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Abstract 8 

The last few years have witnessed the rise of neural networks (NNs) applications for hydrological time 9 

series modeling. By virtue of their capabilities, NN models can achieve unprecedented levels of 10 

performance when learn how to solve increasingly complex rainfall-runoff processes via data, making them 11 

pivotal for the development of computational hydrologic tasks such as flood predictions. The NN models 12 

should, in order to be considered practical, provide a probabilistic understanding of the model mechanisms 13 

and predictions and hints on what could perturb the model. In this paper, we developed two probabilistic 14 

NN models, i.e., Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and Network-15 

Based Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) with a probabilistic 16 

(multi-quantile) objective and benchmarked them with long short-term memory (LSTM) for flood 17 

prediction across two headwater streams in Georgia and North Carolina, USA. To generate a probabilistic 18 

prediction, a Multi-Quantile Loss was used to assess the 95th percentile prediction uncertainty (95PPU) of 19 

multiple flooding events. Extensive experiments demonstrated We conducted extensive flood prediction 20 

experiments demonstrating the advantages of hierarchical interpolation and interpretable architecture, 21 

where both N-HiTS and N-BEATS provided an average accuracy improvement of ~5%almost 5% (NSE) 22 

over the LSTM benchmarking model. On a variety of flooding events, both N-HiTS and N-BEATS 23 

demonstrated significant performance improvements over the LSTM benchmark and showcased their 24 

probabilistic predictions by specifying a likelihood parameterobjective. 25 

 26 

Keywords: Probabilistic Flood Prediction; Neural Networks; N-HiTS; N-BEATS; LSTM; Headwater 27 

Stream. 28 

Key Points 29 

• N-HiTS and N-BEATS predictions reflect interpretability and hierarchical representations of data 30 

to reduce neural network complexities. 31 
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• Both N-HiTS and N-BEATS models outperformed the LSTM in mathematically defining 32 

uncertainty bands. 33 

• Predicting the magnitude of the recession curve of flood hydrographs was particularly challenging 34 

for all models. 35 

Plain Language Summary  36 

Recent progress in NN accelerated improvements in the performance of catchment modeling. Yet flood 37 

modeling remains a very difficult task. Focusing on two headwater streams, we developed N-HiTS and N-38 

BEATS models and benchmarked them with LSTM to predict flooding. N-HiTS and N-BEATS 39 

outperformed LSTM for flood predictions. We demonstrated how the proposed models can be augmented 40 

with an uncertainty approach to predict flooding that is interpretable without considerable loss in accuracy. 41 

 42 

1. Introduction 43 

The last past few years have witnessed a rapid surgehave been character an upsurge in the neural networks 44 

(NN) applications in hydrology. As these opaque, data-driven models are increasingly employed for critical 45 

hydrological predictions, the hydrology community has placed growing emphasis on developing 46 

trustworthy and interpretable NN models. As opaque NN models are increasingly being emp. However, 47 

maintaining coherence while producing accurate predictions can be a challenging problem (Olivares et al., 48 

2024). There is a general agreement on the importance of providing probabilistic NN prediction (Sadeghi 49 

and Samadi, 2024), especially in the case of flood prediction (Martinaitis et al., 2023). 50 

Flood occurrences have witnessed an alarming surge in frequency and severity globally. Jonkman (2005) 51 

studied a natural disaster database (EM-DAT, 2023) and reported that over 27 years, more than 175000 52 

people died, and close to 2.2 billion were affected directly by floods worldwide. These numbers are likely 53 

an underestimation due to unreported events (Nevo et al., 2022). In addition, the United Nations Office for 54 

Disaster Risk Reduction reported that flooding has been the most frequent, widespread weather-related 55 

natural disaster since 1995, claiming over 600,000 lives, affecting around 4 billion people globally, and 56 

causing annual economic damage of more than 100 billion USD (UNISDR, 2015). This escalating trend 57 

has necessitated the need for better flood prediction and management strategies. Scholars have successfully 58 

implemented different flood models such as deterministic (e.g., Roelvink et al., 2009, Thompson and 59 

Frazier, 2014; Barnard et al., 2014; Erikson et al., 2018) and physically based flood models (e.g., Basso et 60 

al., 2016; Chen et al., 2016; Pourreza-Bilondi et al., 2017; Saksena et al., 2019; Refsgaard et al., 2021) in 61 

various environmental systems over the past several decades. These studies have heightened the need for 62 

precise flood prediction (Samadi et al., 2025), they have also unveiled limitations inherent in existing 63 

deterministic and physics-based models. While evidence suggests that both deterministic and physics-based 64 
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approaches are meaningful and useful (Sukovich et al., 2014; Zafarmomen et al., 2024), their forecasts rest 65 

heavily on imprecise and subjective expert opinion; there is a challenge for setting robust evidence-based 66 

thresholds to issue flood warnings and alerts (Palmer, 2012). Moreover, many of these traditional flood 67 

models particularly physically explicit modelsmodels, rely heavily on a particular choice of numerical 68 

approximation and describe multiple process parameterizations only within a fixed spatial architecture (e.g., 69 

Clark et al., 2015). Recent NN models have shown promising results across a large variety of flood 70 

modeling applications (e.g., Nevo et al., 2022; Pally and Samadi, 2022; Dasgupta et al., 2023; Zhang et al., 71 

2023; Zafarmomen and Samadi, 2025; Saberian et al., 2025) and encourage the use of such methodologies 72 

as core drivers for neural flood prediction (Windheuser et al., 2023).  73 

Earlier adaptations of these intelligent techniques showed promising for flood prediction (e.g., Hsu et al., 74 

1995; Tiwari and Chatterjee, 2010). However, recent efforts have taken NN application to the next level, 75 

providing uncertainty assessment (Sadeghi Tabas and Samadi, 2022) and improvements over various 76 

spatio-temporal scales, regions, and processes (e.g., Kratzert et al., 2018; Park and Lee, 2023; Zhang et al., 77 

2023). Nevo et al., (2022) were the first scholars who employed long short-term memory (LSTM) for flood 78 

stage prediction and inundation mapping, achieving notable success during the 2021 monsoon season. Soon 79 

after, Russo et al. (2023) evaluated various NN models for predicting flood depth in urban systems, 80 

highlighting the potential of data-driven models for urban flood prediction. Similarly, Defontaine et al. 81 

(2023) emphasized the role of NN algorithms in enhancing the reliability of flood predictions, particularly 82 

in the context of limited data availability. Windheuser et al., (2023) studied flood gauge height forecasting 83 

using images and time series data for two gauging stations in Georgia, USA. They used multiple NN models 84 

such as Convolutional Neural Network (ConvNet/CNN) and LSTM to forecast floods in near real-time (up 85 

to 72 hours). In a sequence, Wee et al., (2023) used Impact-Based Forecasting (IBF) to propose a Flood 86 

Impact-Based Forecasting system (FIBF) using flexible fuzzy inference techniques, aiding decision-makers 87 

in a timely response. Zou et al. (2023) proposed a Residual LSTM (ResLSTM) model to enhance and 88 

address flood prediction gradient issues. They integrated Deep Autoregressive Recurrent (DeepAR) with 89 

four recurrent neural networks (RNNs), including ResLSTM, LSTM, Gated Recurrent Unit (GRU), and 90 

Time Feedforward Connections Single Gate Recurrent Unit (TFC-SGRU). They showed that ResLSTM 91 

achieved superior accuracy. While these studies reported the superiority of NN models for flood modeling, 92 

they highlighted a number of challenges, notably (i) the limited capability of proposed NN models to 93 

capture the spatial variability and magnitudes of extreme data over time, (ii) the lack of a sophisticated 94 

mechanism to capture different flood magnitudes and synthesize the prediction, and (iii) inability of the NN 95 

models to process data in parallel and capture the relationships between all elements in a sequential manner. 96 

Recent advances in neural time series forecasting showed promising results that can be used to address the 97 

above challenges for flood prediction. Recent techniques include the adoption of the attention mechanism 98 
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and Transformer-inspired approaches (Fan et al. 2019; Alaa and van der Schaar 2019; Lim et al. 2021) 99 

along with attention-free architectures composed of deep stacks of fully connected layers (Oreshkin et al. 100 

2020).  All of these approaches are relatively easy to scale up in terms of flood magnitudes (small to major 101 

flood predictions), compared to LSTM and have proven to be capable of capturing spatiotemporal 102 

dependencies (Challu et al., 2022). In addition, these architectures can capture input-output relationships 103 

implicitly while they tend to be more computationally efficient. Many state-of-the-art NN approaches for 104 

flood forecasting have been established based on LSTM. There are cell states in the LSTM networks that 105 

can be interpreted as storage capacity often used in flood generation schemes. In LSTM, the updating of 106 

internal cell states (or storages) is regulated through a number of gates: the first gate regulates the storage 107 

depletion, the second one regulates storage fluctuations, and the third gate regulates the storages outflow 108 

(Tabas and Samadi, 2022). The elaborate gated design of the LSTM partly solves the long-term dependency 109 

problem in flood time series prediction (Fang et al., 2020), although, the structure of LSTMs is designed in 110 

a sequential manner that cannot directly connect two nonadjacent portions (positions) of a time series.  111 

In this paper, we developed attention-free architecture, i.e.  Neural Hierarchical Interpolation for Time 112 

Series Forecasting (N-HiTS; Challu et al., 2022) and Network-Based Expansion Analysis for Interpretable 113 

Time Series Forecasting (N-BEATS; Oreshkin et al., 2020) and benchmarked these models with LSTM for 114 

flood prediction. We developed fully connected N-BEATS and N-HiTS architectures using multi-rate data 115 

sampling, synthesizing the flood prediction outputs via multi-scale interpolation. 116 

We implemented all algorithms for flood prediction on two headwater streams i.e., the Lower Dog River, 117 

Georgia, and the Upper Dutchmans Creek, North Carolina, USA to ensure that the results are reliable and 118 

comparable. The results of N-BEATS and N-HiTS techniques were compared with the benchmarking 119 

LSTM to understand how these techniques can improve the representations of rainfall and runoff 120 

dispensing over a recurrence process. Notably, this study represents a pioneering effort, as to the best of 121 

our knowledge, this is the first instance in which the application of N-BEATS and N-HiTS algorithms in 122 

the field of flood prediction has been explored. The scope of this research will focus on: 123 

 124 

(i) Flood prediction in a hierarchical fashion with interpretable outputs: We built N-BEATS and 125 

N-HiTS for flood prediction with a very deep stack of fully connected layers to implicitly capture input-126 

output relationships with hierarchical interpolation capabilities. The predictions also involve programming 127 

the algorithms with decreasing complexity and aligning their time scale with the final output through multi-128 

scale hierarchical interpolation and interpretable architecture. Predictions were aggregated in a hierarchical 129 

fashion that enabled the building of a very deep neural network with interpretable configurations. 130 

(ii)     Uncertainty quantification of the models by employing probabilistic approaches: a Multi-131 

Quantile Loss (MQL) was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple 132 
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flooding events. MQL was integrated as the loss function to account for probabilistic prediction. MQL 133 

trains the model to produce probabilistic forecasts by predicting multiple quantiles of the distribution of 134 

future values.  135 

(iii)     Exploring headwater stream response to flooding: Understanding the dynamic response of 136 

headwater streams to flooding is essential for managing downstream flood risks. Headwater streams 137 

constitute the uppermost sections of stream networks, usually comprising 60% to 80% of a catchment area. 138 

