in one forward and backward 506 

pass. The "loss function" quantifies the difference between the predicted outputs and the actual target 507 

values, while the "activation function" determines whether a neuron should be activated. The "stacks' 508 

coefficients" in the N-HITS model control the frequency specialization for each stack, enabling effective 509 

handling of different frequency components in the time series data. 510 

Another hyperparameter for all three models is input size, which is a parameter that determines the 511 

maximum sequence length for truncated backpropagation during training and the number of autoregressive 512 

inputs (lags) that the models considered for prediction. Essentially, input size represents the length of the 513 

historical series data used as input to the model. This parameter offers flexibility in the models, allowing 514 

them to learn from a defined window of past observations, which can range from the entire historical dataset 515 

to a subset, tailored to the specific requirements of the prediction task. In the context of flood prediction, 516 

determining the appropriate input size is crucial to adequately capture the meteorological data preceding 517 

the flood event. To address this, we calculated the time of concentration (TC) of the watershed system and 518 

set the input size to exceed this duration. According to the Natural Resources Conservation Service (NRCS), 519 

for typical natural watershed conditions, the TC can be calculated from lag time, the time between peak 520 

rainfall and peak discharge, using the formula: 𝐿𝑎𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝐶 ×  0.6 (NRCS, 2009). Specifically, the 521 
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average TC in the Lower Dog River watershed and Upper Dutchmans Creek watershed was found to be 19 522 

and 22 hours, respectively. Through hyperparameter optimization, we determined that an input size of 24 523 

hours was optimal for all the models, ensuring sufficient coverage of relevant meteorological data preceding 524 

flood events. 525 

3.3. Flood Prediction and Performance Assessment 526 

In this study, we conducted a comprehensive performance evaluation of N-HiTS, N-BEATS, and 527 

benchmarking LSTM models, utilizing two case studies: the Lower Dog River and the Upper Dutchmans 528 

Creek watersheds. Within these case studies, we trained the models across a diverse set of storm events 529 

from 01/10/2007 to 01/10/2022 (15 years) in the Lower Dog River and from 21/12/1994 to 01/10/2022 (27 530 

years) in the Upper Dutchmans Creek. All algorithms were validated using flooding events that occurred 531 

between 14/12/2022 and 28/03/2023. In the Dog River gauging station, two winter storms i.e., January 3rd 532 

to January 5th, 2023 (Event 1) and February 17th to February 18th, 2023 (Event 2), as well as a spring flood 533 

event that occurred during March 26th to March 28th, 2023 (Event 3) were selected for testing. 534 

Additionally, three winter flooding events, i.e., December 14th to December 16th, 2022 (Event 4), January 535 

25th and January 26th, 2023 (Event 5), and February 11th to February 13th, 2023 (Event 6), were chosen 536 

to test the algorithms across the Killian Creek gauging station in the Upper Dutchmans Creek. The rainfall 537 

events corresponding to these flooding events were delineated using the MIT technique discussed in Section 538 

3.1. 539 

Our results for the Lower Dog River case study, explicitly demonstrated the accuracy of both N-HiTS and 540 

N-BEATS in generating the winter and spring flood hydrographs compared to the LSTM model across all 541 

selected storm events. Although, N-HiTS prediction slightly outperformed N-BEATS during winter 542 

prediction (January 3rd to January 5th, 2023). In this event, N-HiTS outperformed N-BEATS with a 543 

difference of 11.6% in MAE and 20% in RMSE. The N-HiTS slight outperformance (see Tables 3 and 4) 544 

is attributed to its unique structure that allows the model to discern and capture intricate patterns within the 545 

data. Specifically, N-HiTS predicted flooding events hierarchically using blocks specialized in different 546 

rainfall frequencies based on controlled signal projections, through expressiveness ratios, and interpolation 547 

of each block. The coefficients are then used to synthesize backcast through  548 

𝑦̃𝑡 − 𝐿: 𝑡, 𝑙 and forecast (𝑦̃𝑡+1: 𝑡 + 𝐻, 𝑙) outputs of the block as a flood value.  The coefficients were locally 549 

determined along the horizon, allowing N-HiTS to reconstruct nonstationary signals over time.  550 

While the N-HiTS emerged as the most accurate in predicting flood hydrograph among the three models, 551 

its performance was somehow comparable with N-BEATS. The N-BEATS model exhibited good 552 

performance in two case studies. It consistently provided competitive results, demonstrating its capacity to 553 
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effectively handle diverse storm events and deliver reliable predictions. N-BEATS has a generic and 554 

interpretable architecture depending on the blocks it uses. Interpretable configuration sequentially projects 555 

the signal into polynomials and harmonic basis to learn trend and seasonality components while generic 556 

configuration substitutes the polynomial and harmonic basis for identity basis and larger network’s depth. 557 

In this study, we used interpretable architecture, as it regularizes its predictions through projections into 558 

harmonic and trend basis that is well-suited for flood prediction tasks. Using interpretable architecture, 559 

flood prediction was aggregated in a hierarchical fashion. This enabled the building of a very deep neural 560 

network with interpretable flood prediction outputs.   561 

It is essential to underscore that, despite its strong performance, the N-BEATS model did not surpass the 562 

N-HiTS model in terms of NSE, MAE, and RMSE for the Lower Dog River case study. Notably, the N-563 

