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Abstract 11 

The past few years have witnessed the rise of neural networks (NNs) applications for hydrological time 12 

series modeling. By virtue of their capabilities, NN models can achieve unprecedented levels of 13 

performance when learning how to solve increasingly complex rainfall-runoff processes via data, making 14 

them pivotal for the development of computational hydrologic tasks such as flood predictions. The NN 15 

models should, to be considered practical, provide a probabilistic understanding of the model mechanisms 16 

and predictions and hints on what could perturb the model. In this paper, we developed two NN models, 17 

i.e., Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and Network-Based 18 

Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) with a probabilistic multi-19 

quantile objective and benchmarked them with long short-term memory (LSTM) for flood prediction across 20 

two headwater streams in Georgia and North Carolina, USA. To generate a probabilistic prediction, a Multi-21 

Quantile Loss was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple flooding 22 

events. Extensive experiments demonstrated the advantages of hierarchical interpolation and interpretable 23 

architecture, where both N-HiTS and N-BEATS provided an average accuracy improvement of ~5% over 24 

the LSTM benchmarking model. On a variety of flooding events, both N-HiTS and N-BEATS demonstrated 25 

significant performance improvements over the LSTM benchmark and showcased their probabilistic 26 

predictions by specifying a likelihood objective. 27 

Keywords: Probabilistic Flood Prediction; Neural Networks; N-HiTS; N-BEATS; LSTM; Headwater 28 

Stream. 29 
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• N-HiTS and N-BEATS predictions reflect interpretability and hierarchical representations of data 31 

to reduce neural network complexities. 32 

• Both N-HiTS and N-BEATS models outperformed the LSTM in mathematically defining 33 

uncertainty bands. 34 

• Predicting the magnitude of the recession curve of flood hydrographs was particularly challenging 35 

for all models. 36 

Plain Language Summary  37 

Recent progress in NN accelerated improvements in the performance of catchment modeling. Yet flood 38 

modeling remains a very difficult task. Focusing on two headwater streams, we developed N-HiTS and N-39 

BEATS models and benchmarked them with LSTM to predict flooding. N-HiTS and N-BEATS 40 

outperformed LSTM for flood predictions. We demonstrated how the proposed models can be augmented 41 

with an uncertainty approach to predict flooding that is interpretable without considerable loss in accuracy. 42 

 43 

1. Introduction 44 

The past few years have witnessed a rapid surge in the neural networks (NN) applications in hydrology. As 45 

these opaque, data-driven models are increasingly employed for critical hydrological predictions, the 46 

hydrology community has placed growing emphasis on developing trustworthy and interpretable NN 47 

models. However, maintaining coherence while producing accurate predictions can be a challenging 48 

problem (Olivares et al., 2024). There is a general agreement on the importance of providing probabilistic 49 

NN prediction (Sadeghi Tabas and Samadi, 2022), especially in the case of flood prediction (Martinaitis et 50 

al., 2023). 51 

Flood occurrences have witnessed an alarming surge in frequency and severity globally. Jonkman (2005) 52 

studied a natural disaster database (EM-DAT, 2023) and reported that over 27 years, more than 175000 53 

people died, and close to 2.2 billion were affected directly by floods worldwide. These numbers are likely 54 

an underestimation due to unreported events (Nevo et al., 2022). In addition, the United Nations Office for 55 

Disaster Risk Reduction reported that flooding has been the most frequent, widespread weather-related 56 

natural disaster since 1995, claiming over 600,000 lives, affecting around 4 billion people globally, and 57 

causing annual economic damage of more than 100 billion USD (UNISDR, 2015). This escalating trend 58 

has necessitated the need for better flood prediction and management strategies. Scholars have successfully 59 

implemented different flood models such as deterministic (e.g., Roelvink et al., 2009, Thompson and 60 

Frazier, 2014; Barnard et al., 2014; Erikson et al., 2018) and physically based flood models (e.g., Basso et 61 

al., 2016; Chen et al., 2016; Pourreza-Bilondi et al., 2017; Saksena et al., 2019; Refsgaard et al., 2021) in 62 

various environmental systems over the past several decades. These studies have heightened the need for 63 
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precise flood prediction (Samadi et al., 2025), they have also unveiled limitations inherent in existing 64 

deterministic and physics-based models.  65 

While evidence suggests that both deterministic and physics-based approaches are meaningful and useful 66 

(Sukovich et al., 2014; Zafarmomen et al., 2024), their forecasts rest heavily on imprecise and subjective 67 

expert opinion; there is a challenge for setting robust evidence-based thresholds to issue flood warnings and 68 

alerts (Palmer, 2012). Moreover, many of these traditional flood models, particularly physically explicit 69 

models, rely too strongly on a particular choice of numerical approximation and describe multiple process 70 

parameterizations only within a fixed spatial architecture (e.g., Clark et al., 2015). Recent NN models have 71 

shown promising results across a large variety of flood modeling applications (e.g., Nevo et al., 2022; Pally 72 

and Samadi, 2022; Dasgupta et al., 2023; Zhang et al., 2023; Zafarmomen and Samadi, 2025; Saberian et 73 

al., 2025) and encourage the use of such methodologies as core drivers for neural flood prediction 74 

(Windheuser et al., 2023).  75 

Earlier adaptations of these intelligent techniques showed promising for flood prediction (e.g., Hsu et al., 76 

1995; Tiwari and Chatterjee, 2010). However, recent efforts have taken NN application to the next level, 77 

providing uncertainty assessment (Sadeghi Tabas and Samadi, 2022) and improvements over various 78 

spatio-temporal scales, regions, and processes (e.g., Kratzert et al., 2018; Park and Lee, 2023; Zhang et al., 79 

2023). Nevo et al., (2022) were the first scholars who employed long short-term memory (LSTM) for flood 80 

stage prediction and inundation mapping, achieving notable success during the 2021 monsoon season. Soon 81 

after, Russo et al. (2023) evaluated various NN models for predicting depth flood in urban systems, 82 

highlighting the potential of data-driven models for urban flood prediction. Similarly, Defontaine et al. 83 

(2023) emphasized the role of NN algorithms in enhancing the reliability of flood predictions, particularly 84 

in the context of limited data availability. Windheuser et al., (2023) studied flood gauge height forecasting 85 

using images and time series data for two gauging stations in Georgia, USA. They used multiple NN models 86 

such as Convolutional Neural Network (ConvNet/CNN) and LSTM to forecast floods in near real-time (up 87 

to 72 hours).  88 

In a sequence, Wee et al., (2023) used Impact-Based Forecasting (IBF) to propose a Flood Impact-Based 89 

Forecasting system (FIBF) using flexible fuzzy inference techniques, aiding decision-makers in a timely 90 

response. Zou et al. (2023) proposed a Residual LSTM (ResLSTM) model to enhance and address flood 91 

prediction gradient issues. They integrated Deep Autoregressive Recurrent (DeepAR) with four recurrent 92 

neural networks (RNNs), including ResLSTM, LSTM, Gated Recurrent Unit (GRU), and Time 93 

Feedforward Connections Single Gate Recurrent Unit (TFC-SGRU). They showed that ResLSTM achieved 94 

superior accuracy. While these studies reported the superiority of NN models for flood modeling, they 95 

highlighted a number of challenges, notably (i) the limited capability of proposed NN models to capture 96 
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the spatial variability and magnitudes of extreme data over time, (ii) the lack of a sophisticated mechanism 97 

to capture different flood magnitudes and synthesize the prediction, and (iii) inability of the NN models to 98 

process data in parallel and capture the relationships between all elements in a sequential manner. 99 

Recent advances in neural time series forecasting showed promising results that can be used to address the 100 

above challenges for flood prediction. Recent techniques include the adoption of the attention mechanism 101 

and Transformer-inspired approaches (Fan et al. 2019; Alaa and van der Schaar 2019; Lim et al. 2021) 102 

along with attention-free architectures composed of deep stacks of fully connected layers (Oreshkin et al. 103 

2020).   104 

All these approaches are relatively easy to scale up in terms of flood magnitudes (small to major flood 105 

predictions), compared to LSTM and have proven to be capable of capturing spatiotemporal dependencies 106 

(Challu et al., 2022). In addition, these architectures can capture input-output relationships implicitly while 107 

they tend to be more computationally efficient. Many state-of-the-art NN approaches for flood forecasting 108 

have been established based on LSTM. There are cell states in the LSTM networks that can be interpreted 109 

as storage capacity often used in flood generation schemes. In LSTM, the updating of internal cell states 110 

(or storages) is regulated through several gates: the first gate regulates the storage depletion, the second one 111 

regulates storage fluctuations, and the third gate regulates the storages outflow (Tabas and Samadi, 2022). 112 

The elaborate gated design of the LSTM partly solves the long-term dependency problem in flood time 113 

series prediction (Fang et al., 2020), although, the structure of LSTMs is designed in a sequential manner 114 

that cannot directly connect two nonadjacent portions (positions) of a time series.  115 

In this paper, we developed attention-free architecture, i.e.  Neural Hierarchical Interpolation for Time 116 

Series Forecasting (N-HiTS; Challu et al., 2022) and Network-Based Expansion Analysis for Interpretable 117 

Time Series Forecasting (N-BEATS; Oreshkin et al., 2020) and benchmarked these models with LSTM for 118 

flood prediction. We developed fully connected N-BEATS and N-HiTS architectures using multi-rate data 119 

sampling, synthesizing the flood prediction outputs via multi-scale interpolation. 120 

We implemented all algorithms for flood prediction on two headwater streams i.e., the Lower Dog River, 121 

Georgia, and the Upper Dutchmans Creek, North Carolina, USA to ensure that the results are reliable and 122 

comparable. The results of N-BEATS and N-HiTS techniques were compared with the benchmarking 123 

LSTM to understand how these techniques can improve the representations of rainfall and runoff 124 

dispensing over a recurrence process. Notably, this study represents a pioneering effort, as to the best of 125 

our knowledge, this is the first instance in which the application of N-BEATS and N-HiTS algorithms in 126 

the field of flood prediction has been explored. The scope of this research will focus on: 127 
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(i) Flood prediction in a hierarchical fashion with interpretable outputs: We built N-BEATS and 128 

N-HiTS for flood prediction with a very deep stack of fully connected layers to implicitly capture input-129 

output relationships with hierarchical interpolation capabilities. The predictions also involve programming 130 

the algorithms with decreasing complexity and aligning their time scale with the final output through multi-131 

scale hierarchical interpolation and interpretable architecture. Predictions were aggregated in a hierarchical 132 

fashion that enabled the building of a very deep neural network with interpretable configurations. 133 

(ii)     Uncertainty quantification of the models by employing probabilistic approaches: a Multi-134 

Quantile Loss (MQL) was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple 135 

flooding events. MQL was integrated as the loss function to account for probabilistic prediction. MQL 136 

trains the model to produce probabilistic forecasts by predicting multiple quantiles of the distribution of 137 

future values.  138 

(iii)     Exploring headwater stream response to flooding: Understanding the dynamic response of 139 

headwater streams to flooding is essential for managing downstream flood risks. Headwater streams 140 

constitute the uppermost sections of stream networks, usually comprising 60% to 80% of a catchment area. 141 

Given this substantial coverage and the tendency for precipitation to increase with elevation, headwater 142 

streams are responsible for generating and controlling the majority of runoff in downstream portions 143 