Given this substantial coverage and the tendency for precipitation to increase with elevation, headwater 139 

streams are responsible for generating and controlling the majority of runoff in downstream portions 140 

(MacDonald and Coe, 2007).  141 

The remainder of this paper is structured as follows. Section 2 presents the case study and data, NN models, 142 

performance metrics, and sensitivity and uncertainty approaches. Section 3 focuses on the results of flood 143 

predictions including sensitivity and uncertainty assessment and computation efficiency. Finally, Section 4 144 

concludes the paper.  145 

 146 

2. Methodology 147 

2.1. Case Study and Data 148 

This research used two headwater gauging stations located at the Lower Dog River watershed, Georgia 149 

(GA; USGS02337410, Dog River gauging station), and the Upper Dutchmans Creek watershed, North 150 

Carolina (NC; USGS0214269560, Killian Creek gauging station). As depicted in Figures 1 and 2, the Lower 151 

Dog River and the Upper Dutchmans Creek watersheds are located in the west and north parts of two 152 

metropolitan cities, Atlanta and Charlotte. As shown in Figure 1, Tthe Lower Dog River stream gauge is 153 

established southeast of Villa Rica in Carroll County, where the USGS has regularly monitored discharge 154 

data since 2007 in 15-minute increments. The Lower Dog River is a stream with a length of 15.7 miles 155 

(25.3 km; obtained from the U.S. Geological Survey [USGS] National Hydrography Dataset high-156 

resolution flowline data), an average elevation of 851.94 meters, and the watershed area above this gauging 157 

station is 66.5 square miles (172 km2; obtained from the Georgia Department of Natural Resources). This 158 

watershed is covered by 15.2% residential area, 14.6% agricultural land, and ⁓70% forest (Munn et al., 159 

2020). Killian Creek gauging station at the Upper Dutchmans Creek watershed is established 160 

in Montgomery County, NC, where the USGS has regularly monitored discharge data since 1995 in 15-161 

minute increments. The Upper Dutchmans Creek is a stream with a length of 4.9 miles (7.9 km), an average 162 

elevation of 642.2 meters (see Table 1), and the watershed area above this gauging station is 4 square miles 163 

(10.3 km2) with less than 3% residential area and about 93% forested land use (the United States 164 

Environmental Protection Agency). 165 
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 The Lower Dog River has experienced significant flooding in the last decades. For example, in September 166 

2009, the creek, along with most of northern GA, experienced heavy rainfall (5 inches, equal to 94 mm). 167 

The Lower Dog River, overwhelmed by large amounts of overland flow from saturated ground in the 168 

watershed, experienced massive flooding in September 2009 (Gotvald, 2010). The river crested at 33.8 feet 169 

(10.3 m) with a peak discharge of 59,900 cfs (1,700 m3/s), nearly six times the 100-year flood level 170 

(McCallum and Gotvald, 2010). In addition, Dutchmans Creek has experienced significant flooding in 171 

February 2020. According to local news (WCCB Charlotte, 2020), the flood in Gaston County caused 172 

significant infrastructure damage and community disruption. Key impacts included the threatened collapse 173 

of the Dutchman’s Creek bridge in Mt. Holly and the closure of Highway 7 in McAdenville, GA.  174 

 175 

Table 1.  The Lower Dog River and Upper Dutchmans Creek’s physical characteristics. 176 

Watershed 
USGS Station ID 

Number  

Average Elevation 

(m) 

Stream Length 

(km) 

Watershed area 

(km2) 

Lower Dog River 

watershed, GA 
USGS02337410 851.9 25.3 172 

Upper Dutchmans Creek 

watershed, NC 
USGS0214269560 642.2 7.9 10.3 

 177 

 178 
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Figure 1.  The Lower Dog River and The Upper Dutchmans Creek watersheds are located in GA and NC. 179 
The proximity of the watersheds to Atlanta and Charlotte (urban area) are also displayed on the map. 180 

 181 

To provide the meteorological forcing data, i.e., precipitation, temperature, and humidity, were extracted 182 

from the National Oceanic and Atmospheric Administration’s (NOAA) Local Climatological Data 183 

(LCD). We used the NOAA precipitation, temperature, and humidity data of Atlanta Hartsfield Jackson 184 

International Airport and Charlotte Douglas Airport stations as an input variable for neural network 185 

algorithms. The data has been monitored since January 1, 1948, and July 22, 1941, with an hourly interval 186 

which was used as an input variable for constructing neural networks. 187 

To fill in the missing values in the data, we used the spline interpolation method. We applied this method 188 

to fill the gaps in time series data, although the missing values were insignificant (less than 1%). In addition, 189 

we employed the Minimum Inter-Event Time (MIT) approach to precisely identify and separate individual 190 

storm events. The MIT-based event delineation is pivotal for accurately defining storm events. This method 191 

allowed us to isolate discrete rainfall episodes, aiding a comprehensive analysis of storm events. Moreover, 192 

it provided a basis for event-specific examination of flood responses, such as initial condition and cessation 193 

(loss), runoff generation, and runoff dynamics. 194 

The hourly rainfall dataset consists of distinct rainfall occurrences, some consecutive and others clustered 195 

with brief intervals of zero rainfall. As these zero intervals extend, we aim to categorize them into distinct 196 

events. It's worth noting that even within a single storm event, we often encounter short periods of no 197 

rainfall, known as intra-storm zero values. In the MIT method, we defined a storm event as a discrete rainfall 198 

episode surrounded by dry periods both preceding and following it, determined by an MIT (Asquith et al., 199 

2005; Safaei-Moghadam et al., 2023). There are many means to determine an MIT value. One practical 200 

approximation is using serial autocorrelation between rainfall occurrences. MIT approach uses 201 

autocorrelation that measures the statistical dependency of rainfall data at one point in time with data at 202 

earlier, or lagged times within the time series. The lag time represents the gap between data points being 203 

correlated. When the lag time is zero, the autocorrelation coefficient is unity, indicating a one-to-one 204 

correlation. As the lag time increases, the statistical correlation diminishes, converging to a minimum value. 205 

This signifies the fact that rainfall events become progressively less statistically dependent or, in other 206 

words, temporally unrelated. To pinpoint the optimal MIT, we analyzed the autocorrelation coefficients for 207 

various lag times, observing the point at which the coefficient approaches zero. This lag time signifies the 208 

minimum interval of no rainfall, effectively delineating distinct rainfall events.  209 

2.2. NN Algorithms  210 

https://pubs.usgs.gov/publication/70176110
https://pubs.usgs.gov/publication/70176110
https://nhess.copernicus.org/articles/23/1/2023/nhess-23-1-2023-discussion.html
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In this study, three distinct neural network (NN) architectures were developed to perform multi-horizon 211 

flood forecasting. Each NN was coupled with a MQL objective to generate probabilistic predictions and 212 

quantify predictive uncertainty. Throughout the manuscript, the term parameters are used exclusively to 213 

refer to the network’s weights and biases for clarity and consistency.  214 

2.2.1. LSTM 215 

LSTM is an RNN architecture widely used as a benchmark model for flood neural time series 216 

modeling. LSTM networks are capable of selectively learning order dependence in sequence prediction 217 

problems (Sadeghi Tabas and Samadi, 2022). These networks are powerful because they can capture the 218 

temporal features, especially the long-term dependencies (Hochreiter et al., 2001), and are independent of 219 

the length of the input data sequences meaning that each sample is independent from another one. 220 

The memory cell state within LSTM plays a crucial role in capturing extended patterns in data, making it 221 

well-suited for dynamic time series modeling such as flood prediction. An LSTM cell uses the following 222 

functions to compute flood prediction. 223 

𝑖𝑡 =  𝜎(𝐴𝑖𝑥𝑡  + 𝐵𝑖ℎ𝑡−1 +  𝑐𝑖) (Equation 1) 

𝑓𝑡 =  𝜎(𝐴𝑓𝑥𝑡  + 𝐵𝑓ℎ𝑡−1 +  𝑐𝑓) (Equation 2) 

𝑜𝑡 =  𝜎(𝐴𝑜𝑥𝑡  +  𝐵𝑜ℎ𝑡−1 +  𝑐𝑜) (Equation 3) 

𝑚𝑡 =  𝑓𝑡 ⨀ 𝑚𝑡−1  + 𝑖𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝐴𝑔𝑥𝑡  + 𝐵𝑔ℎ𝑡−1 +  𝑐𝑔) (Equation 4) 

ℎ𝑡 =  𝑜𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝑚𝑡) (Equation 5) 

Where 𝑥𝑡 and ℎ𝑡  represent the input and the hidden state at time step t, respectively. ⊙ denotes element-224 

wise multiplication, 𝑡𝑎𝑛ℎ stands for the hyperbolic tangent activation function, and 𝜎 represents the 225 

sigmoid activation function. 𝐴, 𝐵, and 𝑐 are trainable weights and biases that undergo optimization during 226 

the training process. 𝑚𝑡 and ℎ𝑡 are cell states at time step t that are employed in the input processing for 227 

the next time step. 𝑚𝑡  represents the memory state responsible for preserving long-term information, while 228 

ℎ𝑡 represents the memory state preserving short-term information. The LSTM cell consists of a forget gate 229 

ft, an input gate it and an output gate ot and has a cell state mt. At every time step t, the cell gets the data 230 

point xt with the output of the previous cell ht−1 (Windheuser et al., 2023). The forget gate then defines if 231 

the information is removed from the cell state, while the input gate evaluates if the information should be 232 
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added to the cell state and the output gate specifies which information from the cell state can be used for 233 

the next cells.  234 

We used two LSTM layers with 128 cells in the first two hidden layers as encoder layers, which were then 235 

connected to two multilayer perceptron (MLP) layers with 128 neurons as decoder layers. The LSTM 236 

simulation was performed with these input layers along with the Adam optimizer (Kingma and Ba, 237 

2014), tanh activation function, and a single lagged dependent-variable value to train with a learning rate 238 

of 0.001. The architecture of the proposed LSTM model is illustrated in Figure 2. 239 

 240 

Figure 2. The structure of LSTM programmed in this research. We used tanh and sigmoid as activation 241 
functions along with 2 layers of LSTM, 2 layers of MLP, and 128 cells in each layer.  242 

 243 

2.2.2. N-BEATS 244 

N-BEATS is a deep learning architecture based on backward and forward residual links and the very deep 245 

stack of fully connected layers specifically designed for sequential data forecasting tasks (Oreshkin et al., 246 

2020). This architecture has a number of desirable properties including interpretability. The N-BEATS 247 

architecture distinguishes itself from existing architectures in several ways. First, the algorithm approaches 248 
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forecasting as a non-linear multivariate regression problem instead of a sequence-to-sequence 249 

challenge.  Indeed, the core component of this architecture (as depicted in Figure 3) is a fully connected 250 

non-linear regressor, which takes the historical data from a time series as input and generates multiple data 251 

points for the forecasting horizon. Second, the majority of existing time series architectures are quite limited 252 

in depth, typically consisting of one to five LSTM layers. N-BEATS employs the residual principle to stack 253 

a substantial number of layers together, as illustrated in Figure 3. In this configuration, the basic block not 254 

only predicts the next output but also assesses its contribution to decomposing the input, a concept that is 255 

referred to as "backcast" (see Oreshkin et al. 2020). 256 

The basic building block in the architecture features a fork-like structure, as illustrated in Figure 3 (bottom). 257 