BEATS model showcased superior results based on the PFE metric, signifying its exceptional capability in 564 

accurately predicting flood peaks. However, both N-HiTS and N-BEATS models overestimated the flood 565 

peak rate of Event 2 for the Lower Dog River watershed. This event, which occurred from February 17th  to 566 

February 18th, 2023, was flashy, short, and intense proceeded by a prior small rainfall event (from February 567 

12th until February 13th) that minimized the rate of infiltration. This flash flood event caused by excessive 568 

rainfall in a short period of time (<8 hours) was challenging to predict for both N-BEATS and N-HiTS 569 

models. In addition, predicting the magnitude of changes in the recession curve of the third event seems to 570 

be a challenge for both models. The specific part of the flood hydrograph after the precipitation event, 571 

where flood diminishes during a rainless is dominated by the release of runoff from shallow aquifer systems 572 

or natural storages. It seems both models showed a slight deficiency in capturing this portion of the 573 

hydrograph when the rainfall amount decreases over time in the Dog River gauging station.  574 

Conversely, in the Killian Creek gauging station, the N-BEATS model almost emerged as the top performer 575 

in predicting the flood hydrograph based on NSE, RMSE, and PFE performance metrics (see Tables 3 and 576 

4).  Although, both N-BEATS and N-HiTS slightly overpredicted time to peak values for Event 5. This 577 

reflects the fact that when rainfall value varies randomly around zero, it provides less to no information for 578 

the algorithms to learn the fluctuations and patterns in time series data. Both N-HiTS and N-BEATS 579 

provided comparable results for all events predicted in this study. N-HiTS builds upon N-BEATS by adding 580 

a MaxPool layer at each block. Each block consists of an MLP layer that learns to produce coefficients for 581 

the backcast and forecast outputs. This subsamples the time series and allows each stack to focus on either 582 

short-term or long-term effects, depending on the pooling kernel size. Then, the partial predictions of each 583 

stack are combined using hierarchical interpolation. This ability enhances N-HiTS capabilities to produce 584 

drastically improved, interpretable, and computationally efficient long-horizon flood predictions. 585 
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In contrast, the performance of LSTM as a benchmark model lagged behind both N-HiTS and N-BEATS 586 

models for all events across two case studies. Despite its extensive application in various hydrology 587 

domains, the LSTM model exhibited comparatively lower accuracy when tasked with predicting flood 588 

responses during different storm events. Focusing on NSE, MAE, RMSE, and PFE metrics, it is noteworthy 589 

that all three models, across both case studies, consistently succeeded in capturing peak flow rates at the 590 

appropriate timing. All models demonstrated commendable results with respect to the TPE metric. In most 591 

scenarios, TPE revealed a value of 0, signifying that the models accurately pinpointed the peak flow rate 592 

precisely at the expected time. In some instances, TPE reached a value of 1, showing a deviation of one 593 

hour in predicting the peak flow time. This deviation is deemed acceptable, particularly considering the 594 

utilization of short, intense rainfall for our analysis.  595 

Our investigation into the performance of the three distinct forecasting models yielded compelling results 596 

pertaining to their ability to generate 95PPU, as quantified by the P-factor and R-factor. These factors serve 597 

as critical indicators for assessing the reliability and precision of the uncertainty bands produced by the 598 

MLE. Our findings demonstrated that the N-HiTS and N-BEATS models outperformed the LSTM model 599 

in mathematically defining uncertainty bands, in terms of R-factor metric. The R-factor, a crucial metric 600 

for evaluating the average width of the uncertainty band, consistently favored the N-HiTS and N-BEATS 601 

models over their counterparts. This finding was consistent across a diverse range of storm events. Coupling 602 

MLE with the N-HiTS and N-BEATS models demonstrated superior performance in generating 95PPU 603 

when assessed through the P-factor metric. The P-factor represents another vital aspect of uncertainty 604 

quantification, focusing on the precision of the uncertainty bands.  605 

 606 

Figures 8 and 9 present graphical depictions of the predicted flood with uncertainty assessment for each 607 

model as well as Flow Duration Curve (FDC) across two gauging stations.  As illustrated, the uncertainty 608 

bands skillfully bracketed most of the observational data, reflecting the fact that MLE was successful in 609 

reducing errors in flood prediction. FDC analysis also revealed that N-HiTS and N-BEATS models 610 

skillfully predicted the flood hydrograph, however, both models were particularly successful in predicting 611 

moderate to high flood events (1800-6000 and >6000 cfs). In the FDC plots, the x-axis denotes the 612 

exceedance probability, expressed as a percentage, while the y-axis signifies flood in cubic feet per second. 613 

Notably, these plots reveal distinctive patterns in the performance of the N-HiTS, N-BEATS, and LSTM 614 

models. Within the lower exceedance probability range, particularly around the peak flow, the N-HiTS and 615 

N-BEATS models demonstrated a clear superiority over the LSTM model, closely aligning with the 616 

observed data. This observed trend is consistent when examining the corresponding hydrographs. Across 617 

all events, the flood hydrographs generated by N-HiTS and N-BEATS exhibited a closer resemblance to 618 
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the observed data, particularly in the vicinity of the peak timing and rate, compared to the hydrographs 619 

produced by the LSTM model. These findings underscore the enhanced predictive accuracy and reliability 620 

of the N-HiTS and N-BEATS models, particularly in predicting moderate to high flood events as well as 621 

critical hydrograph features such as peak flow rate and timing. The alignment of model-generated FDCs 622 

and hydrographs with observed data in the proximity of peak flow further establishes the efficacy of N-623 

