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Abstract

The past few years have witnessed the rise of neural networks (NNs) applications for hydrological time
series modeling. By virtue of their capabilities, NN models can achieve unprecedented levels of
performance when learning how to solve increasingly complex rainfall-runoff processes via data, making
them pivotal for the development of computational hydrologic tasks such as flood predictions. The NN
models should, to be considered practical, provide a probabilistic understanding of the model mechanisms
and predictions and hints on what could perturb the model. In this paper, we developed two NN models,
i.e., Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and Network-Based
Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) with a probabilistic multi-
quantile objective and benchmarked them with long short-term memory (LSTM) for flood prediction across
two headwater streams in Georgia and North Carolina, USA. To generate a probabilistic prediction, a Multi-
Quantile Loss was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple flooding
events. Extensive experiments demonstrated the advantages of hierarchical interpolation and interpretable
architecture, where both N-HiTS and N-BEATS provided an average accuracy improvement of ~5% over
the LSTM benchmarking model. On a variety of flooding events, both N-HiTS and N-BEATS demonstrated
significant performance improvements over the LSTM benchmark and showcased their probabilistic

predictions by specifying a likelihood objective.

Keywords: Probabilistic Flood Prediction; Neural Networks; N-HiTS; N-BEATS; LSTM; Headwater

Stream.
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Key Points

e N-HiTS and N-BEATS predictions reflect interpretability and hierarchical representations of data
to reduce neural network complexities.

e Both N-HiTS and N-BEATS models outperformed the LSTM in mathematically defining
uncertainty bands.

e Predicting the magnitude of the recession curve of flood hydrographs was particularly challenging

for all models.

Plain Language Summary

Recent progress in NN accelerated improvements in the performance of catchment modeling. Yet flood
modeling remains a very difficult task. Focusing on two headwater streams, we developed N-HiTS and N-
BEATS models and benchmarked them with LSTM to predict flooding. N-HiTS and N-BEATS
outperformed LSTM for flood predictions. We demonstrated how the proposed models can be augmented

with an uncertainty approach to predict flooding that is interpretable without considerable loss in accuracy.

1. Introduction

The past few years have witnessed a rapid surge in the neural networks (NN) applications in hydrology. As
these opaque, data-driven models are increasingly employed for critical hydrological predictions, the
hydrology community has placed growing emphasis on developing trustworthy and interpretable NN
models. However, maintaining coherence while producing accurate predictions can be a challenging
problem (Olivares et al., 2024). There is a general agreement on the importance of providing probabilistic
NN prediction (Sadeghi Tabas and Samadi, 2022), especially in the case of flood prediction (Martinaitis et
al., 2023).

Flood occurrences have witnessed an alarming surge in frequency and severity globally. Jonkman (2005)
studied a natural disaster database (EM-DAT, 2023) and reported that over 27 years, more than 175000
people died, and close to 2.2 billion were affected directly by floods worldwide. These numbers are likely
an underestimation due to unreported events (Nevo et al., 2022). In addition, the United Nations Office for
Disaster Risk Reduction reported that flooding has been the most frequent, widespread weather-related
natural disaster since 1995, claiming over 600,000 lives, affecting around 4 billion people globally, and
causing annual economic damage of more than 100 billion USD (UNISDR, 2015). This escalating trend
has necessitated the need for better flood prediction and management strategies. Scholars have successfully
implemented different flood models such as deterministic (e.g., Roelvink et al., 2009, Thompson and
Frazier, 2014; Barnard et al., 2014; Erikson et al., 2018) and physically based flood models (e.g., Basso et
al., 2016; Chen et al., 2016; Pourreza-Bilondi et al., 2017; Saksena et al., 2019; Refsgaard et al., 2021) in
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various environmental systems over the past several decades. These studies have heightened the need for
precise flood prediction (Samadi et al., 2025), they have also unveiled limitations inherent in existing

deterministic and physics-based models.

While evidence suggests that both deterministic and physics-based approaches are meaningful and useful
(Sukovich et al., 2014; Zafarmomen et al., 2024), their forecasts rest heavily on imprecise and subjective
expert opinion; there is a challenge for setting robust evidence-based thresholds to issue flood warnings and
alerts (Palmer, 2012). Moreover, many of these traditional flood models, particularly physically explicit
models, rely too strongly on a particular choice of numerical approximation and describe multiple process
parameterizations only within a fixed spatial architecture (e.g., Clark et al., 2015). Recent NN models have
shown promising results across a large variety of flood modeling applications (e.g., Nevo et al., 2022; Pally
and Samadi, 2022; Dasgupta et al., 2023; Zhang et al., 2023; Zafarmomen and Samadi, 2025; Saberian et
al., 2025) and encourage the use of such methodologies as core drivers for neural flood prediction

(Windheuser et al., 2023).

Earlier adaptations of these intelligent techniques showed promising for flood prediction (e.g., Hsu et al.,
1995; Tiwari and Chatterjee, 2010). However, recent efforts have taken NN application to the next level,
providing uncertainty assessment (Sadeghi Tabas and Samadi, 2022) and improvements over various
spatio-temporal scales, regions, and processes (e.g., Kratzert et al., 2018; Park and Lee, 2023; Zhang et al.,
2023). Nevo et al., (2022) were the first scholars who employed long short-term memory (LSTM) for flood
stage prediction and inundation mapping, achieving notable success during the 2021 monsoon season. Soon
after, Russo et al. (2023) evaluated various NN models for predicting depth flood in urban systems,
highlighting the potential of data-driven models for urban flood prediction. Similarly, Defontaine et al.
(2023) emphasized the role of NN algorithms in enhancing the reliability of flood predictions, particularly
in the context of limited data availability. Windheuser et al., (2023) studied flood gauge height forecasting
using images and time series data for two gauging stations in Georgia, USA. They used multiple NN models
such as Convolutional Neural Network (ConvNet/CNN) and LSTM to forecast floods in near real-time (up
to 72 hours).

In a sequence, Wee et al., (2023) used Impact-Based Forecasting (IBF) to propose a Flood Impact-Based
Forecasting system (FIBF) using flexible fuzzy inference techniques, aiding decision-makers in a timely
response. Zou et al. (2023) proposed a Residual LSTM (ResLSTM) model to enhance and address flood
prediction gradient issues. They integrated Deep Autoregressive Recurrent (DeepAR) with four recurrent
neural networks (RNNs), including ResLSTM, LSTM, Gated Recurrent Unit (GRU), and Time
Feedforward Connections Single Gate Recurrent Unit (TFC-SGRU). They showed that ResLSTM achieved

superior accuracy. While these studies reported the superiority of NN models for flood modeling, they
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highlighted a number of challenges, notably (i) the limited capability of proposed NN models to capture
the spatial variability and magnitudes of extreme data over time, (ii) the lack of a sophisticated mechanism
to capture different flood magnitudes and synthesize the prediction, and (iii) inability of the NN models to

process data in parallel and capture the relationships between all elements in a sequential manner.

Recent advances in neural time series forecasting showed promising results that can be used to address the
above challenges for flood prediction. Recent techniques include the adoption of the attention mechanism
and Transformer-inspired approaches (Fan et al. 2019; Alaa and van der Schaar 2019; Lim et al. 2021)
along with attention-free architectures composed of deep stacks of fully connected layers (Oreshkin et al.

2020).

All these approaches are relatively easy to scale up in terms of flood magnitudes (small to major flood
predictions), compared to LSTM and have proven to be capable of capturing spatiotemporal dependencies
(Challu et al., 2022). In addition, these architectures can capture input-output relationships implicitly while
they tend to be more computationally efficient. Many state-of-the-art NN approaches for flood forecasting
have been established based on LSTM. There are cell states in the LSTM networks that can be interpreted
as storage capacity often used in flood generation schemes. In LSTM, the updating of internal cell states
(or storages) is regulated through several gates: the first gate regulates the storage depletion, the second one
regulates storage fluctuations, and the third gate regulates the storages outflow (Tabas and Samadi, 2022).
The elaborate gated design of the LSTM partly solves the long-term dependency problem in flood time
series prediction (Fang et al., 2020), although, the structure of LSTMs is designed in a sequential manner

that cannot directly connect two nonadjacent portions (positions) of a time series.

In this paper, we developed attention-free architecture, i.e. Neural Hierarchical Interpolation for Time
Series Forecasting (N-HiTS; Challu et al., 2022) and Network-Based Expansion Analysis for Interpretable
Time Series Forecasting (N-BEATS; Oreshkin et al., 2020) and benchmarked these models with LSTM for
flood prediction. We developed fully connected N-BEATS and N-HiTS architectures using multi-rate data

sampling, synthesizing the flood prediction outputs via multi-scale interpolation.

We implemented all algorithms for flood prediction on two headwater streams i.e., the Lower Dog River,
Georgia, and the Upper Dutchmans Creek, North Carolina, USA to ensure that the results are reliable and
comparable. The results of N-BEATS and N-HiTS techniques were compared with the benchmarking
LSTM to understand how these techniques can improve the representations of rainfall and runoff
dispensing over a recurrence process. Notably, this study represents a pioneering effort, as to the best of
our knowledge, this is the first instance in which the application of N-BEATS and N-HiTS algorithms in

the field of flood prediction has been explored. The scope of this research will focus on:
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@) Flood prediction in a hierarchical fashion with interpretable outputs: We built N-BEATS and
N-HiTS for flood prediction with a very deep stack of fully connected layers to implicitly capture input-
output relationships with hierarchical interpolation capabilities. The predictions also involve programming
the algorithms with decreasing complexity and aligning their time scale with the final output through multi-
scale hierarchical interpolation and interpretable architecture. Predictions were aggregated in a hierarchical

fashion that enabled the building of a very deep neural network with interpretable configurations.

