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Abstract 8 

The last few years have witnessed the rise of neural networks (NNs) applications for hydrological time 9 

series modeling. By virtue of their capabilities, NN models can achieve unprecedented levels of 10 

performance when learn how to solve increasingly complex rainfall-runoff processes via data, making them 11 

pivotal for the development of computational hydrologic tasks such as flood predictions. The NN models 12 

should, in order to be considered practical, provide a probabilistic understanding of the model mechanisms 13 

and predictions and hints on what could perturb the model. In this paper, we developed two probabilistic 14 

NN models, i.e., Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and Network-15 

Based Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) and benchmarked them 16 

with long short-term memory (LSTM) for flood prediction across two headwater streams in Georgia and 17 

North Carolina, USA. To generate a probabilistic prediction, a Multi-Quantile Loss was used to assess the 18 

95th percentile prediction uncertainty (95PPU) of multiple flooding events. We conducted extensive flood 19 

prediction experiments demonstrating the advantages of hierarchical interpolation and interpretable 20 

architecture, where both N-HiTS and N-BEATS provided an average accuracy improvement of almost 5% 21 

(NSE) over the LSTM benchmarking model. On a variety of flooding events, both N-HiTS and N-BEATS 22 

demonstrated significant performance improvements over the LSTM benchmark and showcased their 23 

probabilistic predictions by specifying a likelihood parameter. 24 

Keywords: Probabilistic Flood Prediction; Neural Networks; N-HiTS; N-BEATS; LSTM; Headwater 25 

Stream. 26 

Key Points 27 

• N-HiTS and N-BEATS predictions reflect interpretability and hierarchical representations of data 28 

to reduce neural network complexities. 29 

• Both N-HiTS and N-BEATS models outperformed the LSTM in mathematically defining 30 

uncertainty bands. 31 

• Predicting the magnitude of the recession curve of flood hydrographs was particularly challenging 32 

for all models. 33 
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Plain Language Summary  34 

Recent progress in NN accelerated improvements in the performance of catchment modeling. Yet flood 35 

modeling remains a very difficult task. Focusing on two headwater streams, we developed N-HiTS and N-36 

BEATS models and benchmarked them with LSTM to predict flooding. N-HiTS and N-BEATS 37 

outperformed LSTM for flood predictions. We demonstrated how the proposed models can be augmented 38 

with an uncertainty approach to predict flooding that is interpretable without considerable loss in accuracy. 39 

 40 

1. Introduction 41 

The last few years have been characterized by an upsurge in the neural networks (NN) applications in 42 

hydrology. As opaque NN models are increasingly being employed to make important hydrological 43 

predictions, the demand for creating legitimate NN models is increasing in the hydrology community. 44 

However, maintaining coherence while producing accurate predictions can be a challenging problem 45 

(Olivares et al., 2024). There is a general agreement on the importance of providing probabilistic NN 46 

prediction (Samadi et al., 2020), especially in the case of flood prediction (Martinaitis et al., 2023). 47 

Flood occurrences have witnessed an alarming surge in frequency and severity globally. Jonkman (2005) 48 

studied a natural disaster database (EM-DAT, 2023) and reported that over 27 years, more than 175000 49 

people died, and close to 2.2 billion were affected directly by floods worldwide. These numbers are likely 50 

an underestimation due to unreported events (Nevo et al., 2022). In addition, the United Nations Office for 51 

Disaster Risk Reduction reported that flooding has been the most frequent, widespread weather-related 52 

natural disaster since 1995, claiming over 600,000 lives, affecting around 4 billion people globally, and 53 

causing annual economic damage of more than 100 billion USD (UNISDR, 2015). This escalating trend 54 

has necessitated the need for better flood prediction and management strategies. Scholars have successfully 55 

implemented different flood models such as deterministic (e.g., Roelvink et al., 2009, Thompson and 56 

Frazier, 2014; Barnard et al., 2014; Erikson et al., 2018) and physically based flood models (e.g., Basso et 57 

al., 2016; Chen et al., 2016; Pourreza-Bilondi et al., 2017; Saksena et al., 2019; Refsgaard et al., 2021) in 58 

various environmental systems over the past several decades. These studies have heightened the need for 59 

precise flood prediction, they have also unveiled limitations inherent in existing deterministic and physics-60 

based models. While evidence suggests that both deterministic and physics-based approaches are 61 

meaningful and useful (Sukovich et al., 2014; Zafarmomen et al., 2024), their forecasts rest heavily on 62 

imprecise and subjective expert opinion; there is a challenge for setting robust evidence-based thresholds 63 

to issue flood warnings and alerts (Palmer, 2012). Moreover, many of these traditional flood models 64 

particularly physically explicit models rely heavily on a particular choice of numerical approximation and 65 

describe multiple process parameterizations only within a fixed spatial architecture (e.g., Clark et al., 2015). 66 

Recent NN models have shown promising results across a large variety of flood modeling applications (e.g., 67 
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Nevo et al., 2022; Pally and Samadi, 2022; Dasgupta et al., 2023; Zhang et al., 2023) and encourage the 68 

use of such methodologies as core drivers for neural flood prediction (Windheuser et al., 2023).  69 

Earlier adaptations of these intelligent techniques showed promising for flood prediction (e.g., Hsu et al., 70 

1995; Tiwari and Chatterjee, 2010). However, recent efforts have taken NN application to the next level, 71 

providing uncertainty assessment (Sadeghi Tabas and Samadi, 2022) and improvements over various 72 

spatio-temporal scales, regions, and processes (e.g., Kratzert et al., 2018; Park and Lee, 2023; Zhang et al., 73 

2023). Nevo et al., (2022) were the first scholars who employed long short-term memory (LSTM) for flood 74 

stage prediction and inundation mapping, achieving notable success during the 2021 monsoon season. Soon 75 

after, Russo et al. (2023) evaluated various NN models for predicting flood depth in urban systems, 76 

highlighting the potential of data-driven models for urban flood prediction. Similarly, Defontaine et al. 77 

(2023) emphasized the role of NN algorithms in enhancing the reliability of flood predictions, particularly 78 

in the context of limited data availability. Windheuser et al., (2023) studied flood gauge height forecasting 79 

using images and time series data for two gauging stations in Georgia, USA. They used multiple NN models 80 

such as Convolutional Neural Network (ConvNet/CNN) and LSTM to forecast floods in near real-time (up 81 

to 72 hours). In a sequence, Wee et al., (2023) used Impact-Based Forecasting (IBF) to propose a Flood 82 

Impact-Based Forecasting system (FIBF) using flexible fuzzy inference techniques, aiding decision-makers 83 

in a timely response. Zou et al. (2023) proposed a Residual LSTM (ResLSTM) model to enhance and 84 

address flood prediction gradient issues. They integrated Deep Autoregressive Recurrent (DeepAR) with 85 

four recurrent neural networks (RNNs), including ResLSTM, LSTM, Gated Recurrent Unit (GRU), and 86 

Time Feedforward Connections Single Gate Recurrent Unit (TFC-SGRU). They showed that ResLSTM 87 

achieved superior accuracy. While these studies reported the superiority of NN models for flood modeling, 88 

they highlighted a number of challenges, notably (i) the limited capability of proposed NN models to 89 

capture the spatial variability and magnitudes of extreme data over time, (ii) the lack of a sophisticated 90 

mechanism to capture different flood magnitudes and synthesize the prediction, and (iii) inability of the NN 91 

models to process data in parallel and capture the relationships between all elements in a sequential manner. 92 

Recent advances in neural time series forecasting showed promising results that can be used to address the 93 

above challenges for flood prediction. Recent techniques include the adoption of the attention mechanism 94 

and Transformer-inspired approaches (Fan et al. 2019; Alaa and van der Schaar 2019; Lim et al. 2021) 95 

along with attention-free architectures composed of deep stacks of fully connected layers (Oreshkin et al. 96 

2020).  All of these approaches are relatively easy to scale up in terms of flood magnitudes (small to major 97 

flood predictions), compared to LSTM and have proven to be capable of capturing spatiotemporal 98 

dependencies (Challu et al., 2022). In addition, these architectures can capture input-output relationships 99 

implicitly while they tend to be more computationally efficient. Many state-of-the-art NN approaches for 100 

flood forecasting have been established based on LSTM. There are cell states in the LSTM networks that 101 
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can be interpreted as storage capacity often used in flood generation schemes. In LSTM, the updating of 102 

internal cell states (or storages) is regulated through a number of gates: the first gate regulates the storage 103 

depletion, the second one regulates storage fluctuations, and the third gate regulates the storages outflow 104 

(Tabas and Samadi, 2022). The elaborate gated design of the LSTM partly solves the long-term dependency 105 

problem in flood time series prediction (Fang et al., 2020), although, the structure of LSTMs is designed in 106 

a sequential manner that cannot directly connect two nonadjacent portions (positions) of a time series.  107 

In this paper, we developed attention-free architecture, i.e.  Neural Hierarchical Interpolation for Time 108 

Series Forecasting (N-HiTS; Challu et al., 2022) and Network-Based Expansion Analysis for Interpretable 109 

Time Series Forecasting (N-BEATS; Oreshkin et al., 2020) and benchmarked these models with LSTM for 110 

flood prediction. We developed fully connected N-BEATS and N-HiTS architectures using multi-rate data 111 

sampling, synthesizing the flood prediction outputs via multi-scale interpolation. 112 

We implemented all algorithms for flood prediction on two headwater streams i.e., the Lower Dog River, 113 

Georgia, and the Upper Dutchmans Creek, North Carolina, USA to ensure that the results are reliable and 114 

comparable. The results of N-BEATS and N-HiTS techniques were compared with the benchmarking 115 

LSTM to understand how these techniques can improve the representations of rainfall and runoff 116 

dispensing over a recurrence process. Notably, this study represents a pioneering effort, as to the best of 117 

our knowledge, this is the first instance in which the application of N-BEATS and N-HiTS algorithms in 118 

the field of flood prediction has been explored. The scope of this research will focus on: 119 