HiTS and N-BEATS in accurately reproducing the dynamics of flood generation mechanisms across two 624 

headwater streams.  625 

 626 

Table 3. Accuracy and uncertainty metrics for the Dog River flood predictions. 627 

Model Performance Metric Event 1 Event 2 Event 3 

N-HiTS 

NSE 0.995 0.991 0.992 

Persistent-NSE 0.947 0.931 0.948 

RMSE 123.2 27.6 68.5 

MAE 64.1 12.0 37.8 

PFE 0.018 0.051 0.015 

TPE (hours) 0 1 0 

P-Factor 96.9 % 100 % 93.5 % 

R-Factor 0.27 0.40 0.33 

N-BEATS 

NSE 0.991 0.989 0.993 

Persistent-NSE 0.917  0.916 0.956 

RMSE 154.1 30.5 62.5 

MAE 72.6 13.6 35.9 

PFE 0.0005 0.031 0.0002 

TPE (hours) 0 1 0 

P-Factor 87.8 % 100 % 90.3 % 

R-Factor 0.17 0.23 0.24 

LSTM 

NSE 0.756 0.983 0.988 

Persistent-NSE -1.44 0.871 0.929 

RMSE 841.1 37.9 79.5 

MAE 369.4 18.6 42 

PFE 0.258 0.036 0.016 

TPE (hours) 1 0 0 

P-Factor 81.8 % 93.1 % 96.7 % 
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R-Factor 0.37 0.51 0.6 

 628 

Table 4. Accuracy and uncertainty metrics for the Killian Creek flood predictions. 629 

Model Performance Metric Event 4 Event 5 Event 6 

N-HiTS 

NSE 99.08 % 97.13 % 99.08 % 

Persistent-NSE    

RMSE 28.8 46.0 19.0 

MAE 17.9 23.8 11.5 

PFE 0.017 0.008 0.020 

TPE (hours) 0 0 0 

P-Factor 92.6 % 90.9 % 100 % 

R-Factor 0.39 0.48 0.45 

N-BEATS 

NSE 99.26 % 97.36 % 98.96 % 

Persistent-NSE    

RMSE 25.7 44.2 20.2 

MAE 18.3 25.9 14.0 

PFE 0.006 0.008 0.019 

TPE (hours) 0 0 0 

P-Factor 96.3 % 86.3 % 96.9 % 

R-Factor 0.43 0.53 0.43 

LSTM 

NSE 0.952 0.892 0.935 

Persistent-NSE 0.4 0.27 0.087 

RMSE 65.7 89.2 50.3 

MAE 41.1 45 35.9 

PFE 0.031 0.058 0.098 

TPE (hours) 1 0 0 

P-Factor 70.4 % 72.73 % 90.9 % 

R-Factor 0.66 0.7 0.65 

 630 

 631 
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 632 

Figure 7. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models for the three selected 633 
flooding events in the Dog River gauging station. 634 

 635 

  636 
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637 
Figure 8. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models for the three selected 638 

flooding events in the Killian Creek gauging station.  639 

Furthermore, in our investigation, we conducted an analysis to assess the impact of varying input sizes on 640 

the performance of the N-HiTS, as the best model. We implemented four different durations as input sizes 641 

to observe the corresponding differences in modeling performance. Notably, one of the key metrics affected 642 

by changes in input size was 95PPU, which exhibited a general decrease with increasing input size. 643 
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As detailed in Table 5, we observed a discernible trend in the R-Factor of the N-HiTS model as the input 644 

size was increased. Specifically, there was a decrease in the R-Factor as the input size expanded. This trend 645 

underscores the influence of input size on model performance, particularly in terms of 95PPU and accuracy. 646 

Overall, uncertainty analysis revealed that the integration of MLE with N-HiTS and N-BEATS models 647 

demonstrated superior performance in generating 95PPU, effectively reducing errors in flood prediction. 648 

The MLE approach was more successful in reducing 95PPU bands of N-HiTS and N-BEATS models 649 

compared to the LSTM, as indicated by the R-factor and P-factor. The N-BEATS model demonstrated a 650 

narrower uncertainty band (lower R-factor value), while the N-HiTS model provided higher precision. 651 

Furthermore, incorporating data with various sizes into the N-HiTS model led to a reduction in 95PPU and 652 

an improvement in the R-Factor, highlighting the significance of input size in enhancing model accuracy 653 

and reducing prediction uncertainty. 654 

Table 5. N-HiTS’s R-Factor results for three storm events in each case study, using 1 

hour, 2 hours, 12 hours, and 24 hours input size in training. 