(ii)  Uncertainty quantification of the models by employing probabilistic approaches: a Multi-
Quantile Loss (MQL) was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple
flooding events. MQL was integrated as the loss function to account for probabilistic prediction. MQL
trains the model to produce probabilistic forecasts by predicting multiple quantiles of the distribution of

future values.

(iii) Exploring headwater stream response to flooding: Understanding the dynamic response of
headwater streams to flooding is essential for managing downstream flood risks. Headwater streams
constitute the uppermost sections of stream networks, usually comprising 60% to 80% of a catchment area.
Given this substantial coverage and the tendency for precipitation to increase with elevation, headwater
streams are responsible for generating and controlling the majority of runoff in downstream portions

(MacDonald and Coe, 2007).

The remainder of this paper is structured as follows. Section 2 presents the case study and data, NN models,
performance metrics, and sensitivity and uncertainty approaches. Section 3 focuses on the results of flood
predictions including sensitivity and uncertainty assessment and computation efficiency. Finally, Section 4

concludes the paper.

2. Methodology
2.1. Case Study and Data

This research used two headwater gauging stations located at the Lower Dog River watershed, Georgia
(GA; USGS02337410, Dog River gauging station), and the Upper Dutchmans Creek watershed, North
Carolina (NC; USGS0214269560, Killian Creek gauging station). As depicted in Figures 1, the Lower Dog
River and the Upper Dutchmans Creek watersheds are in the west and north parts of two metropolitan cities,
Atlanta and Charlotte. The Lower Dog River stream gauge is established southeast of Villa Rica in Carroll
County, where the USGS has regularly monitored discharge data since 2007 in 15-minute increments. The
Lower Dog River is a stream with a length of 15.7 miles (25.3 km; obtained from the U.S. Geological
Survey [USGS] National Hydrography Dataset high-resolution flowline data), an average elevation of
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851.94 meters, and the watershed area above this gauging station is 66.5 square miles (172 km2; obtained
from the Georgia Department of Natural Resources). This watershed is covered by 15.2% residential area,

14.6% agricultural land, and ~70% forest (Munn et al., 2020).

Killian Creek gauging station at the Upper Dutchmans Creek watershed is established in Montgomery
County, NC, where the USGS has regularly monitored discharge data since 1995 in 15-minute increments.
The Upper Dutchmans Creek is a stream with a length of 4.9 miles (7.9 km), an average elevation of 642.2
meters (see Table 1), and the watershed area above this gauging station is 4 square miles (10.3 km2) with
less than 3% residential area and about 93% forested land use (the United States Environmental Protection

Agency).

The Lower Dog River has experienced significant flooding in the last decades. For example, in September
2009, the creek, along with most of northern GA, experienced heavy rainfall (5 inches, equal to 94 mm).
The Lower Dog River, overwhelmed by large amounts of overland flow from saturated ground in the
watershed, experienced massive flooding in September 2009 (Gotvald, 2010). The river crested at 33.8 feet
(10.3 m) with a peak discharge of 59,900 cfs (1,700 m3/s), nearly six times the 100-year flood level
(McCallum and Gotvald, 2010). In addition, Dutchmans Creek experienced significant flooding in February
2020. According to local news (WCCB Charlotte, 2020), the flood in Gaston County caused significant
infrastructure damage and community disruption. Key impacts included the threatened collapse of the

Dutchman’s Creek bridge in Mt. Holly and the closure of Highway 7 in McAdenville, GA.

Table 1. The Lower Dog River and Upper Dutchmans Creek’s physical characteristics.

USGS Station ID  Average Elevation Stream Length Watershed area
Watershed
Number (m) (km) (km2)
Lower Dog River 851.9 253 172
watershed, GA USGS02337410
Upper Dutchmans Creek  ysGS0214269560 6422 7.9 10.3

watershed, NC
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Figure 1. The Lower Dog River and The Upper Dutchmans Creek watersheds are in GA and NC. The

proximity of the watersheds to Atlanta and Charlotte (urban area) are also displayed on the map.

To provide the meteorological forcing data, i.e., precipitation, temperature, and humidity, were extracted
from the National Oceanic and Atmospheric Administration’s (NOAA) Local Climatological Data
(LCD). We used the NOAA precipitation, temperature, and humidity data of Atlanta Hartsfield Jackson
International Airport and Charlotte Douglas Airport stations as an input for neural network algorithms. The
data has been monitored since January 1, 1948, and July 22, 1941, with an hourly interval which was used

as an input variable for constructing neural networks.

To fill in the missing values in the data, we used the spline interpolation method. We applied this method
to fill the gaps in time series data, although the missing values were insignificant (less than 1%). In addition,
we employed the Minimum Inter-Event Time (MIT) approach to precisely identify and separate individual
storm events. The MIT-based event delineation is pivotal for accurately defining storm events. This method
allowed us to isolate discrete rainfall episodes, aiding a comprehensive analysis of storm events. Moreover,
it provided a basis for event-specific examination of flood responses, such as initial condition and cessation

(loss), runoff generation, and runoff dynamics.
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The hourly rainfall dataset consists of distinct rainfall occurrences, some consecutive and others clustered
with brief intervals of zero rainfall. As these zero intervals extend, we aim to categorize them into distinct
events. It's worth noting that even within a single storm event, we often encounter short periods of no
rainfall, known as intra-storm zero values. In the MIT method, we defined a storm event as a discrete rainfall
episode surrounded by dry periods both preceding and following it, determined by an MIT (Asquith et al.,
2005; Safaei-Moghadam et al., 2023).

There are many ways to determine MIT value. One practical approximation is using serial autocorrelation
between rainfall occurrences. MIT approach uses autocorrelation that measures the statistical dependency
of rainfall data at one point in time with data at earlier, or lagged times within the time series. The lag time
represents the gap between data points being correlated. When the lag time is zero, the autocorrelation
coefficient is unity, indicating a one-to-one correlation. As the lag time increases, the statistical correlation
diminishes, converging to a minimum value. This signifies the fact that rainfall events become
progressively less statistically dependent or, in other words, temporally unrelated. To pinpoint the optimal
MIT, we analyzed the autocorrelation coefficients for various lag times, observing the point at which the
coefficient approaches zero. This lag time signifies the minimum interval of no rainfall, effectively

delineating distinct rainfall events.

2.2. NN Algorithms

In this study, three distinct neural network (NN) architectures were developed to perform multi-horizon
flood forecasting. Each NN was coupled with a MQL objective to generate probabilistic predictions and
quantify predictive uncertainty. Throughout the manuscript, the term parameters are used exclusively to

refer to the network’s weights and biases for clarity and consistency.

2.2.1.LSTM

LSTM is an RNN architecture widely used as a benchmark model for flood neural time series
modeling. LSTM networks are capable of selectively learning order dependence in sequence prediction
problems (Sadeghi Tabas and Samadi, 2022). These networks are powerful because they can capture the
temporal features, especially the long-term dependencies (Hochreiter et al., 2001) and are independent of

the length of the data sequences input, meaning that each sample is independent from another one.
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The memory cell state within LSTM plays a crucial role in capturing extended patterns in data, making it
well-suited for dynamic time series modeling such as flood prediction. An LSTM cell uses the following

functions to compute flood prediction.

ir = 0(Aixy + Bihy_1 + ¢;) (Equation 1)

fe = 0(Agxy + Brheq + ¢f) (Equation 2)

0 = 0(Apxy + Bohe—q + ¢,) (Equation 3)

my = fO@my_y +i; ©tanh(Agx, + Byhiy + ¢) (Equation 4)
hy = o; O tanh(m;) (Equation 5)

Where x; and h, represent the input and the hidden state at time step ¢, respectively. © denotes element-
wise multiplication, tanh stands for the hyperbolic tangent activation function, and o represents the
sigmoid activation function. 4, B, and c are trainable weights and biases that undergo optimization during
the training process. m; and h; are cell states at time step ¢ that are employed in the input processing for
the next time step. m; represents the memory state responsible for preserving long-term information, while
h; represents the memory state preserving short-term information. The LSTM cell consists of a forget gate
f an input gate i;and an output gate o, and has a cell state m,. At every time step ¢, the cell gets the data
point x; with the output of the previous cell 4,1 (Windheuser et al., 2023). The forget gate then defines if
the information is removed from the cell state, while the input gate evaluates if the information should be
added to the cell state and the output gate specifies which information from the cell state can be used for

the next cells.

We used two LSTM layers with 128 cells in the first two hidden layers as encoder layers, which were then
connected to two multilayer perceptron (MLP) layers with 128 neurons as decoder layers. The LSTM
simulation was performed with these input layers along with the Adam optimizer (Kingma and Ba,
2014), tanh activation function, and a single lagged dependent-variable value to train with a learning rate

of 0.001. The architecture of the proposed LSTM model is illustrated in Figure 2.
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Figure 2. The structure of LSTM programmed in this research. We used tanh and sigmoid as activation

functions along with 2 layers of LSTM, 2 layers of MLP, and 128 cells in each layer.