 120 

(i)Flood prediction in a hierarchical fashion with interpretable outputs: We built N-BEATS and N-121 

HiTS for flood prediction with a very deep stack of fully connected layers to implicitly capture input-output 122 

relationships with hierarchical interpolation capabilities. The predictions also involve programming the 123 

algorithms with decreasing complexity and aligning their time scale with the final output through multi-124 

scale hierarchical interpolation and interpretable architecture. Predictions were aggregated in a hierarchical 125 

fashion that enabled the building of a very deep neural network with interpretable configurations. 126 

(ii)     Uncertainty quantification of the models by employing probabilistic approaches: a Multi-127 

Quantile Loss (MQL) was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple 128 

flooding events. MQL was integrated as the loss function to account for probabilistic prediction. MQL 129 

trains the model to produce probabilistic forecasts by predicting multiple quantiles of the distribution of 130 

future values.  131 

(iii)     Exploring headwater stream response to flooding: Understanding the dynamic response of 132 

headwater streams to flooding is essential for managing downstream flood risks. Headwater streams 133 

constitute the uppermost sections of stream networks, usually comprising 60% to 80% of a catchment area. 134 

Given this substantial coverage and the tendency for precipitation to increase with elevation, headwater 135 
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streams are responsible for generating and controlling the majority of runoff in downstream portions 136 

(MacDonald and Coe, 2007).  137 

The remainder of this paper is structured as follows. Section 2 presents the case study and data, NN models, 138 

performance metrics, and sensitivity and uncertainty approaches. Section 3 focuses on the results of flood 139 

predictions including sensitivity and uncertainty assessment and computation efficiency. Finally, Section 4 140 

concludes the paper. 141 

 142 

2. Methodology 143 

2.1. Case Study and Data 144 

This research used two headwater gauging stations located at the Lower Dog River watershed, Georgia 145 

(GA; USGS02337410, Dog River gauging station), and the Upper Dutchmans Creek watershed, North 146 

Carolina (NC; USGS0214269560, Killian Creek gauging station). As depicted in Figures 1 and 2, the Lower 147 

Dog River and the Upper Dutchmans Creek watersheds are located in the west and north parts of two 148 

metropolitan cities, Atlanta and Charlotte. As shown in Figure 1, the Lower Dog River stream gauge is 149 

established southeast of Villa Rica in Carroll County, where the USGS has regularly monitored discharge 150 

data since 2007 in 15-minute increments. The Lower Dog River is a stream with a length of 15.7 miles 151 

(25.3 km; obtained from the U.S. Geological Survey [USGS] National Hydrography Dataset high-152 

resolution flowline data), an average elevation of 851.94 meters, and the watershed area above this gauging 153 

station is 66.5 square miles (172 km2; obtained from the Georgia Department of Natural Resources). This 154 

watershed is covered by 15.2% residential area, 14.6% agricultural land, and ⁓70% forest (Munn et al., 155 

2020). Killian Creek gauging station at the Upper Dutchmans Creek watershed is established 156 

in Montgomery County, NC, where the USGS has regularly monitored discharge data since 1995 in 15-157 

minute increments. The Upper Dutchmans Creek is a stream with a length of 4.9 miles (7.9 km), an average 158 

elevation of 642.2 meters (see Table 1), and the watershed area above this gauging station is 4 square miles 159 

(10.3 km2) with less than 3% residential area and about 93% forested land use (the United States 160 

Environmental Protection Agency). 161 

 The Lower Dog River has experienced significant flooding in the last decades. For example, in September 162 

2009, the creek, along with most of northern GA, experienced heavy rainfall (5 inches, equal to 94 mm). 163 

The Lower Dog River, overwhelmed by large amounts of overland flow from saturated ground in the 164 

watershed, experienced massive flooding in September 2009 (Gotvald, 2010). The river crested at 33.8 feet 165 

(10.3 m) with a peak discharge of 59,900 cfs (1,700 m3/s), nearly six times the 100-year flood level 166 

(McCallum and Gotvald, 2010). In addition, Dutchmans Creek has experienced significant flooding in 167 

February 2020. According to local news (WCCB Charlotte, 2020), the flood in Gaston County caused 168 
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significant infrastructure damage and community disruption. Key impacts included the threatened collapse 169 

of the Dutchman’s Creek bridge in Mt. Holly and the closure of Highway 7 in McAdenville, GA.  170 

 171 

Table 1.  The Lower Dog River and Upper Dutchmans Creek’s physical characteristics. 172 

Watershed 
USGS Station ID 

Number  

Average Elevation 

(m) 

Stream Length 

(km) 

Watershed area 

(km2) 

Lower Dog River 

watershed, GA 
USGS02337410 851.9 25.3 172 

Upper Dutchmans Creek 

watershed, NC 
USGS0214269560 642.2 7.9 10.3 

 173 

 174 

Figure 1.  The Lower Dog River and The Upper Dutchmans Creek watersheds are located in GA and NC. 175 
The proximity of the watersheds to Atlanta and Charlotte (urban area) are also displayed on the map. 176 

 177 

To provide the meteorological forcing data, i.e., precipitation, temperature, and humidity, were extracted 178 

from the National Oceanic and Atmospheric Administration’s (NOAA) Local Climatological Data 179 

(LCD). We used the NOAA precipitation, temperature, and humidity data of Atlanta Hartsfield Jackson 180 

International Airport and Charlotte Douglas Airport stations as an input variable for neural network 181 
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algorithms. The data has been monitored since January 1, 1948, and July 22, 1941, with an hourly interval 182 

which was used as an input variable for constructing neural networks. 183 

To fill in the missing values in the data, we used the spline interpolation method. We applied this method 184 

to fill the gaps in time series data, although the missing values were insignificant (less than 1%). In addition, 185 

we employed the Minimum Inter-Event Time (MIT) approach to precisely identify and separate individual 186 

storm events. The MIT-based event delineation is pivotal for accurately defining storm events. This method 187 

allowed us to isolate discrete rainfall episodes, aiding a comprehensive analysis of storm events. Moreover, 188 

it provided a basis for event-specific examination of flood responses, such as initial condition and cessation 189 

(loss), runoff generation, and runoff dynamics. 190 

The hourly rainfall dataset consists of distinct rainfall occurrences, some consecutive and others clustered 191 

with brief intervals of zero rainfall. As these zero intervals extend, we aim to categorize them into distinct 192 

events. It's worth noting that even within a single storm event, we often encounter short periods of no 193 

rainfall, known as intra-storm zero values. In the MIT method, we defined a storm event as a discrete rainfall 194 

episode surrounded by dry periods both preceding and following it, determined by an MIT (Asquith et al., 195 

2005; Safaei-Moghadam et al., 2023). There are many means to determine an MIT value. One practical 196 

approximation is using serial autocorrelation between rainfall occurrences. MIT approach uses 197 

autocorrelation that measures the statistical dependency of rainfall data at one point in time with data at 198 

earlier, or lagged times within the time series. The lag time represents the gap between data points being 199 

correlated. When the lag time is zero, the autocorrelation coefficient is unity, indicating a one-to-one 200 

correlation. As the lag time increases, the statistical correlation diminishes, converging to a minimum value. 201 

This signifies the fact that rainfall events become progressively less statistically dependent or, in other 202 

words, temporally unrelated. To pinpoint the optimal MIT, we analyzed the autocorrelation coefficients for 203 

various lag times, observing the point at which the coefficient approaches zero. This lag time signifies the 204 

minimum interval of no rainfall, effectively delineating distinct rainfall events.  205 

2.2. NN Algorithms  206 

2.2.1. LSTM 207 

LSTM is an RNN architecture widely used as a benchmark model for flood neural time series 208 

modeling. LSTM networks are capable of selectively learning order dependence in sequence prediction 209 

problems (Sadeghi Tabas and Samadi, 2022). These networks are powerful because they can capture the 210 

temporal features, especially the long-term dependencies (Hochreiter et al., 2001), and are independent of 211 

the length of the input data sequences meaning that each sample is independent from another one. 212 

https://pubs.usgs.gov/publication/70176110
https://pubs.usgs.gov/publication/70176110
https://nhess.copernicus.org/articles/23/1/2023/nhess-23-1-2023-discussion.html
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The memory cell state within LSTM plays a crucial role in capturing extended patterns in data, making it 213 

well-suited for dynamic time series modeling such as flood prediction. An LSTM cell uses the following 214 

functions to compute flood prediction. 215 

𝑖𝑡 =  𝜎(𝐴𝑖𝑥𝑡  +  𝐵𝑖ℎ𝑡−1 +  𝑐𝑖) (Equation 1) 

𝑓𝑡 =  𝜎(𝐴𝑓𝑥𝑡  +  𝐵𝑓ℎ𝑡−1 +  𝑐𝑓) (Equation 2) 

𝑜𝑡 =  𝜎(𝐴𝑜𝑥𝑡  +  𝐵𝑜ℎ𝑡−1 +  𝑐𝑜) (Equation 3) 

𝑚𝑡 =  𝑓𝑡  ⨀ 𝑚𝑡−1  + 𝑖𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝐴𝑔𝑥𝑡  +  𝐵𝑔ℎ𝑡−1 +  𝑐𝑔) (Equation 4) 

ℎ𝑡 =  𝑜𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝑚𝑡) (Equation 5) 

Where 𝑥𝑡 and ℎ𝑡  represent the input and the hidden state at time step t, respectively. ⊙ denotes element-216 

wise multiplication, 𝑡𝑎𝑛ℎ stands for the hyperbolic tangent activation function, and 𝜎 represents the 217 

sigmoid activation function. 𝐴, 𝐵, and 𝑐 are trainable weights and biases that undergo optimization during 218 

the training process. 𝑚𝑡  and ℎ𝑡 are cell states at time step t that are employed in the input processing for 219 

the next time step. 𝑚𝑡  represents the memory state responsible for preserving long-term information, while 220 