(MacDonald and Coe, 2007).  144 

The remainder of this paper is structured as follows. Section 2 presents the case study and data, NN models, 145 

performance metrics, and sensitivity and uncertainty approaches. Section 3 focuses on the results of flood 146 

predictions including sensitivity and uncertainty assessment and computation efficiency. Finally, Section 4 147 

concludes the paper.  148 

 149 

2. Methodology 150 

2.1. Case Study and Data 151 

This research used two headwater gauging stations located at the Lower Dog River watershed, Georgia 152 

(GA; USGS02337410, Dog River gauging station), and the Upper Dutchmans Creek watershed, North 153 

Carolina (NC; USGS0214269560, Killian Creek gauging station). As depicted in Figures 1, the Lower Dog 154 

River and the Upper Dutchmans Creek watersheds are in the west and north parts of two metropolitan cities, 155 

Atlanta and Charlotte. The Lower Dog River stream gauge is established southeast of Villa Rica in Carroll 156 

County, where the USGS has regularly monitored discharge data since 2007 in 15-minute increments. The 157 

Lower Dog River is a stream with a length of 15.7 miles (25.3 km; obtained from the U.S. Geological 158 

Survey [USGS] National Hydrography Dataset high-resolution flowline data), an average elevation of 159 
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851.94 meters, and the watershed area above this gauging station is 66.5 square miles (172 km2; obtained 160 

from the Georgia Department of Natural Resources). This watershed is covered by 15.2% residential area, 161 

14.6% agricultural land, and ⁓70% forest (Munn et al., 2020).  162 

Killian Creek gauging station at the Upper Dutchmans Creek watershed is established in Montgomery 163 

County, NC, where the USGS has regularly monitored discharge data since 1995 in 15-minute increments. 164 

The Upper Dutchmans Creek is a stream with a length of 4.9 miles (7.9 km), an average elevation of 642.2 165 

meters (see Table 1), and the watershed area above this gauging station is 4 square miles (10.3 km2) with 166 

less than 3% residential area and about 93% forested land use (the United States Environmental Protection 167 

Agency). 168 

 The Lower Dog River has experienced significant flooding in the last decades. For example, in September 169 

2009, the creek, along with most of northern GA, experienced heavy rainfall (5 inches, equal to 94 mm). 170 

The Lower Dog River, overwhelmed by large amounts of overland flow from saturated ground in the 171 

watershed, experienced massive flooding in September 2009 (Gotvald, 2010). The river crested at 33.8 feet 172 

(10.3 m) with a peak discharge of 59,900 cfs (1,700 m3/s), nearly six times the 100-year flood level 173 

(McCallum and Gotvald, 2010). In addition, Dutchmans Creek experienced significant flooding in February 174 

2020. According to local news (WCCB Charlotte, 2020), the flood in Gaston County caused significant 175 

infrastructure damage and community disruption. Key impacts included the threatened collapse of the 176 

Dutchman’s Creek bridge in Mt. Holly and the closure of Highway 7 in McAdenville, GA.  177 

 178 

Table 1.  The Lower Dog River and Upper Dutchmans Creek’s physical characteristics. 179 

Watershed 
USGS Station ID 

Number  

Average Elevation 

(m) 

Stream Length 

(km) 

Watershed area 

(km2) 

Lower Dog River 

watershed, GA 
USGS02337410 851.9 25.3 172 

Upper Dutchmans Creek 

watershed, NC 
USGS0214269560 642.2 7.9 10.3 

 180 
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 181 

Figure 1.  The Lower Dog River and The Upper Dutchmans Creek watersheds are in GA and NC. The 182 

proximity of the watersheds to Atlanta and Charlotte (urban area) are also displayed on the map. 183 

To provide the meteorological forcing data, i.e., precipitation, temperature, and humidity, were extracted 184 

from the National Oceanic and Atmospheric Administration’s (NOAA) Local Climatological Data 185 

(LCD). We used the NOAA precipitation, temperature, and humidity data of Atlanta Hartsfield Jackson 186 

International Airport and Charlotte Douglas Airport stations as an input for neural network algorithms. The 187 

data has been monitored since January 1, 1948, and July 22, 1941, with an hourly interval which was used 188 

as an input variable for constructing neural networks. 189 

To fill in the missing values in the data, we used the spline interpolation method. We applied this method 190 

to fill the gaps in time series data, although the missing values were insignificant (less than 1%). In addition, 191 

we employed the Minimum Inter-Event Time (MIT) approach to precisely identify and separate individual 192 

storm events. The MIT-based event delineation is pivotal for accurately defining storm events. This method 193 

allowed us to isolate discrete rainfall episodes, aiding a comprehensive analysis of storm events. Moreover, 194 

it provided a basis for event-specific examination of flood responses, such as initial condition and cessation 195 

(loss), runoff generation, and runoff dynamics. 196 
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The hourly rainfall dataset consists of distinct rainfall occurrences, some consecutive and others clustered 197 

with brief intervals of zero rainfall. As these zero intervals extend, we aim to categorize them into distinct 198 

events. It's worth noting that even within a single storm event, we often encounter short periods of no 199 

rainfall, known as intra-storm zero values. In the MIT method, we defined a storm event as a discrete rainfall 200 

episode surrounded by dry periods both preceding and following it, determined by an MIT (Asquith et al., 201 

2005; Safaei-Moghadam et al., 2023).  202 

There are many ways to determine MIT value. One practical approximation is using serial autocorrelation 203 

between rainfall occurrences. MIT approach uses autocorrelation that measures the statistical dependency 204 

of rainfall data at one point in time with data at earlier, or lagged times within the time series. The lag time 205 

represents the gap between data points being correlated. When the lag time is zero, the autocorrelation 206 

coefficient is unity, indicating a one-to-one correlation. As the lag time increases, the statistical correlation 207 

diminishes, converging to a minimum value. This signifies the fact that rainfall events become 208 

progressively less statistically dependent or, in other words, temporally unrelated. To pinpoint the optimal 209 

MIT, we analyzed the autocorrelation coefficients for various lag times, observing the point at which the 210 

coefficient approaches zero. This lag time signifies the minimum interval of no rainfall, effectively 211 

delineating distinct rainfall events.  212 

 213 

2.2. NN Algorithms  214 

In this study, three distinct neural network (NN) architectures were developed to perform multi-horizon 215 

flood forecasting. Each NN was coupled with a MQL objective to generate probabilistic predictions and 216 

quantify predictive uncertainty. Throughout the manuscript, the term parameters are used exclusively to 217 

refer to the network’s weights and biases for clarity and consistency. 218 

 219 

2.2.1. LSTM 220 

LSTM is an RNN architecture widely used as a benchmark model for flood neural time series 221 

modeling. LSTM networks are capable of selectively learning order dependence in sequence prediction 222 

problems (Sadeghi Tabas and Samadi, 2022). These networks are powerful because they can capture the 223 

temporal features, especially the long-term dependencies (Hochreiter et al., 2001) and are independent of 224 

the length of the data sequences input, meaning that each sample is independent from another one. 225 

https://pubs.usgs.gov/publication/70176110
https://pubs.usgs.gov/publication/70176110
https://nhess.copernicus.org/articles/23/1/2023/nhess-23-1-2023-discussion.html
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The memory cell state within LSTM plays a crucial role in capturing extended patterns in data, making it 226 

well-suited for dynamic time series modeling such as flood prediction. An LSTM cell uses the following 227 

functions to compute flood prediction. 228 

𝑖𝑡 =  𝜎(𝐴𝑖𝑥𝑡  +  𝐵𝑖ℎ𝑡−1 +  𝑐𝑖) (Equation 1) 

𝑓𝑡 =  𝜎(𝐴𝑓𝑥𝑡  +  𝐵𝑓ℎ𝑡−1 +  𝑐𝑓) (Equation 2) 

𝑜𝑡 =  𝜎(𝐴𝑜𝑥𝑡  +  𝐵𝑜ℎ𝑡−1 +  𝑐𝑜) (Equation 3) 

𝑚𝑡 =  𝑓𝑡  ⨀ 𝑚𝑡−1  + 𝑖𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝐴𝑔𝑥𝑡  +  𝐵𝑔ℎ𝑡−1 +  𝑐𝑔) (Equation 4) 

ℎ𝑡 =  𝑜𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝑚𝑡) (Equation 5) 

Where 𝑥𝑡 and ℎ𝑡  represent the input and the hidden state at time step t, respectively. ⊙ denotes element-229 

wise multiplication, 𝑡𝑎𝑛ℎ stands for the hyperbolic tangent activation function, and 𝜎 represents the 230 

sigmoid activation function. 𝐴, 𝐵, and 𝑐 are trainable weights and biases that undergo optimization during 231 

the training process. 𝑚𝑡  and ℎ𝑡 are cell states at time step t that are employed in the input processing for 232 

the next time step. 𝑚𝑡  represents the memory state responsible for preserving long-term information, while 233 

ℎ𝑡 represents the memory state preserving short-term information. The LSTM cell consists of a forget gate 234 

ft, an input gate it and an output gate ot and has a cell state mt. At every time step t, the cell gets the data 235 

point xt with the output of the previous cell ht−1 (Windheuser et al., 2023). The forget gate then defines if 236 

the information is removed from the cell state, while the input gate evaluates if the information should be 237 

added to the cell state and the output gate specifies which information from the cell state can be used for 238 

the next cells.  239 

We used two LSTM layers with 128 cells in the first two hidden layers as encoder layers, which were then 240 

connected to two multilayer perceptron (MLP) layers with 128 neurons as decoder layers. The LSTM 241 

simulation was performed with these input layers along with the Adam optimizer (Kingma and Ba, 242 

2014), tanh activation function, and a single lagged dependent-variable value to train with a learning rate 243 

of 0.001. The architecture of the proposed LSTM model is illustrated in Figure 2. 244 
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 245 

Figure 2. The structure of LSTM programmed in this research. We used tanh and sigmoid as activation 246 

functions along with 2 layers of LSTM, 2 layers of MLP, and 128 cells in each layer.  247 

 248 

2.2.2. N-BEATS 249 

N-BEATS is a deep learning architecture based on backward and forward residual links and the very deep 250 

stack of fully connected layers specifically designed for sequential data forecasting tasks (Oreshkin et al., 251 

2020). This architecture has several desirable properties including interpretability. The N-BEATS 252 

architecture distinguishes itself from existing architecture in several ways. First, the algorithm approaches 253 

forecasting as a non-linear multivariate regression problem instead of a sequence-to-sequence 254 

challenge.  Indeed, the core component of this architecture (as depicted in Figure 3) is a fully connected 255 

non-linear regressor, which takes the historical data from a time series as input and generates multiple data 256 

points for the forecasting horizon. Second, most existing time series architectures are quite limited in depth, 257 

typically consisting of one to five LSTM layers. N-BEATS employs the residual principle to stack a 258 

substantial number of layers together, as illustrated in Figure 3. In this configuration, the basic block not 259 

only predicts the next output but also assesses its contribution to decomposing the input, a concept that is 260 

referred to as "backcast" (see Oreshkin et al. 2020). 261 
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The basic building block in the architecture features a fork-like structure, as illustrated in Figure 3 (bottom). 262 

The 𝑙-th block (for the sake of brevity, the block index 𝑙 is omitted from Figure 3) takes its respective input, 263 