2.2.2. N-BEATS

N-BEATS is a deep learning architecture based on backward and forward residual links and the very deep
stack of fully connected layers specifically designed for sequential data forecasting tasks (Oreshkin et al.,
2020). This architecture has several desirable properties including interpretability. The N-BEATS
architecture distinguishes itself from existing architecture in several ways. First, the algorithm approaches
forecasting as a non-linear multivariate regression problem instead of a sequence-to-sequence
challenge. Indeed, the core component of this architecture (as depicted in Figure 3) is a fully connected
non-linear regressor, which takes the historical data from a time series as input and generates multiple data
points for the forecasting horizon. Second, most existing time series architectures are quite limited in depth,
typically consisting of one to five LSTM layers. N-BEATS employs the residual principle to stack a
substantial number of layers together, as illustrated in Figure 3. In this configuration, the basic block not
only predicts the next output but also assesses its contribution to decomposing the input, a concept that is

referred to as "backcast" (see Oreshkin et al. 2020).
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The basic building block in the architecture features a fork-like structure, as illustrated in Figure 3 (bottom).
The [-th block (for the sake of brevity, the block index [ is omitted from Figure 3) takes its respective input,
x;, and produces two output vectors: X; and ¥;. In the initial block of the model, x; corresponds to the
overall model input, which is a historical lookback window of a specific length, culminating with the most
recent observed data point. For the subsequent blocks, x; is derived from the residual outputs of the
preceding blocks. Each block generates two distinct outputs: 1. y;: This represents the forward forecast of
the block, spanning a duration of H time units. 2. x;: This signifies the block's optimal estimation of x;,
which is referred to “backcast.” This estimation is made within the constraints of the functional space

available to the block for approximating signals (Oreshkin et al., 2020).

Internally, the fundamental building block is composed of two elements. The initial element involves a
fully connected network, which generates forward expansion coefficient predictors, 9{ , and a backward
expansion coefficient predictor, Hlb . The second element encompasses both backward basis layers, glb , and
forward basis layers, glf . These layers take the corresponding forward Glf and backward 6P expansion
coefficients as input, conduct internal transformations using a set of basis functions, and ultimately yield

the backcast, X;, and the forecast outputs, y;, as previously described by Oreshkin et al. (2020). The

following equations describe the first element:
hiy = FCi(x), iz =FCp(hy1), his=FCs(hiz),  hia =FCa(his). (Equation 6)
6 = LINEAR] (h;4), 6/ = LINEAR} (hy4) (Equation 7)

The LINEAR layer, in essence, functions as a straightforward linear projection, meaning Blf = Wlf hi4. As
for the fully connected (FC) layer, it takes on the role of a conventional FC layer, incorporating RELU non-

linearity as an activation function.

The second element performs the mapping of expansion coefficients Blf and le to produce outputs using

basis layers, resulting in ¥, glf (0[ ) and %, = gP(8P). This process is defined by the following equation:

dim (6)) dim (67)
9, = Z gll;vif' % = Z ell?ivib (Equation 8)
=1 =1

Within this context, vif and v? represent the basis vectors for forecasting and backcasting, respectively,

while G{i corresponds to the i-th element of Glf .

The N-BEATS uses a novel hierarchical doubly residual architecture which is illustrated in Figure 3 (top

and middle). This framework incorporates two residual branches, one traversing the backcast predictions

11
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of each layer, while the other traverses the forecast branch of each layer. The following equation describes

this process:
X\=X-1— %1, V= Z}A’l (Equation 9)
l

As mentioned earlier, in the specific scenario of the initial block, its input corresponds to the model-level
input x. In contrast, for all subsequent blocks, the backcast residual branch x; can be conceptualized as
conducting a sequential analysis of the input signal. The preceding block eliminates the portion of the signal
X1 that it can effectively approximate, thereby simplifying the prediction task for downstream blocks.
Significantly, each block produces a partial forecast y; , which is initially aggregated at the stack level and
subsequently at the overall network level, establishing a hierarchical decomposition. The ultimate forecast

¥ is the summation of all partial forecasts (Oreshkin et al., 2020).

The N-BEATS model has two primary configurations: generic and interpretable. These configurations
determine how the model structures its blocks and how it processes time series data. In the generic
configuration, the model uses a stack of generic blocks that are designed to be flexible and adaptable to
various patterns in the time series data. Each generic block consists of fully connected layers with ReLU
activation functions. The key characteristic of generic configuration is its flexibility. Since the blocks are
not specialized for any specific pattern (like trend or seasonality), they can learn a wide range of patterns
directly from the data (Oreshkin et al., 2020). In the interpretable configuration, the model architecture
integrates distinct trend and seasonality components. This involves structuring the basis layers at the stack

level specifically to model these elements, allowing the stack outputs to be more easily understood.

Trend Model: In this stack gf_ ; and g£ ; are polynomials of a small degree p, functions that vary slowly

across the forecast window, to replicate monotonic or slowly varying nature of trends:
P
Vs1 = Z 9£ Lit! (Equation 10)
=0
The time vector t =[0,1,2,.. ,H —2,H — 1]"/H is specified on a discrete grid ranging from 0 to
(H—1)/H, projecting H steps into the future. Consequently, the trend forecast represented in matrix form is:
= TBS)j . (Equation 11)

Where the polynomial coefficients, Hsf' 1> predicted by an FC network at layer / of stack s, are described by

Equations (6) and (7). The matrix 7, consisting of powers of ¢, is represented as [1,¢,...,tP]. When p is

small, such as 2 or 3, it compels )A/St_rlto emulate a trend (Oreshkin et al., 2020).

12
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B13  Seasonality model: In this stack gg ; and g£ , are periodic functions, to capture the cyclical and recurring
B14  characteristics of seasonality, such that y; = y;_,, where A is the seasonality period. The Fourier series
315  serves as a natural foundation for modeling periodic functions:

H
-1

V1 = 9£l,i cos(2mit) + 9;Li+[H/2] sin(2mit) (Equation 12)

1=0

316  Consequently, the seasonality forecast is represented in the following matrix form:

ygjas — Ses)jl (Equation 13)

H H
S =[1,cos(2nt), ..., cos (211 [E - 1] t) ,sin(2mt), ..., sin (27[ [E - 1] t) (Equation 14)

B17  Where the Fourier coefficients 95{ ;> that predicted by an FC network at layer 1 of stack s, are described by

B18  Equations (6) and (7). The matrix S represents sinusoidal waveforms. As a result, the forecast y37%°

319  becomes a periodic function that imitates typical seasonal patterns (Oreshkin et al., 2020).
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321 Figure 3. The N-BEATS modeling structure, used in this research.
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2.2.3. N-HiTS

N-HiTS builds upon the N-BEATS architecture but with improved accuracy and computational efficiency
for long-horizon forecasting. N-HiTS utilizes multi-rate sampling and multi-scale synthesis of forecasts,
leading to a hierarchical forecast structure that lowers computational demands and improves prediction

accuracy (Challu et al., 2022).

Like N-BEATS, N-HiTS employs local nonlinear mappings onto foundational functions within numerous
blocks. Each block includes an MLP that generates backcast and forecast output coefficients. The backcast
output refines the input data for the following blocks, and the forecast outputs are combined to generate the
final prediction. Blocks are organized into stacks, with each stack dedicated to grasping specific data
attributes using its own distinct set of functions. The network's input is a sequence of L lags (look-back

period), with S stacks, each containing B blocks (Challu et al., 2022).

In each block, a MaxPool layer with varying kernel sizes (k;) is employed at the input, enabling the block
to focus on specific input components of different scales. Larger kernel sizes emphasize the analysis of
larger-scale, low-frequency data, aiding in improving long-term forecasting accuracy. This approach,
known as multi-rate signal sampling, alters the effective input signal sampling rate for each block's MLP

(Challu et al., 2022).

Additionally, multi-rate processing has several advantages. It reduces memory usage, computational
demands, and the number of learnable parameters, and helps prevent overfitting, while preserving the
original receptive field. The following operation is applicable to the input y;_;..; of each block, with the

first block (I = 1) using the network-wide input, where y;_j.c1 = Y_p.¢-
Ye-r:tg = MaxPool (ye—p.1, ki) (Equation 15)

In many multi-horizon forecasting models, the number of neural network predictions matches the horizon's
dimensionality, denoted as H. For instance, in N-BEATS, the number of predictions |91f | = H. This results
in a significant increase in computational demands and an unnecessary surge in model complexity as the
horizon H becomes larger (Challu et al., 2022).

To address these challenges, N-HiTS proposes the use of temporal interpolation. This model manages the
parameter counts per unit of output time ( |Hlf | = [ry H]) by defining the dimensionality of the interpolation
coefficients with respect to the expressiveness ratio ;. To revert to the original sampling rate and predict

all horizon points, this model employs temporal interpolation through the function g:

Ve = g(‘r, Hlf), vt e {t +1,....,t + H}, (Equation 16)
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Veu = 9(7, le), vt € {t— L,...,t}, (Equation 17)

(Equation 18)

90e0) = o)+ (T T - )
2 1

t; =arg tgrl:ithT —t, tz= t+1/n (Equation 19)

The hierarchical interpolation approach involves distributing expressiveness ratios over blocks, integrated
with multi-rate sampling. Blocks closer to the input employ more aggressive interpolation, generating lower
granularity signals. These blocks specialize in analyzing more aggressively subsampled signals. The final
hierarchical prediction, J;41.r+y, 1S constructed by combining outputs from all blocks, creating
interpolations at various time-scale hierarchy levels. This approach maintains a structured hierarchy of

interpolation granularity, with each block focusing on its own input and output scales (Challu et al., 2022).

To manage a diverse set of frequency bands while maintaining control over the number of parameters,
exponentially increasing expressiveness ratios are recommended. As an alternative, each stack can be
dedicated to modeling various recognizable cycles within the time series (e.g., weekly, or daily) employing
matching r;. Ultimately, the residual obtained from backcasting in the preceding hierarchy level is
subtracted from the input of the subsequent level, intensifying the next-level block's attention on signals

outside the previously addressed band (Challu et al., 2022).