The 𝑙-th block (for the sake of brevity, the block index 𝑙 is omitted from Figure 3) takes its respective input, 258 

𝑥𝑙, and produces two output vectors: 𝑥𝑙 and 𝑦̂𝑙. In the initial block of the model, 𝑥𝑙 corresponds to the 259 

overall model input, which is a historical lookback window of a specific length, culminating with the most 260 

recent observed data point. For the subsequent blocks, 𝑥𝑙 is derived from the residual outputs of the 261 

preceding blocks. Each block generates two distinct outputs: 1. 𝑦̂𝑙: This represents the forward forecast of 262 

the block, spanning a duration of H time units. 2. 𝑥𝑙: This signifies the block's optimal estimation of 𝑥𝑙, 263 

which is referred to “backcast.” This estimation is made within the constraints of the functional space 264 

available to the block for approximating signals (Oreshkin et al., 2020). 265 

Internally, the fundamental building block is composed of two elements. The initial element involves a 266 

fully connected network, which generates forward expansion coefficient predictors, 𝜃𝑙
𝑓
, and a backward 267 

expansion coefficient predictor, 𝜃𝑙
𝑏. The second element encompasses both backward basis layers, 𝑔𝑙

𝑏, and 268 

forward basis layers, 𝑔𝑙
𝑓
. These layers take the corresponding forward 𝜃𝑙

𝑓
and backward 𝜃𝑙

𝑏expansion 269 

coefficients as input, conduct internal transformations using a set of basis functions, and ultimately yield 270 

the backcast, 𝑥𝑙, and the forecast outputs, 𝑦̂𝑙, as previously described by Oreshkin et al. (2020). The 271 

following equations describe the first element: 272 

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙),    ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1),     ℎ𝑙,3 = 𝐹𝐶𝑙,3(ℎ𝑙,2),       ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3). (Equation 6) 

𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4),        𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4) (Equation 7) 

The LINEAR layer, in essence, functions as a straightforward linear projection, meaning 𝜃𝑙
𝑓

=  𝑊𝑙
𝑓

ℎ𝑙,4. As 273 

for the fully connected (FC) layer, it takes on the role of a conventional FC layer, incorporating RELU non-274 

linearity as an activation function.  275 
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The second element performs the mapping of expansion coefficients 𝜃𝑙
𝑓
and 𝜃𝑙

𝑏 to produce outputs using 276 

basis layers, resulting in 𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) and 𝑥𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏). This process is defined by the following equation:  277 

𝑦̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

dim (𝜃𝑙
𝑓

)

𝑖=1

,        𝑥𝑙 =  ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

dim (𝜃𝑙
𝑏)

𝑖=1

 (Equation 8) 

Within this context, 𝑣𝑖
𝑓
 and 𝑣𝑖

𝑏 represent the basis vectors for forecasting and backcasting, respectively, 278 

while 𝜃𝑙,𝑖
𝑓

 corresponds to the i-th element of 𝜃𝑙
𝑓
.  279 

The N-BEATS uses a novel hierarchical doubly residual architecture which is illustrated in Figure 3 (top 280 

and middle). This framework incorporates two residual branches, one traversing the backcast predictions 281 

of each layer, while the other traverses the forecast branch of each layer. The following equation describes 282 

this process: 283 

𝑥𝑙 =  𝑥𝑙−1 −  𝑥𝑙−1     ,     𝑦̂ = ∑ 𝑦̂𝑙

𝑙

 (Equation 9) 

As mentioned earlier, in the specific scenario of the initial block, its input corresponds to the model-level 284 

input 𝑥. In contrast, for all subsequent blocks, the backcast residual branch 𝑥𝑙 can be conceptualized as 285 

conducting a sequential analysis of the input signal. The preceding block eliminates the portion of the signal 286 

𝑥𝑙−1 that it can effectively approximate, thereby simplifying the prediction task for downstream blocks. 287 

Significantly, each block produces a partial forecast 𝑦̂𝑙 , which is initially aggregated at the stack level and 288 

subsequently at the overall network level, establishing a hierarchical decomposition. The ultimate forecast 289 

𝑦̂ is the summation of all partial forecasts (Oreshkin et al., 2020). 290 

The N-BEATS model has two primary configurations: generic and interpretable. These configurations 291 

determine how the model structures its blocks and how it processes time series data. In the generic 292 

configuration, the model uses a stack of generic blocks that are designed to be flexible and adaptable to 293 

various patterns in the time series data. Each generic block consists of fully connected layers with ReLU 294 

activation functions. The key characteristic of the generic configuration is its flexibility. Since the blocks 295 

are not specialized for any specific pattern (like trend or seasonality), they can learn a wide range of patterns 296 

directly from the data (Oreshkin et al., 2020). In the interpretable configuration, the model architecture 297 

integrates distinct trend and seasonality components. This involves structuring the basis layers at the stack 298 

level specifically to model these elements, allowing the stack outputs to be more easily understood. 299 

https://arxiv.org/pdf/1905.10437.pdf
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Trend Model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are polynomials of a small degree p, functions that vary slowly 300 

across the forecast window, to replicate monotonic or slowly varying nature of trends: 301 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

𝑡𝑖

𝑝

𝑖=0

 (Equation 10) 

The time vector 𝑡 = [0, 1, 2, … , 𝐻 − 2, 𝐻 − 1]𝑇/𝐻 is specified on a discrete grid ranging from 0 to 302 

(H−1)/H, projecting H steps into the future. Consequently, the trend forecast represented in matrix form is: 303 

𝑦̂𝑠,𝑙
𝑡𝑟 = 𝑇𝜃𝑠,𝑙

𝑓
 (Equation 11) 

Where the polynomial coefficients, 𝜃𝑠,𝑙
𝑓

, predicted by an FC network at layer l of stack s, are described by 304 

Equations (6) and (7). The matrix T, consisting of powers of t, is represented as [1, 𝑡, . . . , 𝑡𝑝]. When p is 305 

small, such as 2 or 3, it compels 𝑦̂𝑠,𝑙
𝑡𝑟to emulate a trend (Oreshkin et al., 2020). 306 

Seasonality model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are periodic functions, to capture the cyclical and recurring 307 

characteristics of seasonality, such that 𝑦𝑡 = 𝑦𝑡−∆, where ∆ is the seasonality period. The Fourier series 308 

serves as a natural foundation for modeling periodic functions: 309 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

cos(2𝜋𝑖𝑡) + 𝜃𝑠,𝑙,𝑖+[𝐻/2]
𝑓

sin(2𝜋𝑖𝑡)

𝐻
2

−1

𝑖=0

 (Equation 12) 

 310 

Consequently, the seasonality forecast is represented in the following matrix form: 311 

𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 = 𝑆𝜃𝑠,𝑙

𝑓
 (Equation 13) 

𝑆 = [1, cos(2𝜋𝑡) , … , cos (2𝜋 [
𝐻

2
− 1] 𝑡) , sin(2𝜋𝑡), … , sin (2𝜋 [

𝐻

2
− 1] 𝑡) (Equation 14) 

 312 

Where the Fourier coefficients 𝜃𝑠,𝑙
𝑓

, that predicted by an FC network at layer l of stack s, are described by 313 

Equations (6) and (7). The matrix 𝑆 represents sinusoidal waveforms. As a result, the forecast 𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 314 

becomes a periodic function that imitates typical seasonal patterns (Oreshkin et al., 2020). 315 
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 316 

Figure 3. The N-BEATS modeling structure used in this research.  317 

2.2.3. N-HiTS 318 

N-HiTS builds upon the N-BEATS architecture but with improved accuracy and computational efficiency 319 

for long-horizon forecasting. N-HiTS utilizes multi-rate sampling and multi-scale synthesis of forecasts, 320 

leading to a hierarchical forecast structure that lowers computational demands and improves prediction 321 

accuracy (Challu et al., 2022). 322 

Like N-BEATS, N-HiTS employs local nonlinear mappings onto foundational functions within numerous 323 

blocks. Each block includes an MLP that generates backcast and forecast output coefficients. The backcast 324 

output refines the input data for the following blocks, and the forecast outputs are combined to generate the 325 

final prediction. Blocks are organized into stacks, with each stack dedicated to grasping specific data 326 

attributes using its own distinct set of functions. The network's input is a sequence of L lags (look-back 327 

period), with S stacks, each containing B blocks (Challu et al., 2022). 328 
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In each block, a MaxPool layer with varying kernel sizes (𝑘𝑙) is employed at the input, enabling the block 329 

to focus on specific input components of different scales. Larger kernel sizes emphasize the analysis of 330 

larger-scale, low-frequency data, aiding in improving long-term forecasting accuracy. This approach, 331 

known as multi-rate signal sampling, alters the effective input signal sampling rate for each block's MLP 332 

(Challu et al., 2022). 333 

Additionally, multi-rate processing has several advantages. It reduces memory usage, computational 334 

demands, the number of learnable parameters, and helps prevent overfitting, while preserving the original 335 

receptive field. The following operation is applicable to the input 𝑦𝑡−𝐿:𝑡,𝑙 of each block, with the first block 336 

(𝑙 = 1) using the network-wide input, where 𝑦𝑡−𝐿:𝑡,1  ≡  𝑦𝑡−𝐿:𝑡. 337 

𝑦𝑡−𝐿:𝑡,𝑙 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑦𝑡−𝐿:𝑡,𝑙 , 𝑘𝑙) (Equation 15) 

In many multi-horizon forecasting models, the number of neural network predictions matches the horizon's 338 

dimensionality, denoted as H. For instance, in N-BEATS, the number of predictions |𝜃𝑙
𝑓

| =  𝐻. This results 339 

in a significant increase in computational demands and an unnecessary surge in model complexity as the 340 

horizon H becomes larger (Challu et al., 2022).  341 

To address these challenges, N-HiTS proposes the use of temporal interpolation. This model manages the 342 

parameter counts per unit of output time (|𝜃𝑙
𝑓

| = ⌈𝑟𝑙  𝐻⌉) by defining the dimensionality of the interpolation 343 

coefficients with respect to the expressiveness ratio 𝑟𝑙. To revert to the original sampling rate and predict 344 

all horizon points, this model employs temporal interpolation through the function g: 345 

𝑦̂𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑓

), ∀𝜏 ∈  {𝑡 +  1, . . . , 𝑡 +  𝐻}, (Equation 16) 

𝑦̃𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑏), ∀𝜏 ∈  {𝑡 −  𝐿, . . . , 𝑡}, (Equation 17) 

𝑔(𝜏, 𝜃) =  𝜃[𝑡1] + (
𝜃[𝑡2] −  𝜃[𝑡1]

𝑡2 −  𝑡1
) (𝜏 −  𝑡1) (Equation 18) 

𝑡1  = arg min
𝑡∈𝜏:𝑡≤𝜏

𝜏 − 𝑡 ,      𝑡2 =   𝑡1 + 1/𝑟𝑙 (Equation 19) 