𝑥𝑙, and produces two output vectors: 𝑥̂𝑙 and 𝑦̂𝑙. In the initial block of the model, 𝑥𝑙 corresponds to the 264 

overall model input, which is a historical lookback window of a specific length, culminating with the most 265 

recent observed data point. For the subsequent blocks, 𝑥𝑙 is derived from the residual outputs of the 266 

preceding blocks. Each block generates two distinct outputs: 1. 𝑦̂𝑙: This represents the forward forecast of 267 

the block, spanning a duration of H time units. 2. 𝑥̂𝑙: This signifies the block's optimal estimation of 𝑥𝑙, 268 

which is referred to “backcast.” This estimation is made within the constraints of the functional space 269 

available to the block for approximating signals (Oreshkin et al., 2020). 270 

Internally, the fundamental building block is composed of two elements. The initial element involves a 271 

fully connected network, which generates forward expansion coefficient predictors, 𝜃𝑙
𝑓
, and a backward 272 

expansion coefficient predictor, 𝜃𝑙
𝑏. The second element encompasses both backward basis layers, 𝑔𝑙

𝑏, and 273 

forward basis layers, 𝑔𝑙
𝑓

. These layers take the corresponding forward 𝜃𝑙
𝑓
and backward 𝜃𝑙

𝑏expansion 274 

coefficients as input, conduct internal transformations using a set of basis functions, and ultimately yield 275 

the backcast, 𝑥̂𝑙, and the forecast outputs, 𝑦̂𝑙, as previously described by Oreshkin et al. (2020). The 276 

following equations describe the first element: 277 

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙),    ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1),     ℎ𝑙,3 = 𝐹𝐶𝑙,3(ℎ𝑙,2),       ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3). (Equation 6) 

𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4),        𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4) (Equation 7) 

The LINEAR layer, in essence, functions as a straightforward linear projection, meaning 𝜃𝑙
𝑓

=  𝑊𝑙
𝑓

ℎ𝑙,4. As 278 

for the fully connected (FC) layer, it takes on the role of a conventional FC layer, incorporating RELU non-279 

linearity as an activation function.  280 

The second element performs the mapping of expansion coefficients 𝜃𝑙
𝑓
and 𝜃𝑙

𝑏 to produce outputs using 281 

basis layers, resulting in 𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) and 𝑥̂𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏). This process is defined by the following equation:  282 

𝑦̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

dim (𝜃𝑙
𝑓

)

𝑖=1

,        𝑥̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

dim (𝜃𝑙
𝑏)

𝑖=1

 (Equation 8) 

Within this context, 𝑣𝑖
𝑓

 and 𝑣𝑖
𝑏 represent the basis vectors for forecasting and backcasting, respectively, 283 

while 𝜃𝑙,𝑖
𝑓

 corresponds to the i-th element of 𝜃𝑙
𝑓
.  284 

The N-BEATS uses a novel hierarchical doubly residual architecture which is illustrated in Figure 3 (top 285 

and middle). This framework incorporates two residual branches, one traversing the backcast predictions 286 
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of each layer, while the other traverses the forecast branch of each layer. The following equation describes 287 

this process: 288 

𝑥𝑙 =  𝑥𝑙−1 −  𝑥̂𝑙−1     ,     𝑦̂ = ∑ 𝑦̂𝑙

𝑙

 (Equation 9) 

As mentioned earlier, in the specific scenario of the initial block, its input corresponds to the model-level 289 

input 𝑥. In contrast, for all subsequent blocks, the backcast residual branch 𝑥𝑙 can be conceptualized as 290 

conducting a sequential analysis of the input signal. The preceding block eliminates the portion of the signal 291 

𝑥̂𝑙−1 that it can effectively approximate, thereby simplifying the prediction task for downstream blocks. 292 

Significantly, each block produces a partial forecast 𝑦̂𝑙 , which is initially aggregated at the stack level and 293 

subsequently at the overall network level, establishing a hierarchical decomposition. The ultimate forecast 294 

𝑦̂ is the summation of all partial forecasts (Oreshkin et al., 2020). 295 

The N-BEATS model has two primary configurations: generic and interpretable. These configurations 296 

determine how the model structures its blocks and how it processes time series data. In the generic 297 

configuration, the model uses a stack of generic blocks that are designed to be flexible and adaptable to 298 

various patterns in the time series data. Each generic block consists of fully connected layers with ReLU 299 

activation functions. The key characteristic of generic configuration is its flexibility. Since the blocks are 300 

not specialized for any specific pattern (like trend or seasonality), they can learn a wide range of patterns 301 

directly from the data (Oreshkin et al., 2020). In the interpretable configuration, the model architecture 302 

integrates distinct trend and seasonality components. This involves structuring the basis layers at the stack 303 

level specifically to model these elements, allowing the stack outputs to be more easily understood. 304 

Trend Model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are polynomials of a small degree p, functions that vary slowly 305 

across the forecast window, to replicate monotonic or slowly varying nature of trends: 306 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

𝑡𝑖

𝑝

𝑖=0

 (Equation 10) 

The time vector 𝑡 = [0, 1, 2, … , 𝐻 − 2, 𝐻 − 1]𝑇/𝐻 is specified on a discrete grid ranging from 0 to 307 

(H−1)/H, projecting H steps into the future. Consequently, the trend forecast represented in matrix form is: 308 

𝑦̂𝑠,𝑙
𝑡𝑟 = 𝑇𝜃𝑠,𝑙

𝑓
 (Equation 11) 

Where the polynomial coefficients, 𝜃𝑠,𝑙
𝑓

, predicted by an FC network at layer l of stack s, are described by 309 

Equations (6) and (7). The matrix T, consisting of powers of t, is represented as [1, 𝑡, . . . , 𝑡𝑝]. When p is 310 

small, such as 2 or 3, it compels 𝑦̂𝑠,𝑙
𝑡𝑟to emulate a trend (Oreshkin et al., 2020). 311 

https://arxiv.org/pdf/1905.10437.pdf
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Seasonality model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are periodic functions, to capture the cyclical and recurring 312 

characteristics of seasonality, such that 𝑦𝑡 = 𝑦𝑡−∆, where ∆ is the seasonality period. The Fourier series 313 

serves as a natural foundation for modeling periodic functions: 314 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

cos(2𝜋𝑖𝑡) + 𝜃𝑠,𝑙,𝑖+[𝐻/2]
𝑓

sin(2𝜋𝑖𝑡)

𝐻
2

−1

𝑖=0

 (Equation 12) 

Consequently, the seasonality forecast is represented in the following matrix form: 315 

𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 = 𝑆𝜃𝑠,𝑙

𝑓
 (Equation 13) 

𝑆 = [1, cos(2𝜋𝑡) , … , cos (2𝜋 [
𝐻

2
− 1] 𝑡) , sin(2𝜋𝑡), … , sin (2𝜋 [

𝐻

2
− 1] 𝑡) (Equation 14) 

Where the Fourier coefficients 𝜃𝑠,𝑙
𝑓

, that predicted by an FC network at layer l of stack s, are described by 316 

Equations (6) and (7). The matrix 𝑆 represents sinusoidal waveforms. As a result, the forecast 𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 317 

becomes a periodic function that imitates typical seasonal patterns (Oreshkin et al., 2020). 318 

 319 

Figure 3. The N-BEATS modeling structure, used in this research.  320 



14 

 

2.2.3. N-HiTS 321 

N-HiTS builds upon the N-BEATS architecture but with improved accuracy and computational efficiency 322 

for long-horizon forecasting. N-HiTS utilizes multi-rate sampling and multi-scale synthesis of forecasts, 323 

leading to a hierarchical forecast structure that lowers computational demands and improves prediction 324 

accuracy (Challu et al., 2022). 325 

Like N-BEATS, N-HiTS employs local nonlinear mappings onto foundational functions within numerous 326 

blocks. Each block includes an MLP that generates backcast and forecast output coefficients. The backcast 327 

output refines the input data for the following blocks, and the forecast outputs are combined to generate the 328 

final prediction. Blocks are organized into stacks, with each stack dedicated to grasping specific data 329 

attributes using its own distinct set of functions. The network's input is a sequence of L lags (look-back 330 

period), with S stacks, each containing B blocks (Challu et al., 2022). 331 

In each block, a MaxPool layer with varying kernel sizes (𝑘𝑙) is employed at the input, enabling the block 332 

to focus on specific input components of different scales. Larger kernel sizes emphasize the analysis of 333 

larger-scale, low-frequency data, aiding in improving long-term forecasting accuracy. This approach, 334 

known as multi-rate signal sampling, alters the effective input signal sampling rate for each block's MLP 335 

(Challu et al., 2022). 336 

Additionally, multi-rate processing has several advantages. It reduces memory usage, computational 337 

demands, and the number of learnable parameters, and helps prevent overfitting, while preserving the 338 

original receptive field. The following operation is applicable to the input 𝑦𝑡−𝐿:𝑡,𝑙 of each block, with the 339 

first block (𝑙 = 1) using the network-wide input, where 𝑦𝑡−𝐿:𝑡,1  ≡  𝑦𝑡−𝐿:𝑡. 340 

𝑦𝑡−𝐿:𝑡,𝑙 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑦𝑡−𝐿:𝑡,𝑙 , 𝑘𝑙) (Equation 15) 

In many multi-horizon forecasting models, the number of neural network predictions matches the horizon's 341 

dimensionality, denoted as H. For instance, in N-BEATS, the number of predictions |𝜃𝑙
𝑓

| =  𝐻. This results 342 

in a significant increase in computational demands and an unnecessary surge in model complexity as the 343 

horizon H becomes larger (Challu et al., 2022).  344 

To address these challenges, N-HiTS proposes the use of temporal interpolation. This model manages the 345 

parameter counts per unit of output time (|𝜃𝑙
𝑓

| = ⌈𝑟𝑙  𝐻⌉) by defining the dimensionality of the interpolation 346 

coefficients with respect to the expressiveness ratio 𝑟𝑙. To revert to the original sampling rate and predict 347 

all horizon points, this model employs temporal interpolation through the function g: 348 

𝑦̂𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑓

), ∀𝜏 ∈  {𝑡 +  1, . . . , 𝑡 +  𝐻}, (Equation 16) 
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𝑦̃𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑏), ∀𝜏 ∈  {𝑡 −  𝐿, . . . , 𝑡}, (Equation 17) 

𝑔(𝜏, 𝜃) =  𝜃[𝑡1] + (
𝜃[𝑡2] −  𝜃[𝑡1]

𝑡2 −  𝑡1
) (𝜏 −  𝑡1) (Equation 18) 

𝑡1  = arg min
𝑡∈𝜏:𝑡≤𝜏

𝜏 − 𝑡 ,      𝑡2 =   𝑡1 + 1/𝑟𝑙 (Equation 19) 

The hierarchical interpolation approach involves distributing expressiveness ratios over blocks, integrated 349 

with multi-rate sampling. Blocks closer to the input employ more aggressive interpolation, generating lower 350 

granularity signals. These blocks specialize in analyzing more aggressively subsampled signals. The final 351 

hierarchical prediction, 𝑦̂𝑡+1:𝑡+𝐻, is constructed by combining outputs from all blocks, creating 352 

interpolations at various time-scale hierarchy levels. This approach maintains a structured hierarchy of 353 

interpolation granularity, with each block focusing on its own input and output scales (Challu et al., 2022). 354 