Input Size 1 hour 6 hours 12 hours 24 hours 

Dog River, GA - Event 1 0.314 0.337 0.29 0.272 

Dog River, GA - Event 2 0.35 0.413 0.403 0.402 

Dog River, GA - Event 3 0.358 0.459 0.374 0.336 

Killian Creek, NC - Event 4 0.491 0.422 0.426 0.388 

Killian Creek, NC - Event 5 0.584 0.503 0.557 0.483 

Killian Creek, NC - Event 6 0.482 0.42 0.446 0.454 

 655 

3.4. Sensitivity Analysis   656 

In this study, we conducted a comprehensive sensitivity analysis of the N-HiTS, N-BEATS, and LSTM 657 

models to evaluate their responsiveness to meteorological variables, specifically precipitation, humidity, 658 

and temperature. The goal was to assess how the omission of input parameters impacts the overall 659 

modeling performance compared to their full-variable counterparts. 660 

To execute this analysis, we systematically trained each model by excluding meteorological variables one 661 

or more at a time, subsequently evaluating their predictive performance using the entire testing dataset. 662 

The results of our analysis indicated that N-HiTS and N-BEATS models exhibited minimal sensitivity to 663 

meteorological variables, as evidenced by the negligible impact on their performance metric (NSE) upon 664 

parameter exclusion. 665 
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Notably, as shown in Table 6, the performance of the N-HiTS model displayed a marginal deviation 666 

under variable omission, while the N-BEATS model exhibited consistent performance irrespective of the 667 

inclusion or exclusion of meteorological variables. The structure of this algorithm is based on backward 668 

and forward residual links for univariate time series point forecasting which does not take into account 669 

other parameters in the prediction task.  These findings suggest that the predictive capabilities of N-HiTS 670 

and N-BEATS models predominantly rely on historical flood data, underscoring their resilience in 671 

prediction in the absence of specific meteorological inputs. This resilience to meteorological variability 672 

underscores the robustness of the N-HiTS and N-BEATS models, positioning them as viable tools and 673 

perhaps appropriate for real-time flood forecasting tasks where direct meteorological data may be limited 674 

or unavailable.  675 

 676 

Table 6. NSE values for N-HiTS and N-BEATS models by excluding meteorological variables one or 677 

more at a time. 678 

Model Excluded Variables NSE 

N-HiTS 

Using all variables 99.55 % 

Without Precipitation 99.34 % 

Without Humidity 99.51 % 

Without Temperature 99.49 % 

Discharge only prediction 99.3 % 

N-BEATS 

Using all variables 99.42 % 

Without Precipitation 99.42 % 

Without Humidity 99.42 % 

Without Temperature 99.42 % 

Discharge only prediction 99.42 % 

LSTM  

Using all variables 99.2 % 

Without Precipitation 97.93 % 

Without Humidity 99.13 % 

Without Temperature 98.27 % 

Discharge only prediction 97.6 % 

 679 
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3.5 Computational Efficiency 680 

The computational efficiency of the N-HiTS, N-BEATS, and LSTM models, as well as a comparative 681 

analysis, is presented in Table 7. The study encompassed the entire process of training and predicting over 682 

the testing period, employing the optimized hyperparameters as previously described. Regarding the 683 

training time, it is noteworthy that the LSTM model exhibited the quickest performance. Specifically, 684 

LSTM demonstrated a training time that was 71% faster than N-HiTS and 93% faster than N-BEATS in 685 

the Lower Dog River watershed, while it was respectively,126% and 118% faster than N-HiTS and N-686 

BEATS in the Upper Dutchmans Creek, over training dataset. This is because LSTM has a simple 687 

architecture compared to the N-BEATS and N-HiTS and does not require multivariate features, hierarchical 688 

interpolation, and multi-rate data sampling. Perhaps, this outcome underscores the computational advantage 689 

of LSTM over other algorithms. 690 

Conversely, during the testing period, the N-HiTS model emerged as the fastest and delivered the most 691 

efficient results in comparison to the other models. Notably, N-HiTS displayed a predicting time that was 692 

33% faster than LSTM and 32% faster than N-BEATS. This finding highlights the computational efficiency 693 

of the N-HiTS model in the context of predicting processes. Our experiments unveiled an interesting 694 

contrast in the computational performance of these models. While LSTM excelled in terms of training time, 695 

it lagged behind when it came to the testing period. 696 

In the grand scheme of computational efficiency, model accuracy, and uncertainty analysis results, it 697 

becomes evident that the superiority of the N-HiTS and N-BEATS models in terms of accuracy and 698 

uncertainty analysis holds paramount importance. This significance is accentuated by the critical nature of 699 

flood prediction, where precision and certainty are pivotal. Therefore, computational efficiency must be 700 

viewed in the context of the broader objectives, with the accuracy and reliability of flood predictions taking 701 

precedence in ensuring the safety and preparedness of the affected regions.      702 

 703 

Table 7. Computational costs of N-HiTS, N-BEATS, and LSTM models in the Dog River and Killian 704 

Creek gauging stations.  705 

 Training Time over Train Datasets 

(seconds)  

Predicting Time over Test Datasets 

(seconds) 

Model Lower Dog River Upper Dutchmans Creek Lower Dog River Upper Dutchmans Creek 