The hierarchical interpolation approach involves distributing expressiveness ratios over blocks, integrated 346 

with multi-rate sampling. Blocks closer to the input employ more aggressive interpolation, generating lower 347 

granularity signals. These blocks specialize in analyzing more aggressively subsampled signals. The final 348 

hierarchical prediction, 𝑦̂𝑡+1:𝑡+𝐻, is constructed by combining outputs from all blocks, creating 349 
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interpolations at various time-scale hierarchy levels. This approach maintains a structured hierarchy of 350 

interpolation granularity, with each block focusing on its own input and output scales (Challu et al., 2022). 351 

To manage a diverse set of frequency bands while maintaining control over the number of parameters, 352 

exponentially increasing expressiveness ratios are recommended. As an alternative, each stack can be 353 

dedicated to modeling various recognizable cycles within the time series (e.g., weekly, or daily) employing 354 

matching 𝑟𝑙. Ultimately, the residual obtained from backcasting in the preceding hierarchy level is 355 

subtracted from the input of the subsequent level, intensifying the next-level block's attention on signals 356 

outside the previously addressed band (Challu et al., 2022). 357 

𝑦̂𝑡+1:𝑡+𝐻  = ∑ 𝑦̂𝑡+1:𝑡+𝐻,𝑙

𝐿

𝑙=1

 (Equation 20) 

𝑦𝑡−𝐿:𝑡,𝑙+1  = 𝑦𝑡−𝐿:𝑡,𝑙 − 𝑦̃𝑡−𝐿:𝑡,𝑙 (Equation 21) 

 358 
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Figure 4. The structure of N-HiTS model programmed in this study. The architecture includes several 359 
Stacks, each Stack includes several Block, where each block consists of a MaxPool layer and a multi-360 

layer which learn to produce coefficients for the backcast and forecast outputs of its basis. 361 

2.3. Performance Metrics  362 

To comprehensively evaluate the accuracy of flood predictions, we utilized a suite of metrics, including 363 

Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), persistent Nash-Sutcliffe Efficiency (persistent-364 

NSE), Kling–Gupta efficiency (KGE; Gupta et al. 2009), Root Mean Square Error (RMSE), Mean 365 

Absolute Error (MAE), Peak Flow Error (PFE), and Time to Peak Error (TPE; Evin et al., 2023; Lobligeois 366 

et al., 2014). These metrics collectively facilitate a rigorous assessment of the model's performance in 367 

reproducing the magnitude of observed peak flows and the shape of the hydrograph.   368 

NSE measures the model's ability to explain the variance in observed data and assesses the goodness-of-fit 369 

by comparing the observed and simulated hydrographs. In hydrological studies, the NSE index is a widely 370 

accepted measure for evaluating the fitting quality of models (McCuen et al., 2006). It is calculated as: 371 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖)
2𝑛

𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜

̅̅̅̅ )
2𝑛

𝑖=1

 (Equation 22) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, 𝑄𝑜
̅̅̅̅  is the mean 372 

observed values and n is the number of data points. An NSE value of 1 indicates a perfect match between 373 

the observed and modeled data, while lower values represent the degree of departure from a perfect fit. 374 

As the models are designed to predict one hour ahead in one of the prediction horizons, the persistent-NSE 375 

is essential for evaluating their performance. The standard NSE measures the model's sum of squared errors 376 

relative to the sum of squared errors when the mean observation is used as the forecast value. In contrast, 377 

persistent-NSE uses the most recent observed data as the forecast value for comparison (Nevo et al., 2022). 378 

The persistent-NSE is calculated as: 379 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 − 𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖)
2𝑛

𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜𝑖−1)

2𝑛
𝑖=1

 (Equation 23) 

Where 𝑄𝑜𝑖
 represents the observed value at time 𝑖, 𝑄𝑠𝑖

 represents the simulated value at time 𝑖, 𝑄𝑜𝑖−1
is the 380 

observed value at the last time step (𝑖 − 1) and n is the number of data points.  381 
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The KGE is a widely used performance metric in hydrological modeling and combines multiple aspects of 382 

model performance, including correlation, variability bias, and mean bias. The KGE metric is calculated 383 

using the following equation: 384 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (Equation 24) 

Where r represents Pearson correlation coefficient between observed 𝑄𝑜 and simulated 𝑄𝑠 values. 385 

𝛼 represents bias ratio, calculated as 𝛼 =
𝜇𝑠

𝜇𝑜
 where 𝜇𝑠 and 𝜇𝑜 are the means of simulated and observed data, 386 

respectively. 𝛽 represents variability ratio, calculated as 𝛽 =
𝜎𝑠

𝜇𝑠⁄
𝜎𝑜

𝜇𝑜⁄
 where 𝜎𝑠 and 𝜎𝑜 are the standard 387 

deviations of simulated and observed data, respectively. 388 

RMSE quantifies the average magnitude of errors between observed and modeled values, offering insights 389 

into the absolute goodness-of-fit, while MAE is a measure of the average absolute difference between the 390 

modeled values and the observed values and provides a measure of the average magnitude of errors. RMSE 391 

is calculated as: 392 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑄𝑜𝑖

− 𝑄𝑠𝑖
)2

𝑛

𝑖=1

 (Equation 25) 

and MAE is calculated as: 393 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑄𝑜𝑖

− 𝑄𝑠𝑖|

𝑛

𝑖=1

 (Equation 26) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, and n is the number 394 

of data points. RMSE and MAE provide information about the magnitude of modeling errors, with smaller 395 

values indicating a better model fit.  396 

PFE quantifies the magnitude disparity between observed and modeled peak flow values. The PFE metric 397 

is defined as:  398 

𝑃𝐹𝐸 =  
|𝑄𝑜 𝑚𝑎𝑥

−  𝑄𝑠 𝑚𝑎𝑥|

𝑄𝑜 𝑚𝑎𝑥

 (Equation 27) 
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Where 𝑄𝑜 𝑚𝑎𝑥
 represents the observed peak flow value, and 𝑄𝑠 𝑚𝑎𝑥

 signifies the simulated peak flow value. 399 

The PFE metric, expressed as a dimensionless value, provides a quantitative measure of the relative error 400 

in predicting peak flow magnitudes concerning the observed values. A smaller PFE denotes more accurate 401 

modeling of peak flow magnitudes, with a value of zero indicating a perfect match. 402 

TPE assesses the temporal alignment of peak flows in the observed and modeled hydrographs. The TPE 403 

metric is computed as: 404 

𝑇𝑃𝐸 =  |𝑇𝑜 𝑚𝑎𝑥
− 𝑇𝑠 𝑚𝑎𝑥| (Equation 28) 

Where 𝑇𝑜 𝑚𝑎𝑥
 signifies the time at which the peak flow occurs in the observed hydrograph, and 𝑇𝑠 𝑚𝑎𝑥

 405 

represents the time at which the peak flow occurs in the simulated hydrograph. TPE that is measured in 406 

units of time (hours), provides insight into the precision of peak flow timing. Smaller TPE values indicate 407 

a superior alignment between the observed and modeled peak flow timing, while larger TPE values indicate 408 

discrepancies in the temporal occurrence of peak flows. 409 

The utilization of these five metrics, PFE, persistent-NSE, TPE, NSE, and RMSE, collectively provides a 410 

robust and multifaceted assessment of flood prediction performance. This approach ensures that both the 411 

magnitude and timing of peak flows, as well as the overall hydrograph shape, are accurately calibrated and 412 

validated. 413 

2.4. Sensitivity and Uncertainty Analysis  414 

When implementing NN models, it's crucial to understand how each input parameter feature affects the 415 

model's performance or outputs. To achieve this, we systematically excluded each input feature parameter 416 

from the model one by one (the Leave-One-Out method). For each exclusion, we retrained the model 417 

without that specific input feature parameter and then tested its performance against a test dataset. This 418 

method helps in understanding which input features parameters are most critical to the model's performance 419 

and which ones have a lesser impact. It also allows us to identify any input featuresparameters that may be 420 

redundant or have little effect on the overall outcome, thus potentially simplifying the model without 421 

sacrificing accuracy. 422 

In this study, we utilized probabilistic approaches to quantify the uncertainty in flood prediction. This 423 

method is rooted in statistical techniques employed for the estimation of unknown probability distributions, 424 

with a foundation in observed data. More specifically, we leveraged the Maximum Likelihood Estimation 425 

(MLE) approach, which entails the determination of MQL parameter objective values that optimize the 426 
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likelihood function. The likelihood function quantifies the probability of MQL parameters objective taking 427 

particular values, given the observed realizations. 428 

We incorporated the MQL as a probabilistic error metric into the algorithmic architecture. MQL performs 429 

an evaluation by computing the average loss for a predefined set of quantiles. This computation is grounded 430 

in the absolute disparities between predicted quantiles and their corresponding observed values. By 431 

considering multiple quantile levels, MQL provides a comprehensive assessment of the model’s ability to 432 

capture the distribution of the target variable, rather than focusing solely on point estimates.  433 

The MQL metric also aligns closely with the Continuous Ranked Probability Score (CRPS), a standard tool 434 

for evaluating predictive distributions. CRPS measures the difference between the predicted cumulative 435 

distribution function and the observed values by integrating over all possible quantiles. The computation of 436 

CRPS involves a numerical integration technique that discretizes quantiles and applies a left Riemann 437 

approximation for CRPS integral computation. This process culminates in the averaging of these 438 

computations over uniformly spaced quantiles, providing a robust evaluation of the predictive distribution 439 

𝐹̂𝑡.  440 

To calculate the 95th PPU, we utilized the 0.95 quantile level within the MQL. This quantile level directly 441 

corresponds to the 95th percentile of the predicted distribution, providing an estimate of the 95% confidence 442 

interval. By examining the model's performance at this specific quantile, we effectively assessed its ability 443 

to accurately capture the predicted values with 95% confidence. 444 

Incorporating MQL as a central metric in our study underscores its suitability for probabilistic forecasting, 445 

particularly in the context of uncertainty quantification. Unlike traditional error metrics that focus on point 446 

predictions, MQL captures both central tendencies and variability by penalizing errors symmetrically across 447 

quantiles. This property ensures balanced and reliable assessments of the predictive distribution, ultimately 448 

enhancing the robustness and interpretability of flood prediction models. 449 

MQL (𝑄𝜏 , [𝑄̂𝜏
𝑞1  , … , 𝑄̂𝜏

𝑞𝑖]) =  
1

𝑛
 ∑  QL (𝑄𝜏 , 𝑄̂𝜏

𝑞𝑖)

𝑞𝑖

 (Equation 29) 

CRPS (𝑄𝜏 , 𝐹̂𝜏) =  ∫ QL (𝑄𝜏 , 𝑄̂𝜏
𝑞𝑖)𝑑𝑞

1

0

 (Equation 30) 

QL (𝑄𝜏 , 𝑄̂𝜏
𝑞

) =  
1

𝐻
 ∑ ((1 − 𝑞) (𝑄̂𝜏

𝑞
 −  𝑄𝜏) + 𝑞(𝑄𝜏  − 𝑄̂𝜏

𝑞
 ))

𝑡+𝐻

𝜏=𝑡+1

 (Equation 31) 
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Where 𝑄𝜏 represents observed value at time 𝜏, 𝑄̂𝜏
𝑞
 represents simulated value at time 𝜏, q is the slope of the 450 

quantile loss, and H is the horizon of forecasting. 451 

 452 

Figure 5. The MQL function which shows loss values for different parameters values of q when the true 453 
value is 𝑄𝜏. 454 