To manage a diverse set of frequency bands while maintaining control over the number of parameters, 355 

exponentially increasing expressiveness ratios are recommended. As an alternative, each stack can be 356 

dedicated to modeling various recognizable cycles within the time series (e.g., weekly, or daily) employing 357 

matching 𝑟𝑙. Ultimately, the residual obtained from backcasting in the preceding hierarchy level is 358 

subtracted from the input of the subsequent level, intensifying the next-level block's attention on signals 359 

outside the previously addressed band (Challu et al., 2022). 360 

𝑦̂𝑡+1:𝑡+𝐻  = ∑ 𝑦̂𝑡+1:𝑡+𝐻,𝑙

𝐿

𝑙=1

 (Equation 20) 

𝑦𝑡−𝐿:𝑡,𝑙+1  = 𝑦𝑡−𝐿:𝑡,𝑙 −  𝑦̃𝑡−𝐿:𝑡,𝑙 (Equation 21) 
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 361 

Figure 4. The structure of N-HiTS model programmed in this study. The architecture includes several 362 

Stacks, each Stack includes several Block, where each block consists of a MaxPool layer and a multi-363 

layer which learns to produce coefficients for the backcast and forecast outputs of its basis. 364 

 365 

2.3. Performance Metrics  366 

To comprehensively evaluate the accuracy of flood predictions, we utilized a suite of metrics, including 367 

Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), persistent Nash-Sutcliffe Efficiency (persistent-368 

NSE), Kling–Gupta efficiency (KGE; Gupta et al. 2009), Root Mean Square Error (RMSE), Mean 369 

Absolute Error (MAE), Peak Flow Error (PFE), and Time to Peak Error (TPE; Evin et al., 2023; Lobligeois 370 

et al., 2014). These metrics collectively facilitate a rigorous assessment of the model's performance in 371 

reproducing the magnitude of observed peak flows and the shape of the hydrograph.   372 
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NSE measures the model's ability to explain the variance in observed data and assesses the goodness-of-fit 373 

by comparing the observed and simulated hydrographs. In hydrological studies, the NSE index is a widely 374 

accepted measure for evaluating the fitting quality of models (McCuen et al., 2006). It is calculated as: 375 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖
)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜

̅̅̅̅ )
2𝑛

𝑖=1

 (Equation 22) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, 𝑄𝑜
̅̅̅̅  is the mean 376 

observed values and n is the number of data points. An NSE value of 1 indicates a perfect match between 377 

the observed and modeled data, while lower values represent the degree of departure from a perfect fit. 378 

As the models are designed to predict one hour ahead in one of the prediction horizons, the persistent-NSE 379 

is essential for evaluating their performance. The standard NSE measures the model's sum of squared errors 380 

relative to the sum of squared errors when the mean observation is used as the forecast value. In contrast, 381 

persistent-NSE uses the most recent observed data as the forecast value for comparison (Nevo et al., 2022). 382 

The persistent NSE is calculated as: 383 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 − 𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖
)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜𝑖−1

)
2𝑛

𝑖=1

 (Equation 23) 

Where 𝑄𝑜𝑖
 represents the observed value at time 𝑖, 𝑄𝑠𝑖

 represents the simulated value at time 𝑖, 𝑄𝑜𝑖−1
is the 384 

observed value at the last time step (𝑖 − 1) and n is the number of data points.  385 

The KGE is a widely used performance metric in hydrological modeling and combines multiple aspects of 386 

model performance, including correlation, variability bias, and mean bias. The KGE metric is calculated 387 

using the following equation: 388 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (Equation 24) 

Where r represents Pearson correlation coefficient between observed 𝑄𝑜 and simulated 𝑄𝑠 values. 389 

𝛼 represents bias ratio, calculated as 𝛼 =
𝜇𝑠

𝜇𝑜
 where 𝜇𝑠 and 𝜇𝑜 are the means of simulated and observed data, 390 

respectively. 𝛽 represents variability ratio, calculated as 𝛽 =
𝜎𝑠

𝜇𝑠
⁄

𝜎𝑜
𝜇𝑜

⁄
 where 𝜎𝑠 and 𝜎𝑜 are the standard 391 

deviations of simulated and observed data, respectively. 392 

RMSE quantifies the average magnitude of errors between observed and modeled values, offering insights 393 

into the absolute goodness-of-fit, while MAE is a measure of the average absolute difference between the 394 

modeled values and the observed values and provides a measure of the average magnitude of errors. RMSE 395 

is calculated as: 396 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑄𝑜𝑖

− 𝑄𝑠𝑖
)2

𝑛

𝑖=1

 (Equation 25) 

and MAE is calculated as: 397 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑄𝑜𝑖

− 𝑄𝑠𝑖
|

𝑛

𝑖=1

 (Equation 26) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, and n is the number 398 

of data points. RMSE and MAE provide information about the magnitude of modeling errors, with smaller 399 

values indicating a better model fit.  400 

PFE quantifies the magnitude disparity between observed and modeled peak flow values. The PFE metric 401 

is defined as:  402 

𝑃𝐹𝐸 =  
|𝑄𝑜 𝑚𝑎𝑥

−  𝑄𝑠 𝑚𝑎𝑥
|

𝑄𝑜 𝑚𝑎𝑥

 (Equation 27) 

Where 𝑄𝑜 𝑚𝑎𝑥
 represents the observed peak flow value, and 𝑄𝑠 𝑚𝑎𝑥

 signifies the simulated peak flow value. 403 

The PFE metric, expressed as a dimensionless value, provides a quantitative measure of the relative error 404 

in predicting peak flow magnitudes concerning the observed values. A smaller PFE denotes more accurate 405 

modeling of peak flow magnitudes, with a value of zero indicating a perfect match. 406 

TPE assesses the temporal alignment of peak flows in the observed and modeled hydrographs. The TPE 407 

metric is computed as: 408 

𝑇𝑃𝐸 =  |𝑇𝑜 𝑚𝑎𝑥
−  𝑇𝑠 𝑚𝑎𝑥

| (Equation 28) 

Where 𝑇𝑜 𝑚𝑎𝑥
 signifies the time at which the peak flow occurs in the observed hydrograph, and 𝑇𝑠 𝑚𝑎𝑥

 409 

represents the time at which the peak flow occurs in the simulated hydrograph. TPE that is measured in 410 

units of time (hours), provides insight into the precision of peak flow timing. Smaller TPE values indicate 411 

a superior alignment between the observed and modeled peak flow timing, while larger TPE values indicate 412 

discrepancies in the temporal occurrence of peak flows. 413 

The utilization of these five metrics, PFE, persistent-NSE, TPE, NSE, and RMSE, collectively provides a 414 

robust and multifaceted assessment of flood prediction performance. This approach ensures that both the 415 

magnitude and timing of peak flows, as well as the overall hydrograph shape, are accurately calibrated and 416 

validated. 417 

 418 
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2.4. Sensitivity and Uncertainty Analysis  419 

When implementing NN models, it's crucial to understand how each input feature affects the model's 420 

performance or outputs. To achieve this, we systematically excluded each input feature from the model one 421 

by one (the Leave-One-Out method). For each exclusion, we retrained the model without that specific input 422 

feature and then tested its performance against a test dataset. This method helps in understanding which 423 

input features are most critical to the model's performance and which ones have a lesser impact. It also 424 

allows us to identify any input features that may be redundant or have little effect on the overall outcome, 425 

thus potentially simplifying the model without sacrificing accuracy. 426 

In this study, we utilized probabilistic approaches to quantify the uncertainty in flood prediction. This 427 

method is rooted in statistical techniques employed for the estimation of unknown probability distributions, 428 

with a foundation in observed data. More specifically, we leveraged the Maximum Likelihood Estimation 429 

(MLE) approach, which entails the determination of MQL objective values that optimize the likelihood 430 

function. The likelihood function quantifies the probability of MQL objective taking values, given the 431 

observed realizations. 432 

We incorporated the MQL as a probabilistic error metric into algorithmic architecture. MQL performs an 433 

evaluation by computing the average loss for a predefined set of quantiles. This computation is grounded 434 

in the absolute disparities between predicted quantiles and their corresponding observed values. By 435 

considering multiple quantile levels, MQL provides a comprehensive assessment of the model’s ability to 436 

capture the distribution of the target variable, rather than focusing solely on point estimates.  437 

The MQL metric also aligns closely with the Continuous Ranked Probability Score (CRPS), a standard tool 438 

for evaluating predictive distributions. CRPS measures the difference between the predicted cumulative 439 

distribution function and the observed values by integrating over all possible quantiles. The computation of 440 

CRPS involves a numerical integration technique that discretizes quantiles and applies a left Riemann 441 

approximation for CRPS integral computation. This process culminates in the averaging of these 442 

computations over uniformly spaced quantiles, providing a robust evaluation of the predictive distribution 443 

𝐹̂𝑡.  444 

MQL (𝑄𝜏 , [𝑄̂𝜏
𝑞1  , … , 𝑄̂𝜏

𝑞𝑖]) =  
1

𝑛
 ∑  QL (𝑄𝜏 , 𝑄̂𝜏

𝑞𝑖)

𝑞𝑖

 (Equation 29) 

CRPS (𝑄𝜏 , 𝐹̂𝜏) =  ∫ QL (𝑄𝜏 , 𝑄̂𝜏
𝑞𝑖)𝑑𝑞

1

0

 (Equation 30) 
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QL (𝑄𝜏 , 𝑄̂𝜏
𝑞

) =  
1

𝐻
 ∑ ((1 − 𝑞) (𝑄̂𝜏

𝑞
 −  𝑄𝜏) + 𝑞(𝑄𝜏  −  𝑄̂𝜏

𝑞
 ))

𝑡+𝐻

𝜏=𝑡+1

 (Equation 31) 

Where 𝑄𝜏 represents observed value at time 𝜏, 𝑄̂𝜏
𝑞
 represents simulated value at time 𝜏, q is the slope of the 445 

quantile loss, and H is the horizon of forecasting. 446 

Implementation-wise, let 𝒟 = {(𝑋𝑡 , 𝑦𝑡+ℎ)}𝑡=1
𝑁  denote training pairs, where 𝑋𝑡 is the past 24-h discharge 447 

context and 𝑦𝑡+ℎ the discharge ℎ hours ahead. For a fixed horizon ℎ and quantile levels {𝜏𝑘}𝑘=1
𝐾 , each 448 

model 𝑓𝜃 outputs the vector of conditional quantiles: 449 

𝐐̂𝑡+ℎ = 𝑓𝜃(𝑋𝑡) = (𝑄̂𝑡+ℎ
 𝜏1 , … , 𝑄̂𝑡+ℎ

 𝜏𝐾 ) ∈ ℝ𝐾 (Equation 32) 

Parameters 𝜃 are learned by minimizing the multi-quantile (pinball) loss: 450 

ℒ(𝜃) =
1

𝑁𝐾
∑  

𝑁

𝑡=1

∑  

𝐾

𝑘=1

𝜌𝜏𝑘
 (𝑦𝑡+ℎ − 𝑄̂𝑡+ℎ

 𝜏𝑘 ) ,   

𝜌𝜏(𝑢) = max (𝜏𝑢,  (𝜏 − 1)𝑢) = (𝜏 − 𝟙{𝑢<0}) 𝑢 

(Equation 33) 