N-HiTS 256.032 374.569 1533.029 1205.526 

N-BEATS 288.511 361.599 2028.068 1482.305 

LSTM 149.173 165.827 2046.140 1792.444 

 706 
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4. Conclusion 707 

This study examined multiple NN algorithms for flood prediction. We selected two headwater streams with 708 

minimal human impacts to understand how NN approaches can capture flood magnitude and timing for 709 

these natural systems. In conclusion, our study represents a pioneering effort in exploring and advancing 710 

the application of NN algorithms, specifically the N-HiTS and N-BEATS models, in the field of flood 711 

prediction. In our case studies, both N-HiTS and N-BEATS models achieved state-of-the-art results, 712 

outperforming LSTM as a recurrent model. These benchmarking results are arguably a pivotal part of this 713 

paper. However, the N-BEATS model slightly emerged as a powerful and interpretable tool for flood 714 

prediction in most selected events. 715 

In addition, the results of the experiments described above demonstrated that N-HiTS multi-rate input 716 

sampling and hierarchical interpolation along with N-BEATS interpretable configuration are effective in 717 

learning location-specific runoff generation behaviors. Both algorithms with an MLP-based deep neural 718 

architecture with backward and forward residual links can sequentially project the data signal into 719 

polynomials and harmonic basis needed to predict intense storm behaviors with varied magnitudes. The 720 

innovation in this study – besides benchmarking the LSTM model for headwater streams – was to tackle 721 

volatility and memory complexity challenges, by locally specializing flood sequential predictions into the 722 

data signal’s frequencies with interpretability, and hierarchical interpolation and pooling. Both N-HiTS and 723 

N-BEATS models offered similar performance as compared with the LSTM but also offered a level of 724 

interpretability about how the model learns to differentiate aspects of complex watershed-specific behaviors 725 

via data. Both models also support multivariate series (and covariates) by flattening the model inputs to a 726 

1-D series and reshaping the outputs to a tensor of appropriate dimensions. This approach provides 727 

flexibility to handle arbitrary numbers of features. Furthermore, both N-HiTS and N-BEATS models also 728 

support producing probabilistic predictions by specifying a likelihood parameter. In terms of sensitivity 729 

analysis, both N-HiTS and N-BEATS models maintain consistent performance even when trained without 730 

specific meteorological inputs. This resilience underscores these models' ability to generate accurate 731 

predictions using historical flood data alone, making them valuable tools for flood prediction, especially in 732 

data-poor watersheds or even for real-time flood prediction when near real-time meteorological inputs are 733 

limited or unavailable. In terms of computational efficiency, both N-HiTS and N-BEATS are trained almost 734 

at the same pace; however, N-HiTS predicted the test data much quicker than N-BEATS. Unlike N-HiTS 735 

and N-BEATS, LSTM excelled in reducing training time due to its simplicity and limited number of 736 

parameters. 737 

Moving forward, it is worth mentioning that predicting the magnitude of the recession curve of flood 738 

hydrographs was particularly challenging for all models. We argue that this is because the relation between 739 
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base flow and time is particularly hard to calibrate due to ground-water effluent that is controlled by 740 

geological and physical conditions (vegetation, wetlands, wet meadows) in headwater streams. In addition, 741 

the situations of runoff occurrence are diverse and have a high measurement variance with high frequency 742 

that can make it difficult for NN algorithms to fully capture discrete representation learning on time series. 743 

In future studies, it will be important to develop strategies to derive analogs to the interpretable 744 

configuration as well as multi-rate input sampling, hierarchical interpolation, and backcast residual 745 

connections that allow for the dynamic representation of flood times series data with different frequencies 746 

and nonlinearity. A dynamic representation of flood time series is, at least in principle, possible by 747 

generating additive predictions in different bands of the time-series signals, reducing memory footprint and 748 

compute time, and improving architecture parsimony and accuracy. This would allow the model to “learn” 749 

interpretability and hierarchical representations from raw data to reduce complexity as the information 750 

flows through the network. Lastly, one could explore the idea of enhancing N-HiTS and N-BEATS (or NN 751 

algorithms, in general) performance with uncertainty quantification by using more robust Bayesian 752 

inference such as Bayesian Model Averaging (BMA) with fixed and flexible prior distributions (see Samadi 753 

et al., 2020) and/or Markov Chain Monte-Carlo optimization methods (Duane et al., 1987) addressing both 754 

aleatoric and epistemic uncertainties. We leave these approaches for future discussion and exploration in 755 

the context of flood neural time series prediction. 756 

 757 

5. Acknowledgements 758 

This research is supported by the US National Science Foundation Directorate of Engineering (Grant # 759 

CMMI 2125283). The authors acknowledge and appreciate Thorsten Wagener (University of University of 760 

Potsdam, Germany) discussion and feedback on this manuscript. Clemson University (USA) is 761 

acknowledged for generous allotment of computing time on the Palmetto cluster.  762 

 763 

6. Code/Data availability 764 

The historical discharge data used in this study are from the USGS 765 

(https://waterdata.usgs.gov/nwis/uv/?referred_module=sw), meteorological data from USDA 766 

(https://www.ncdc.noaa.gov/cdo-web/datatools/lcd). We uploaded the datasets used in this 767 

research to Zenodo, accessible via https://zenodo.org/records/13342838.  For modeling, we used 768 

the NeuralForecast package (Olivares et al., 2022), available at: 769 

https://github.com/Nixtla/neuralforecast.  770 

 771 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



36 

 

7. Author contribution: MS performed the analyses and wrote the initial draft. VS performed and 772 

interpreted the results, conceptualization, writing and editing the paper, and funding acquisition. IP edited 773 

the manuscript and helped with the interpretation. All the authors substantially contributed to the final draft. 774 

 775 

8. Competing interests: The contact author has declared that none of the authors has any competing 776 

interests. 777 

 778 

9. References 779 

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R., 780 

2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. 781 

Journal of Hydrology 333, 413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014 782 