ℎ𝑡 represents the memory state preserving short-term information. The LSTM cell consists of a forget gate 221 

ft, an input gate it and an output gate ot and has a cell state mt. At every time step t, the cell gets the data 222 

point xt with the output of the previous cell ht−1 (Windheuser et al., 2023). The forget gate then defines if 223 

the information is removed from the cell state, while the input gate evaluates if the information should be 224 

added to the cell state and the output gate specifies which information from the cell state can be used for 225 

the next cells.  226 

We used two LSTM layers with 128 cells in the first two hidden layers as encoder layers, which were then 227 

connected to two multilayer perceptron (MLP) layers with 128 neurons as decoder layers. The LSTM 228 

simulation was performed with these input layers along with the Adam optimizer (Kingma and Ba, 229 

2014), tanh activation function, and a single lagged dependent-variable value to train with a learning rate 230 

of 0.001. The architecture of the proposed LSTM model is illustrated in Figure 2. 231 
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 232 

Figure 2. The structure of LSTM programmed in this research. We used tanh and sigmoid as activation 233 
functions along with 2 layers of LSTM, 2 layers of MLP, and 128 cells in each layer.  234 

 235 

2.2.2. N-BEATS 236 

N-BEATS is a deep learning architecture based on backward and forward residual links and the very deep 237 

stack of fully connected layers specifically designed for sequential data forecasting tasks (Oreshkin et al., 238 

2020). This architecture has a number of desirable properties including interpretability. The N-BEATS 239 

architecture distinguishes itself from existing architectures in several ways. First, the algorithm approaches 240 

forecasting as a non-linear multivariate regression problem instead of a sequence-to-sequence 241 

challenge.  Indeed, the core component of this architecture (as depicted in Figure 3) is a fully connected 242 

non-linear regressor, which takes the historical data from a time series as input and generates multiple data 243 

points for the forecasting horizon. Second, the majority of existing time series architectures are quite limited 244 

in depth, typically consisting of one to five LSTM layers. N-BEATS employs the residual principle to stack 245 

a substantial number of layers together, as illustrated in Figure 3. In this configuration, the basic block not 246 

only predicts the next output but also assesses its contribution to decomposing the input, a concept that is 247 

referred to as "backcast" (see Oreshkin et al. 2020). 248 



10 

 

The basic building block in the architecture features a fork-like structure, as illustrated in Figure 3 (bottom). 249 

The 𝑙-th block (for the sake of brevity, the block index 𝑙 is omitted from Figure 3) takes its respective input, 250 

𝑥𝑙, and produces two output vectors: 𝑥̂𝑙 and 𝑦̂𝑙. In the initial block of the model, 𝑥𝑙 corresponds to the 251 

overall model input, which is a historical lookback window of a specific length, culminating with the most 252 

recent observed data point. For the subsequent blocks, 𝑥𝑙 is derived from the residual outputs of the 253 

preceding blocks. Each block generates two distinct outputs: 1. 𝑦̂𝑙: This represents the forward forecast of 254 

the block, spanning a duration of H time units. 2. 𝑥̂𝑙: This signifies the block's optimal estimation of 𝑥𝑙, 255 

which is referred to “backcast.” This estimation is made within the constraints of the functional space 256 

available to the block for approximating signals (Oreshkin et al., 2020). 257 

Internally, the fundamental building block is composed of two elements. The initial element involves a 258 

fully connected network, which generates forward expansion coefficient predictors, 𝜃𝑙
𝑓
, and a backward 259 

expansion coefficient predictor, 𝜃𝑙
𝑏. The second element encompasses both backward basis layers, 𝑔𝑙

𝑏, and 260 

forward basis layers, 𝑔𝑙
𝑓

. These layers take the corresponding forward 𝜃𝑙
𝑓
and backward 𝜃𝑙

𝑏expansion 261 

coefficients as input, conduct internal transformations using a set of basis functions, and ultimately yield 262 

the backcast, 𝑥̂𝑙, and the forecast outputs, 𝑦̂𝑙, as previously described by Oreshkin et al. (2020). The 263 

following equations describe the first element: 264 

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙),    ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1),     ℎ𝑙,3 = 𝐹𝐶𝑙,3(ℎ𝑙,2),       ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3). (Equation 6) 

𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4),        𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4) (Equation 7) 

The LINEAR layer, in essence, functions as a straightforward linear projection, meaning 𝜃𝑙
𝑓

=  𝑊𝑙
𝑓

ℎ𝑙,4. As 265 

for the fully connected (FC) layer, it takes on the role of a conventional FC layer, incorporating RELU non-266 

linearity as an activation function.  267 

The second element performs the mapping of expansion coefficients 𝜃𝑙
𝑓
and 𝜃𝑙

𝑏 to produce outputs using 268 

basis layers, resulting in 𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) and 𝑥̂𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏). This process is defined by the following equation:  269 

𝑦̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

dim (𝜃𝑙
𝑓

)

𝑖=1

,        𝑥̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

dim (𝜃𝑙
𝑏)

𝑖=1

 (Equation 8) 

Within this context, 𝑣𝑖
𝑓

 and 𝑣𝑖
𝑏 represent the basis vectors for forecasting and backcasting, respectively, 270 

while 𝜃𝑙,𝑖
𝑓

 corresponds to the i-th element of 𝜃𝑙
𝑓
.  271 
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The N-BEATS uses a novel hierarchical doubly residual architecture which is illustrated in Figure 3 (top 272 

and middle). This framework incorporates two residual branches, one traversing the backcast predictions 273 

of each layer, while the other traverses the forecast branch of each layer. The following equation describes 274 

this process: 275 

𝑥𝑙 =  𝑥𝑙−1 −  𝑥̂𝑙−1     ,     𝑦̂ = ∑ 𝑦̂𝑙

𝑙

 (Equation 9) 

As mentioned earlier, in the specific scenario of the initial block, its input corresponds to the model-level 276 

input 𝑥. In contrast, for all subsequent blocks, the backcast residual branch 𝑥𝑙 can be conceptualized as 277 

conducting a sequential analysis of the input signal. The preceding block eliminates the portion of the signal 278 

𝑥̂𝑙−1 that it can effectively approximate, thereby simplifying the prediction task for downstream blocks. 279 

Significantly, each block produces a partial forecast 𝑦̂𝑙 , which is initially aggregated at the stack level and 280 

subsequently at the overall network level, establishing a hierarchical decomposition. The ultimate forecast 281 

𝑦̂ is the summation of all partial forecasts (Oreshkin et al., 2020). 282 

The N-BEATS model has two primary configurations: generic and interpretable. These configurations 283 

determine how the model structures its blocks and how it processes time series data. In the generic 284 

configuration, the model uses a stack of generic blocks that are designed to be flexible and adaptable to 285 

various patterns in the time series data. Each generic block consists of fully connected layers with ReLU 286 

activation functions. The key characteristic of the generic configuration is its flexibility. Since the blocks 287 

are not specialized for any specific pattern (like trend or seasonality), they can learn a wide range of patterns 288 

directly from the data (Oreshkin et al., 2020). In the interpretable configuration, the model architecture 289 

integrates distinct trend and seasonality components. This involves structuring the basis layers at the stack 290 

level specifically to model these elements, allowing the stack outputs to be more easily understood. 291 

Trend Model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are polynomials of a small degree p, functions that vary slowly 292 

across the forecast window, to replicate monotonic or slowly varying nature of trends: 293 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

𝑡𝑖

𝑝

𝑖=0

 (Equation 10) 

The time vector 𝑡 = [0, 1, 2, … , 𝐻 − 2, 𝐻 − 1]𝑇/𝐻 is specified on a discrete grid ranging from 0 to 294 

(H−1)/H, projecting H steps into the future. Consequently, the trend forecast represented in matrix form is: 295 

𝑦̂𝑠,𝑙
𝑡𝑟 = 𝑇𝜃𝑠,𝑙

𝑓
 (Equation 11) 

https://arxiv.org/pdf/1905.10437.pdf
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Where the polynomial coefficients, 𝜃𝑠,𝑙
𝑓

, predicted by an FC network at layer l of stack s, are described by 296 

Equations (6) and (7). The matrix T, consisting of powers of t, is represented as [1, 𝑡, . . . , 𝑡𝑝]. When p is 297 

small, such as 2 or 3, it compels 𝑦̂𝑠,𝑙
𝑡𝑟to emulate a trend (Oreshkin et al., 2020). 298 

Seasonality model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are periodic functions, to capture the cyclical and recurring 299 

characteristics of seasonality, such that 𝑦𝑡 = 𝑦𝑡−∆, where ∆ is the seasonality period. The Fourier series 300 

serves as a natural foundation for modeling periodic functions: 301 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

cos(2𝜋𝑖𝑡) + 𝜃𝑠,𝑙,𝑖+[𝐻/2]
𝑓

sin(2𝜋𝑖𝑡)

𝐻
2

−1

𝑖=0

 (Equation 12) 

 302 

Consequently, the seasonality forecast is represented in the following matrix form: 303 

𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 = 𝑆𝜃𝑠,𝑙

𝑓
 (Equation 13) 

𝑆 = [1, cos(2𝜋𝑡) , … , cos (2𝜋 [
𝐻

2
− 1] 𝑡) , sin(2𝜋𝑡), … , sin (2𝜋 [

𝐻

2
− 1] 𝑡) (Equation 14) 

 304 

Where the Fourier coefficients 𝜃𝑠,𝑙
𝑓

, that predicted by an FC network at layer l of stack s, are described by 305 

Equations (6) and (7). The matrix 𝑆 represents sinusoidal waveforms. As a result, the forecast 𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 306 

becomes a periodic function that imitates typical seasonal patterns (Oreshkin et al., 2020). 307 
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 308 