Because 𝜌𝜏 is convex and piecewise linear, its (sub)gradient with respect to 𝑄̂𝑡+ℎ
 𝜏  is: 451 

∂𝜌𝜏(𝑦 − 𝑄̂ 𝜏)

∂𝑄̂ 𝜏
= {

−(1 − 𝜏), 𝑦 − 𝑄̂ 𝜏 < 0,

−𝜏,                     𝑦 − 𝑄̂ 𝜏 > 0,
 (Equation 34) 

enabling backpropagation (Adam) without any sampling. Thus, each quantile 𝑄̂𝑡+ℎ
 𝜏  is a direct network 452 

output learned to satisfy the quantile condition under 𝜌𝜏. Uncertainty intervals are formed from these 453 

quantile predictions; for a 95% band we use [𝑄̂𝑡+ℎ
 0.025, 𝑄̂𝑡+ℎ

 0.975]. The resulting bands quantify the uncertainty 454 

conditional on 𝑋𝑡. 455 

Incorporating MQL as a central metric in our study underscores its suitability for probabilistic forecasting, 456 

particularly in the context of uncertainty quantification. Unlike traditional error metrics that focus on point 457 

predictions, MQL captures both central tendencies and variability by penalizing errors symmetrically across 458 

quantiles. This property ensures balanced and reliable assessments of the predictive distribution, ultimately 459 

enhancing the robustness and interpretability of flood prediction models. 460 
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 461 

Figure 5. The MQL function which shows loss values for different values of q when the true value is 𝑄𝜏. 462 

Furthermore, we employed two key indices, the R-Factor and the P-Factor, to rigorously assess the quality 463 

of uncertainty performance in our hydrological modeling. These metrics are instrumental in quantifying the 464 

extent to which the model's predictions encompass the observed data, thereby providing valuable insights 465 

into the model's predictive accuracy and reliability. 466 

The P-Factor, or percentage of data within 95PPU, is the first index used in this assessment. The P-Factor 467 

quantifies the percentage of observed data that falls within the 95PPU, providing a measure of the model's 468 

predictive accuracy. The P-Factor can theoretically vary from 0% to a maximum of 100%. A P-Factor of 469 

100% signifies a perfect alignment between the model's predictions and the observed data within the 470 

uncertainty band. In contrast, a lower P-Factor indicates a reduced ability of the model to predict data within 471 

the specified uncertainty range. 472 

𝑃 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑟𝑎𝑘𝑒𝑡𝑒𝑑 𝑏𝑦 95𝑃𝑃𝑈

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
× 100 (Equation 35) 

The R-Factor can be computed by dividing the average width of the uncertainty band by the standard 473 

deviation of the measured variable. The R-Factor, with a minimum possible value of zero, provides a 474 

measure of the spread of uncertainty relative to the variability of the observed data. Theoretically, the R-475 

Factor spans from 0 to infinity, and a value of zero implies that the model's predictions precisely match the 476 

measured data, with the uncertainty band being very narrow in relation to the variability of the observed 477 

data. 478 
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𝑅 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 95𝑃𝑃𝑈 𝑏𝑎𝑛𝑑

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
× 100 (Equation 36) 

In practice, the quality of the model is assessed by considering the 95% prediction band with the highest P-479 

Factor and the lowest R-Factor. This specific band encompasses most observed records, signifying the 480 

model's ability to provide accurate and reliable predictions while effectively quantifying uncertainty. A 481 

simulation with a P-Factor of 1 and an R-Factor of 0 signifies an ideal scenario where the model precisely 482 

matches the measured data within the uncertainty band (Abbaspour et al., 2007). 483 

Figure 6 shows the workflow of programming N-BEATS, N-HiTS, and LSTM for flood prediction. As 484 

illustrated, the initial step involved cleaning and preparing the input data, which was then used to feed the 485 

models. The workflow for each model and their output generation processes are depicted in Figure 6. We 486 

segmented the storm events using the MIT approach, as previously described. Following this, we conducted 487 

a sensitivity analysis using the Leave-One-Out method and performed uncertainty analysis using the MLE 488 

approach to construct the 95PPU band. This rigorous methodology ensures a robust evaluation of model 489 

performance under varying conditions and highlights the models' predictive reliability and resilience. We 490 

employed the “NeuralForecast” Python package to develop the N-BEATS, N-HiTS, and LSTM models. 491 

This package provides a diverse array of NN models with an emphasis on usability and robustness.  492 

 493 
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 494 

 495 

Figure 6. The workflow of N-BEATS, N-HiTS, and LSTM implementation. The upper section of the 496 

figure illustrates multiple steps from data preprocessing to model evaluation. The lower section provides a 497 

detailed view of the workflow and implementation for each model, highlighting the specific processes and 498 

methodologies employed in generating the outputs. Backpropagation Through Time (BPTT) trains LSTM 499 

by unrolling the model through time, computing gradients for each time step, and updating weights based 500 

on temporal dependencies. 501 

 502 

3. Results and Discussion 503 

3.1. Independent Storms Delineation 504 

MIT’s contextual delineation of storm events laid the groundwork for in-depth evaluation of rainfall events, 505 

enabling isolation and separation of rainfall events that led to significant flooding events. The nuanced 506 

outcomes of the MIT assessment contributed significantly to the understanding of rainfall variability and 507 

distribution as the dominant contributor to flood generation. 508 
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During modeling implementation, the initial imperative was the precise distinction of storm events within 509 

the precipitation time series data of each case study. Our findings demonstrate that on average a dry period 510 

of 7 hours serves as the optimal MIT time for both of our case studies. This outcome signifies that when a 511 

dry interval of more than 7 hours transpires between two successive rainfall events, these subsequent 512 

rainfalls should be considered two distinct storm events. This determination underlines the temporal 513 

threshold necessary for distinguishing between individual meteorological phenomena in two case studies. 514 

 515 

3.2. Hyperparameter Optimization 516 

In the context of hyperparameter optimization, we systematically considered and tuned various 517 

hyperparameters for the N-HiTS, N-BEATS, and LSTM. We searched for learning rates on a log-uniform 518 

grid between 1 × 10−4  and 1 × 10−3, batch sizes {16, 32, 64}, input size {1, 6, 12, 24} hours. For the 519 

LSTM, recurrent layers {1,2,3}, hidden units per layer {64,128,256}, activation {tanh, ReLU}, decoder 520 

MLP depth {1,2,3}, and decoder MLP width {64,128,256} were varied during the simulation run. For N-521 

HiTS, stacks {2,3,4}, blocks per stack {2,3,4,5}, block MLP width {64,128,256}, and block MLP depth 522 

{2,3,4} were explored. For N-BEATS, we searched stacks {2,3,4}, blocks per stack {2,3,4,5}, block MLP 523 

width {64,128,256}, and block MLP depth {2,3,4}; the interpretable (trend/seasonality) basis was kept 524 

fixed. Following extensive exploration and fine-tuning of these hyperparameters, the optimal 525 

configurations were identified (see Table 2). For the N-HiTS model, the most favorable outcomes were 526 

achieved with the following hyperparameter settings: 2000 epochs, "identity" for scaler type, a learning rate 527 

of 0.001, a batch size of 32, input size of 24 hours, "identity" for stack type, 512 units for hidden layers of 528 

each stack, step size of 1, MQLoss as loss function, and "ReLU" for the activation function. As shown in 529 

Table 2, the N-HiTS model demonstrated superior performance with 4 stacks, containing 2 blocks each, 530 

and corresponding coefficients of 48, 24, 12, and 1, showcasing the significance of these settings for flood 531 

prediction.  532 

This hyperparameter optimization was also conducted for the N-BEATS model. In this model, we 533 

considered 2000 epochs, 3 stacks with 2 blocks, “identity” for scaler type, a learning rate of 0.001, a batch 534 

size of 32, input size of 24 hours, “identity” for stack type, 512 units for hidden layers of each stack, step 535 

size of 1, MQLoss as loss function, and “ReLU” for the activation function.  536 

Moreover, the LSTM as a benchmark model yielded its best results with 5000 epochs, an input size of 24 537 

hours, "identity" as the scaler type, a learning rate of 0.001, a batch size of 32, and "tanh" as the activation 538 

function. Furthermore, LSTM’s hidden state was most effective with two layers containing 128 units, and 539 

the MLP decoder thrived with two layers encompassing 128 units. These meticulously optimized 540 
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hyperparameter settings represent the culmination of efforts to ensure that each model operates at its peak 541 

potential, facilitating accurate flood prediction. 542 

Table 2. Optimized values for the hyperparameters. 543 

Hyperparameter N-HiTS N-BEATS LSTM 

Epoch 2000 2000 5000 

Scaler type identity identity standard 

Learning rate 0.001 0.001 0.001 

Batch size 32 32 32 

Input size 24 hours 24 hours 24 hours 

Stack type 
Seasonality, trend, 

identity, identity 

Seasonality, 

trend, identity 
* 

Number of units in each 

hidden layer 
512 512 128 

Loss function MQLoss MQLoss MQLoss 

Activation function ReLU ReLU tanh 

Number of stacks 4 3 * 

Number of blocks in each 

stack 
2 2 * 

Stacks’ coefficients 48,24,12,1 * * 

*Not applicable 544 

In Table 2, "epoch" refers to the number of training steps, and "scaler type" indicates the type of scaler used 545 

for normalizing temporal inputs. The "learning rate" specifies the step size at each iteration while optimizing 546 

the model, and the "batch size" represents the number of samples processed in one forward and backward 547 

pass. The "loss function" quantifies the difference between the predicted outputs and the actual target 548 

values, while the "activation function" determines whether a neuron should be activated. The "stacks' 549 

coefficients" in the N-HITS model control the frequency specialization for each stack, enabling effective 550 

handling of different frequency components in the time series data. 551 

Another hyperparameter for all three models is input size, which is a variable that determines the maximum 552 

sequence length for truncated backpropagation during training and the number of autoregressive inputs 553 

(lags) that the models considered for prediction. Essentially, input size represents the length of the historical 554 

series data used as input to the model. This variable offers flexibility in the models, allowing them to learn 555 

from a defined window of past observations, which can range from the entire historical dataset to a subset, 556 



26 

 

tailored to the specific requirements of the prediction task. In the context of flood prediction, determining 557 

the appropriate input size is crucial to adequately capture the meteorological data preceding the flood event. 558 

To address this, we calculated the time of concentration (TC) of the watershed system and set the input size 559 

to exceed this duration. According to the Natural Resources Conservation Service (NRCS), for typical 560 

natural watershed conditions, the TC can be calculated from lag time, the time between peak rainfall and 561 

peak discharge, using the formula: 𝐿𝑎𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝐶 ×  0.6 (NRCS, 2009). Specifically, the average TC in 562 

the Lower Dog River watershed and Upper Dutchmans Creek watershed was found to be 19 and 22 hours, 563 

respectively. As these represent the average TC for our case studies, we selected the 24 hours for input data, 564 

slightly longer than the average TC, ensuring sufficient coverage of relevant meteorological data preceding 565 

all flood events.  566 

 567 

3.3. Flood Prediction and Performance Assessment 568 

In this study, we conducted a comprehensive performance evaluation of N-HiTS, N-BEATS, and 569 

benchmarked these models with LSTM, utilizing two case studies: the Lower Dog River and the Upper 570 