L
Ververn = z Ver1:t+8,1 (Equation 20)
=1
Ye-Lti+1 = YVe-ritd — Ve-Litl (Equation 21)
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363 Figure 4. The structure of N-HiTS model programmed in this study. The architecture includes several
364 Stacks, each Stack includes several Block, where each block consists of a MaxPool layer and a multi-
365 layer which learns to produce coefficients for the backcast and forecast outputs of its basis.
366

367  2.3. Performance Metrics

368  To comprehensively evaluate the accuracy of flood predictions, we utilized a suite of metrics, including
369  Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), persistent Nash-Sutcliffe Efficiency (persistent-
370  NSE), Kling—Gupta efficiency (KGE; Gupta et al. 2009), Root Mean Square Error (RMSE), Mean
371  Absolute Error (MAE), Peak Flow Error (PFE), and Time to Peak Error (TPE; Evin et al., 2023; Lobligeois
372 et al, 2014). These metrics collectively facilitate a rigorous assessment of the model's performance in

373 reproducing the magnitude of observed peak flows and the shape of the hydrograph.
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NSE measures the model's ability to explain the variance in observed data and assesses the goodness-of-fit
by comparing the observed and simulated hydrographs. In hydrological studies, the NSE index is a widely

accepted measure for evaluating the fitting quality of models (McCuen et al., 2006). It is calculated as:

I(05,= Qo)

NSE =1 2L
2?:1(Qoi - Qo)

(Equation 22)
Where Q,, represents observed value at time i, Qy, represents simulated value at time i, Q, is the mean
observed values and n is the number of data points. An NSE value of 1 indicates a perfect match between

the observed and modeled data, while lower values represent the degree of departure from a perfect fit.

As the models are designed to predict one hour ahead in one of the prediction horizons, the persistent-NSE
is essential for evaluating their performance. The standard NSE measures the model's sum of squared errors
relative to the sum of squared errors when the mean observation is used as the forecast value. In contrast,
persistent-NSE uses the most recent observed data as the forecast value for comparison (Nevo et al., 2022).

The persistent NSE is calculated as:

S71(Qs— Qo))

persistent — NSE =1 — >
Z?=1(Qni - Qni_l)

(Equation 23)

Where Q,, represents the observed value at time I, (5, represents the simulated value at time i, Q,,_, is the
observed value at the last time step (i — 1) and 7 is the number of data points.
The KGE is a widely used performance metric in hydrological modeling and combines multiple aspects of

model performance, including correlation, variability bias, and mean bias. The KGE metric is calculated

using the following equation:

KGE=1— [(r—=1)2+ (a—1)2+ (B —1)? (Equation 24)

Where r represents Pearson correlation coefficient between observed @, and simulated Qg values.

a represents bias ratio, calculated as ¢ = % where ug and 1, are the means of simulated and observed data,
0

Os
respectively. 8 represents variability ratio, calculated as 8 = %;’ls where o5 and o, are the standard

Ho

deviations of simulated and observed data, respectively.

RMSE quantifies the average magnitude of errors between observed and modeled values, offering insights
into the absolute goodness-of-fit, while MAE is a measure of the average absolute difference between the
modeled values and the observed values and provides a measure of the average magnitude of errors. RMSE

is calculated as:
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n
1 .
RMSE = |- Z(Qgi - Qs)? (Equation 25)
=1

and MAE is calculated as:

n

1
MAE = — Z|Qoi N (Equation 26)

=1
Where Q,, represents observed value at time i, Qs; represents simulated value at time i, and 7 is the number

of data points. RMSE and MAE provide information about the magnitude of modeling errors, with smaller

values indicating a better model fit.

PFE quantifies the magnitude disparity between observed and modeled peak flow values. The PFE metric

is defined as:

|QO max QS maxl

QO max

PFE = (Equation 27)

Where Q, . Tepresents the observed peak flow value, and Qs . signifies the simulated peak flow value.
The PFE metric, expressed as a dimensionless value, provides a quantitative measure of the relative error
in predicting peak flow magnitudes concerning the observed values. A smaller PFE denotes more accurate

modeling of peak flow magnitudes, with a value of zero indicating a perfect match.

TPE assesses the temporal alignment of peak flows in the observed and modeled hydrographs. The TPE

metric is computed as:

TPE=|T, . — T

max Smax |

(Equation 28)

Where T, .. signifies the time at which the peak flow occurs in the observed hydrograph, and T,
represents the time at which the peak flow occurs in the simulated hydrograph. TPE that is measured in
units of time (hours), provides insight into the precision of peak flow timing. Smaller TPE values indicate
a superior alignment between the observed and modeled peak flow timing, while larger TPE values indicate

discrepancies in the temporal occurrence of peak flows.

The utilization of these five metrics, PFE, persistent-NSE, TPE, NSE, and RMSE, collectively provides a
robust and multifaceted assessment of flood prediction performance. This approach ensures that both the
magnitude and timing of peak flows, as well as the overall hydrograph shape, are accurately calibrated and

validated.
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2.4. Sensitivity and Uncertainty Analysis

When implementing NN models, it's crucial to understand how each input feature affects the model's
performance or outputs. To achieve this, we systematically excluded each input feature from the model one
by one (the Leave-One-Out method). For each exclusion, we retrained the model without that specific input
feature and then tested its performance against a test dataset. This method helps in understanding which
input features are most critical to the model's performance and which ones have a lesser impact. It also
allows us to identify any input features that may be redundant or have little effect on the overall outcome,

thus potentially simplifying the model without sacrificing accuracy.

In this study, we utilized probabilistic approaches to quantify the uncertainty in flood prediction. This
method is rooted in statistical techniques employed for the estimation of unknown probability distributions,
with a foundation in observed data. More specifically, we leveraged the Maximum Likelihood Estimation
(MLE) approach, which entails the determination of MQL objective values that optimize the likelihood
function. The likelihood function quantifies the probability of MQL objective taking values, given the

observed realizations.

We incorporated the MQL as a probabilistic error metric into algorithmic architecture. MQL performs an
evaluation by computing the average loss for a predefined set of quantiles. This computation is grounded
in the absolute disparities between predicted quantiles and their corresponding observed values. By
considering multiple quantile levels, MQL provides a comprehensive assessment of the model’s ability to

capture the distribution of the target variable, rather than focusing solely on point estimates.

The MQL metric also aligns closely with the Continuous Ranked Probability Score (CRPS), a standard tool
for evaluating predictive distributions. CRPS measures the difference between the predicted cumulative
distribution function and the observed values by integrating over all possible quantiles. The computation of
CRPS involves a numerical integration technique that discretizes quantiles and applies a left Riemann
approximation for CRPS integral computation. This process culminates in the averaging of these
computations over uniformly spaced quantiles, providing a robust evaluation of the predictive distribution

F,.

~ . 1 .
MQL (Qr, (07", Q') = Z QL (Q-, Q7" (Equation 29)
qi
1
CRPS (Q;,F,) = j QL (Q;,Qf")dq (Equation 30)
0
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~ 1 ~ o
QL(Q:07) = > (=0)(Qf - @) +a(@: ~ @)  (Bquation3])

T=t+1

Where Q; represents observed value at time 7, Q¥ represents simulated value at time T, ¢ is the slope of the

quantile loss, and H is the horizon of forecasting.

Implementation-wise, let D = {(X;, V+1)} =, denote training pairs, where X, is the past 24-h discharge

context and y,,,_the discharge h_hours ahead. For a fixed horizon h_and quantile levels {r,}¥_,, each

model fy outputs the vector of conditional quantiles:

Quin = fo(X) = Q- QK) ERK (Equation 32)

Parameters 6 are learned by minimizing the multi-quantile (pinball) loss:

N K

1 ~
LO =35 . Pr(ean—0%),

pe(u) = max (7, (T = D) = (v = Tpyeq)

Because p;_is convex and piecewise linear, its (sub)gradient with respect to Q% p, is:

w = {_(1 - B gr g’ (Equation 34)

y
aQr° -1, y—

enabling backpropagation (Adam) without any sampling. Thus, each quantile Qﬁrh is a direct network

output learned to satisfy the quantile condition under p,. Uncertainty intervals are formed from these

quantile predictions; for a 95% band we use [Q&%ZS, Qﬂﬁfs 1. The resulting bands quantify the uncertainty

conditional on X;.

Incorporating MQL as a central metric in our study underscores its suitability for probabilistic forecasting,

particularly in the context of uncertainty quantification. Unlike traditional error metrics that focus on point
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predictions, MQL captures both central tendencies and variability by penalizing errors symmetrically across
quantiles. This property ensures balanced and reliable assessments of the predictive distribution, ultimately

enhancing the robustness and interpretability of flood prediction models.

A MQL (0 [0, 0%])

\\ / a0
\ P @

~ ~

Qr
>

Figure 5. The MQL function which shows loss values for different values of ¢ when the true value is Q.

Furthermore, we employed two key indices, the R-Factor and the P-Factor, to rigorously assess the quality
of uncertainty performance in our hydrological modeling. These metrics are instrumental in quantifying the
extent to which the model's predictions encompass the observed data, thereby providing valuable insights

into the model's predictive accuracy and reliability.

The P-Factor, or percentage of data within 95PPU, is the first index used in this assessment. The P-Factor
quantifies the percentage of observed data that falls within the 95PPU, providing a measure of the model's
predictive accuracy. The P-Factor can theoretically vary from 0% to a maximum of 100%. A P-Factor of
100% signifies a perfect alignment between the model's predictions and the observed data within the
uncertainty band. In contrast, a lower P-Factor indicates a reduced ability of the model to predict data within

the specified uncertainty range.

Observations braketed by 95PPU (Equation
P — Factor = - X 100
Number of observations 352)

The R-Factor can be computed by dividing the average width of the uncertainty band by the standard
deviation of the measured variable. The R-Factor, with a minimum possible value of zero, provides a

measure of the spread of uncertainty relative to the variability of the observed data. Theoretically, the R-
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Factor spans from 0 to infinity, and a value of zero implies that the model's predictions precisely match the
measured data, with the uncertainty band being very narrow in relation to the variability of the observed

data.