Figure 3. The N-BEATS modeling structure used in this research.  309 

2.2.3. N-HiTS 310 

N-HiTS builds upon the N-BEATS architecture but with improved accuracy and computational efficiency 311 

for long-horizon forecasting. N-HiTS utilizes multi-rate sampling and multi-scale synthesis of forecasts, 312 

leading to a hierarchical forecast structure that lowers computational demands and improves prediction 313 

accuracy (Challu et al., 2022). 314 

Like N-BEATS, N-HiTS employs local nonlinear mappings onto foundational functions within numerous 315 

blocks. Each block includes an MLP that generates backcast and forecast output coefficients. The backcast 316 

output refines the input data for the following blocks, and the forecast outputs are combined to generate the 317 

final prediction. Blocks are organized into stacks, with each stack dedicated to grasping specific data 318 

attributes using its own distinct set of functions. The network's input is a sequence of L lags (look-back 319 

period), with S stacks, each containing B blocks (Challu et al., 2022). 320 
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In each block, a MaxPool layer with varying kernel sizes (𝑘𝑙) is employed at the input, enabling the block 321 

to focus on specific input components of different scales. Larger kernel sizes emphasize the analysis of 322 

larger-scale, low-frequency data, aiding in improving long-term forecasting accuracy. This approach, 323 

known as multi-rate signal sampling, alters the effective input signal sampling rate for each block's MLP 324 

(Challu et al., 2022). 325 

Additionally, multi-rate processing has several advantages. It reduces memory usage, computational 326 

demands, the number of learnable parameters, and helps prevent overfitting, while preserving the original 327 

receptive field. The following operation is applicable to the input 𝑦𝑡−𝐿:𝑡,𝑙 of each block, with the first block 328 

(𝑙 = 1) using the network-wide input, where 𝑦𝑡−𝐿:𝑡,1  ≡  𝑦𝑡−𝐿:𝑡. 329 

𝑦𝑡−𝐿:𝑡,𝑙 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑦𝑡−𝐿:𝑡,𝑙 , 𝑘𝑙) (Equation 15) 

In many multi-horizon forecasting models, the number of neural network predictions matches the horizon's 330 

dimensionality, denoted as H. For instance, in N-BEATS, the number of predictions |𝜃𝑙
𝑓

| =  𝐻. This results 331 

in a significant increase in computational demands and an unnecessary surge in model complexity as the 332 

horizon H becomes larger (Challu et al., 2022).  333 

To address these challenges, N-HiTS proposes the use of temporal interpolation. This model manages the 334 

parameter counts per unit of output time (|𝜃𝑙
𝑓

| = ⌈𝑟𝑙  𝐻⌉) by defining the dimensionality of the interpolation 335 

coefficients with respect to the expressiveness ratio 𝑟𝑙. To revert to the original sampling rate and predict 336 

all horizon points, this model employs temporal interpolation through the function g: 337 

𝑦̂𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑓

), ∀𝜏 ∈  {𝑡 +  1, . . . , 𝑡 +  𝐻}, (Equation 16) 

𝑦̃𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑏), ∀𝜏 ∈  {𝑡 −  𝐿, . . . , 𝑡}, (Equation 17) 

𝑔(𝜏, 𝜃) =  𝜃[𝑡1] + (
𝜃[𝑡2] −  𝜃[𝑡1]

𝑡2 −  𝑡1
) (𝜏 −  𝑡1) (Equation 18) 

𝑡1  = arg min
𝑡∈𝜏:𝑡≤𝜏

𝜏 − 𝑡 ,      𝑡2 =   𝑡1 + 1/𝑟𝑙 (Equation 19) 

The hierarchical interpolation approach involves distributing expressiveness ratios over blocks, integrated 338 

with multi-rate sampling. Blocks closer to the input employ more aggressive interpolation, generating lower 339 

granularity signals. These blocks specialize in analyzing more aggressively subsampled signals. The final 340 

hierarchical prediction, 𝑦̂𝑡+1:𝑡+𝐻, is constructed by combining outputs from all blocks, creating 341 



15 

 

interpolations at various time-scale hierarchy levels. This approach maintains a structured hierarchy of 342 

interpolation granularity, with each block focusing on its own input and output scales (Challu et al., 2022). 343 

To manage a diverse set of frequency bands while maintaining control over the number of parameters, 344 

exponentially increasing expressiveness ratios are recommended. As an alternative, each stack can be 345 

dedicated to modeling various recognizable cycles within the time series (e.g., weekly, or daily) employing 346 

matching 𝑟𝑙. Ultimately, the residual obtained from backcasting in the preceding hierarchy level is 347 

subtracted from the input of the subsequent level, intensifying the next-level block's attention on signals 348 

outside the previously addressed band (Challu et al., 2022). 349 

𝑦̂𝑡+1:𝑡+𝐻  = ∑ 𝑦̂𝑡+1:𝑡+𝐻,𝑙

𝐿

𝑙=1

 (Equation 20) 

𝑦𝑡−𝐿:𝑡,𝑙+1  = 𝑦𝑡−𝐿:𝑡,𝑙 −  𝑦̃𝑡−𝐿:𝑡,𝑙 (Equation 21) 

 350 
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Figure 4. The structure of N-HiTS model programmed in this study. The architecture includes several 351 
Stacks, each Stack includes several Block, where each block consists of a MaxPool layer and a multi-352 

layer which learn to produce coefficients for the backcast and forecast outputs of its basis. 353 

2.3. Performance Metrics  354 

To comprehensively evaluate the accuracy of flood predictions, we utilized a suite of metrics, including 355 

Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), persistent Nash-Sutcliffe Efficiency (persistent-356 

NSE), Kling–Gupta efficiency (KGE; Gupta et al. 2009), Root Mean Square Error (RMSE), Mean 357 

Absolute Error (MAE), Peak Flow Error (PFE), and Time to Peak Error (TPE; Evin et al., 2023; Lobligeois 358 

et al., 2014). These metrics collectively facilitate a rigorous assessment of the model's performance in 359 

reproducing the magnitude of observed peak flows and the shape of the hydrograph.   360 

NSE measures the model's ability to explain the variance in observed data and assesses the goodness-of-fit 361 

by comparing the observed and simulated hydrographs. In hydrological studies, the NSE index is a widely 362 

accepted measure for evaluating the fitting quality of models (McCuen et al., 2006). It is calculated as: 363 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖
)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜

̅̅̅̅ )
2𝑛

𝑖=1

 (Equation 22) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, 𝑄𝑜
̅̅̅̅  is the mean 364 

observed values and n is the number of data points. An NSE value of 1 indicates a perfect match between 365 

the observed and modeled data, while lower values represent the degree of departure from a perfect fit. 366 

As the models are designed to predict one hour ahead, the persistent-NSE is essential for evaluating their 367 

performance. The standard NSE measures the model's sum of squared errors relative to the sum of squared 368 

errors when the mean observation is used as the forecast value. In contrast, persistent-NSE uses the most 369 

recent observed data as the forecast value for comparison (Nevo et al., 2022). The persistent-NSE is 370 

calculated as: 371 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 − 𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖
)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜𝑖−1

)
2𝑛

𝑖=1

 (Equation 23) 

Where 𝑄𝑜𝑖
 represents the observed value at time 𝑖, 𝑄𝑠𝑖

 represents the simulated value at time 𝑖, 𝑄𝑜𝑖−1
is the 372 

observed value at the last time step (𝑖 − 1) and n is the number of data points.  373 
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The KGE is a widely used performance metric in hydrological modeling and combines multiple aspects of 374 

model performance, including correlation, variability bias, and mean bias. The KGE metric is calculated 375 

using the following equation: 376 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (Equation 24) 

Where r represents Pearson correlation coefficient between observed 𝑄𝑜 and simulated 𝑄𝑠 values. 377 

𝛼 represents bias ratio, calculated as 𝛼 =
𝜇𝑠

𝜇𝑜
 where 𝜇𝑠 and 𝜇𝑜 are the means of simulated and observed data, 378 

respectively. 𝛽 represents variability ratio, calculated as 𝛽 =
𝜎𝑠

𝜇𝑠
⁄

𝜎𝑜
𝜇𝑜

⁄
 where 𝜎𝑠 and 𝜎𝑜 are the standard 379 

deviations of simulated and observed data, respectively. 380 

RMSE quantifies the average magnitude of errors between observed and modeled values, offering insights 381 

into the absolute goodness-of-fit, while MAE is a measure of the average absolute difference between the 382 

modeled values and the observed values and provides a measure of the average magnitude of errors. RMSE 383 

is calculated as: 384 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑄𝑜𝑖

− 𝑄𝑠𝑖
)2

𝑛

𝑖=1

 (Equation 25) 

and MAE is calculated as: 385 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑄𝑜𝑖

− 𝑄𝑠𝑖
|

𝑛

𝑖=1

 (Equation 26) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, and n is the number 386 

of data points. RMSE and MAE provide information about the magnitude of modeling errors, with smaller 387 

values indicating a better model fit.  388 

PFE quantifies the magnitude disparity between observed and modeled peak flow values. The PFE metric 389 

is defined as:  390 

𝑃𝐹𝐸 =  
|𝑄𝑜 𝑚𝑎𝑥

−  𝑄𝑠 𝑚𝑎𝑥
|

𝑄𝑜 𝑚𝑎𝑥

 (Equation 27) 
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Where 𝑄𝑜 𝑚𝑎𝑥
 represents the observed peak flow value, and 𝑄𝑠 𝑚𝑎𝑥

 signifies the simulated peak flow value. 391 

The PFE metric, expressed as a dimensionless value, provides a quantitative measure of the relative error 392 

in predicting peak flow magnitudes concerning the observed values. A smaller PFE denotes more accurate 393 

modeling of peak flow magnitudes, with a value of zero indicating a perfect match. 394 

TPE assesses the temporal alignment of peak flows in the observed and modeled hydrographs. The TPE 395 

metric is computed as: 396 

𝑇𝑃𝐸 =  |𝑇𝑜 𝑚𝑎𝑥
−  𝑇𝑠 𝑚𝑎𝑥

| (Equation 28) 

Where 𝑇𝑜 𝑚𝑎𝑥
 signifies the time at which the peak flow occurs in the observed hydrograph, and 𝑇𝑠 𝑚𝑎𝑥