Alaa, A.M., van der Schaar, M., 2019. Attentive State-Space Modeling of Disease Progression, in: 783 

Advances in Neural Information Processing Systems. Curran Associates, Inc. 784 

Asquith, W.H., Roussel, M.C., Thompson, D.B., Cleveland, T.G., Fang, X., 2005. Summary of 785 

dimensionless Texas hyetographs and distribution of storm depth developed for Texas Department 786 

of Transportation research project 0–4194 (No. 0–4194–4). Texas Department of Transportation. 787 

Barnard, P.L., van Ormondt, M., Erikson, L.H., Eshleman, J., Hapke, C., Ruggiero, P., Adams, P.N., 788 

Foxgrover, A.C., 2014. Development of the Coastal Storm Modeling System (CoSMoS) for 789 

predicting the impact of storms on high-energy, active-margin coasts. Nat Hazards 74, 1095–1125. 790 

https://doi.org/10.1007/s11069-014-1236-y 791 

Basso, S., Schirmer, M., Botter, G., 2016. A physically based analytical model of flood frequency curves. 792 

Geophysical Research Letters 43, 9070–9076. https://doi.org/10.1002/2016GL069915 793 

Challu, C., Olivares, K.G., Oreshkin, B.N., Garza, F., Mergenthaler-Canseco, M., Dubrawski, A., 2022. 794 

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting. 795 

https://doi.org/10.48550/arXiv.2201.12886 796 

Chen, Y., Li, J., Xu, H., 2016. Improving flood forecasting capability of physically based distributed 797 

hydrological models by parameter optimization. Hydrology and Earth System Sciences 20, 375–798 

392. https://doi.org/10.5194/hess-20-375-2016 799 

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J.E., Gutmann, 800 

E.D., Wood, A.W., Brekke, L.D., Arnold, J.R., Gochis, D.J., Rasmussen, R.M., 2015. A unified 801 

approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research 802 

51, 2498–2514. https://doi.org/10.1002/2015WR017198 803 

CRED, n.d. EM-DAT - The international disaster database [WWW Document]. URL 804 

https://www.emdat.be/ (accessed 6.5.24). 805 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



37 

 

Dasgupta, A., Arnal, L., Emerton, R., Harrigan, S., Matthews, G., Muhammad, A., O’Regan, K., Pérez-806 

Ciria, T., Valdez, E., van Osnabrugge, B., Werner, M., Buontempo, C., Cloke, H., Pappenberger, 807 

F., Pechlivanidis, I.G., Prudhomme, C., Ramos, M.-H., Salamon, P., n.d. Connecting hydrological 808 

modelling and forecasting from global to local scales: Perspectives from an international joint 809 

virtual workshop. Journal of Flood Risk Management n/a, e12880. 810 

https://doi.org/10.1111/jfr3.12880 811 

Defontaine, T., Ricci, S., Lapeyre, C., Marchandise, A., Pape, E.L., 2023. Flood forecasting with Machine 812 

Learning in a scarce data layout. IOP Conf. Ser.: Earth Environ. Sci. 1136, 012020. 813 

https://doi.org/10.1088/1755-1315/1136/1/012020 814 

Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D., 1987. Hybrid Monte Carlo. Physics Letters B 815 

195, 216–222. https://doi.org/10.1016/0370-2693(87)91197-X 816 

Erikson, L.H., Espejo, A., Barnard, P.L., Serafin, K.A., Hegermiller, C.A., O’Neill, A., Ruggiero, P., 817 

Limber, P.W., Mendez, F.J., 2018. Identification of storm events and contiguous coastal sections 818 

for deterministic modeling of extreme coastal flood events in response to climate change. Coastal 819 

Engineering 140, 316–330. https://doi.org/10.1016/j.coastaleng.2018.08.003 820 

Evin, G., Le Lay, M., Fouchier, C., Mas, A., Colleoni, F., Penot, D., Garambois, P.-A., Laurantin, O., 821 

2023. Evaluation of hydrological models on small mountainous catchments: impact of the 822 

meteorological forcings. https://doi.org/10.5194/egusphere-2023-845 823 

Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., Wu, D., Wang, W., Pei, J., Huang, H., 2019. 824 

Multi-Horizon Time Series Forecasting with Temporal Attention Learning, in: Proceedings of the 825 

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19. 826 

Association for Computing Machinery, New York, NY, USA, pp. 2527–2535. 827 

https://doi.org/10.1145/3292500.3330662 828 

Fang, K., Kifer, D., Lawson, K., Shen, C., 2020. Evaluating the Potential and Challenges of an 829 

Uncertainty Quantification Method for Long Short-Term Memory Models for Soil Moisture 830 

Predictions. Water Resources Research 56, e2020WR028095. 831 

https://doi.org/10.1029/2020WR028095 832 

Global assessment report on disaster risk reduction 2015 | UNDRR, 2015. URL: 833 

http://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2015 (accessed 834 

6.5.24). 835 

Gotvald, A.J., 2010, Historic flooding in Georgia, 2009: U.S. Geological Survey Open-File Report 2010–836 

1230, 19 p. 837 

Hochreiter, S., Younger, A.S., Conwell, P.R., 2001. Learning to Learn Using Gradient Descent, in: 838 

Dorffner, G., Bischof, H., Hornik, K. (Eds.), Artificial Neural Networks — ICANN 2001. Springer, 839 