Dutchmans Creek watersheds. Within these case studies, we trained and validated the models separately 571 

for each watershed across a diverse set of storm events from 01/10/2007 to 01/10/2022 (15 years) in the 572 

Lower Dog River and from 21/12/1994 to 01/10/2022 (27 years) in the Upper Dutchmans Creek. The 573 

decision to train separate models for each catchment was made to account for the unique hydrological 574 

characteristics and local features specific to each watershed. By training models individually, we aimed to 575 

optimize performance by tailoring each model to the distinct rainfall-runoff relationship inherent in each 576 

catchment. All algorithms were tested using unseen flooding events that occurred between 14/12/2022 and 577 

28/03/2023. Our targets were event-focused, where operational value focuses on performance during rising 578 

limbs, peaks, and recessions. Evaluating over the entire continuous hydrograph (testing period) can dilute 579 

or even mask differences. For this reason, we prioritized an event-centric assessment as the primary 580 

evaluation approach rather than full-period metrics. In the Dog River gauging station, two winter storms, 581 

i.e., January 3rd to January 5th, 2023 (Event 1) and February 17th to February 18th, 2023 (Event 2), as well 582 

as a spring flood event that occurred during March 26th to March 28th, 2023 (Event 3) were selected for 583 

testing. Additionally, three winter flooding events, i.e., December 14th to December 16th, 2022 (Event 4), 584 

January 25th and January 26th, 2023 (Event 5), and February 11th to February 13th, 2023 (Event 6), were 585 

chosen to test the algorithms across the Killian Creek gauging station in the Upper Dutchmans Creek. The 586 

rainfall events corresponding to these flooding events were delineated using the MIT technique discussed 587 

in Section 3.1. 588 
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Our results for the Lower Dog River case study explicitly demonstrated the accuracy of both N-HiTS and 589 

N-BEATS in generating the winter and spring flood hydrographs compared to the LSTM model across all 590 

selected storm events. Although, N-HiTS prediction slightly outperformed N-BEATS during winter 591 

prediction (January 3rd to January 5th, 2023). In this event, N-HiTS outperformed N-BEATS with a 592 

difference of 11.6% in MAE and 20% in RMSE. The N-HiTS slight outperformance (see Tables 3 and 4) 593 

is attributed to its unique structure that allows the model to discern and capture intricate patterns within the 594 

data. Specifically, N-HiTS predicted flooding events hierarchically using blocks specialized in different 595 

rainfall frequencies based on controlled signal projections, through expressiveness ratios, and interpolation 596 

of each block. The coefficients are then used to synthesize backcast through  597 

𝑦̃𝑡 − 𝐿: 𝑡, 𝑙 and forecast (𝑦̃𝑡+1: 𝑡 + 𝐻, 𝑙) outputs of the block as a flood value.  The coefficients were locally 598 

determined along the horizon, allowing N-HiTS to reconstruct nonstationary signals over time.  599 

While the N-HiTS emerged as the most accurate in predicting flood hydrograph among the three models, 600 

its performance was somehow comparable with N-BEATS. The N-BEATS model exhibited good 601 

performance in two case studies. It consistently provided competitive results, demonstrating its capacity to 602 

effectively handle diverse storm events and deliver reliable predictions. N-BEATS has a generic and 603 

interpretable architecture depending on the blocks it uses. Interpretable configuration sequentially projects 604 

the signal into polynomials and harmonic basis to learn trend and seasonality components while generic 605 

configuration substitutes the polynomial and harmonic basis for identity basis and larger network’s depth. 606 

In this study, we used interpretable architecture, as it regularizes its predictions through projections into 607 

harmonic and trend basis that is well-suited for flood prediction tasks. Using interpretable architecture, 608 

flood prediction was aggregated in a hierarchical fashion. This enabled the building of a very deep neural 609 

network with interpretable flood prediction outputs.   610 

It is essential to underscore that, despite its strong performance, the N-BEATS model did not surpass the 611 

N-HiTS model in terms of NSE, Persistent-NSE, MAE, and RMSE for the Lower Dog River case study. 612 

Although both models showed almost the same KGE values. Notably, the N-BEATS model showcased 613 

superior results based on the PFE metric, signifying its exceptional capability in accurately predicting flood 614 

peaks. However, both N-HiTS and N-BEATS models overestimated the flood peak rate of Event 2 for the 615 

Lower Dog River watershed. This event, which occurred from February 17th to February 18th, 2023, was 616 

flashy, short, and intense proceeded by a prior small rainfall event (from February 12th until February 13th) 617 

that minimized the rate of infiltration. This flash flood event caused by excessive rainfall in a short period 618 

of time (<8 hours) was challenging to predict for N-BEATS and N-HiTS models. In addition, predicting 619 

the magnitude of changes in the recession curve of the third event seems to be a challenge for both models. 620 

The specific part of the flood hydrograph after the precipitation event, where flood diminishes during a 621 
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rainless is dominated by the release of runoff from shallow aquifer systems or natural storages. It seems 622 

both models showed a slight deficiency in capturing this portion of the hydrograph when the rainfall amount 623 

decreases over time in the Dog River gauging station.  624 

Conversely, in the Killian Creek gauging station, the N-BEATS model almost emerged as the top performer 625 

in predicting the flood hydrograph based on NSE, Persistent-NSE, RMSE, and PFE performance metrics 626 

(see Tables 3 and 4).  KGE values remained almost the same for both models. In addition, both N-BEATS 627 

and N-HiTS slightly overpredicted time to peak values for Event 5. This reflects the fact that when rainfall 628 

varies randomly around zero, it provides less to no information for the algorithms to learn the fluctuations 629 

and patterns in time series data. Both N-HiTS and N-BEATS provided comparable results for all events 630 

predicted in this study. N-HiTS builds upon N-BEATS by adding a MaxPool layer at each block. Each 631 

block consists of an MLP layer that learns how to produce coefficients for the backcast and forecast outputs. 632 

This subsamples the time series and allows each stack to focus on either short-term or long-term effects, 633 

depending on the pooling kernel size. Then, the partial predictions of each stack are combined using 634 

hierarchical interpolation. This ability enhances N-HiTS capabilities to produce drastically improved, 635 

interpretable, and computationally efficient long-horizon flood predictions. 636 

In contrast, the performance of LSTM as a benchmark model lagged behind both N-HiTS and N-BEATS 637 

models for all events across two case studies. Despite its extensive applications in various hydrology 638 

domains, the LSTM model exhibited comparatively lower accuracy when tasked with predicting flood 639 

responses during different storm events. Focusing on NSE, Persistent-NSE. KGE, MAE, RMSE, and PFE 640 

metrics, it is noteworthy that all three models, across both case studies, consistently succeeded in capturing 641 

peak flow rates at the appropriate timing. All models demonstrated commendable results with respect to 642 

the TPE metric. In most scenarios, TPE revealed a value of 0, signifying that the models accurately 643 

pinpointed the peak flow rate precisely at the expected time. In some instances, TPE reached a value of 1, 644 

showing a deviation of one hour in predicting the peak flow time. This deviation is deemed acceptable, 645 

particularly considering the utilization of short, intense rainfall for our analysis.  646 

Our investigation into the performance of the three distinct forecasting models yielded compelling results 647 

pertaining to their ability to generate 95PPU, as quantified by the P-Factor and R-Factor. These factors 648 

serve as critical indicators for assessing the reliability and precision of the uncertainty bands produced by 649 

the MLE. Our findings demonstrated that the N-HiTS and N-BEATS models outperformed the LSTM 650 

model in mathematically defining uncertainty bands, in terms of R-Factor metric. The R-Factor, a crucial 651 

metric for evaluating the average width of the uncertainty band, consistently favored the N-HiTS and N-652 

BEATS models over their counterparts. This finding was consistent across a diverse range of storm events. 653 

In addition, coupling MLE with the N-HiTS and N-BEATS models demonstrated superior performance in 654 
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generating 95PPU when assessed through the P-Factor metric. The P-Factor represents another vital aspect 655 

of uncertainty quantification, focusing on the precision of the uncertainty bands.  656 

Figures 7 and 8 present graphical depictions of the predicted flood with 1-hour prediction horizon and 657 

uncertainty assessment for each model as well as Flow Duration Curve (FDC) across two gauging 658 

stations.  As illustrated, the uncertainty bands skillfully bracketed most of the observational data, reflecting 659 

the fact that MLE was successful in reducing errors in flood prediction. FDC analysis also revealed that N-660 

HiTS and N-BEATS models skillfully predicted the flood hydrograph, however, both models were 661 

particularly successful in predicting moderate to high flood events (1800-6000 and >6000 cfs). In the FDC 662 

plots, the x-axis denotes the exceedance probability, expressed as a percentage, while the y-axis signifies 663 

flood in cubic feet per second. Notably, these plots reveal distinctive patterns in the performance of the N-664 

HiTS, N-BEATS, and LSTM models.  665 

Within the lower exceedance probability range, particularly around the peak flow, the N-HiTS and N-666 

BEATS models demonstrated a clear superiority over the LSTM model, closely aligning with the observed 667 

data. This observed trend is consistent when examining the corresponding hydrographs. Across all events, 668 

the flood hydrographs generated by N-HiTS and N-BEATS exhibited a closer resemblance to the observed 669 

data, particularly in the vicinity of the peak timing and rate, compared to the hydrographs produced by the 670 

LSTM model. These findings underscore the enhanced predictive accuracy and reliability of the N-HiTS 671 

and N-BEATS models, particularly in predicting moderate to high flood events as well as critical 672 

hydrograph features such as peak flow rate and timing. The alignment of model-generated FDCs and 673 

hydrographs with observed data in the proximity of peak flow further establishes the efficiency of N-HiTS 674 

and N-BEATS in accurately reproducing the dynamics of flood generation mechanisms across two 675 

headwater streams.  676 

Table 3. The performance metrics for the Lower Dog River flood predictions with 1-hour prediction 677 

horizon. 678 

Model Performance Metric Event 1 Event 2 Event 3 

N-HiTS 

NSE 0.995 0.991 0.992 

Persistent-NSE 0.947 0.931 0.948 

KGE 0.977 0.989 0.976 

RMSE 123.2 27.6 68.5 

MAE 64.1 12.0 37.8 

PFE 0.018 0.051 0.015 

TPE (hours) 0 1 0 
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P-Factor 96.9 % 100 % 93.5 % 

R-Factor 0.27 0.40 0.33 

N-BEATS 

NSE 0.991 0.989 0.993 

Persistent-NSE 0.917  0.916 0.956 

KGE 0.984 0.984 0.98 

RMSE 154.1 30.5 62.5 

MAE 72.6 13.6 35.9 

PFE 0.0005 0.031 0.0002 

TPE (hours) 0 1 0 

P-Factor 87.8 % 100 % 90.3 % 

R-Factor 0.17 0.23 0.24 

LSTM 

NSE 0.756 0.983 0.988 

Persistent-NSE -1.44 0.871 0.929 

KGE 0.765 0.978 0.971 

RMSE 841.1 37.9 79.5 

MAE 369.4 18.6 42 

PFE 0.258 0.036 0.016 

TPE (hours) 1 0 0 

P-Factor 81.8 % 93.1 % 96.7 % 

R-Factor 0.37 0.51 0.6 

 679 

Table 4. The performance metrics for the Killian Creek flood predictions with 1-hour prediction horizon. 680 