Furthermore, we employed two key indices, the R-Factor and the P-FfactorFactor, to rigorously assess the 455 

quality of uncertainty performance in our hydrological modeling. These metrics are instrumental in 456 

quantifying the extent to which the model's predictions encompass the observed data, thereby providing 457 

valuable insights into the model's predictive accuracy and reliability. 458 

The P-Factor, or percentage of data within a 95PPU, is the first index used in this assessment. The P-Factor 459 

quantifies the percentage of observed data that falls within the 95PPU, providing a measure of the model's 460 

predictive accuracy. The P-Factor can theoretically vary from 0% to a maximum of 100%. A P-Factor of 461 

100% signifies a perfect alignment between the model's predictions and the observed data within the 462 

uncertainty band. In contrast, a lower P-Factor indicates a reduced ability of the model to predict data within 463 

the specified uncertainty range. 464 

𝑃 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑟𝑎𝑘𝑒𝑡𝑒𝑑 𝑏𝑦 95𝑃𝑃𝑈

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
× 100 (Equation 32) 

The R-Factor can be computed by dividing the average width of the uncertainty band by the standard 465 

deviation of the measured variable. The R-Factor, with a minimum possible value of zero, provides a 466 

measure of the spread of the uncertainty relative to the variability of the observed data. Theoretically, the 467 
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R-Factor spans from 0 to infinity, and a value of zero implies that the model's predictions precisely match 468 

the measured data, with the uncertainty band being very narrow in relation to the variability of the observed 469 

data. 470 

𝑅 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 95𝑃𝑃𝑈 𝑏𝑎𝑛𝑑

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
× 100 (Equation 33) 

In practice, the quality of the model is assessed by considering the 95% prediction band with the highest P-471 

Factor and the lowest R-Factor. This specific band encompasses the majority of observed records, 472 

signifying the model's ability to provide accurate and reliable predictions while effectively quantifying 473 

uncertainty. A simulation with a P-Factor of 1 and an R-Factor of 0 signifies an ideal scenario where the 474 

model precisely matches the measured data within the uncertainty band (Abbaspour et al., 2007). 475 

Figure 6 shows the workflow of programming N-BEATS, N-HiTS, and LSTM for flood prediction. As 476 

illustrated, the initial step involved cleaning and preparing the input data, which was then used to feed the 477 

models. The workflow for each model and their output generation processes are depicted in Figure 6. We 478 

segmented the storm events using the MIT approach, as previously described. Following this, we conducted 479 

a sensitivity analysis using the Leave-One-Out method and performed uncertainty analysis using the MLE 480 

approach to construct the 95PPU band. This rigorous methodology ensures a robust evaluation of model 481 

performance under varying conditions and highlights the models' predictive reliability and resilience. We 482 

employed the “NeuralForecast” Python package to develop the N-BEATS, N-HiTS, and LSTM models. 483 

This package provides a diverse array of NN models with an emphasis on usability and robustness.  484 

 485 
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 486 

 487 

Figure 6. The workflow of N-BEATS, N-HiTS, and LSTM implementation. The upper section of the 488 
figure illustrates multiple steps from data preprocessing to model evaluation. The lower section provides a 489 
detailed view of the workflow and implementation for each model, highlighting the specific processes and 490 
methodologies employed in generating the outputs. Backpropagation Through Time (BPTT) trains LSTM 491 
by unrolling the model through time, computing gradients for each time step, and updating weights based 492 

on temporal dependencies. 493 

3. Results and Discussion 494 

3.1. Independent Storms Delineation 495 

MIT’s contextual delineation of storm events laid the groundwork for in-depth evaluation of rainfall events, 496 

enabling isolation and separation of rainfall events that led to significant flooding events. The nuanced 497 

outcomes of the MIT assessment contributed significantly to the understanding of rainfall variability and 498 

distribution as the dominant contributor to flood generation. 499 
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During modeling implementation, the initial imperative was the precise distinction of storm events within 500 

the precipitation time series data of each case study. Our findings demonstrate that on average a dry period 501 

of 7 hours serves as the optimal MIT time for both of our case studies. This outcome signifies that when a 502 

dry interval of more than 7 hours transpires between two successive rainfall events, these subsequent 503 

rainfalls should be considered two distinct storm events. This determination underlines the temporal 504 

threshold necessary for distinguishing between individual meteorological phenomena in two case studies. 505 

3.2. Hyperparameter Optimization 506 

In the context of hyperparameter optimization, we systematically considered and tuned various 507 

hyperparameters for the N-HiTS, N-BEATS, and LSTM. For all models, we searchedsearched for learning 508 

rates on a log-uniform grid between 1 × 10−4  and 1 × 10−3, batch sizes {16, 32, 64}, input size {1, 6, 12, 509 

24} hours. For the LSTM, we varied recurrent layers {1,2,3}, hidden units per layer {64,128,256}, 510 

activation {tanh, ReLU}, decoder MLP depth {1,2,3}, and decoder MLP width {64,128,256}. For N-HiTS, 511 

we explored stacks {2,3,4}, blocks per stack {2,3,4,5}, block MLP width {64,128,256}, and block MLP 512 

depth {2,3,4}. For N-BEATS, we searched stacks {2,3,4}, blocks per stack {2,3,4,5}, block MLP width 513 

{64,128,256}, and block MLP depth {2,3,4}; the interpretable (trend/seasonality) basis was kept fixed. 514 

Following extensive exploration and fine-tuning of these hyperparameters, the optimal configurations were 515 

identified (see Table 2). For the N-HiTS model, the most favorable outcomes were achieved with the 516 

following hyperparameter settings: 2000 epochs, "identity" for scaler type, a learning rate of 0.001, a batch 517 

size of 32, input size of 24 hours, "identity" for stack type, 512 units for hidden layers of each stack, step 518 

size of 1, MQLoss as loss function, and "ReLU" for the activation function. As shown in Table 2, the N-519 

HiTS model demonstrated superior performance with 4 stacks, containing 2 blocks each, and corresponding 520 

coefficients of 48, 24, 12, and 1, showcasing the significance of these settings for flood prediction.  521 

This hyperparameter optimization was also conducted for the N-BEATS model. In this model, we 522 

considered 2000 epochs, 3 stacks with 2 blocks, “identity” for scaler type, a learning rate of 0.001, a batch 523 

size of 32, input size of 24 hours, “identity” for stack type, 512 units for hidden layers of each stack, step 524 

size of 1, MQLoss as loss function, and “ReLU” for the activation function.  525 

Moreover, the LSTM as a benchmark model yielded its best results with 5000 epochs, an input size of 24 526 

hours, "identity" as the scaler type, a learning rate of 0.001, a batch size of 32, and "tanh" as the activation 527 

function. Furthermore, the LSTM's hidden state was most effective with two layers containing 128 units, 528 

and the MLP decoder thrived with two layers encompassing 128 units. These meticulously optimized 529 
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hyperparameter settings represent the culmination of efforts to ensure that each model operates at its peak 530 

potential, facilitating accurate flood prediction. 531 

Table 2. Optimized values for the hyperparameters. 532 

Hyperparameter N-HiTS N-BEATS LSTM 

Epoch 2000 2000 5000 

Scaler type identity identity standard 

Learning rate 0.001 0.001 0.001 

Batch size 32 32 32 

Input size 24 hours 24 hours 24 hours 

Stack type 
Seasonality, trend, 

identity, identity 

Seasonality, 

trend, identity 
* 

Number of units in each 

hidden layer 
512 512 128 

Loss function MQLoss MQLoss MQLoss 

Activation function ReLU ReLU tanh 

Number of stacks 4 3 * 

Number of blocks in each 

stack 
2 2 * 

Stacks’ coefficients 48,24,12,1 * * 

*Not applicable 533 

In Table 2, "epoch" refers to the number of training steps, and "scaler type" indicates the type of scaler used 534 

for normalizing temporal inputs. The "learning rate" specifies the step size at each iteration while optimizing 535 

the model, and the "batch size" represents the number of samples processed in one forward and backward 536 

pass. The "loss function" quantifies the difference between the predicted outputs and the actual target 537 

values, while the "activation function" determines whether a neuron should be activated. The "stacks' 538 

coefficients" in the N-HITS model control the frequency specialization for each stack, enabling effective 539 

handling of different frequency components in the time series data. 540 

Another hyperparameter for all three models is input size, which is a parameter variable that determines the 541 

maximum sequence length for truncated backpropagation during training and the number of autoregressive 542 

inputs (lags) that the models considered for prediction. Essentially, input size represents the length of the 543 

historical series data used as input to the model. This parameter variable offers flexibility in the models, 544 

allowing them to learn from a defined window of past observations, which can range from the entire 545 
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historical dataset to a subset, tailored to the specific requirements of the prediction task. In the context of 546 

flood prediction, determining the appropriate input size is crucial to adequately capture the meteorological 547 

data preceding the flood event. To address this, we calculated the time of concentration (TC) of the 548 

watershed system and set the input size to exceed this duration. According to the Natural Resources 549 

Conservation Service (NRCS), for typical natural watershed conditions, the TC can be calculated from lag 550 

time, the time between peak rainfall and peak discharge, using the formula: 𝐿𝑎𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝐶 ×  0.6 (NRCS, 551 

2009). Specifically, the average TC in the Lower Dog River watershed and Upper Dutchmans Creek 552 

watershed was found to be 19 and 22 hours, respectively. As these represent the average TC for our case 553 

studies, we selected the 24 hours for input data, slightly longer than the calculated avaerage TC, ensuring 554 

sufficient coverage of relevant meteorological data preceding all flood events.  555 

3.3. Flood Prediction and Performance Assessment 556 

In this study, we conducted a comprehensive performance evaluation of N-HiTS, N-BEATS, and 557 

benchmarked these models with LSTM, utilizing two case studies: the Lower Dog River and the Upper 558 

Dutchmans Creek watersheds. Within these case studies, we trained and validated the models separately 559 

for each watershed across a diverse set of storm events from 01/10/2007 to 01/10/2022 (15 years) in the 560 

Lower Dog River and from 21/12/1994 to 01/10/2022 (27 years) in the Upper Dutchmans Creek. The 561 

decision to train separate models for each catchment was made to account for the unique hydrological 562 

characteristics and local features specific to each watershed. By training models individually, we aimed to 563 

optimize performance by tailoring each model to the distinct rainfall-runoff relationship inherent in each 564 

catchment. All algorithms were tested using unseen flooding events that occurred between 14/12/2022 and 565 

28/03/2023.  Our targets were event-focused, where operational value focuses on performance during rising 566 

limbs, peaks, and recessions. Evaluating over the entire continuous hydrograph (testing period) can dilute 567 

or even mask differences. For this reason, we prioritized an event-centric assessment as the primary 568 

evaluation approach rather than full-period metrics. For this reason, our primary assessment is event-centric 569 

rather than full-period. In the Dog River gauging station, two winter stormsstorms, i.e., January 3rd to 570 

January 5th, 2023 (Event 1) and February 17th to February 18th, 2023 (Event 2), as well as a spring flood 571 

event that occurred during March 26th to March 28th, 2023 (Event 3) were selected for testing. 572 