Average width of 95PPU band (Equation
Standard deviation of measured variables 363)

R — Factor =

In practice, the quality of the model is assessed by considering the 95% prediction band with the highest P-
Factor and the lowest R-Factor. This specific band encompasses most observed records, signifying the
model's ability to provide accurate and reliable predictions while effectively quantifying uncertainty. A
simulation with a P-Factor of 1 and an R-Factor of 0 signifies an ideal scenario where the model precisely

matches the measured data within the uncertainty band (Abbaspour et al., 2007).

Figure 6 shows the workflow of programming N-BEATS, N-HiTS, and LSTM for flood prediction. As
illustrated, the initial step involved cleaning and preparing the input data, which was then used to feed the
models. The workflow for each model and their output generation processes are depicted in Figure 6. We
segmented the storm events using the MIT approach, as previously described. Following this, we conducted
a sensitivity analysis using the Leave-One-Out method and performed uncertainty analysis using the MLE
approach to construct the 95PPU band. This rigorous methodology ensures a robust evaluation of model
performance under varying conditions and highlights the models' predictive reliability and resilience. We
employed the “NeuralForecast” Python package to develop the N-BEATS, N-HiTS, and LSTM models.

This package provides a diverse array of NN models with an emphasis on usability and robustness.
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Figure 6. The workflow of N-BEATS, N-HiTS, and LSTM implementation. The upper section of the
figure illustrates multiple steps from data preprocessing to model evaluation. The lower section provides a
detailed view of the workflow and implementation for each model, highlighting the specific processes and
methodologies employed in generating the outputs. Backpropagation Through Time (BPTT) trains LSTM
by unrolling the model through time, computing gradients for each time step, and updating weights based

on temporal dependencies.

3. Results and Discussion
3.1. Independent Storms Delineation

MIT’s contextual delineation of storm events laid the groundwork for in-depth evaluation of rainfall events,
enabling isolation and separation of rainfall events that led to significant flooding events. The nuanced
outcomes of the MIT assessment contributed significantly to the understanding of rainfall variability and

distribution as the dominant contributor to flood generation.
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During modeling implementation, the initial imperative was the precise distinction of storm events within
the precipitation time series data of each case study. Our findings demonstrate that on average a dry period
of 7 hours serves as the optimal MIT time for both of our case studies. This outcome signifies that when a
dry interval of more than 7 hours transpires between two successive rainfall events, these subsequent
rainfalls should be considered two distinct storm events. This determination underlines the temporal

threshold necessary for distinguishing between individual meteorological phenomena in two case studies.

3.2. Hyperparameter Optimization

In the context of hyperparameter optimization, we systematically considered and tuned various
hyperparameters for the N-HiTS, N-BEATS, and LSTM. We searched for learning rates on a log-uniform
grid between 1 X 10™* and 1 X 1073, batch sizes {16, 32, 64}, input size {1, 6, 12, 24} hours. For the
LSTM, recurrent layers {1,2,3}, hidden units per layer {64,128,256}, activation {tanh, ReLU}, decoder
MLP depth {1,2,3}, and decoder MLP width {64,128,256} were varied during the simulation run. For N-
HITS, stacks {2,3,4}, blocks per stack {2,3,4,5}, block MLP width {64,128,256}, and block MLP depth
{2,3,4} were explored. For N-BEATS, we searched stacks {2,3,4}, blocks per stack {2,3,4,5}, block MLP
width {64,128,256}, and block MLP depth {2,3,4}; the interpretable (trend/seasonality) basis was kept
fixed. Following extensive exploration and fine-tuning of these hyperparameters, the optimal
configurations were identified (see Table 2). For the N-HiTS model, the most favorable outcomes were
achieved with the following hyperparameter settings: 2000 epochs, "identity" for scaler type, a learning rate
of 0.001, a batch size of 32, input size of 24 hours, "identity" for stack type, 512 units for hidden layers of
each stack, step size of 1, MQLoss as loss function, and "ReLU" for the activation function. As shown in
Table 2, the N-HiTS model demonstrated superior performance with 4 stacks, containing 2 blocks each,
and corresponding coefficients of 48, 24, 12, and 1, showcasing the significance of these settings for flood

prediction.

This hyperparameter optimization was also conducted for the N-BEATS model. In this model, we
considered 2000 epochs, 3 stacks with 2 blocks, “identity” for scaler type, a learning rate of 0.001, a batch
size of 32, input size of 24 hours, “identity” for stack type, 512 units for hidden layers of each stack, step

size of 1, MQLoss as loss function, and “ReLU” for the activation function.

Moreover, the LSTM as a benchmark model yielded its best results with 5000 epochs, an input size of 24
hours, "identity" as the scaler type, a learning rate of 0.001, a batch size of 32, and "tanh" as the activation
function. Furthermore, LSTM’s hidden state was most effective with two layers containing 128 units, and

the MLP decoder thrived with two layers encompassing 128 units. These meticulously optimized
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546  hyperparameter settings represent the culmination of efforts to ensure that each model operates at its peak

547  potential, facilitating accurate flood prediction.

548 Table 2. Optimized values for the hyperparameters.
Hyperparameter N-HiTS N-BEATS LSTM
Epoch 2000 2000 5000
Scaler type identity identity standard
Learning rate 0.001 0.001 0.001
Batch size 32 32 32
Input size 24 hours 24 hours 24 hours
Seasonality, trend, Seasonality,
Stack type i o ) . ) *
identity, identity trend, identity
Number of units in each
) 512 512 128
hidden layer
Loss function MQLoss MQLoss MQLoss
Activation function ReLU ReLU tanh
Number of stacks 4 3 *
Number of blocks in each
2 2 *
stack
Stacks’ coefficients 48,24,12,1 * *
549 *Not applicable

550  InTable 2, "epoch" refers to the number of training steps, and "scaler type" indicates the type of scaler used
551 for normalizing temporal inputs. The "learning rate" specifies the step size at each iteration while optimizing
552 the model, and the "batch size" represents the number of samples processed in one forward and backward
553 pass. The "loss function" quantifies the difference between the predicted outputs and the actual target
554  values, while the "activation function" determines whether a neuron should be activated. The "stacks'
555  coefficients" in the N-HITS model control the frequency specialization for each stack, enabling effective

556  handling of different frequency components in the time series data.

557  Another hyperparameter for all three models is input size, which is a variable that determines the maximum
558  sequence length for truncated backpropagation during training and the number of autoregressive inputs
559  (lags) that the models considered for prediction. Essentially, input size represents the length of the historical
560  series data used as input to the model. This variable offers flexibility in the models, allowing them to learn

561 from a defined window of past observations, which can range from the entire historical dataset to a subset,
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tailored to the specific requirements of the prediction task. In the context of flood prediction, determining
the appropriate input size is crucial to adequately capture the meteorological data preceding the flood event.
To address this, we calculated the time of concentration (7C) of the watershed system and set the input size
to exceed this duration. According to the Natural Resources Conservation Service (NRCS), for typical
natural watershed conditions, the TC can be calculated from lag time, the time between peak rainfall and
peak discharge, using the formula: Lag time = TC X 0.6 (NRCS, 2009). Specifically, the average 7C in
the Lower Dog River watershed and Upper Dutchmans Creek watershed was found to be 19 and 22 hours,
respectively. As these represent the average 7C for our case studies, we selected the 24 hours for input data,
slightly longer than the average TC, ensuring sufficient coverage of relevant meteorological data preceding

all flood events.

3.3. Flood Prediction and Performance Assessment

In this study, we conducted a comprehensive performance evaluation of N-HiTS, N-BEATS, and
benchmarked these models with LSTM, utilizing two case studies: the Lower Dog River and the Upper
Dutchmans Creek watersheds. Within these case studies, we trained and validated the models separately
for each watershed across a diverse set of storm events from 01/10/2007 to 01/10/2022 (15 years) in the
Lower Dog River and from 21/12/1994 to 01/10/2022 (27 years) in the Upper Dutchmans Creek. The
decision to train separate models for each catchment was made to account for the unique hydrological
characteristics and local features specific to each watershed. By training models individually, we aimed to
optimize performance by tailoring each model to the distinct rainfall-runoff relationship inherent in each
catchment. All algorithms were tested using unseen flooding events that occurred between 14/12/2022 and
28/03/2023. Our targets were event-focused, where operational value focuses on performance during rising
limbs, peaks, and recessions. Evaluating over the entire continuous hydrograph (testing period) can dilute
or even mask differences. For this reason, we prioritized an event-centric assessment as the primary
evaluation approach rather than full-period metrics. In the Dog River gauging station, two winter storms,
i.e., January 3rd to January 5th, 2023 (Event 1) and February 17th to February 18th, 2023 (Event 2), as well
as a spring flood event that occurred during March 26th to March 28th, 2023 (Event 3) were selected for
testing. Additionally, three winter flooding events, i.e., December 14th to December 16th, 2022 (Event 4),
January 25th and January 26th, 2023 (Event 5), and February 11th to February 13th, 2023 (Event 6), were
chosen to test the algorithms across the Killian Creek gauging station in the Upper Dutchmans Creek. The
rainfall events corresponding to these flooding events were delineated using the MIT technique discussed

in Section 3.1.
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Our results for the Lower Dog River case study explicitly demonstrated the accuracy of both N-HiTS and
N-BEATS in generating the winter and spring flood hydrographs compared to the LSTM model across all
selected storm events. Although, N-HiTS prediction slightly outperformed N-BEATS during winter
prediction (January 3rd to January Sth, 2023). In this event, N-HiTS outperformed N-BEATS with a
difference of 11.6% in MAE and 20% in RMSE. The N-HiTS slight outperformance (see Tables 3 and 4)
is attributed to its unique structure that allows the model to discern and capture intricate patterns within the
data. Specifically, N-HiTS predicted flooding events hierarchically using blocks specialized in different
rainfall frequencies based on controlled signal projections, through expressiveness ratios, and interpolation
of each block. The coefficients are then wused to synthesize backcast through
¥y — L:t, 1 and forecast (J;41: t + H, ) outputs of the block as a flood value. The coefficients were locally

determined along the horizon, allowing N-HiTS to reconstruct nonstationary signals over time.