Berlin, Heidelberg, pp. 87–94. https://doi.org/10.1007/3-540-44668-0_13 840 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



38 

 

Hsu, K., Gupta, H.V., Sorooshian, S., 1995. Artificial Neural Network Modeling of the Rainfall-Runoff 841 

Process. Water Resources Research 31, 2517–2530. https://doi.org/10.1029/95WR01955 842 

Jonkman, S.N., 2005. Global Perspectives on Loss of Human Life Caused by Floods. Nat Hazards 34, 843 

151–175. https://doi.org/10.1007/s11069-004-8891-3 844 

Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. 845 

https://doi.org/10.48550/arXiv.1412.6980 846 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M., 2018. Rainfall–runoff modelling using 847 

Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences 22, 6005–848 

6022. https://doi.org/10.5194/hess-22-6005-2018  849 

Lim, B., Arık, S.Ö., Loeff, N., Pfister, T., 2021. Temporal Fusion Transformers for interpretable multi-850 

horizon time series forecasting. International Journal of Forecasting 37, 1748–1764. 851 

https://doi.org/10.1016/j.ijforecast.2021.03.012 852 

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., Loumagne, C., 2014. When does higher spatial 853 

resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood 854 

events. Hydrology and Earth System Sciences 18, 575–594. https://doi.org/10.5194/hess-18-575-855 

2014 856 

MacDonald, L.H., Coe, D., 2007. Influence of Headwater Streams on Downstream Reaches in Forested 857 

Areas. Forest Science 53, 148–168. https://doi.org/10.1093/forestscience/53.2.148 858 

Martinaitis, S.M., Wilson, K.A., Yussouf, N., Gourley, J.J., Vergara, H., Meyer, T.C., Heinselman, P.L., 859 

Gerard, A., Berry, K.L., Vergara, A. and Monroe, J., 2023. A path toward short-term probabilistic 860 

flash flood prediction. Bulletin of the American Meteorological Society, 104(3), pp.E585-E605. 861 

McCallum, B.E., and Gotvald, A.J., 2010, Historic flooding in northern Georgia, September 16–22, 2009: 862 

U.S. Geological Survey Fact Sheet 2010–3061, 4 p. 863 

McCuen, R.H., Knight, Z., Cutter, A.G., 2006. Evaluation of the Nash–Sutcliffe Efficiency Index. Journal 864 

of Hydrologic Engineering 11, 597–602. https://doi.org/10.1061/(ASCE)1084-865 

0699(2006)11:6(597) 866 

Munn, M., Sheibley, R., Waite, I., Meador, M., 2020. Understanding the relationship between stream 867 

metabolism and biological assemblages. Freshwater Science 39, 680–692. 868 

https://doi.org/10.1086/711690 869 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion 870 

of principles. Journal of Hydrology 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 871 

Nevo, S., Morin, E., Gerzi Rosenthal, A., Metzger, A., Barshai, C., Weitzner, D., Voloshin, D., Kratzert, 872 

F., Elidan, G., Dror, G., Begelman, G., Nearing, G., Shalev, G., Noga, H., Shavitt, I., Yuklea, L., 873 

Royz, M., Giladi, N., Peled Levi, N., Reich, O., Gilon, O., Maor, R., Timnat, S., Shechter, T., 874 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



39 

 

Anisimov, V., Gigi, Y., Levin, Y., Moshe, Z., Ben-Haim, Z., Hassidim, A., Matias, Y., 2022. Flood 875 

forecasting with machine learning models in an operational framework. Hydrology and Earth 876 

System Sciences 26, 4013–4032. https://doi.org/10.5194/hess-26-4013-2022 877 

NRCS (2009). Part 630 Hydrology National Engineering Handbook, Chapter 15: Time of Concentration. 878 

Olivares, K. G., Challú, C., Garza, F., Mergenthaler Canseco, M., & Dubrawski, A. (2022). 879 

NeuralForecast: User friendly state-of-the-art neural forecasting models. PyCon Salt Lake City, 880 

Utah, US 2022. Retrieved from https://github.com/Nixtla/neuralforecast 881 

Olivares, K.G., Meetei, O.N., Ma, R., Reddy, R., Cao, M., Dicker, L., 2024. Probabilistic hierarchical 882 

forecasting with deep Poisson mixtures. International Journal of Forecasting 40, 470–489. 883 

https://doi.org/10.1016/j.ijforecast.2023.04.007 884 

Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y., 2020. N-BEATS: Neural basis expansion analysis 885 

for interpretable time series forecasting. https://doi.org/10.48550/arXiv.1905.10437 886 

Pally, R.J., Samadi, V., 2021. Application of image processing and convolutional neural networks for 887 

flood image classification and semantic segmentation. Environmental Modelling & Software 148, 888 

105285. https://doi.org/10.1016/j.envsoft.2021.105285 889 

Palmer, T.N., 2012. Towards the probabilistic Earth-system simulator: a vision for the future of climate 890 

and weather prediction. Quarterly Journal of the Royal Meteorological Society 138, 841–861. 891 

https://doi.org/10.1002/qj.1923 892 

Park, K., Lee, E.H., 2024. Urban flood vulnerability analysis and prediction based on the land use using 893 