Additionally, three winter flooding events, i.e., December 14th to December 16th, 2022 (Event 4), January 573 

25th and January 26th, 2023 (Event 5), and February 11th to February 13th, 2023 (Event 6), were chosen 574 

to test the algorithms across the Killian Creek gauging station in the Upper Dutchmans Creek. The rainfall 575 

events corresponding to these flooding events were delineated using the MIT technique discussed in Section 576 

3.1. 577 
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Our results for the Lower Dog River case study, explicitly demonstrated the accuracy of both N-HiTS and 578 

N-BEATS in generating the winter and spring flood hydrographs compared to the LSTM model across all 579 

selected storm events. Although, N-HiTS prediction slightly outperformed N-BEATS during winter 580 

prediction (January 3rd to January 5th, 2023). In this event, N-HiTS outperformed N-BEATS with a 581 

difference of 11.6% in MAE and 20% in RMSE. The N-HiTS slight outperformance (see Tables 3 and 4) 582 

is attributed to its unique structure that allows the model to discern and capture intricate patterns within the 583 

data. Specifically, N-HiTS predicted flooding events hierarchically using blocks specialized in different 584 

rainfall frequencies based on controlled signal projections, through expressiveness ratios, and interpolation 585 

of each block. The coefficients are then used to synthesize backcast through  586 

𝑦̃𝑡 − 𝐿: 𝑡, 𝑙 and forecast (𝑦̃𝑡+1: 𝑡 + 𝐻, 𝑙) outputs of the block as a flood value.  The coefficients were locally 587 

determined along the horizon, allowing N-HiTS to reconstruct nonstationary signals over time.  588 

While the N-HiTS emerged as the most accurate in predicting flood hydrograph among the three models, 589 

its performance was somehow comparable with N-BEATS. The N-BEATS model exhibited good 590 

performance in two case studies. It consistently provided competitive results, demonstrating its capacity to 591 

effectively handle diverse storm events and deliver reliable predictions. N-BEATS has a generic and 592 

interpretable architecture depending on the blocks it uses. Interpretable configuration sequentially projects 593 

the signal into polynomials and harmonic basis to learn trend and seasonality components while generic 594 

configuration substitutes the polynomial and harmonic basis for identity basis and larger network’s depth. 595 

In this study, we used interpretable architecture, as it regularizes its predictions through projections into 596 

harmonic and trend basis that is well-suited for flood prediction tasks. Using interpretable architecture, 597 

flood prediction was aggregated in a hierarchical fashion. This enabled the building of a very deep neural 598 

network with interpretable flood prediction outputs.   599 

It is essential to underscore that, despite its strong performance, the N-BEATS model did not surpass the 600 

N-HiTS model in terms of NSE, Persistent-NSE, MAE, and RMSE for the Lower Dog River case study. 601 

Although both models showed almost the same KGE values. Notably, the N-BEATS model showcased 602 

superior results based on the PFE metric, signifying its exceptional capability in accurately predicting flood 603 

peaks. However, both N-HiTS and N-BEATS models overestimated the flood peak rate of Event 2 for the 604 

Lower Dog River watershed. This event, which occurred from February 17th to February 18th, 2023, was 605 

flashy, short, and intense proceeded by a prior small rainfall event (from February 12th until February 13th) 606 

that minimized the rate of infiltration. This flash flood event caused by excessive rainfall in a short period 607 

of time (<8 hours) was challenging to predict for N-BEATS and N-HiTS models. In addition, predicting 608 

the magnitude of changes in the recession curve of the third event seems to be a challenge for both models. 609 

The specific part of the flood hydrograph after the precipitation event, where flood diminishes during a 610 
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rainless is dominated by the release of runoff from shallow aquifer systems or natural storages. It seems 611 

both models showed a slight deficiency in capturing this portion of the hydrograph when the rainfall amount 612 

decreases over time in the Dog River gauging station.  613 

Conversely, in the Killian Creek gauging station, the N-BEATS model almost emerged as the top performer 614 

in predicting the flood hydrograph based on NSE, Persistent-NSE, RMSE, and PFE performance metrics 615 

(see Tables 3 and 4).  KGE values remained almost the same for both models. In addition, both N-BEATS 616 

and N-HiTS slightly overpredicted time to peak values for Event 5. This reflects the fact that when rainfall 617 

value varies randomly around zero, it provides less to no information for the algorithms to learn the 618 

fluctuations and patterns in time series data. Both N-HiTS and N-BEATS provided comparable results for 619 

all events predicted in this study. N-HiTS builds upon N-BEATS by adding a MaxPool layer at each block. 620 

Each block consists of an MLP layer that learns to produce coefficients for the backcast and forecast 621 

outputs. This subsamples the time series and allows each stack to focus on either short-term or long-term 622 

effects, depending on the pooling kernel size. Then, the partial predictions of each stack are combined using 623 

hierarchical interpolation. This ability enhances N-HiTS capabilities to produce drastically improved, 624 

interpretable, and computationally efficient long-horizon flood predictions. 625 

In contrast, the performance of LSTM as a benchmark model lagged behind both N-HiTS and N-BEATS 626 

models for all events across two case studies. Despite its extensive applications in various hydrology 627 

domains, the LSTM model exhibited comparatively lower accuracy when tasked with predicting flood 628 

responses during different storm events. Focusing on NSE, Persistent-NSE. KGE, MAE, RMSE, and PFE 629 

metrics, it is noteworthy that all three models, across both case studies, consistently succeeded in capturing 630 

peak flow rates at the appropriate timing. All models demonstrated commendable results with respect to 631 

the TPE metric. In most scenarios, TPE revealed a value of 0, signifying that the models accurately 632 

pinpointed the peak flow rate precisely at the expected time. In some instances, TPE reached a value of 1, 633 

showing a deviation of one hour in predicting the peak flow time. This deviation is deemed acceptable, 634 

particularly considering the utilization of short, intense rainfall for our analysis.  635 

Our investigation into the performance of the three distinct forecasting models yielded compelling results 636 

pertaining to their ability to generate 95PPU, as quantified by the P-Factor and R-Factor. These factors 637 

serve as critical indicators for assessing the reliability and precision of the uncertainty bands produced by 638 

the MLE. Our findings demonstrated that the N-HiTS and N-BEATS models outperformed the LSTM 639 

model in mathematically defining uncertainty bands, in terms of R-Factor metric. The R-Factor, a crucial 640 

metric for evaluating the average width of the uncertainty band, consistently favored the N-HiTS and N-641 

BEATS models over their counterparts. This finding was consistent across a diverse range of storm events. 642 
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In addition, coupling MLE with the N-HiTS and N-BEATS models demonstrated superior performance in 643 

generating 95PPU when assessed through the P-Factor metric. The P-Factor represents another vital aspect 644 

of uncertainty quantification, focusing on the precision of the uncertainty bands.  645 

Figures 8 7 and 9 8 present graphical depictions of the predicted flood with 1-hour prediction horizon and 646 

uncertainty assessment for each model as well as Flow Duration Curve (FDC) across two gauging 647 

stations.  As illustrated, the uncertainty bands skillfully bracketed most of the observational data, reflecting 648 

the fact that MLE was successful in reducing errors in flood prediction. FDC analysis also revealed that N-649 

HiTS and N-BEATS models skillfully predicted the flood hydrograph, however, both models were 650 

particularly successful in predicting moderate to high flood events (1800-6000 and >6000 cfs). In the FDC 651 

plots, the x-axis denotes the exceedance probability, expressed as a percentage, while the y-axis signifies 652 

flood in cubic feet per second. Notably, these plots reveal distinctive patterns in the performance of the N-653 

HiTS, N-BEATS, and LSTM models. Within the lower exceedance probability range, particularly around 654 

the peak flow, the N-HiTS and N-BEATS models demonstrated a clear superiority over the LSTM model, 655 

closely aligning with the observed data. This observed trend is consistent when examining the 656 

corresponding hydrographs. Across all events, the flood hydrographs generated by N-HiTS and N-BEATS 657 

exhibited a closer resemblance to the observed data, particularly in the vicinity of the peak timing and rate, 658 

compared to the hydrographs produced by the LSTM model. These findings underscore the enhanced 659 

predictive accuracy and reliability of the N-HiTS and N-BEATS models, particularly in predicting 660 

moderate to high flood events as well as critical hydrograph features such as peak flow rate and timing. The 661 

alignment of model-generated FDCs and hydrographs with observed data in the proximity of peak flow 662 

further establishes the efficiency of N-HiTS and N-BEATS in accurately reproducing the dynamics of flood 663 

generation mechanisms across two headwater streams.  664 

 665 

Table 3. The performance metrics for the Lower Dog River flood predictions with 1-hour prediction 666 

horizon. 667 

Model Performance Metric Event 1 Event 2 Event 3 

N-HiTS 

NSE 0.995 0.991 0.992 

Persistent-NSE 0.947 0.931 0.948 

KGE 0.977 0.989 0.976 

RMSE 123.2 27.6 68.5 

MAE 64.1 12.0 37.8 

PFE 0.018 0.051 0.015 

TPE (hours) 0 1 0 
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P-Factor 96.9 % 100 % 93.5 % 

R-Factor 0.27 0.40 0.33 

N-BEATS 

NSE 0.991 0.989 0.993 

Persistent-NSE 0.917  0.916 0.956 

KGE 0.984 0.984 0.98 

RMSE 154.1 30.5 62.5 

MAE 72.6 13.6 35.9 

PFE 0.0005 0.031 0.0002 

TPE (hours) 0 1 0 

P-Factor 87.8 % 100 % 90.3 % 

R-Factor 0.17 0.23 0.24 

LSTM 

NSE 0.756 0.983 0.988 

Persistent-NSE -1.44 0.871 0.929 

KGE 0.765 0.978 0.971 

RMSE 841.1 37.9 79.5 

MAE 369.4 18.6 42 

PFE 0.258 0.036 0.016 

TPE (hours) 1 0 0 

P-Factor 81.8 % 93.1 % 96.7 % 

R-Factor 0.37 0.51 0.6 

 668 

Table 4. The performance metrics for the Killian Creek flood predictions with 1-hour prediction horizon. 669 

Model Performance Metric Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.991 0.971 0.991 

Persistent-NSE 0.885 0.806 0.844 

KGE 0.982 0.967 0.991 

RMSE 28.8 46.0 19.0 

MAE 17.9 23.8 11.5 

PFE 0.017 0.008 0.020 

TPE (hours) 0 0 0 

P-Factor 92.6 % 90.9 % 100 % 

R-Factor 0.39 0.48 0.45 
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N-BEATS 

NSE 0.992 0.973 0.989 

Persistent-NSE 0.908 0.821 0.823 

KGE 0.972 0.951 0.973 

RMSE 25.7 44.2 20.2 

MAE 18.3 25.9 14.0 

PFE 0.006 0.008 0.019 

TPE (hours) 0 0 0 

P-Factor 96.3 % 86.3 % 96.9 % 

R-Factor 0.43 0.53 0.43 

LSTM 

NSE 0.952 0.892 0.935 

Persistent-NSE 0.4 0.27 0.087 

KGE 0.92 0.899 0.901 

RMSE 65.7 89.2 50.3 

MAE 41.1 45 35.9 

PFE 0.031 0.058 0.098 

TPE (hours) 1 0 0 

P-Factor 70.4 % 72.73 % 81.82 % 

R-Factor 0.66 0.7 0.65 

 670 
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 671 

Figure 7. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1-hour prediction 672 
horizon for the three selected flooding events in the Lower Dog River gauging station. 673 
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674 
Figure 8. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1-hour prediction 675 

horizon for the three selected flooding events in the Killian Creek gauging station.  676 