While the N-HiTS emerged as the most accurate in predicting flood hydrograph among the three models,
its performance was somehow comparable with N-BEATS. The N-BEATS model exhibited good
performance in two case studies. It consistently provided competitive results, demonstrating its capacity to
effectively handle diverse storm events and deliver reliable predictions. N-BEATS has a generic and
interpretable architecture depending on the blocks it uses. Interpretable configuration sequentially projects
the signal into polynomials and harmonic basis to learn trend and seasonality components while generic
configuration substitutes the polynomial and harmonic basis for identity basis and larger network’s depth.
In this study, we used interpretable architecture, as it regularizes its predictions through projections into
harmonic and trend basis that is well-suited for flood prediction tasks. Using interpretable architecture,
flood prediction was aggregated in a hierarchical fashion. This enabled the building of a very deep neural

network with interpretable flood prediction outputs.

It is essential to underscore that, despite its strong performance, the N-BEATS model did not surpass the
N-HiTS model in terms of NSE, Persistent-NSE, MAE, and RMSE for the Lower Dog River case study.
Although both models showed almost the same KGE values. Notably, the N-BEATS model showcased
superior results based on the PFE metric, signifying its exceptional capability in accurately predicting flood
peaks. However, both N-HiTS and N-BEATS models overestimated the flood peak rate of Event 2 for the
Lower Dog River watershed. This event, which occurred from February 17" to February 18™, 2023, was
flashy, short, and intense proceeded by a prior small rainfall event (from February 12" until February 13%)
that minimized the rate of infiltration. This flash flood event caused by excessive rainfall in a short period
of time (<8 hours) was challenging to predict for N-BEATS and N-HiTS models. In addition, predicting
the magnitude of changes in the recession curve of the third event seems to be a challenge for both models.

The specific part of the flood hydrograph after the precipitation event, where flood diminishes during a
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rainless is dominated by the release of runoff from shallow aquifer systems or natural storages. It seems
both models showed a slight deficiency in capturing this portion of the hydrograph when the rainfall amount

decreases over time in the Dog River gauging station.

Conversely, in the Killian Creek gauging station, the N-BEATS model almost emerged as the top performer
in predicting the flood hydrograph based on NSE, Persistent-NSE, RMSE, and PFE performance metrics
(see Tables 3 and 4). KGE values remained almost the same for both models. In addition, both N-BEATS
and N-HiTS slightly overpredicted time to peak values for Event 5. This reflects the fact that when rainfall
varies randomly around zero, it provides less to no information for the algorithms to learn the fluctuations
and patterns in time series data. Both N-HiTS and N-BEATS provided comparable results for all events
predicted in this study. N-HiTS builds upon N-BEATS by adding a MaxPool layer at each block. Each
block consists of an MLP layer that learns how to produce coefficients for the backcast and forecast outputs.
This subsamples the time series and allows each stack to focus on either short-term or long-term effects,
depending on the pooling kernel size. Then, the partial predictions of each stack are combined using
hierarchical interpolation. This ability enhances N-HiTS capabilities to produce drastically improved,

interpretable, and computationally efficient long-horizon flood predictions.

In contrast, the performance of LSTM as a benchmark model lagged behind both N-HiTS and N-BEATS
models for all events across two case studies. Despite its extensive applications in various hydrology
domains, the LSTM model exhibited comparatively lower accuracy when tasked with predicting flood
responses during different storm events. Focusing on NSE, Persistent-NSE. KGE, MAE, RMSE, and PFE
metrics, it is noteworthy that all three models, across both case studies, consistently succeeded in capturing
peak flow rates at the appropriate timing. All models demonstrated commendable results with respect to
the TPE metric. In most scenarios, TPE revealed a value of 0, signifying that the models accurately
pinpointed the peak flow rate precisely at the expected time. In some instances, TPE reached a value of 1,
showing a deviation of one hour in predicting the peak flow time. This deviation is deemed acceptable,

particularly considering the utilization of short, intense rainfall for our analysis.

Our investigation into the performance of the three distinct forecasting models yielded compelling results
pertaining to their ability to generate 95PPU, as quantified by the P-Factor and R-Factor. These factors
serve as critical indicators for assessing the reliability and precision of the uncertainty bands produced by
the MLE. Our findings demonstrated that the N-HiTS and N-BEATS models outperformed the LSTM
model in mathematically defining uncertainty bands, in terms of R-Factor metric. The R-Factor, a crucial
metric for evaluating the average width of the uncertainty band, consistently favored the N-HiTS and N-
BEATS models over their counterparts. This finding was consistent across a diverse range of storm events.

In addition, coupling MLE with the N-HiTS and N-BEATS models demonstrated superior performance in
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generating 95PPU when assessed through the P-Factor metric. The P-Factor represents another vital aspect

of uncertainty quantification, focusing on the precision of the uncertainty bands.

Figures 7 and 8 present graphical depictions of the predicted flood with 1-hour prediction horizon and
uncertainty assessment for each model as well as Flow Duration Curve (FDC) across two gauging
stations. As illustrated, the uncertainty bands skillfully bracketed most of the observational data, reflecting
the fact that MLE was successful in reducing errors in flood prediction. FDC analysis also revealed that N-
HiTS and N-BEATS models skillfully predicted the flood hydrograph, however, both models were
particularly successful in predicting moderate to high flood events (1800-6000 and >6000 cfs). In the FDC
plots, the x-axis denotes the exceedance probability, expressed as a percentage, while the y-axis signifies
flood in cubic feet per second. Notably, these plots reveal distinctive patterns in the performance of the N-

HiTS, N-BEATS, and LSTM models.

Within the lower exceedance probability range, particularly around the peak flow, the N-HiTS and N-
BEATS models demonstrated a clear superiority over the LSTM model, closely aligning with the observed
data. This observed trend is consistent when examining the corresponding hydrographs. Across all events,
the flood hydrographs generated by N-HiTS and N-BEATS exhibited a closer resemblance to the observed
data, particularly in the vicinity of the peak timing and rate, compared to the hydrographs produced by the
LSTM model. These findings underscore the enhanced predictive accuracy and reliability of the N-HiTS
and N-BEATS models, particularly in predicting moderate to high flood events as well as critical
hydrograph features such as peak flow rate and timing. The alignment of model-generated FDCs and
hydrographs with observed data in the proximity of peak flow further establishes the efficiency of N-HiTS
and N-BEATS in accurately reproducing the dynamics of flood generation mechanisms across two

headwater streams.

Table 3. The performance metrics for the Lower Dog River flood predictions with 1-hour prediction

horizon.
Model Performance Metric Event 1 Event 2 Event 3
NSE 0.995 0.991 0.992
Persistent-NSE 0.947 0.931 0.948
KGE 0.977 0.989 0.976
N-HiTS RMSE 1232 27.6 68.5
MAE 64.1 12.0 37.8
PFE 0.018 0.051 0.015
TPE (hours) 0 1 0
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P-Factor 96.9 % 100 % 93.5%
R-Factor 0.27 0.40 0.33
NSE 0.991 0.989 0.993
Persistent-NSE 0.917 0.916 0.956
KGE 0.984 0.984 0.98
RMSE 154.1 30.5 62.5
N-BEATS MAE 72.6 13.6 359
PFE 0.0005 0.031 0.0002
TPE (hours) 0 1 0
P-Factor 87.8 % 100 % 90.3 %
R-Factor 0.17 0.23 0.24
NSE 0.756 0.983 0.988
Persistent-NSE -1.44 0.871 0.929
KGE 0.765 0.978 0.971
RMSE 841.1 37.9 79.5
LSTM MAE 369.4 18.6 42
PFE 0.258 0.036 0.016
TPE (hours) 1 0 0
P-Factor 81.8 % 93.1 % 96.7 %
R-Factor 0.37 0.51 0.6
684
685 Table 4. The performance metrics for the Killian Creek flood predictions with 1-hour prediction horizon.
Model Performance Metric Event 4 Event 5 Event 6
NSE 0.991 0.971 0.991
Persistent-NSE 0.885 0.806 0.844
KGE 0.982 0.967 0.991
RMSE 28.8 46.0 19.0
N-HiTS MAE 17.9 23.8 11.5
PFE 0.017 0.008 0.020
TPE (hours) 0 0 0
P-Factor 92.6 % 90.9 % 100 %
R-Factor 0.39 0.48 0.45
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NSE 0.992 0.973 0.989
Persistent-NSE 0.908 0.821 0.823
KGE 0.972 0.951 0.973
RMSE 25.7 442 20.2
N-BEATS MAE 18.3 259 14.0
PFE 0.006 0.008 0.019
TPE (hours) 0 0 0
P-Factor 96.3 % 86.3 % 96.9 %
R-Factor 0.43 0.53 0.43
NSE 0.952 0.892 0.935
Persistent-NSE 0.4 0.27 0.087
KGE 0.92 0.899 0.901
RMSE 65.7 89.2 50.3
LSTM MAE 41.1 45 359
PFE 0.031 0.058 0.098
TPE (hours) 1 0 0
P-Factor 70.4 % 72.73 % 81.82 %
R-Factor 0.66 0.7 0.65

686
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Figure 7. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1-hour prediction

horizon for the three selected flooding events in the Lower Dog River gauging station.
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Figure 8. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1-hour prediction

horizon for the three selected flooding events in the Killian Creek gauging station.

To evaluate robustness across lead times, we extended the analysis to 3- and 6-hour prediction horizons.