 397 

represents the time at which the peak flow occurs in the simulated hydrograph. TPE that is measured in 398 

units of time (hours), provides insight into the precision of peak flow timing. Smaller TPE values indicate 399 

a superior alignment between the observed and modeled peak flow timing, while larger TPE values indicate 400 

discrepancies in the temporal occurrence of peak flows. 401 

The utilization of these five metrics, PFE, persistent-NSE, TPE, NSE, and RMSE, collectively provides a 402 

robust and multifaceted assessment of flood prediction performance. This approach ensures that both the 403 

magnitude and timing of peak flows, as well as the overall hydrograph shape, are accurately calibrated and 404 

validated. 405 

2.4. Sensitivity and Uncertainty Analysis  406 

When implementing NN models, it's crucial to understand how each parameter affects the model's 407 

performance or outputs. To achieve this, we systematically excluded each parameter from the model one 408 

by one (the Leave-One-Out method). For each exclusion, we retrained the model without that specific 409 

parameter and then tested its performance against a test dataset. This method helps in understanding which 410 

parameters are most critical to the model's performance and which ones have a lesser impact. It also allows 411 

us to identify any parameters that may be redundant or have little effect on the overall outcome, thus 412 

potentially simplifying the model without sacrificing accuracy. 413 

In this study, we utilized probabilistic approaches to quantify the uncertainty in flood prediction. This 414 

method is rooted in statistical techniques employed for the estimation of unknown probability distributions, 415 

with a foundation in observed data. More specifically, we leveraged the Maximum Likelihood Estimation 416 

(MLE) approach, which entails the determination of parameter values that optimize the likelihood function. 417 
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The likelihood function quantifies the probability of parameters taking particular values, given the observed 418 

realizations. 419 

We incorporated the MQL as a probabilistic error metric into the algorithmic architecture. MQL performs 420 

an evaluation by computing the average loss for a predefined set of quantiles. This computation is grounded 421 

in the absolute disparities between predicted quantiles and their corresponding observed values. By 422 

considering multiple quantile levels, MQL provides a comprehensive assessment of the model’s ability to 423 

capture the distribution of the target variable, rather than focusing solely on point estimates.  424 

The MQL metric also aligns closely with the Continuous Ranked Probability Score (CRPS), a standard tool 425 

for evaluating predictive distributions. CRPS measures the difference between the predicted cumulative 426 

distribution function and the observed values by integrating over all possible quantiles. The computation of 427 

CRPS involves a numerical integration technique that discretizes quantiles and applies a left Riemann 428 

approximation for CRPS integral computation. This process culminates in the averaging of these 429 

computations over uniformly spaced quantiles, providing a robust evaluation of the predictive distribution 430 

𝐹̂𝑡.  431 

To calculate the 95th PPU, we utilized the 0.95 quantile level within the MQL. This quantile level directly 432 

corresponds to the 95th percentile of the predicted distribution, providing an estimate of the 95% confidence 433 

interval. By examining the model's performance at this specific quantile, we effectively assessed its ability 434 

to accurately capture the predicted values with 95% confidence. 435 

Incorporating MQL as a central metric in our study underscores its suitability for probabilistic forecasting, 436 

particularly in the context of uncertainty quantification. Unlike traditional error metrics that focus on point 437 

predictions, MQL captures both central tendencies and variability by penalizing errors symmetrically across 438 

quantiles. This property ensures balanced and reliable assessments of the predictive distribution, ultimately 439 

enhancing the robustness and interpretability of flood prediction models. 440 

MQL (𝑄𝜏 , [𝑄̂𝜏
𝑞1  , … , 𝑄̂𝜏

𝑞𝑖]) =  
1

𝑛
 ∑  QL (𝑄𝜏 , 𝑄̂𝜏

𝑞𝑖)

𝑞𝑖

 (Equation 29) 

CRPS (𝑄𝜏 , 𝐹̂𝜏) =  ∫ QL (𝑄𝜏 , 𝑄̂𝜏
𝑞𝑖)𝑑𝑞

1

0

 (Equation 30) 

QL (𝑄𝜏 , 𝑄̂𝜏
𝑞

) =  
1

𝐻
 ∑ ((1 − 𝑞) (𝑄̂𝜏

𝑞
 −  𝑄𝜏) + 𝑞(𝑄𝜏  −  𝑄̂𝜏

𝑞
 ))

𝑡+𝐻

𝜏=𝑡+1

 (Equation 31) 
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Where 𝑄𝜏 represents observed value at time 𝜏, 𝑄̂𝜏
𝑞
 represents simulated value at time 𝜏, q is the slope of the 441 

quantile loss, and H is the horizon of forecasting. 442 

 443 

Figure 5. The MQL function which shows loss values for different parameters of q when the true value is 444 
𝑄𝜏. 445 

Furthermore, we employed two key indices, the R-Factor and the P-Ffactor, to rigorously assess the quality 446 

of uncertainty performance in our hydrological modeling. These metrics are instrumental in quantifying the 447 

extent to which the model's predictions encompass the observed data, thereby providing valuable insights 448 

into the model's predictive accuracy and reliability. 449 

The P-Factor, or percentage of data within a 95PPU, is the first index used in this assessment. The P-Factor 450 

quantifies the percentage of observed data that falls within the 95PPU, providing a measure of the model's 451 

predictive accuracy. The P-Factor can theoretically vary from 0% to a maximum of 100%. A P-Factor of 452 

100% signifies a perfect alignment between the model's predictions and the observed data within the 453 

uncertainty band. In contrast, a lower P-Factor indicates a reduced ability of the model to predict data within 454 

the specified uncertainty range. 455 

𝑃 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑟𝑎𝑘𝑒𝑡𝑒𝑑 𝑏𝑦 95𝑃𝑃𝑈

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
× 100 (Equation 32) 

The R-Factor can be computed by dividing the average width of the uncertainty band by the standard 456 

deviation of the measured variable. The R-Factor, with a minimum possible value of zero, provides a 457 

measure of the spread of the uncertainty relative to the variability of the observed data. Theoretically, the 458 
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R-Factor spans from 0 to infinity, and a value of zero implies that the model's predictions precisely match 459 

the measured data, with the uncertainty band being very narrow in relation to the variability of the observed 460 

data. 461 

𝑅 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 95𝑃𝑃𝑈 𝑏𝑎𝑛𝑑

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
× 100 (Equation 33) 

In practice, the quality of the model is assessed by considering the 95% prediction band with the highest P-462 

Factor and the lowest R-Factor. This specific band encompasses the majority of observed records, 463 

signifying the model's ability to provide accurate and reliable predictions while effectively quantifying 464 

uncertainty. A simulation with a P-Factor of 1 and an R-Factor of 0 signifies an ideal scenario where the 465 

model precisely matches the measured data within the uncertainty band (Abbaspour et al., 2007). 466 

Figure 6 shows the workflow of programming N-BEATS, N-HiTS, and LSTM for flood prediction. As 467 

illustrated, the initial step involved cleaning and preparing the input data, which was then used to feed the 468 

models. The workflow for each model and their output generation processes are depicted in Figure 6. We 469 

segmented the storm events using the MIT approach, as previously described. Following this, we conducted 470 

a sensitivity analysis using the Leave-One-Out method and performed uncertainty analysis using the MLE 471 

approach to construct the 95PPU band. This rigorous methodology ensures a robust evaluation of model 472 

performance under varying conditions and highlights the models' predictive reliability and resilience. We 473 

employed the “NeuralForecast” Python package to develop the N-BEATS, N-HiTS, and LSTM models. 474 

This package provides a diverse array of NN models with an emphasis on usability and robustness.  475 

 476 
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 477 

 478 

Figure 6. The workflow of N-BEATS, N-HiTS, and LSTM implementation. The upper section of the 479 
figure illustrates multiple steps from data preprocessing to model evaluation. The lower section provides a 480 
detailed view of the workflow and implementation for each model, highlighting the specific processes and 481 
methodologies employed in generating the outputs. Backpropagation Through Time (BPTT) trains LSTM 482 
by unrolling the model through time, computing gradients for each time step, and updating weights based 483 

on temporal dependencies. 484 

3. Results and Discussion 485 

3.1. Independent Storms Delineation 486 

MIT’s contextual delineation of storm events laid the groundwork for in-depth evaluation of rainfall events, 487 

enabling isolation and separation of rainfall events that led to significant flooding events. The nuanced 488 

outcomes of the MIT assessment contributed significantly to the understanding of rainfall variability and 489 

distribution as the dominant contributor to flood generation. 490 
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During modeling implementation, the initial imperative was the precise distinction of storm events within 491 

the precipitation time series data of each case study. Our findings demonstrate that on average a dry period 492 

of 7 hours serves as the optimal MIT time for both of our case studies. This outcome signifies that when a 493 

dry interval of more than 7 hours transpires between two successive rainfall events, these subsequent 494 

rainfalls should be considered two distinct storm events. This determination underlines the temporal 495 

threshold necessary for distinguishing between individual meteorological phenomena in two case studies. 496 

3.2. Hyperparameter Optimization 497 

In the context of hyperparameter optimization, we systematically considered and tuned various 498 

hyperparameters for the N-HiTS, N-BEATS, and LSTM. Following extensive exploration and fine-tuning 499 

of these hyperparameters, the optimal configurations were identified (see Table 2). For the N-HiTS model, 500 

the most favorable outcomes were achieved with the following hyperparameter settings: 2000 epochs, 501 