Model Performance Metric Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.991 0.971 0.991 

Persistent-NSE 0.885 0.806 0.844 

KGE 0.982 0.967 0.991 

RMSE 28.8 46.0 19.0 

MAE 17.9 23.8 11.5 

PFE 0.017 0.008 0.020 

TPE (hours) 0 0 0 

P-Factor 92.6 % 90.9 % 100 % 

R-Factor 0.39 0.48 0.45 
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N-BEATS 

NSE 0.992 0.973 0.989 

Persistent-NSE 0.908 0.821 0.823 

KGE 0.972 0.951 0.973 

RMSE 25.7 44.2 20.2 

MAE 18.3 25.9 14.0 

PFE 0.006 0.008 0.019 

TPE (hours) 0 0 0 

P-Factor 96.3 % 86.3 % 96.9 % 

R-Factor 0.43 0.53 0.43 

LSTM 

NSE 0.952 0.892 0.935 

Persistent-NSE 0.4 0.27 0.087 

KGE 0.92 0.899 0.901 

RMSE 65.7 89.2 50.3 

MAE 41.1 45 35.9 

PFE 0.031 0.058 0.098 

TPE (hours) 1 0 0 

P-Factor 70.4 % 72.73 % 81.82 % 

R-Factor 0.66 0.7 0.65 

 681 
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 682 

Figure 7. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1-hour prediction 683 

horizon for the three selected flooding events in the Lower Dog River gauging station. 684 
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685 

Figure 8. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1-hour prediction 686 

horizon for the three selected flooding events in the Killian Creek gauging station.  687 

To evaluate robustness across lead times, we extended the analysis to 3- and 6-hour prediction horizons. 688 

The results are presented in Figures 9-12, and Tables 5 and 6. As expected, NSE and KGE decreased while 689 

the absolute errors increased with horizon for all models; however, N-HiTS and N-BEATS continued to 690 

outperform LSTM across both stations and events. At Killian Creek station, both N-HiTS and N-BEATS 691 

preserved their lead, yielding higher NSE and lower MAE/RMSE than LSTM, while at the Lower Dog 692 

River, N-BEATS remained slightly superior on the same metrics. KGE values stayed comparable between 693 
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the two feed-forward models, and peak-focused metrics (PFE and TPE) indicated that both still captured 694 

peak magnitude and timing reliably, compared to LSTM. Uncertainty bands widened with horizon as 695 

expected, but the likelihood-based 95PPU for N-HiTS and N-BEATS maintained tighter R-Factors and 696 

competitive P-Factors relative to LSTM, especially around moderate-to-high flows. Flow-duration 697 

diagnostics at multi-hour leads reinforced these findings, showing closer alignment of N-HiTS and N-698 

BEATS to observations in the upper tail. Overall, the multi-horizon results corroborate the 1-hour horizon 699 

results: N-HiTS and N-BEATS deliver more accurate and reliable flood forecasts than LSTM, and their 700 

relative strengths persist at 3 and 6 hours ahead. For completeness, we also evaluated 12- and 24-hour lead 701 

times. During these horizons, all models’ performances declined sharply (NSE < 0.4 across sites and 702 

events), so we restrict detailed reporting to 1–6 hours where performance remains operationally meaningful. 703 

Table 5. The performance metrics of the models with 3-hour prediction horizon. 704 

Model 
Performance 

Metric 
Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.91 0.86 0.58 0.83 0.81 0.89 

KGE 0.92 0.92 0.74 0.85 0.85 0.88 

RMSE 506 107 485 122 119 65 

MAE 293 58 209 71 65 42 

PFE 0.03 0.02 0.08 0.1 0.07 0.05 

TPE (hours) 0 0 0 0 0 0 

P-Factor 97 % 100 % 93.5 % 85 % 72 % 88 % 

R-Factor 0.8 1.3 0.75 0.99 0.92 1.14 

N-BEATS 

NSE 0.92 0.88 0.56 0.82 0.82 0.89 

KGE 0.91 0.91 0.72 0.83 0.84 0.87 

RMSE 481 101 498 124 115 63 

MAE 241 48 207 67 58 33 

PFE 0.04 0.02 0.12 0.006 0.02 0.002 

TPE (hours) 1 0 2 0 0 0 

P-Factor 90.9 % 93 % 90.3 % 92 % 68 % 94 % 
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R-Factor 0.7 1.2 0.74 0.78 1.1 0.87 

LSTM 

NSE 0.7 0.77 0.42 0.82 0.51 0.55 

KGE 0.765 0.87 0.65 0.79 0.64 0.69 

RMSE 928 139 575 125 190 133 

MAE 487 80 296 85 118 87 

PFE 0.12 0.03 0.16 0.16 0.44 0.08 

TPE (hours) 2 1 2 2 1 2 

P-Factor 75.8 % 96 % 83.9 % 100 % 90 % 94 % 

R-Factor 1.15 1.88 1.66 2.8 3.7 2.4 

 705 

Table 6. The performance metrics of the models with 6-hour prediction horizon. 706 

Model 
Performance 

Metric 
Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.82 0.58 0.51 0.6 0.7 0.52 

KGE 0.76 0.68 0.67 0.74 0.78 0.67 

RMSE 708 189 525 188 147 137 

MAE 423 90 257 110 90 77 

PFE 0.35 0.29 0.12 0.03 0.2 0.1 

TPE (hours) 2 3 0 0 3 3 

P-Factor 70 % 96 % 87 % 92 % 82 % 87 % 

R-Factor 0.71 1.1 1.1 1.8 1.15 1.2 

N-BEATS 

NSE 0.94 0.85 0.59 0.33 0.82 0.59 

KGE 0.83 0.82 0.73 0.55 0.79 0.67 

RMSE 386 112 481 244 115 126 

MAE 259 58 181 131 56 74 
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PFE 0.16 0.23 0.02 0.03 0.03 0.12 

TPE (hours) 0 3 0 0 0 3 

P-Factor 100 % 86 % 90.3 % 85 % 77 % 78 % 

R-Factor 1.8 2.3 1.1 1.13 3.3 1.2 

LSTM 

NSE - 0.35 - 0.39 - 0.22 - 0.17 - 0.2 - 0.2 

KGE 0.3 0.05 0.18 0.34 0.33 0.4 

RMSE 1984 348 834 324 300 220 

MAE 1304 192 468 234 201 174 

PFE 0.24 0.36 0.42 0. 6 0.44 0.42 

TPE (hours) 3 4 3 0 2 2 

P-Factor 36 % 79 % 90.3 % 85 % 86 % 63 % 

R-Factor 1.8 1.9 2.16 1.6 3.7 1.6 

 707 

 708 
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 709 

Figure 9. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3-hour prediction 710 

horizon for the three selected flooding events in the Lower Dog River gauging station. 711 
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 712 

Figure 10. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6-hour prediction 713 

horizon for the three selected flooding events in the Lower Dog River gauging station. 714 

 715 
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 716 

Figure 11. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3-hour prediction 717 

horizon for the three selected flooding events in the Killian Creek gauging station.  718 
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 719 

Figure 12. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6-hour prediction 720 

horizon for the three selected flooding events in the Killian Creek gauging station.  721 

To probe cross-catchment generalizability, we trained a single “regional” model by pooling Lower Dog 722 

River and Killian Creek, preserving per-site temporal splits and fitting a global scaler only on the pooled 723 

training portion to avoid leakage; evaluation remained strictly per site. Relative to per-site training, pooled 724 

fitting produced a small accuracy drop for N-HiTS and N-BEATS (~ 2 to 3 %). LSTM showed mixed 725 

performance to pooling, it improved in some storm events but degraded in others, so that, when averaged 726 

across both stations and storm events, LSTM’s regional performance was effectively unchanged relative to 727 
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the per-site training. Despite that, the regional N-HiTS/N-BEATS matched the accuracy of the best per-site 728 

models within the variability observed across storm events and, importantly, consistently surpassed LSTM 729 

at both basins. Mechanistically, N-HiTS’s multi-rate pooling and hierarchical interpolation, and N-730 

BEATS’s trend/seasonality basis projection, act as catchment-invariant feature extractors that support 731 

parameter sharing across stations.  732 

In our investigation, we conducted an analysis to assess the impact of varying input sizes on the performance 733 

of the N-HiTS, as the best model. We implemented four different durations as input sizes to observe the 734 

corresponding differences in modeling performance. Notably, one of the key metrics affected by changes 735 

in input size was 95PPU, which exhibited a general decrease with increasing input size. As detailed in Table 736 

7, we observed a discernible trend in the R-Factor of the N-HiTS model as the input size was increased. 737 

Specifically, there was a decline in the R-Factor as the input size expanded. This trend underscores the 738 

influence of input size on model performance, particularly in terms of 95PPU band and accuracy. 739 

Overall, uncertainty analysis revealed that coupling MLE with N-HiTS and N-BEATS models 740 

demonstrated superior performance in generating 95PPU, effectively reducing errors in flood prediction. 741 

The MLE approach was more successful in reducing 95PPU bands of N-HiTS and N-BEATS models 742 

compared to the LSTM, as indicated by the R-Factor and P-Factor. The N-BEATS model demonstrated a 743 

narrower uncertainty band (lower R-Factor value), while the N-HiTS model provided higher precision. 744 

Furthermore, incorporating data with various sizes into the N-HiTS model led to a narrower 95PPU and an 745 

improvement in the R-Factor, highlighting the significance of input size in enhancing model accuracy and 746 

reducing uncertainty. 747 

Table 7. N-HiTS’s R-Factor results for three storm events in each case study, using 1 

hour, 6 hours, 12 hours, and 24 hours input size in training. 

Input Size 1 hour 6 hours 12 hours 24 hours 

Dog River, GA - Event 1 0.314 0.337 0.29 0.272 

Dog River, GA - Event 2 0.35 0.413 0.403 0.402 

Dog River, GA - Event 3 0.358 0.459 0.374 0.336 

Killian Creek, NC - Event 4 0.491 0.422 0.426 0.388 

Killian Creek, NC - Event 5 0.584 0.503 0.557 0.483 

Killian Creek, NC - Event 6 0.482 0.42 0.446 0.454 

 748 
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3.4. Sensitivity Analysis   749 

In this study, we conducted a comprehensive sensitivity analysis of the N-HiTS, N-BEATS, and LSTM 750 

models to evaluate their responsiveness to meteorological variables, specifically precipitation, humidity, 751 

and temperature. The goal was to assess how the omission of input features impacts the overall modeling 752 

performance compared to their full-variable counterparts. 753 

To execute this analysis, we systematically trained each model by excluding meteorological variables one 754 

or more at a time, subsequently evaluating their predictive performance using the entire testing dataset. 755 

The results of our analysis indicated that N-HiTS and N-BEATS models exhibited minimal sensitivity to 756 

meteorological variables, as evidenced by the negligible impact on their performance metric (i.e., NSE, 757 

Persistent-NSE, KGE, RMSE, and MAE) upon input feature exclusion. 758 

Notably, as shown in Table 8, the performance of the N-HiTS model displayed a marginal deviation 759 

under variable omission, while the N-BEATS model exhibited consistent performance irrespective of the 760 

inclusion or exclusion of meteorological variables. The structure of this algorithm is based on backward 761 

and forward residual links for univariate time series point forecasting which does not take into account 762 

other input features in the prediction task.  These findings suggest that the predictive capabilities of N-763 