Deep Neural Network. International Journal of Disaster Risk Reduction 101, 104231. 894 

https://doi.org/10.1016/j.ijdrr.2023.104231 895 

Pourreza-Bilondi, M., Samadi, S.Z., Akhoond-Ali, A.-M., Ghahraman, B., 2017. Reliability of Semiarid 896 

Flash Flood Modeling Using Bayesian Framework. Journal of Hydrologic Engineering 22, 897 

05016039. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001482 898 

Refsgaard, J.C., Stisen, S., Koch, J., 2022. Hydrological process knowledge in catchment modelling – 899 

Lessons and perspectives from 60 years development. Hydrological Processes 36, e14463. 900 

https://doi.org/10.1002/hyp.14463 901 

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., Lescinski, J., 2009. 902 

Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering 56, 1133–903 

1152. https://doi.org/10.1016/j.coastaleng.2009.08.006 904 

Russo, S., Perraudin, N., Stalder, S., Perez-Cruz, F., Leitao, J.P., Obozinski, G., Wegner, J.D., 2023. An 905 

evaluation of deep learning models for predicting water depth evolution in urban floods. 906 

https://doi.org/10.48550/arXiv.2302.10062 907 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



40 

 

Safaei-Moghadam, A., Tarboton, D., Minsker, B., 2023. Estimating the likelihood of roadway pluvial 908 

flood based on crowdsourced traffic data and depression-based DEM analysis. Natural Hazards and 909 

Earth System Sciences 23, 1–19. https://doi.org/10.5194/nhess-23-1-2023 910 

Saksena, S., Dey, S., Merwade, V., Singhofen, P.J., 2020. A Computationally Efficient and Physically 911 

Based Approach for Urban Flood Modeling Using a Flexible Spatiotemporal Structure. Water 912 

Resources Research 56, e2019WR025769. https://doi.org/10.1029/2019WR025769 913 

Samadi, S., Pourreza-Bilondi, M., Wilson, C. a. M.E., Hitchcock, D.B., 2020. Bayesian Model Averaging 914 

With Fixed and Flexible Priors: Theory, Concepts, and Calibration Experiments for Rainfall-Runoff 915 

Modeling. Journal of Advances in Modeling Earth Systems 12, e2019MS001924. 916 

https://doi.org/10.1029/2019MS001924 917 

Scott, J., n.d. Widespread Flooding After Severe Storms - WCCB Charlotte’s CW. Available at:  918 

https://www.wccbcharlotte.com/2020/02/08/widespread-flooding-after-severe-storms/ (accessed 919 

6.11.24). 920 

Sukovich, E.M., Ralph, F.M., Barthold, F.E., Reynolds, D.W., Novak, D.R., 2014. Extreme Quantitative 921 

Precipitation Forecast Performance at the Weather Prediction Center from 2001 to 2011. Weather 922 

and Forecasting 29, 894–911. https://doi.org/10.1175/WAF-D-13-00061.1 923 

Tabas, S.S., Samadi, S., 2022. Variational Bayesian dropout with a Gaussian prior for recurrent neural 924 

networks application in rainfall–runoff modeling. Environ. Res. Lett. 17, 065012. 925 

https://doi.org/10.1088/1748-9326/ac7247 926 

Thompson, C.M., Frazier, T.G., 2014. Deterministic and probabilistic flood modeling for contemporary 927 

and future coastal and inland precipitation inundation. Applied Geography 50, 1–14. 928 

https://doi.org/10.1016/j.apgeog.2014.01.013 929 

Tiwari, M.K., Chatterjee, C., 2010. Development of an accurate and reliable hourly flood forecasting 930 

model using wavelet-bootstrap-ANN (WBANN) hybrid approach. Journal of Hydrology 394, 458–931 

470. https://doi.org/10.1016/j.jhydrol.2010.10.001 932 

Watershed Report | Office of Water | US EPA, n.d. Available at: 933 

https://watersgeo.epa.gov/watershedreport/?comid=9224629 (accessed 6.9.24). 934 

Wee, G., Chang, L.-C., Chang, F.-J., Mat Amin, M.Z., 2023. A flood Impact-Based forecasting system by 935 

fuzzy inference techniques. Journal of Hydrology 625, 130117. 936 

https://doi.org/10.1016/j.jhydrol.2023.130117 937 

Windheuser, L., Karanjit, R., Pally, R., Samadi, S., Hubig, N.C., 2023. An End-To-End Flood Stage 938 

Prediction System Using Deep Neural Networks. Earth and Space Science 10, e2022EA002385. 939 

https://doi.org/10.1029/2022EA002385 940 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



41 

 

Zhang, L., Qin, H., Mao, J., Cao, X., Fu, G., 2023. High temporal resolution urban flood prediction using 941 

attention-based LSTM models. Journal of Hydrology 620, 129499. 942 

https://doi.org/10.1016/j.jhydrol.2023.129499 943 

Zhang, Y., Pan, D., Griensven, J.V., Yang, S.X., Gharabaghi, B., 2023. Intelligent flood forecasting and 944 

warning: a survey. ir 3, 190–212. https://doi.org/10.20517/ir.2023.12 945 

Zou, Y., Wang, J., Lei, P., Li, Y., 2023. A novel multi-step ahead forecasting model for flood based on time 946 

residual LSTM. Journal of Hydrology 620, 129521. https://doi.org/10.1016/j.jhydrol.2023.129521 947 

 948 

https://doi.org/10.5194/hess-2024-261
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.