The results are presented in Figures 9-12, and Tables 5 and 6. As expected, NSE and KGE decreased while

the absolute errors increased with horizon for all models; however, N-HiTS and N-BEATS continued to
outperform LSTM across both stations and events. At Killian Creek station, both N-HiTS and N-BEATS
preserved their lead, yielding higher NSE and lower MAE/RMSE than LSTM, while at the Lower Dog

River, N-BEATS remained slightly superior on the same metrics. KGE values stayed comparable between
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the two feed-forward models, and peak-focused metrics (PFE and TPE) indicated that both still captured

peak magnitude and timing reliably, compared to LSTM. Uncertainty bands widened with horizon as

expected, but the likelihood-based 95PPU for N-HiTS and N-BEATS maintained tighter R-Factors and

competitive P-Factors relative to LSTM, especially around moderate-to-high flows. Flow-duration

diagnostics at multi-hour leads reinforced these findings, showing closer alignment of N-HiTS and N-

BEATS to observations in the upper tail. Overall, the multi-horizon results corroborate the 1-hour horizon

results: N-HiTS and N-BEATS deliver more accurate and reliable flood forecasts than LSTM, and their

relative strengths persist at 3 and 6 hours ahead. For completeness, we also evaluated 12- and 24-hour lead

times. During these horizons, all models’ performances declined sharply (NSE < 0.4 across sites and

events), so we restrict detailed reporting to 1—6 hours where performance remains operationally meaningful.

Table 5. The performance metrics of the models with 3-hour prediction horizon.

Performance
Model Metric Eventl Event2 Event3 Event4 [EventS Event6
NSE 0.91 0.86 0.58 0.83 0.81 0.89
KGE 0.92 0.92 0.74 0.85 0.85 0.88
RMSE 506 107 485 122 119 65
MAE 293 58 209 71 65 42
N-HiTS
PFE 0.03 0.02 0.08 0.1 0.07 0.05
TPE (hours) 0 0 0 0 0 0
P-Factor 97 % 100 % 93.5% 85 % 72 % 88 %
R-Factor 0.8 1.3 0.75 0.99 0.92 1.14
NSE 0.92 0.88 0.56 0.82 0.82 0.89
KGE 0.91 0.91 0.72 0.83 0.84 0.87
RMSE 481 101 498 124 115 63
N-BEATS MAE 241 48 207 67 58 33
PFE 0.04 0.02 0.12 0.006 0.02 0.002
TPE (hours) 1 0 2 0 0 0
P-Factor 90.9 % 93 % 90.3 % 92 % 68 % 94 %
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R-Factor 0.7 1.2 0.74 0.78 1.1 0.87
NSE 0.7 0.77 0.42 0.82 0.51 0.55
KGE 0.765 0.87 0.65 0.79 0.64 0.69
RMSE 928 139 575 125 190 133
MAE 487 80 296 85 118 87
LSTM
PFE 0.12 0.03 0.16 0.16 0.44 0.08
TPE (hours) 2 1 2 2 1 2
P-Factor 75.8% 96 % 83.9 % 100 % 90 % 94 %
R-Factor 1.15 1.88 1.66 2.8 3.7 2.4
710
711 Table 6. The performance metrics of the models with 6-hour prediction horizon.
Performance
Model Event 1 Event2 Event3 Event4 Event5 Event6
Metric
NSE 0.82 0.58 0.51 0.6 0.7 0.52
KGE 0.76 0.68 0.67 0.74 0.78 0.67
RMSE 708 189 525 188 147 137
MAE 423 90 257 110 90 77
N-HiTS
PFE 0.35 0.29 0.12 0.03 0.2 0.1
TPE (hours) 2 3 0 0 3 3
P-Factor 70 % 96 % 87 % 92 % 82 % 87 %
R-Factor 0.71 1.1 1.1 1.8 1.15 1.2
NSE 0.94 0.85 0.59 0.33 0.82 0.59
KGE 0.83 0.82 0.73 0.55 0.79 0.67
N-BEATS
RMSE 386 112 481 244 115 126
MAE 259 58 181 131 56 74
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PFE 0.16 0.23 0.02 0.03 0.03 0.12
TPE (hours) 0 3 0 0 0 3
P-Factor 100 % 86 % 90.3 % 85 % 77 % 78 %
R-Factor 1.8 23 1.1 1.13 33 1.2
NSE -0.35 -0.39 -0.22 -0.17 -0.2 -0.2
KGE 0.3 0.05 0.18 0.34 0.33 0.4
RMSE 1984 348 834 324 300 220
MAE 1304 192 468 234 201 174
LSTM
PFE 0.24 0.36 0.42 0.6 0.44 0.42
TPE (hours) 3 4 3 0 2 2
P-Factor 36 % 79 % 90.3 % 85 % 86 % 63 %
R-Factor 1.8 1.9 2.16 1.6 3.7 1.6
712
713
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Figure 9. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3-hour prediction

horizon for the three selected flooding events in the Lower Dog River gauging station.
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Figure 10. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6-hour prediction

horizon for the three selected flooding events in the Lower Dog River gauging station.
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722 Figure 11. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3-hour prediction

723 horizon for the three selected flooding events in the Killian Creek gauging station.
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Figure 12. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6-hour prediction

horizon for the three selected flooding events in the Killian Creek gauging station.

To probe cross-catchment generalizability, we trained a single “regional” model by pooling Lower Dog

River and Killian Creek, preserving per-site temporal splits and fitting a global scaler only on the pooled

training portion to avoid leakage; evaluation remained strictly per site. Relative to per-site training, pooled
fitting produced a small accuracy drop for N-HiTS and N-BEATS (~ 2 to 3 %). LSTM showed mixed

performance to pooling, it improved in some storm events but degraded in others, so that, when averaged

across both stations and storm events, LSTM’s regional performance was effectively unchanged relative to
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the per-site training. Despite that, the regional N-HiTS/N-BEATS matched the accuracy of the best per-site
models within the variability observed across storm events and, importantly, consistently surpassed LSTM
at both basins. Mechanistically, N-HiTS’s multi-rate pooling and hierarchical interpolation, and N-
BEATS’s trend/seasonality basis projection, act as catchment-invariant feature extractors that support

parameter sharing across stations.

In our investigation, we conducted an analysis to assess the impact of varying input sizes on the performance
of the N-HiTS, as the best model. We implemented four different durations as input sizes to observe the
corresponding differences in modeling performance. Notably, one of the key metrics affected by changes
in input size was 95PPU, which exhibited a general decrease with increasing input size. As detailed in Table
7, we observed a discernible trend in the R-Factor of the N-HiTS model as the input size was increased.
Specifically, there was a decline in the R-Factor as the input size expanded. This trend underscores the

influence of input size on model performance, particularly in terms of 95PPU band and accuracy.

Overall, uncertainty analysis revealed that coupling MLE with N-HiTS and N-BEATS models
demonstrated superior performance in generating 95PPU, effectively reducing errors in flood prediction.
The MLE approach was more successful in reducing 95PPU bands of N-HiTS and N-BEATS models
compared to the LSTM, as indicated by the R-Factor and P-Factor. The N-BEATS model demonstrated a
narrower uncertainty band (lower R-Factor value), while the N-HiTS model provided higher precision.
Furthermore, incorporating data with various sizes into the N-HiTS model led to a narrower 95PPU and an
improvement in the R-Factor, highlighting the significance of input size in enhancing model accuracy and

reducing uncertainty.

Table 7. N-HiTS’s R-Factor results for three storm events in each case study, using 1

hour, 6 hours, 12 hours, and 24 hours input size in training.

Input Size 1 hour 6 hours 12 hours 24 hours
Dog River, GA - Event 1 0.314 0.337 0.29 0.272
Dog River, GA - Event 2 0.35 0.413 0.403 0.402
Dog River, GA - Event 3 0.358 0.459 0.374 0.336
Killian Creek, NC - Event 4 0.491 0.422 0.426 0.388
Killian Creek, NC - Event 5 0.584 0.503 0.557 0.483
Killian Creek, NC - Event 6 0.482 0.42 0.446 0.454

41



754

755
756
757
758

759
760
761
762
763

764
765
766
767
768
769
770
771
772
773
774

775
776

3.4. Sensitivity Analysis

In this study, we conducted a comprehensive sensitivity analysis of the N-HiTS, N-BEATS, and LSTM
models to evaluate their responsiveness to meteorological variables, specifically precipitation, humidity,
and temperature. The goal was to assess how the omission of input features impacts the overall modeling

performance compared to their full-variable counterparts.

To execute this analysis, we systematically trained each model by excluding meteorological variables one
or more at a time, subsequently evaluating their predictive performance using the entire testing dataset.
The results of our analysis indicated that N-HiTS and N-BEATS models exhibited minimal sensitivity to
meteorological variables, as evidenced by the negligible impact on their performance metric (i.e., NSE,

Persistent-NSE, KGE, RMSE, and MAE) upon input feature exclusion.

Notably, as shown in Table 8, the performance of the N-HiTS model displayed a marginal deviation
under variable omission, while the N-BEATS model exhibited consistent performance irrespective of the
inclusion or exclusion of meteorological variables. The structure of this algorithm is based on backward
and forward residual links for univariate time series point forecasting which does not take into account
other input features in the prediction task. These findings suggest that the predictive capabilities of N-
HiTS and N-BEATS models predominantly rely on historical flood data. Both models demonstrated
strong performance even without incorporating precipitation, temperature, or humidity data, underscoring
their ability in flood prediction in the absence of specific meteorological inputs. This capability
underscores the robustness of the N-HiTS and N-BEATS models, positioning them as viable tools and
perhaps appropriate for real-time flood forecasting tasks where direct meteorological data may be limited

or unavailable.

Table 8. Performance metrics’ values for N-HiTS, N-BEATS, and LSTM models by excluding

meteorological variables one or more at a time.