To evaluate robustness across lead times, we extended the analysis to 3- and 6-hour prediction horizons. 677 

The results are presented in fFigures 9-12, and tables 5 and 6. As expected, NSE and KGE decreased, and 678 

absolute errors increased with horizon for all models; however, N-HiTS and N-BEATS continued to 679 

outperform LSTM across both stations and storm events. At Killian Creek station, both N-HiTS and N-680 

BEATS preserved their lead, yielding higher NSE and lower MAE/RMSE than LSTM, while at the Lower 681 

Dog River, N-BEATS remained slightly superior on the same metrics. KGE values stayed comparable 682 

between the two feed-forward models, and peak-focused metrics (PFE and TPE) indicated that both still 683 
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captured peak magnitude and timing reliably, compared to LSTM. Uncertainty bands widened with horizon 684 

as expected, but the likelihood-based 95PPU for N-HiTS and N-BEATS maintained tighter R-Factors and 685 

competitive P-Factors relative to LSTM, especially around moderate-to-high flows. Flow-duration 686 

diagnostics at multi-hour leads reinforced these findings, showing closer alignment of N-HiTS and N-687 

BEATS to observations in the upper tail. Overall, the multi-horizon results corroborate the 1-hour horizon 688 

results: N-HiTS and N-BEATS deliver more accurate and reliable flood forecasts than LSTM, and their 689 

relative strengths persist at 3 and 6 hours ahead. For completeness, we also evaluated 12- and 24-hour lead 690 

times. All modelsmodels’ performances declined sharply (NSE < 0.4 across sites and events), so we 691 

restrict detailed reporting to 1–6 hours where performance remains operationally meaningful. 692 

Table 5. The performance metrics of the models with 3-hour prediction horizon. 693 

Model 
Performance 

Metric 
Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.91 0.86 0.58 0.83 0.81 0.89 

KGE 0.92 0.92 0.74 0.85 0.85 0.88 

RMSE 506 107 485 122 119 65 

MAE 293 58 209 71 65 42 

PFE 0.03 0.02 0.08 0.1 0.07 0.05 

TPE (hours) 0 0 0 0 0 0 

P-Factor 97 % 100 % 93.5 % 85 % 72 % 88 % 

R-Factor 0.8 1.3 0.75 0.99 0.92 1.14 

N-BEATS 

NSE 0.92 0.88 0.56 0.82 0.82 0.89 

KGE 0.91 0.91 0.72 0.83 0.84 0.87 

RMSE 481 101 498 124 115 63 

MAE 241 48 207 67 58 33 

PFE 0.04 0.02 0.12 0.006 0.02 0.002 

TPE (hours) 1 0 2 0 0 0 

P-Factor 90.9 % 93 % 90.3 % 92 % 68 % 94 % 

R-Factor 0.7 1.2 0.74 0.78 1.1 0.87 

LSTM 

NSE 0.7 0.77 0.42 0.82 0.51 0.55 

KGE 0.765 0.87 0.65 0.79 0.64 0.69 

RMSE 928 139 575 125 190 133 

MAE 487 80 296 85 118 87 
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PFE 0.12 0.03 0.16 0.16 0.44 0.08 

TPE (hours) 2 1 2 2 1 2 

P-Factor 75.8 % 96 % 83.9 % 100 % 90 % 94 % 

R-Factor 1.15 1.88 1.66 2.8 3.7 2.4 

 694 

Table 6. The performance metrics of the models with 6-hour prediction horizon. 695 

Model 
Performance 

Metric 
Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.82 0.58 0.51 0.6 0.7 0.52 

KGE 0.76 0.68 0.67 0.74 0.78 0.67 

RMSE 708 189 525 188 147 137 

MAE 423 90 257 110 90 77 

PFE 0.35 0.29 0.12 0.03 0.2 0.1 

TPE (hours) 2 3 0 0 3 3 

P-Factor 70 % 96 % 87 % 92 % 82 % 87 % 

R-Factor 0.71 1.1 1.1 1.8 1.15 1.2 

N-BEATS 

NSE 0.94 0.85 0.59 0.33 0.82 0.59 

KGE 0.83 0.82 0.73 0.55 0.79 0.67 

RMSE 386 112 481 244 115 126 

MAE 259 58 181 131 56 74 

PFE 0.16 0.23 0.02 0.03 0.03 0.12 

TPE (hours) 0 3 0 0 0 3 

P-Factor 100 % 86 % 90.3 % 85 % 77 % 78 % 

R-Factor 1.8 2.3 1.1 1.13 3.3 1.2 

LSTM 

NSE - 0.35 - 0.39 - 0.22 - 0.17 - 0.2 - 0.2 

KGE 0.3 0.05 0.18 0.34 0.33 0.4 

RMSE 1984 348 834 324 300 220 

MAE 1304 192 468 234 201 174 

PFE 0.24 0.36 0.42 0. 6 0.44 0.42 

TPE (hours) 3 4 3 0 2 2 

P-Factor 36 % 79 % 90.3 % 85 % 86 % 63 % 

R-Factor 1.8 1.9 2.16 1.6 3.7 1.6 

 696 
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 697 

 698 

Figure 9. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3-hour prediction 699 
horizon for the three selected flooding events in the Lower Dog River gauging station. 700 
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 701 

Figure 10. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6-hour prediction 702 
horizon for the three selected flooding events in the Lower Dog River gauging station. 703 

 704 
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 705 

Figure 11. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3-hour prediction 706 
horizon for the three selected flooding events in the Killian Creek gauging station.  707 
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 708 

Figure 12. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6-hour prediction 709 
horizon for the three selected flooding events in the Killian Creek gauging station.  710 

 711 

To probe cross-catchment generalizability, we trained a single “regional” model by pooling Lower Dog 712 

River and Killian Creek, preserving per-site temporal splits and fitting a global scaler only on the pooled 713 

training portion to avoid leakage; evaluation remained strictly per site. Relative to per-site training, pooled 714 

fitting produced a small accuracy drop for N-HiTS and N-BEATS (~ 2 to 3 %). LSTM showed mixed 715 

Formatted: Font: (Default) +Headings CS (Times New

Roman), 11 pt

Formatted: Font: (Default) +Headings CS (Times New

Roman)

Formatted: Font: (Default) +Headings CS (Times New

Roman), 11 pt



39 

 

performance to pooling, it improved in some storm events but degraded in others, so that, when averaged 716 

across both stations and storm events, its regional performance was effectively unchanged relative to the 717 

per-site training. Despite that, the regional N-HiTS/N-BEATS matched the accuracy of the best per-site 718 

models within the variability observed across storm events and, importantly, consistently surpassed LSTM 719 

at both basins. Mechanistically, N-HiTS’s multi-rate pooling and hierarchical interpolation, and N-720 

BEATS’s trend/seasonality basis projection, act as catchment-invariant feature extractors that support 721 

parameter sharing across stations.  722 

In our investigation, we conducted an analysis to assess the impact of varying input sizes on the performance 723 

of the N-HiTS, as the best model. We implemented four different durations as input sizes to observe the 724 

corresponding differences in modeling performance. Notably, one of the key metrics affected by changes 725 

in input size was 95PPU, which exhibited a general decrease with increasing input size. 726 

As detailed in Table 57, we observed a discernible trend in the R-Factor of the N-HiTS model as the input 727 

size was increased. Specifically, there was a decline in the R-Factor as the input size expanded. This trend 728 

underscores the influence of input size on model performance, particularly in terms of 95PPU band and 729 

accuracy. 730 

Overall, uncertainty analysis revealed that coupling MLE with N-HiTS and N-BEATS models 731 

demonstrated superior performance in generating 95PPU, effectively reducing errors in flood prediction. 732 

The MLE approach was more successful in reducing 95PPU bands of N-HiTS and N-BEATS models 733 

compared to the LSTM, as indicated by the R-Factor and P-Factor. The N-BEATS model demonstrated a 734 

narrower uncertainty band (lower R-Factor value), while the N-HiTS model provided higher precision. 735 

Furthermore, incorporating data with various sizes into the N-HiTS model led to a narrower 95PPU and an 736 

improvement in the R-Factor, highlighting the significance of input size in enhancing model accuracy and 737 

reducing uncertainty. 738 

Table 57. N-HiTS’s R-Factor results for three storm events in each case study, using 1 

hour, 2 6 hours, 12 hours, and 24 hours input size in training. 

Input Size 1 hour 6 hours 12 hours 24 hours 

Dog River, GA - Event 1 0.314 0.337 0.29 0.272 

Dog River, GA - Event 2 0.35 0.413 0.403 0.402 

Dog River, GA - Event 3 0.358 0.459 0.374 0.336 

Killian Creek, NC - Event 4 0.491 0.422 0.426 0.388 

Killian Creek, NC - Event 5 0.584 0.503 0.557 0.483 
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Killian Creek, NC - Event 6 0.482 0.42 0.446 0.454 

 739 

3.4. Sensitivity Analysis   740 

In this study, we conducted a comprehensive sensitivity analysis of the N-HiTS, N-BEATS, and LSTM 741 

models to evaluate their responsiveness to meteorological variables, specifically precipitation, humidity, 742 

and temperature. The goal was to assess how the omission of input parameters features impactsimpact the 743 

overall modeling performance compared to their full-variable counterparts. 744 

To execute this analysis, we systematically trained each model by excluding meteorological variables one 745 

or more at a time, subsequently evaluating their predictive performance using the entire testing dataset. 746 

The results of our analysis indicated that N-HiTS and N-BEATS models exhibited minimal sensitivity to 747 

meteorological variables, as evidenced by the negligible impact on their performance metric (i.e., NSE, 748 

Persistent-NSE, KGE, RMSE, and MAE) upon input feature parameter exclusion. 749 

Notably, as shown in Table 68, the performance of the N-HiTS model displayed a marginal deviation 750 

under variable omission, while the N-BEATS model exhibited consistent performance irrespective of the 751 

inclusion or exclusion of meteorological variables. The structure of this algorithm is based on backward 752 

and forward residual links for univariate time series point forecasting which does not take into account 753 

other input features parameters in the prediction task.  These findings suggest that the predictive 754 

capabilities of N-HiTS and N-BEATS models predominantly rely on historical flood data. Both models 755 

demonstrated strong performance even without incorporating precipitation, temperature, or humidity data, 756 

underscoring their ability in flood prediction in the absence of specific meteorological inputs. This 757 

capability underscores the robustness of the N-HiTS and N-BEATS models, positioning them as viable 758 

tools and perhaps appropriate for real-time flood forecasting tasks where direct meteorological data may 759 

be limited or unavailable.  760 

 761 

Table 68. Performance metrics’ values for N-HiTS, N-BEATS, and LSTM models by excluding 762 

meteorological variables one or more at a time. 763 

Model 
Excluded 

Variables 
NSE 

Persistent-

NSE 
KGE RMSE MAE 

N-HiTS 

Using all variables 0.996  0.92 0.988 22.66 4.19 

Without 

Precipitation 
0.993 0.91 0.97 23.28 4.31 

Without Humidity 0.995 0.914 0.976 22.87 4.22 
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Without 