"identity" for scaler type, a learning rate of 0.001, a batch size of 32, input size of 24 hours, "identity" for 502 

stack type, 512 units for hidden layers of each stack, step size of 1, MQLoss as loss function, and "ReLU" 503 

for the activation function. As shown in Table 2, the N-HiTS model demonstrated superior performance 504 

with 4 stacks, containing 2 blocks each, and corresponding coefficients of 48, 24, 12, and 1, showcasing 505 

the significance of these settings for flood prediction.  506 

This hyperparameter optimization was also conducted for the N-BEATS model. In this model, we 507 

considered 2000 epochs, 3 stacks with 2 blocks, “identity” for scaler type, a learning rate of 0.001, a batch 508 

size of 32, input size of 24 hours, “identity” for stack type, 512 units for hidden layers of each stack, step 509 

size of 1, MQLoss as loss function, and “ReLU” for the activation function.  510 

Moreover, the LSTM as a benchmark model yielded its best results with 5000 epochs, an input size of 24 511 

hours, "identity" as the scaler type, a learning rate of 0.001, a batch size of 32, and "tanh" as the activation 512 

function. Furthermore, the LSTM's hidden state was most effective with two layers containing 128 units, 513 

and the MLP decoder thrived with two layers encompassing 128 units. These meticulously optimized 514 

hyperparameter settings represent the culmination of efforts to ensure that each model operates at its peak 515 

potential, facilitating accurate flood prediction. 516 

Table 2. Optimized values for the hyperparameters. 517 

Hyperparameter N-HiTS N-BEATS LSTM 

Epoch 2000 2000 5000 

Scaler type identity identity standard 
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Learning rate 0.001 0.001 0.001 

Batch size 32 32 32 

Input size 24 hours 24 hours 24 hours 

Stack type 
Seasonality, trend, 

identity, identity 

Seasonality, 

trend, identity 
* 

Number of units in each 

hidden layer 
512 512 128 

Loss function MQLoss MQLoss MQLoss 

Activation function ReLU ReLU tanh 

Number of stacks 4 3 * 

Number of blocks in each 

stack 
2 2 * 

Stacks’ coefficients 48,24,12,1 * * 

*Not applicable 518 

In Table 2, "epoch" refers to the number of training steps, and "scaler type" indicates the type of scaler used 519 

for normalizing temporal inputs. The "learning rate" specifies the step size at each iteration while optimizing 520 

the model, and the "batch size" represents the number of samples processed in one forward and backward 521 

pass. The "loss function" quantifies the difference between the predicted outputs and the actual target 522 

values, while the "activation function" determines whether a neuron should be activated. The "stacks' 523 

coefficients" in the N-HITS model control the frequency specialization for each stack, enabling effective 524 

handling of different frequency components in the time series data. 525 

Another hyperparameter for all three models is input size, which is a parameter that determines the 526 

maximum sequence length for truncated backpropagation during training and the number of autoregressive 527 

inputs (lags) that the models considered for prediction. Essentially, input size represents the length of the 528 

historical series data used as input to the model. This parameter offers flexibility in the models, allowing 529 

them to learn from a defined window of past observations, which can range from the entire historical dataset 530 

to a subset, tailored to the specific requirements of the prediction task. In the context of flood prediction, 531 

determining the appropriate input size is crucial to adequately capture the meteorological data preceding 532 

the flood event. To address this, we calculated the time of concentration (TC) of the watershed system and 533 

set the input size to exceed this duration. According to the Natural Resources Conservation Service (NRCS), 534 

for typical natural watershed conditions, the TC can be calculated from lag time, the time between peak 535 

rainfall and peak discharge, using the formula: 𝐿𝑎𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝐶 ×  0.6 (NRCS, 2009). Specifically, the 536 
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average TC in the Lower Dog River watershed and Upper Dutchmans Creek watershed was found to be 19 537 

and 22 hours, respectively. As these represent the average TC for our case studies, we selected the 24 hours 538 

for input data, slightly longer than the calculated avaerage TC, ensuring sufficient coverage of relevant 539 

meteorological data preceding all flood events.  540 

3.3. Flood Prediction and Performance Assessment 541 

In this study, we conducted a comprehensive performance evaluation of N-HiTS, N-BEATS, and 542 

benchmarked these models with LSTM, utilizing two case studies: the Lower Dog River and the Upper 543 

Dutchmans Creek watersheds. Within these case studies, we trained and validated the models separately 544 

for each watershed across a diverse set of storm events from 01/10/2007 to 01/10/2022 (15 years) in the 545 

Lower Dog River and from 21/12/1994 to 01/10/2022 (27 years) in the Upper Dutchmans Creek. The 546 

decision to train separate models for each catchment was made to account for the unique hydrological 547 

characteristics and local features specific to each watershed. By training models individually, we aimed to 548 

optimize performance by tailoring each model to the distinct rainfall-runoff relationship inherent in each 549 

catchment. All algorithms were tested using unseen flooding events that occurred between 14/12/2022 and 550 

28/03/2023. In the Dog River gauging station, two winter storms i.e., January 3rd to January 5th, 2023 551 

(Event 1) and February 17th to February 18th, 2023 (Event 2), as well as a spring flood event that occurred 552 

during March 26th to March 28th, 2023 (Event 3) were selected for testing. Additionally, three winter 553 

flooding events, i.e., December 14th to December 16th, 2022 (Event 4), January 25th and January 26th, 554 

2023 (Event 5), and February 11th to February 13th, 2023 (Event 6), were chosen to test the algorithms 555 

across the Killian Creek gauging station in the Upper Dutchmans Creek. The rainfall events corresponding 556 

to these flooding events were delineated using the MIT technique discussed in Section 3.1. 557 

Our results for the Lower Dog River case study, explicitly demonstrated the accuracy of both N-HiTS and 558 

N-BEATS in generating the winter and spring flood hydrographs compared to the LSTM model across all 559 

selected storm events. Although, N-HiTS prediction slightly outperformed N-BEATS during winter 560 

prediction (January 3rd to January 5th, 2023). In this event, N-HiTS outperformed N-BEATS with a 561 

difference of 11.6% in MAE and 20% in RMSE. The N-HiTS slight outperformance (see Tables 3 and 4) 562 

is attributed to its unique structure that allows the model to discern and capture intricate patterns within the 563 

data. Specifically, N-HiTS predicted flooding events hierarchically using blocks specialized in different 564 

rainfall frequencies based on controlled signal projections, through expressiveness ratios, and interpolation 565 

of each block. The coefficients are then used to synthesize backcast through  566 

𝑦̃𝑡 − 𝐿: 𝑡, 𝑙 and forecast (𝑦̃𝑡+1: 𝑡 + 𝐻, 𝑙) outputs of the block as a flood value.  The coefficients were locally 567 

determined along the horizon, allowing N-HiTS to reconstruct nonstationary signals over time.  568 
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While the N-HiTS emerged as the most accurate in predicting flood hydrograph among the three models, 569 

its performance was somehow comparable with N-BEATS. The N-BEATS model exhibited good 570 

performance in two case studies. It consistently provided competitive results, demonstrating its capacity to 571 

effectively handle diverse storm events and deliver reliable predictions. N-BEATS has a generic and 572 

interpretable architecture depending on the blocks it uses. Interpretable configuration sequentially projects 573 

the signal into polynomials and harmonic basis to learn trend and seasonality components while generic 574 

configuration substitutes the polynomial and harmonic basis for identity basis and larger network’s depth. 575 

In this study, we used interpretable architecture, as it regularizes its predictions through projections into 576 

harmonic and trend basis that is well-suited for flood prediction tasks. Using interpretable architecture, 577 

flood prediction was aggregated in a hierarchical fashion. This enabled the building of a very deep neural 578 

network with interpretable flood prediction outputs.   579 

It is essential to underscore that, despite its strong performance, the N-BEATS model did not surpass the 580 

N-HiTS model in terms of NSE, Persistent-NSE, MAE, and RMSE for the Lower Dog River case study. 581 

Although both models showed almost the same KGE values. Notably, the N-BEATS model showcased 582 

superior results based on the PFE metric, signifying its exceptional capability in accurately predicting flood 583 

peaks. However, both N-HiTS and N-BEATS models overestimated the flood peak rate of Event 2 for the 584 

Lower Dog River watershed. This event, which occurred from February 17th to February 18th, 2023, was 585 

flashy, short, and intense proceeded by a prior small rainfall event (from February 12th until February 13th) 586 

that minimized the rate of infiltration. This flash flood event caused by excessive rainfall in a short period 587 

of time (<8 hours) was challenging to predict for N-BEATS and N-HiTS models. In addition, predicting 588 

the magnitude of changes in the recession curve of the third event seems to be a challenge for both models. 589 

The specific part of the flood hydrograph after the precipitation event, where flood diminishes during a 590 

rainless is dominated by the release of runoff from shallow aquifer systems or natural storages. It seems 591 

both models showed a slight deficiency in capturing this portion of the hydrograph when the rainfall amount 592 

decreases over time in the Dog River gauging station.  593 

Conversely, in the Killian Creek gauging station, the N-BEATS model almost emerged as the top performer 594 

in predicting the flood hydrograph based on NSE, Persistent-NSE, RMSE, and PFE performance metrics 595 

(see Tables 3 and 4).  KGE values remained almost the same for both models. In addition, both N-BEATS 596 

and N-HiTS slightly overpredicted time to peak values for Event 5. This reflects the fact that when rainfall 597 

value varies randomly around zero, it provides less to no information for the algorithms to learn the 598 

fluctuations and patterns in time series data. Both N-HiTS and N-BEATS provided comparable results for 599 

all events predicted in this study. N-HiTS builds upon N-BEATS by adding a MaxPool layer at each block. 600 

Each block consists of an MLP layer that learns to produce coefficients for the backcast and forecast 601 
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outputs. This subsamples the time series and allows each stack to focus on either short-term or long-term 602 

effects, depending on the pooling kernel size. Then, the partial predictions of each stack are combined using 603 

hierarchical interpolation. This ability enhances N-HiTS capabilities to produce drastically improved, 604 

interpretable, and computationally efficient long-horizon flood predictions. 605 

In contrast, the performance of LSTM as a benchmark model lagged behind both N-HiTS and N-BEATS 606 

models for all events across two case studies. Despite its extensive applications in various hydrology 607 

domains, the LSTM model exhibited comparatively lower accuracy when tasked with predicting flood 608 

responses during different storm events. Focusing on NSE, Persistent-NSE. KGE, MAE, RMSE, and PFE 609 

metrics, it is noteworthy that all three models, across both case studies, consistently succeeded in capturing 610 

peak flow rates at the appropriate timing. All models demonstrated commendable results with respect to 611 

the TPE metric. In most scenarios, TPE revealed a value of 0, signifying that the models accurately 612 

pinpointed the peak flow rate precisely at the expected time. In some instances, TPE reached a value of 1, 613 

showing a deviation of one hour in predicting the peak flow time. This deviation is deemed acceptable, 614 

particularly considering the utilization of short, intense rainfall for our analysis.  615 