HiTS and N-BEATS models predominantly rely on historical flood data. Both models demonstrated 764 

strong performance even without incorporating precipitation, temperature, or humidity data, underscoring 765 

their ability in flood prediction in the absence of specific meteorological inputs. This capability 766 

underscores the robustness of the N-HiTS and N-BEATS models, positioning them as viable tools and 767 

perhaps appropriate for real-time flood forecasting tasks where direct meteorological data may be limited 768 

or unavailable.  769 

Table 8. Performance metrics’ values for N-HiTS, N-BEATS, and LSTM models by excluding 770 

meteorological variables one or more at a time. 771 

Model 
Excluded 

Variables 
NSE 

Persistent-

NSE 
KGE RMSE MAE 

N-HiTS 

Using all variables 0.996  0.92 0.988 22.66 4.19 

Without 

Precipitation 
0.993 0.91 0.97 23.28 4.31 

Without Humidity 0.995 0.914 0.976 22.87 4.22 

Without 

Temperature 
0.995 0.921 0.985 22.43 4.14 
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Discharge only 

prediction 
0.993  0.911 0.972 23.21 4.29 

N-BEATS 

Using all variables 0.994 0.978 0.992 11.80 2.13 

Without 

Precipitation 
0.994 0.978 0.991 11.86 2.17 

Without Humidity 0.994 0.978 0.991 11.81 2.16 

Without 

Temperature 
0.994 0.978 0.991 11.82 2.16 

Discharge only 

prediction 
0.994 0.978 0.991 11.96 2.17 

LSTM  

Using all variables 0.992  0.865 0.926 29.52 8.15 

Without 

Precipitation 
0.979 0.665 0.892 39.46 19.83 

Without Humidity 0.991 0.843 0.925 31.73 9.15 

Without 

Temperature 
0.983 0.628 0.872 48.95 11.49 

Discharge only 

prediction 
0.976 0.576 0.692 52.28 33.5 

 772 

3.5 Computational Efficiency 773 

The computational efficiency of the N-HiTS, N-BEATS, and LSTM models, as well as a comparative 774 

analysis, is presented in Table 9. The study encompassed the entire process of training and predicting over 775 

the testing period, employing the optimized hyperparameters as previously described. Regarding the 776 

training time, it is noteworthy that the LSTM model exhibited the quickest performance. Specifically, 777 

LSTM demonstrated a training time that was 71% faster than N-HiTS and 93% faster than N-BEATS in 778 

the Lower Dog River watershed, while it was respectively,126% and 118% faster than N-HiTS and N-779 

BEATS in the Upper Dutchmans Creek, over training dataset. This is because LSTM has simple 780 

architecture compared to the N-BEATS and N-HiTS and does not require multivariate features, hierarchical 781 

interpolation, and multi-rate data sampling. Perhaps, this outcome underscores the computational advantage 782 

of LSTM over other algorithms. 783 

Conversely, during the testing period, the N-HiTS model emerged as the fastest and delivered the most 784 

efficient results in comparison to the other models. Notably, N-HiTS displayed a predicted time that was 785 
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33% faster than LSTM and 32% faster than N-BEATS. This finding highlights the computational efficiency 786 

of the N-HiTS model in the context of predicting processes. Our experiments unveiled an interesting 787 

contrast in the computational performance of these models. While LSTM excelled in terms of training time, 788 

it lagged behind when it came to the testing period. 789 

In the grand scheme of computational efficiency, model accuracy, and uncertainty analysis results, it 790 

becomes evident that the superiority of the N-HiTS and N-BEATS models in terms of accuracy and 791 

uncertainty analysis holds paramount importance. This significance is accentuated by the critical nature of 792 

flood prediction, where precision and certainty are pivotal. Therefore, computational efficiency must be 793 

viewed in the context of the broader objectives, with the accuracy and reliability of flood predictions taking 794 

precedence in ensuring the safety and preparedness of the affected regions.      795 

Table 9. Computational costs of N-HiTS, N-BEATS, and LSTM models in the Dog River and Killian 796 

Creek gauging stations.  797 

 Training Time over Train Datasets 

(seconds)  

Predicting Time over Test Datasets 

(seconds) 

Model Lower Dog River Upper Dutchmans Creek Lower Dog River Upper Dutchmans Creek 

N-HiTS 256.032 374.569 1533.029 1205.526 

N-BEATS 288.511 361.599 2028.068 1482.305 

LSTM 149.173 165.827 2046.140 1792.444 

 798 

4. Conclusion 799 

This study examined multiple NN algorithms for flood prediction. We selected two headwater streams with 800 

minimal human impacts to understand how NN approaches can capture flood magnitude and timing for 801 

these natural systems. In conclusion, our study represents a pioneering effort in exploring and advancing 802 

the application of NN algorithms, specifically the N-HiTS and N-BEATS models, in the field of flood 803 

prediction. In our case studies, both N-HiTS and N-BEATS models achieved state-of-the-art results, 804 

outperforming LSTM as a benchmark model, particularly in one-hour prediction. While a one-hour lead 805 

time may seem brief, it is highly significant for accurate flash flood prediction particularly in an area with 806 

a proximity to metropolitan cities, where rapid response is critical. These benchmarking results are arguably 807 

a pivotal part of this research. However, the N-BEATS model slightly emerged as a powerful and 808 

interpretable tool for flood prediction in most selected events. 809 

This study focused on short-lead, operational forecasting at gauged sites, using historical discharge to 810 

deliver robust, low-latency updates. While the evaluation is limited to two Southeastern U.S. basins, the 811 
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architecture (e.g., N-HiTS) is flexible and can incorporate additional covariates and catchment attributes. 812 

Extending the approach to ungauged or other basins is feasible through multi-basin training and transfer 813 

learning or few-shot adaptation when even brief warm-up records are available. These extensions represent 814 

promising directions for future work to assess geographic transferability under the same operational 815 

assumptions.  816 

In addition, the results of the experiments described above demonstrated that N-HiTS multi-rate input 817 

sampling and hierarchical interpolation along with N-BEATS interpretable configuration are effective in 818 

learning location-specific runoff generation behaviors. Both algorithms with an MLP-based deep neural 819 

architecture with backward and forward residual links can sequentially project the data signal into 820 

polynomials and harmonic basis needed to predict intense storm behaviors with varied magnitudes. The 821 

innovation in this study, besides benchmarking the LSTM model for headwater streams, was to tackle 822 

volatility and memory complexity challenges, by locally specializing flood sequential predictions into the 823 

data signal’s frequencies with interpretability, and hierarchical interpolation and pooling. Both N-HiTS and 824 

N-BEATS models offered similar performance as compared with the LSTM but also offered a level of 825 

interpretability about how the model learns to differentiate aspects of complex watershed-specific behaviors 826 

via data. The interpretability of N-HiTS and N-BEATS arises directly from their model architecture.  827 

In the interpretable N-BEATS framework, forecasts are decomposed into trend and seasonality stacks, each 828 

represented by explicit basis coefficients that reveal how different temporal patterns contribute to the 829 

prediction. Similarly, N-HiTS achieves interpretability by aggregating contributions across multiple distinct 830 

time scales, allowing insight into the temporal dynamics driving each forecast. N-HiTS aims to enhance 831 

the accuracy of long-term time-series forecasts through hierarchical interpolation and multi-scale data 832 

sampling, allowing it to focus on different data patterns, which prioritizes features essential to understand 833 

flood magnitudes. N-BEATS leverages interpretable configurations with trend and seasonality projections, 834 

enabling it to decompose time series data into intuitive components. N-BEATS interpretable architecture 835 

is recommended for scarce data settings (such as flooding event), as it regularizes its predictions through 836 

projections onto harmonic and trend basis.  837 

These approaches improve model transparency by allowing understanding of how each part of the model 838 

contributes to the final prediction, particularly when applied to complex flood patterns. Both models also 839 

support multivariate series (and covariates) by flattening the model inputs to a 1-D series and reshaping the 840 

outputs to a tensor of appropriate dimensions. This approach provides flexibility to handle arbitrary 841 

numbers of features. Like LSTM, both N-HiTS and N-BEATS models support producing probabilistic 842 

predictions by specifying a likelihood objective. In terms of sensitivity analysis, both N-HiTS and N-843 

BEATS maintain consistent performance even when trained without specific meteorological input.  844 
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Although, during some flashy floods, the models encountered challenges in capturing the peak flows and 845 

the dynamics of the recession curve, which is directly related to groundwater contribution to flood 846 

hydrograph, both models were technically insensitive to rainfall data as an input variable. This suggests the 847 

fact that both algorithms can learn patterns in discharge data without requiring meteorological input. This 848 

ability underscores these models' robustness in generating accurate predictions using historical flood data 849 

alone, making them valuable tools for flood prediction, especially in data-poor watersheds or even for real-850 

time flood prediction when near real-time meteorological inputs are limited or unavailable. In terms of 851 

computational efficiency, both N-HiTS and N-BEATS are trained almost at the same pace; however, N-852 

HiTS predicted the test data much quicker than N-BEATS. Unlike N-HiTS and N-BEATS, LSTM excelled 853 

in reducing training time due to its simplicity and limited number of parameters. 854 

Moving forward, it is worth mentioning that predicting the magnitude of the recession curve of flood 855 

hydrographs was particularly challenging for all models. We argue that this is because the relation between 856 

base flow and time is particularly hard to calibrate due to ground-water effluent that is controlled by 857 

geological and physical conditions (vegetation, wetlands, and wet meadows) in headwater streams. In 858 

addition, the situations of runoff occurrence are diverse and have a high measurement variance with high 859 

frequency that can make it difficult for the algorithms to fully capture discrete representation learning on 860 

time series.  861 

In future studies, it will be important to develop strategies to derive analogs to the interpretable 862 

configuration as well as multi-rate input sampling, hierarchical interpolation, and backcast residual 863 

connections that allow for the dynamic representation of flood times series data with different frequencies 864 

and nonlinearity. A dynamic representation of flood time series is, at least in principle, possible by 865 

generating additive predictions in different bands of the time-series signals, reducing memory footprint and 866 

compute time, and improving architecture parsimony and accuracy. This would allow the model to “learn” 867 

interpretability and hierarchical representations from raw data to reduce complexity as the information 868 

flows through the network.  869 

While a single station provides valuable localized information, particularly for small, headwater streams 870 

where runoff closely follows immediate meteorological conditions, it may not capture the spatial 871 

heterogeneity of larger watersheds. In our study, the applied methods successfully captured runoff 872 

magnitude and dynamics in small basins for an operational setting. However, broader spatial coverage and 873 

distributed data would likely enhance model accuracy for larger regions. Consequently, our conclusions are 874 

specifically scoped to the selected basins and forecast horizons, and broader generalizations would require 875 

multi-region investigations in future work. 876 
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Finally, the performance of N-HiTS, N-BEATS, or other neural network architectures could be further 877 

enhanced with robust uncertainty quantification. Approaches such as Bayesian Model Averaging (BMA) 878 

with fixed or flexible priors (Samadi et al., 2020) or Markov Chain Monte Carlo (MCMC) optimization 879 

methods (Duane et al., 1987) could capture both aleatoric and epistemic uncertainties. We leave these 880 

strategies for future exploration in the context of neural flood time-series prediction. 881 
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