Excluded Persistent-
Model NSE KGE RMSE MAE
Variables NSE
Using all variables 0.996 0.92 0.988 22.66 4.19
Without 0.993 0.91 0.97 23.28 431
Precipitation
N-HiTS
Without Humidity 0.995 0.914 0.976 22.87 4.22
Without 0.995 0.921 0.985 243 414
Temperature
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Discharge only

ree 0.993 0911 0.972 2321 429
prediction
Using all variables 0.994 0.978 0.992 11.80 2.13
Without 0.994 0.978 0.991 11.86 2.17
Precipitation
N-BEATS  Without Humidity 0.994 0.978 0.991 11.81 2.16
Without 0.994 0.978 0.991 11.82 2.16
Temperature
Discharge only 0.994 0.978 0.991 11.96 2.17
prediction
Using all variables 0.992 0.865 0.926 29.52 8.15
Without 0.979 0.665 0.892 39.46 19.83
Precipitation
LsT™M  Without Humidity 0.991 0.843 0.925 31.73 9.15
T Without 0.983 0.628 0.872 48.95 11.49
emperature
Discharge only 0.976 0.576 0.692 52.28 335
prediction

3.5 Computational Efficiency

The computational efficiency of the N-HiTS, N-BEATS, and LSTM models, as well as a comparative
analysis, is presented in Table 9. The study encompassed the entire process of training and predicting over
the testing period, employing the optimized hyperparameters as previously described. Regarding the
training time, it is noteworthy that the LSTM model exhibited the quickest performance. Specifically,
LSTM demonstrated a training time that was 71% faster than N-HiTS and 93% faster than N-BEATS in
the Lower Dog River watershed, while it was respectively,126% and 118% faster than N-HiTS and N-
BEATS in the Upper Dutchmans Creek, over training dataset. This is because LSTM has simple
architecture compared to the N-BEATS and N-HiTS and does not require multivariate features, hierarchical
interpolation, and multi-rate data sampling. Perhaps, this outcome underscores the computational advantage

of LSTM over other algorithms.

Conversely, during the testing period, the N-HiTS model emerged as the fastest and delivered the most

efficient results in comparison to the other models. Notably, N-HiTS displayed a predicted time that was
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33% faster than LSTM and 32% faster than N-BEATS. This finding highlights the computational efficiency
of the N-HiTS model in the context of predicting processes. Our experiments unveiled an interesting
contrast in the computational performance of these models. While LSTM excelled in terms of training time,

it lagged behind when it came to the testing period.

In the grand scheme of computational efficiency, model accuracy, and uncertainty analysis results, it
becomes evident that the superiority of the N-HiTS and N-BEATS models in terms of accuracy and
uncertainty analysis holds paramount importance. This significance is accentuated by the critical nature of
flood prediction, where precision and certainty are pivotal. Therefore, computational efficiency must be
viewed in the context of the broader objectives, with the accuracy and reliability of flood predictions taking

precedence in ensuring the safety and preparedness of the affected regions.

Table 9. Computational costs of N-HiTS, N-BEATS, and LSTM models in the Dog River and Killian

Creek gauging stations.

Training Time over Train Datasets Predicting Time over Test Datasets
(seconds) (seconds)
Model Lower Dog River Upper Dutchmans Creek ~ Lower Dog River ~ Upper Dutchmans Creek
N-HiTS 256.032 374.569 1533.029 1205.526
N-BEATS 288.511 361.599 2028.068 1482.305
LST™M 149.173 165.827 2046.140 1792.444

4. Conclusion

This study examined multiple NN algorithms for flood prediction. We selected two headwater streams with
minimal human impacts to understand how NN approaches can capture flood magnitude and timing for
these natural systems. In conclusion, our study represents a pioneering effort in exploring and advancing
the application of NN algorithms, specifically the N-HiTS and N-BEATS models, in the field of flood
prediction. In our case studies, both N-HiTS and N-BEATS models achieved state-of-the-art results,
outperforming LSTM as a benchmark model, particularly in one-hour prediction. While a one-hour lead
time may seem brief, it is highly significant for accurate flash flood prediction particularly in an area with
a proximity to metropolitan cities, where rapid response is critical. These benchmarking results are arguably
a pivotal part of this research. However, the N-BEATS model slightly emerged as a powerful and

interpretable tool for flood prediction in most selected events.

This study focused on short-lead, operational forecasting at gauged sites, using historical discharge to

deliver robust, low-latency updates. While the evaluation is limited to two Southeastern U.S. basins, the
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architecture (e.g., N-HiTS) is flexible and can incorporate additional covariates and catchment attributes.
Extending the approach to ungauged or other basins is feasible through multi-basin training and transfer
learning or few-shot adaptation when even brief warm-up records are available. These extensions represent
promising directions for future work to assess geographic transferability under the same operational

assumptions.

In addition, the results of the experiments described above demonstrated that N-HiTS multi-rate input
sampling and hierarchical interpolation along with N-BEATS interpretable configuration are effective in
learning location-specific runoff generation behaviors. Both algorithms with an MLP-based deep neural
architecture with backward and forward residual links can sequentially project the data signal into
polynomials and harmonic basis needed to predict intense storm behaviors with varied magnitudes. The
innovation in this study, besides benchmarking the LSTM model for headwater streams, was to tackle
volatility and memory complexity challenges, by locally specializing flood sequential predictions into the
data signal’s frequencies with interpretability, and hierarchical interpolation and pooling. Both N-HiTS and
N-BEATS models offered similar performance as compared with the LSTM but also offered a level of
interpretability about how the model learns to differentiate aspects of complex watershed-specific behaviors

via data. The interpretability of N-HiTS and N-BEATS arises directly from their model architecture.

In the interpretable N-BEATS framework, forecasts are decomposed into trend and seasonality stacks, each
represented by explicit basis coefficients that reveal how different temporal patterns contribute to the
prediction. Similarly, N-HiTS achieves interpretability by aggregating contributions across multiple distinct
time scales, allowing insight into the temporal dynamics driving each forecast. N-HiTS aims to enhance
the accuracy of long-term time-series forecasts through hierarchical interpolation and multi-scale data
sampling, allowing it to focus on different data patterns, which prioritizes features essential to understand
flood magnitudes. N-BEATS leverages interpretable configurations with trend and seasonality projections,
enabling it to decompose time series data into intuitive components. N-BEATS interpretable architecture
is recommended for scarce data settings (such as flooding event), as it regularizes its predictions through

projections onto harmonic and trend basis.

These approaches improve model transparency by allowing understanding of how each part of the model
contributes to the final prediction, particularly when applied to complex flood patterns. Both models also
support multivariate series (and covariates) by flattening the model inputs to a 1-D series and reshaping the
outputs to a tensor of appropriate dimensions. This approach provides flexibility to handle arbitrary
numbers of features. Like LSTM, both N-HiTS and N-BEATS models support producing probabilistic
predictions by specifying a likelihood objective. In terms of sensitivity analysis, both N-HiTS and N-

BEATS maintain consistent performance even when trained without specific meteorological input.
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Although, during some flashy floods, the models encountered challenges in capturing the peak flows and
the dynamics of the recession curve, which is directly related to groundwater contribution to flood
hydrograph, both models were technically insensitive to rainfall data as an input variable. This suggests the
fact that both algorithms can learn patterns in discharge data without requiring meteorological input. This
ability underscores these models' robustness in generating accurate predictions using historical flood data
alone, making them valuable tools for flood prediction, especially in data-poor watersheds or even for real-
time flood prediction when near real-time meteorological inputs are limited or unavailable. In terms of
computational efficiency, both N-HiTS and N-BEATS are trained almost at the same pace; however, N-
HiTS predicted the test data much quicker than N-BEATS. Unlike N-HiTS and N-BEATS, LSTM excelled

in reducing training time due to its simplicity and limited number of parameters.

Moving forward, it is worth mentioning that predicting the magnitude of the recession curve of flood
hydrographs was particularly challenging for all models. We argue that this is because the relation between
base flow and time is particularly hard to calibrate due to ground-water effluent that is controlled by
geological and physical conditions (vegetation, wetlands, and wet meadows) in headwater streams. In
addition, the situations of runoff occurrence are diverse and have a high measurement variance with high
frequency that can make it difficult for the algorithms to fully capture discrete representation learning on

time series.

In future studies, it will be important to develop strategies to derive analogs to the interpretable
configuration as well as multi-rate input sampling, hierarchical interpolation, and backcast residual
connections that allow for the dynamic representation of flood times series data with different frequencies
and nonlinearity. A dynamic representation of flood time series is, at least in principle, possible by
generating additive predictions in different bands of the time-series signals, reducing memory footprint and
compute time, and improving architecture parsimony and accuracy. This would allow the model to “learn”
interpretability and hierarchical representations from raw data to reduce complexity as the information

flows through the network.

While a single station provides valuable localized information, particularly for small, headwater streams
where runoff closely follows immediate meteorological conditions, it may not capture the spatial
heterogeneity of larger watersheds. In our study, the applied methods successfully captured runoff
magnitude and dynamics in small basins for an operational setting. However, broader spatial coverage and
distributed data would likely enhance model accuracy for larger regions. Consequently, our conclusions are
specifically scoped to the selected basins and forecast horizons, and broader generalizations would require

multi-region investigations in future work.
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Finally, the performance of N-HiTS, N-BEATS, or other neural network architectures could be further
enhanced with robust uncertainty quantification. Approaches such as Bayesian Model Averaging (BMA)
with fixed or flexible priors (Samadi et al., 2020) or Markov Chain Monte Carlo (MCMC) optimization
methods (Duane et al., 1987) could capture both aleatoric and epistemic uncertainties. We leave these

strategies for future exploration in the context of neural flood time-series prediction.
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