Our investigation into the performance of the three distinct forecasting models yielded compelling results 616 

pertaining to their ability to generate 95PPU, as quantified by the P-Factor and R-Factor. These factors 617 

serve as critical indicators for assessing the reliability and precision of the uncertainty bands produced by 618 

the MLE. Our findings demonstrated that the N-HiTS and N-BEATS models outperformed the LSTM 619 

model in mathematically defining uncertainty bands, in terms of R-Factor metric. The R-Factor, a crucial 620 

metric for evaluating the average width of the uncertainty band, consistently favored the N-HiTS and N-621 

BEATS models over their counterparts. This finding was consistent across a diverse range of storm events. 622 

In addition, coupling MLE with the N-HiTS and N-BEATS models demonstrated superior performance in 623 

generating 95PPU when assessed through the P-Factor metric. The P-Factor represents another vital aspect 624 

of uncertainty quantification, focusing on the precision of the uncertainty bands.  625 

Figures 8 and 9 present graphical depictions of the predicted flood with uncertainty assessment for each 626 

model as well as Flow Duration Curve (FDC) across two gauging stations.  As illustrated, the uncertainty 627 

bands skillfully bracketed most of the observational data, reflecting the fact that MLE was successful in 628 

reducing errors in flood prediction. FDC analysis also revealed that N-HiTS and N-BEATS models 629 

skillfully predicted the flood hydrograph, however, both models were particularly successful in predicting 630 

moderate to high flood events (1800-6000 and >6000 cfs). In the FDC plots, the x-axis denotes the 631 

exceedance probability, expressed as a percentage, while the y-axis signifies flood in cubic feet per second. 632 

Notably, these plots reveal distinctive patterns in the performance of the N-HiTS, N-BEATS, and LSTM 633 
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models. Within the lower exceedance probability range, particularly around the peak flow, the N-HiTS and 634 

N-BEATS models demonstrated a clear superiority over the LSTM model, closely aligning with the 635 

observed data. This observed trend is consistent when examining the corresponding hydrographs. Across 636 

all events, the flood hydrographs generated by N-HiTS and N-BEATS exhibited a closer resemblance to 637 

the observed data, particularly in the vicinity of the peak timing and rate, compared to the hydrographs 638 

produced by the LSTM model. These findings underscore the enhanced predictive accuracy and reliability 639 

of the N-HiTS and N-BEATS models, particularly in predicting moderate to high flood events as well as 640 

critical hydrograph features such as peak flow rate and timing. The alignment of model-generated FDCs 641 

and hydrographs with observed data in the proximity of peak flow further establishes the efficiency of N-642 

HiTS and N-BEATS in accurately reproducing the dynamics of flood generation mechanisms across two 643 

headwater streams.  644 

 645 

Table 3. The performance metrics for the Lower Dog River flood predictions. 646 

Model Performance Metric Event 1 Event 2 Event 3 

N-HiTS 

NSE 0.995 0.991 0.992 

Persistent-NSE 0.947 0.931 0.948 

KGE 0.977 0.989 0.976 

RMSE 123.2 27.6 68.5 

MAE 64.1 12.0 37.8 

PFE 0.018 0.051 0.015 

TPE (hours) 0 1 0 

P-Factor 96.9 % 100 % 93.5 % 

R-Factor 0.27 0.40 0.33 

N-BEATS 

NSE 0.991 0.989 0.993 

Persistent-NSE 0.917  0.916 0.956 

KGE 0.984 0.984 0.98 

RMSE 154.1 30.5 62.5 

MAE 72.6 13.6 35.9 

PFE 0.0005 0.031 0.0002 

TPE (hours) 0 1 0 

P-Factor 87.8 % 100 % 90.3 % 

R-Factor 0.17 0.23 0.24 

LSTM NSE 0.756 0.983 0.988 
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Persistent-NSE -1.44 0.871 0.929 

KGE 0.765 0.978 0.971 

RMSE 841.1 37.9 79.5 

MAE 369.4 18.6 42 

PFE 0.258 0.036 0.016 

TPE (hours) 1 0 0 

P-Factor 81.8 % 93.1 % 96.7 % 

R-Factor 0.37 0.51 0.6 

 647 

Table 4. The performance metrics for the Killian Creek flood predictions. 648 

Model Performance Metric Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.991 0.971 0.991 

Persistent-NSE 0.885 0.806 0.844 

KGE 0.982 0.967 0.991 

RMSE 28.8 46.0 19.0 

MAE 17.9 23.8 11.5 

PFE 0.017 0.008 0.020 

TPE (hours) 0 0 0 

P-Factor 92.6 % 90.9 % 100 % 

R-Factor 0.39 0.48 0.45 

N-BEATS 

NSE 0.992 0.973 0.989 

Persistent-NSE 0.908 0.821 0.823 

KGE 0.972 0.951 0.973 

RMSE 25.7 44.2 20.2 

MAE 18.3 25.9 14.0 

PFE 0.006 0.008 0.019 

TPE (hours) 0 0 0 

P-Factor 96.3 % 86.3 % 96.9 % 

R-Factor 0.43 0.53 0.43 

LSTM 

NSE 0.952 0.892 0.935 

Persistent-NSE 0.4 0.27 0.087 

KGE 0.92 0.899 0.901 
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RMSE 65.7 89.2 50.3 

MAE 41.1 45 35.9 

PFE 0.031 0.058 0.098 

TPE (hours) 1 0 0 

P-Factor 70.4 % 72.73 % 81.82 % 

R-Factor 0.66 0.7 0.65 

 649 

 650 

Figure 7. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models for the three selected 651 
flooding events in the Lower Dog River gauging station. 652 
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653 
Figure 8. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models for the three selected 654 

flooding events in the Killian Creek gauging station.  655 

In our investigation, we conducted an analysis to assess the impact of varying input sizes on the performance 656 

of the N-HiTS, as the best model. We implemented four different durations as input sizes to observe the 657 

corresponding differences in modeling performance. Notably, one of the key metrics affected by changes 658 

in input size was 95PPU, which exhibited a general decrease with increasing input size. 659 

As detailed in Table 5, we observed a discernible trend in the R-Factor of the N-HiTS model as the input 660 

size was increased. Specifically, there was a decline in the R-Factor as the input size expanded. This trend 661 
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underscores the influence of input size on model performance, particularly in terms of 95PPU band and 662 

accuracy. 663 

Overall, uncertainty analysis revealed that coupling MLE with N-HiTS and N-BEATS models 664 

demonstrated superior performance in generating 95PPU, effectively reducing errors in flood prediction. 665 

The MLE approach was more successful in reducing 95PPU bands of N-HiTS and N-BEATS models 666 

compared to the LSTM, as indicated by the R-Factor and P-Factor. The N-BEATS model demonstrated a 667 

narrower uncertainty band (lower R-Factor value), while the N-HiTS model provided higher precision. 668 

Furthermore, incorporating data with various sizes into the N-HiTS model led to a narrower 95PPU and an 669 

improvement in the R-Factor, highlighting the significance of input size in enhancing model accuracy and 670 

reducing uncertainty. 671 

Table 5. N-HiTS’s R-Factor results for three storm events in each case study, using 1 

hour, 2 hours, 12 hours, and 24 hours input size in training. 

Input Size 1 hour 6 hours 12 hours 24 hours 

Dog River, GA - Event 1 0.314 0.337 0.29 0.272 

Dog River, GA - Event 2 0.35 0.413 0.403 0.402 

Dog River, GA - Event 3 0.358 0.459 0.374 0.336 

Killian Creek, NC - Event 4 0.491 0.422 0.426 0.388 

Killian Creek, NC - Event 5 0.584 0.503 0.557 0.483 

Killian Creek, NC - Event 6 0.482 0.42 0.446 0.454 

 672 

3.4. Sensitivity Analysis   673 

In this study, we conducted a comprehensive sensitivity analysis of the N-HiTS, N-BEATS, and LSTM 674 

models to evaluate their responsiveness to meteorological variables, specifically precipitation, humidity, 675 

and temperature. The goal was to assess how the omission of input parameters impacts the overall 676 

modeling performance compared to their full-variable counterparts. 677 

To execute this analysis, we systematically trained each model by excluding meteorological variables one 678 

or more at a time, subsequently evaluating their predictive performance using the entire testing dataset. 679 

The results of our analysis indicated that N-HiTS and N-BEATS models exhibited minimal sensitivity to 680 

meteorological variables, as evidenced by the negligible impact on their performance metric (i.e., NSE, 681 