Temperature 
0.995 0.921 0.985 22.43 4.14 

Discharge only 

prediction 
0.993  0.911 0.972 23.21 4.29 

N-BEATS 

Using all variables 0.994 0.978 0.992 11.80 2.13 

Without 

Precipitation 
0.994 0.978 0.991 11.86 2.17 

Without Humidity 0.994 0.978 0.991 11.81 2.16 

Without 

Temperature 
0.994 0.978 0.991 11.82 2.16 

Discharge only 

prediction 
0.994 0.978 0.991 11.96 2.17 

LSTM  

Using all variables 0.992  0.865 0.926 29.52 8.15 

Without 

Precipitation 
0.979 0.665 0.892 39.46 19.83 

Without Humidity 0.991 0.843 0.925 31.73 9.15 

Without 

Temperature 
0.983 0.628 0.872 48.95 11.49 

Discharge only 

prediction 
0.976 0.576 0.692 52.28 33.5 

 764 

3.5 Computational Efficiency 765 

The computational efficiency of the N-HiTS, N-BEATS, and LSTM models, as well as a comparative 766 

analysis, is presented in Table 79. The study encompassed the entire process of training and predicting over 767 

the testing period, employing the optimized hyperparameters as previously described. Regarding the 768 

training time, it is noteworthy that the LSTM model exhibited the quickest performance. Specifically, 769 

LSTM demonstrated a training time that was 71% faster than N-HiTS and 93% faster than N-BEATS in 770 

the Lower Dog River watershed, while it was respectively,126% and 118% faster than N-HiTS and N-771 

BEATS in the Upper Dutchmans Creek, over training dataset. This is because LSTM has a simple 772 

architecture compared to the N-BEATS and N-HiTS and does not require multivariate features, hierarchical 773 
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interpolation, and multi-rate data sampling. Perhaps, this outcome underscores the computational advantage 774 

of LSTM over other algorithms. 775 

Conversely, during the testing period, the N-HiTS model emerged as the fastest and delivered the most 776 

efficient results in comparison to the other models. Notably, N-HiTS displayed a predicting time that was 777 

33% faster than LSTM and 32% faster than N-BEATS. This finding highlights the computational efficiency 778 

of the N-HiTS model in the context of predicting processes. Our experiments unveiled an interesting 779 

contrast in the computational performance of these models. While LSTM excelled in terms of training time, 780 

it lagged behind when it came to the testing period. 781 

In the grand scheme of computational efficiency, model accuracy, and uncertainty analysis results, it 782 

becomes evident that the superiority of the N-HiTS and N-BEATS models in terms of accuracy and 783 

uncertainty analysis holds paramount importance. This significance is accentuated by the critical nature of 784 

flood prediction, where precision and certainty are pivotal. Therefore, computational efficiency must be 785 

viewed in the context of the broader objectives, with the accuracy and reliability of flood predictions taking 786 

precedence in ensuring the safety and preparedness of the affected regions.      787 

 788 

Table 79. Computational costs of N-HiTS, N-BEATS, and LSTM models in the Dog River and Killian 789 

Creek gauging stations.  790 

 Training Time over Train Datasets 

(seconds)  

Predicting Time over Test Datasets 

(seconds) 

Model Lower Dog River Upper Dutchmans Creek Lower Dog River Upper Dutchmans Creek 

N-HiTS 256.032 374.569 1533.029 1205.526 

N-BEATS 288.511 361.599 2028.068 1482.305 

LSTM 149.173 165.827 2046.140 1792.444 

 791 

4. Conclusion 792 

This study examined multiple NN algorithms for flood prediction. We selected two headwater streams with 793 

minimal human impacts to understand how NN approaches can capture flood magnitude and timing for 794 

these natural systems. In conclusion, our study represents a pioneering effort in exploring and advancing 795 

the application of NN algorithms, specifically the N-HiTS and N-BEATS models, in the field of flood 796 

prediction. In our case studies, both N-HiTS and N-BEATS models achieved state-of-the-art results, 797 

outperforming LSTM as a benchmark model, particularly in one-hour prediction. While a one-hour lead 798 

time may seem brief, it is highly significant for accurate flash flood prediction particularly in  anin an area 799 
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with a proximity to large metropolitan cities, where rapid response is critical.  These benchmarking results 800 

are arguably a pivotal part of this research. However, the N-BEATS model slightly emerged as a powerful 801 

and interpretable tool for flood prediction in most selected events. 802 

This study focused on short-lead, operational forecasting at gauged sites, using historical discharge to 803 

deliver robust, low-latency updates. While the evaluation is limited to two southeastern U.S. basins, the 804 

architecture (e.g., N-HiTS) is flexible and can incorporate additional covariates and catchment attributes. 805 

Extending the approach to ungauged or other basins is feasible through multi-basin training and transfer 806 

learning or few-shot adaptation when even brief warm-up records are available. These extensions represent 807 

promising directions for future work to assess geographic transferability under the same operational 808 

assumptions.  809 

This research targeted short-lead prediction at operationally gauged sites, leveraging historical discharge to 810 

provide robust, low-latency updates. However, the architectures (i.e. N-HiTS) readily accept additional 811 

covariates and inputs. The work can be extended to ungauged basins by multi-basin training with catchment 812 

attributes, and transfer or few-shot adaptation when brief warm-up records exist.  813 

In addition, the results of the experiments described above demonstrated that N-HiTS multi-rate input 814 

sampling and hierarchical interpolation along with N-BEATS interpretable configuration are effective in 815 

learning location-specific runoff generation behaviors. Both algorithms with an MLP-based deep neural 816 

architecture with backward and forward residual links can sequentially project the data signal into 817 

polynomials and harmonic basis needed to predict intense storm behaviors with varied magnitudes. The 818 

innovation in this study, – besides benchmarking the LSTM model for headwater streams, – was to tackle 819 

volatility and memory complexity challenges, by locally specializing flood sequential predictions into the 820 

data signal’s frequencies with interpretability, and hierarchical interpolation and pooling. Both N-HiTS and 821 

N-BEATS models offered similar performance as compared with the LSTM but also offered a level of 822 

interpretability about how the model learns to differentiate aspects of complex watershed-specific behaviors 823 

via data. The interpretability of N-HiTS and N-BEATS arises directly from their model architecture. In the 824 

interpretable N-BEATS framework, forecasts are decomposed into trend and seasonality stacks, each 825 

represented by explicit basis coefficients that reveal how different temporal patterns contribute to the 826 

prediction. Similarly, N-HiTS achieves interpretability by aggregating contributions across multiple distinct 827 

time scales, allowing insight into the temporal dynamics driving each forecast.The interpretability of N-828 

HiTS and N-BEATS models stems from their designs. The interpretable N-BEATS architecture 829 

decomposes forecasts into trend and seasonality stacks with explicit basis coefficients, and N-HiTS forms 830 

predictions by aggregating contributions across distinct time scales. N-HiTS aims to enhance the accuracy 831 

of long-term time-series forecasts through hierarchical interpolation and multi-scale data sampling, 832 

allowing it to focus on different data patterns, which prioritizes features essential to understand flood 833 
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magnitudes. N-BEATS leverages interpretable configurations with trend and seasonality projections, 834 

enabling it to decompose time series data into intuitive components. N-BEATS interpretable architecture 835 

is recommended for scarce data settings (such as flooding event), as it regularizes its predictions through 836 

projections unto harmonic and trend basis. These approaches improve model transparency by allowing 837 

understanding of how each part of the model contributes to the final prediction, particularly when applied 838 

to complex flood patterns. Both models also support multivariate series (and covariates) by flattening the 839 

model inputs to a 1-D series and reshaping the outputs to a tensor of appropriate dimensions. This approach 840 

provides flexibility to handle arbitrary numbers of features. Furthermore, both N-HiTS and N-BEATS 841 

models models, like LSTM, also support producing probabilistic predictions by specifying a likelihood 842 

parameterobjective. In terms of sensitivity analysis, both N-HiTS and N-BEATS models maintain 843 

consistent performance even when trained without specific meteorological inputs. Although, during some 844 

flashy floods, the models encountered challenges in capturing the peak flows and the dynamics of the 845 

recession curve, which is directly related to groundwater contribution to flood hydrograph, both models 846 

were technically insensitive to rainfall data as an input variable. This suggests the fact that both algorithms 847 

can learn patterns in discharge data without requiring meteorological input. This ability underscores these 848 

models' robustness in generating accurate predictions using historical flood data alone, making them 849 

valuable tools for flood prediction, especially in data-poor watersheds or even for real-time flood prediction 850 

when near real-time meteorological inputs are limited or unavailable. In terms of computational efficiency, 851 

both N-HiTS and N-BEATS are trained almost at the same pace; however, N-HiTS predicted the test data 852 

much quicker than N-BEATS. Unlike N-HiTS and N-BEATS, LSTM excelled in reducing training time 853 

due to its simplicity and limited number of parameters. 854 

Moving forward, it is worth mentioning that predicting the magnitude of the recession curve of flood 855 

hydrographs was particularly challenging for all models. We argue that this is because the relation between 856 

base flow and time is particularly hard to calibrate due to ground-water effluent that is controlled by 857 

geological and physical conditions (vegetation, wetlands, wet meadows) in headwater streams. In addition, 858 

the situations of runoff occurrence are diverse and have a high measurement variance with high frequency 859 

that can make it difficult for the algorithms to fully capture discrete representation learning on time series.  860 

In future studies, it will be important to develop strategies to derive analogs to the interpretable 861 

configuration as well as multi-rate input sampling, hierarchical interpolation, and backcast residual 862 

connections that allow for the dynamic representation of flood times series data with different frequencies 863 

and nonlinearity. A dynamic representation of flood time series is, at least in principle, possible by 864 

generating additive predictions in different bands of the time-series signals, reducing memory footprint and 865 

compute time, and improving architecture parsimony and accuracy. This would allow the model to “learn” 866 

interpretability and hierarchical representations from raw data to reduce complexity as the information 867 
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flows through the network. Moreover, it is noteworthy that while a single station offers valuable localized 868 

data, particularly for smaller watersheds such as headwater streams where runoff is closely tied to 869 

immediate meteorological conditions, it may not fully capture the spatial heterogeneity of larger 870 

watersheds. The work was mainly for a capability test in an hourly, operational setting in the ssSoutheastern 871 

basins. For our specific case, the methods applied herein captured runoff magnitude and dynamics in small 872 

watersheds using a single station. However, we recognize that for broader areas, incorporating spatially 873 

distributed data would likely enhance model accuracy. Conclusions are scoped to these basins and horizons; 874 

broader generalization will require multi-region in future work. Lastly, one could explore the idea of 875 

enhancing N-HiTS and N-BEATS (or NN algorithms, in general) performance with uncertainty 876 

quantification by using more robust Bayesian inference such as Bayesian Model Averaging (BMA) with 877 

fixed and flexible prior distributions (see Samadi et al., 2020) and/or Markov Chain Monte-Carlo 878 

optimization methods (Duane et al., 1987) addressing both aleatoric and epistemic uncertainties. We leave 879 

these approaches for future discussion and exploration in the context of flood neural time series prediction. 880 
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