Persistent-NSE, KGE, RMSE, and MAE) upon parameter exclusion. 682 

Notably, as shown in Table 6, the performance of the N-HiTS model displayed a marginal deviation 683 

under variable omission, while the N-BEATS model exhibited consistent performance irrespective of the 684 
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inclusion or exclusion of meteorological variables. The structure of this algorithm is based on backward 685 

and forward residual links for univariate time series point forecasting which does not take into account 686 

other parameters in the prediction task.  These findings suggest that the predictive capabilities of N-HiTS 687 

and N-BEATS models predominantly rely on historical flood data. Both models demonstrated strong 688 

performance even without incorporating precipitation, temperature, or humidity data, underscoring their 689 

ability in flood prediction in the absence of specific meteorological inputs. This capability underscores the 690 

robustness of the N-HiTS and N-BEATS models, positioning them as viable tools and perhaps 691 

appropriate for real-time flood forecasting tasks where direct meteorological data may be limited or 692 

unavailable.  693 

 694 

Table 6. Performance metrics’ values for N-HiTS, N-BEATS, and LSTM models by excluding 695 

meteorological variables one or more at a time. 696 

Model 
Excluded 

Variables 
NSE 

Persistent-

NSE 
KGE RMSE MAE 

N-HiTS 

Using all variables 0.996  0.92 0.988 22.66 4.19 

Without 

Precipitation 
0.993 0.91 0.97 23.28 4.31 

Without Humidity 0.995 0.914 0.976 22.87 4.22 

Without 

Temperature 
0.995 0.921 0.985 22.43 4.14 

Discharge only 

prediction 
0.993  0.911 0.972 23.21 4.29 

N-BEATS 

Using all variables 0.994 0.978 0.992 11.80 2.13 

Without 

Precipitation 
0.994 0.978 0.991 11.86 2.17 

Without Humidity 0.994 0.978 0.991 11.81 2.16 

Without 

Temperature 
0.994 0.978 0.991 11.82 2.16 

Discharge only 

prediction 
0.994 0.978 0.991 11.96 2.17 

Using all variables 0.992  0.865 0.926 29.52 8.15 
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LSTM  

Without 

Precipitation 
0.979 0.665 0.892 39.46 19.83 

Without Humidity 0.991 0.843 0.925 31.73 9.15 

Without 

Temperature 
0.983 0.628 0.872 48.95 11.49 

Discharge only 

prediction 
0.976 0.576 0.692 52.28 33.5 

 697 

3.5 Computational Efficiency 698 

The computational efficiency of the N-HiTS, N-BEATS, and LSTM models, as well as a comparative 699 

analysis, is presented in Table 7. The study encompassed the entire process of training and predicting over 700 

the testing period, employing the optimized hyperparameters as previously described. Regarding the 701 

training time, it is noteworthy that the LSTM model exhibited the quickest performance. Specifically, 702 

LSTM demonstrated a training time that was 71% faster than N-HiTS and 93% faster than N-BEATS in 703 

the Lower Dog River watershed, while it was respectively,126% and 118% faster than N-HiTS and N-704 

BEATS in the Upper Dutchmans Creek, over training dataset. This is because LSTM has a simple 705 

architecture compared to the N-BEATS and N-HiTS and does not require multivariate features, hierarchical 706 

interpolation, and multi-rate data sampling. Perhaps, this outcome underscores the computational advantage 707 

of LSTM over other algorithms. 708 

Conversely, during the testing period, the N-HiTS model emerged as the fastest and delivered the most 709 

efficient results in comparison to the other models. Notably, N-HiTS displayed a predicting time that was 710 

33% faster than LSTM and 32% faster than N-BEATS. This finding highlights the computational efficiency 711 

of the N-HiTS model in the context of predicting processes. Our experiments unveiled an interesting 712 

contrast in the computational performance of these models. While LSTM excelled in terms of training time, 713 

it lagged behind when it came to the testing period. 714 

In the grand scheme of computational efficiency, model accuracy, and uncertainty analysis results, it 715 

becomes evident that the superiority of the N-HiTS and N-BEATS models in terms of accuracy and 716 

uncertainty analysis holds paramount importance. This significance is accentuated by the critical nature of 717 

flood prediction, where precision and certainty are pivotal. Therefore, computational efficiency must be 718 

viewed in the context of the broader objectives, with the accuracy and reliability of flood predictions taking 719 

precedence in ensuring the safety and preparedness of the affected regions.      720 

 721 
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Table 7. Computational costs of N-HiTS, N-BEATS, and LSTM models in the Dog River and Killian 722 

Creek gauging stations.  723 

 Training Time over Train Datasets 

(seconds)  

Predicting Time over Test Datasets 

(seconds) 

Model Lower Dog River Upper Dutchmans Creek Lower Dog River Upper Dutchmans Creek 

N-HiTS 256.032 374.569 1533.029 1205.526 

N-BEATS 288.511 361.599 2028.068 1482.305 

LSTM 149.173 165.827 2046.140 1792.444 

 724 

4. Conclusion 725 

This study examined multiple NN algorithms for flood prediction. We selected two headwater streams with 726 

minimal human impacts to understand how NN approaches can capture flood magnitude and timing for 727 

these natural systems. In conclusion, our study represents a pioneering effort in exploring and advancing 728 

the application of NN algorithms, specifically the N-HiTS and N-BEATS models, in the field of flood 729 

prediction. In our case studies, both N-HiTS and N-BEATS models achieved state-of-the-art results, 730 

outperforming LSTM as a benchmark model, particularly in one-hour prediction. While a one-hour lead 731 

time may seem brief, it is highly significant for accurate flash flood prediction particularly in  an area with 732 

a proximity to large metropolitan cities, where rapid response is critical.  These benchmarking results are 733 

arguably a pivotal part of this research. However, the N-BEATS model slightly emerged as a powerful and 734 

interpretable tool for flood prediction in most selected events. 735 

In addition, the results of the experiments described above demonstrated that N-HiTS multi-rate input 736 

sampling and hierarchical interpolation along with N-BEATS interpretable configuration are effective in 737 

learning location-specific runoff generation behaviors. Both algorithms with an MLP-based deep neural 738 

architecture with backward and forward residual links can sequentially project the data signal into 739 

polynomials and harmonic basis needed to predict intense storm behaviors with varied magnitudes. The 740 

innovation in this study – besides benchmarking the LSTM model for headwater streams – was to tackle 741 

volatility and memory complexity challenges, by locally specializing flood sequential predictions into the 742 

data signal’s frequencies with interpretability, and hierarchical interpolation and pooling. Both N-HiTS and 743 

N-BEATS models offered similar performance as compared with the LSTM but also offered a level of 744 

interpretability about how the model learns to differentiate aspects of complex watershed-specific behaviors 745 

via data. The interpretability of N-HiTS and N-BEATS models stems from their designs. N-HiTS aims to 746 

enhance the accuracy of long-term time-series forecasts through hierarchical interpolation and multi-scale 747 
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data sampling, allowing it to focus on different data patterns, which prioritizes features essential to 748 

understand flood magnitudes. N-BEATS leverages interpretable configurations with trend and seasonality 749 

projections, enabling it to decompose time series data into intuitive components. N-BEATS interpretable 750 

architecture is recommended for scarce data settings (such as flooding event), as it regularizes its 751 

predictions through projections unto harmonic and trend basis. These approaches improve model 752 

transparency by allowing understanding of how each part of the model contributes to the final prediction, 753 

particularly when applied to complex flood patterns. Both models also support multivariate series (and 754 

covariates) by flattening the model inputs to a 1-D series and reshaping the outputs to a tensor of appropriate 755 

dimensions. This approach provides flexibility to handle arbitrary numbers of features. Furthermore, both 756 

N-HiTS and N-BEATS models also support producing probabilistic predictions by specifying a likelihood 757 

parameter. In terms of sensitivity analysis, both N-HiTS and N-BEATS models maintain consistent 758 

performance even when trained without specific meteorological inputs. Although, during some flashy 759 

floods, the models encountered challenges in capturing the peak flows and the dynamics of the recession 760 

curve, which is directly related to groundwater contribution to flood hydrograph, both models were 761 

technically insensitive to rainfall data as an input variable. This suggests the fact that both algorithms can 762 

learn patterns in discharge data without requiring meteorological input. This ability underscores these 763 

models' robustness in generating accurate predictions using historical flood data alone, making them 764 

valuable tools for flood prediction, especially in data-poor watersheds or even for real-time flood prediction 765 

when near real-time meteorological inputs are limited or unavailable. In terms of computational efficiency, 766 

both N-HiTS and N-BEATS are trained almost at the same pace; however, N-HiTS predicted the test data 767 

much quicker than N-BEATS. Unlike N-HiTS and N-BEATS, LSTM excelled in reducing training time 768 

due to its simplicity and limited number of parameters. 769 

Moving forward, it is worth mentioning that predicting the magnitude of the recession curve of flood 770 

hydrographs was particularly challenging for all models. We argue that this is because the relation between 771 

base flow and time is particularly hard to calibrate due to ground-water effluent that is controlled by 772 

geological and physical conditions (vegetation, wetlands, wet meadows) in headwater streams. In addition, 773 

the situations of runoff occurrence are diverse and have a high measurement variance with high frequency 774 

that can make it difficult for the algorithms to fully capture discrete representation learning on time series.  775 

In future studies, it will be important to develop strategies to derive analogs to the interpretable 776 

configuration as well as multi-rate input sampling, hierarchical interpolation, and backcast residual 777 

connections that allow for the dynamic representation of flood times series data with different frequencies 778 

and nonlinearity. A dynamic representation of flood time series is, at least in principle, possible by 779 

generating additive predictions in different bands of the time-series signals, reducing memory footprint and 780 

compute time, and improving architecture parsimony and accuracy. This would allow the model to “learn” 781 
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interpretability and hierarchical representations from raw data to reduce complexity as the information 782 

flows through the network. Moreover, it is noteworthy that while a single station offers valuable localized 783 

data, particularly for smaller watersheds such as headwater streams where runoff is closely tied to 784 

immediate meteorological conditions, it may not fully capture the spatial heterogeneity of larger 785 

watersheds. For our specific case, the methods applied herein captured runoff magnitude and dynamics in 786 

small watersheds using a single station. However, we recognize that for broader areas, incorporating 787 

spatially distributed data would likely enhance model accuracy. Lastly, one could explore the idea of 788 

enhancing N-HiTS and N-BEATS (or NN algorithms, in general) performance with uncertainty 789 

quantification by using more robust Bayesian inference such as Bayesian Model Averaging (BMA) with 790 

fixed and flexible prior distributions (see Samadi et al., 2020) and/or Markov Chain Monte-Carlo 791 

optimization methods (Duane et al., 1987) addressing both aleatoric and epistemic uncertainties. We leave 792 

these approaches for future discussion and exploration in the context of flood neural time series prediction. 793 
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