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Abstract 8 

The last few years have witnessed the rise of Neural neural Networks networks (NNs) applications for 9 

hydrological time series modeling. By virtue of their capabilities, NN models can achieve unprecedented 10 

levels of performance when learn how to solve increasingly complex rainfall-runoff processes via data, 11 

making them pivotal for the development of computational hydrologic tasks such as flood predictions. The 12 

NN models should, in order to be considered practical, provide a probabilistic understanding of the model 13 

mechanisms and predictions and hints on what could perturb the model. In this paper, we developed two 14 

probabilistic NN models, i.e., Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and 15 

Network-Based Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) and 16 

benchmarked them with long short-term memory (LSTM) for flood prediction across two headwater 17 

streams in Georgia and North Carolina, USA. To generate a probabilistic prediction, a Multi-Quantile Loss 18 

was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple flooding events. We 19 

conducted extensive flood prediction experiments demonstrating the advantages of hierarchical 20 

interpolation and interpretable architecture, where both N-HiTS and N-BEATS provided an average 21 

accuracy improvement of almost 5% (NSE) over the LSTM benchmarking model. On a variety of flooding 22 

events with different timing and magnitudes, both N-HiTS and N-BEATS demonstrated significant 23 

performance improvements over the LSTM benchmark and showcased their probabilistic predictions by 24 

specifying a likelihood parameter. 25 

Keywords: Probabilistic Flood Prediction; Neural Networks; N-HiTS; N-BEATS; LSTM; Headwater 26 

Stream. 27 

Key Points 28 

• N-HiTS and N-BEATS predictions reflect interpretability and hierarchical representations of data 29 

to reduce neural network complexities. 30 

• Both N-HiTS and N-BEATS models outperformed the LSTM in mathematically defining 31 

uncertainty bands. 32 
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• Predicting the magnitude of the recession curve of flood hydrographs was particularly challenging 33 

for all models. 34 

Plain Language Summary  35 

Recent progress in neural network accelerated improvements in the performance of catchment modeling 36 

systems. Yet flood modeling remains a very difficult task. Focusing on two headwater streams, this paper 37 

developed Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and Network-Based 38 

Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) and benchmarked them with 39 

long short-term memory (LSTM) to predict multiple flooding events. Analysis suggested that both N-HiTS 40 

and N-BEATS outperformed LSTM for short-term (1 hour) flood predictions. We demonstrated how the 41 

proposed N-HiTS and N-BEATS architectures can be augmented with uncertainty and sensitivity 42 

approaches to provide skilled flood predictions that are interpretable without considerable loss in accuracy. 43 

 44 

1. Introduction 45 

The last few years have been characterized by an upsurge in the Neural neural Networks networks (NN) 46 

applications in hydrologymodels. As opaque NN models are increasingly being employed to make 47 

important predictions in hydrological systemspredictions, the demand for creating legitimate NN models is 48 

increasing in the hydrology community. However, maintaining coherence while producing accurate 49 

predictions can be a challenging problem (Olivares et al., 2024). There is a general agreement on the 50 

importance of providing probabilistic NN prediction (Samadi et al., 2020), especially in the case of flood 51 

prediction (Martinaitis et al., 2023). 52 

Flood occurrences have witnessed an alarming surge in frequency and severity globally. Jonkman (2005) 53 

studied a natural disaster database (EM-DAT, 2023) and reported that over 27 years, more than 175000 54 

people died, and close to 2.2 billion were affected directly by floods worldwide. These numbers are likely 55 

an underestimation due to unreported events (Nevo et al., 2022). In addition, the United Nations Office for 56 

Disaster Risk Reduction reported that flooding has been the most frequent, widespread weather-related 57 

natural disaster since 1995, claiming over 600,000 lives, affecting around 4 billion people globally, and 58 

causing annual economic damage of more than 100 billion USD (UNISDR, 2015). This escalating trend 59 

has necessitated the need for better flood prediction and management strategies. Scholars have successfully 60 

implemented different flood models such as deterministic (e.g., Roelvink et al., 2009, Thompson and 61 

Frazier, 2014; Barnard et al., 2014; Erikson et al., 2018) and physically based flood models (e.g., Basso et 62 

al., 2016; Chen et al., 2016; Pourreza-Bilondi et al., 2017; Saksena et al., 2019; Refsgaard et al., 2021) in 63 

various environmental systems over the past several decades. These studies have heightened the need for 64 

precise flood prediction, they have also unveiled limitations inherent in existing deterministic and physics-65 
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based models. While evidence suggests that both deterministic and physics-based approaches are 66 

meaningful and useful (Sukovich et al., 2014; Zafarmomen et al., 2024), their forecasts rest heavily on 67 

imprecise and subjective expert opinion; there is a challenge for setting robust evidence-based thresholds 68 

to issue flood warnings and alerts (Palmer, 2012). Moreover, many of these traditional flood models 69 

particularly physically explicit models rely heavily on a particular choice of numerical approximation and 70 

describe multiple process parameterizations only within a fixed spatial architecture (e.g., Clark et al., 2015). 71 

Recent NN models have shown promising results across a large variety of flood modeling applications (e.g., 72 

Nevo et al., 2022; Pally and Samadi, 2022; Dasgupta et al., 2023; Zhang et al., 2023) and encourage the 73 

use of such methodologies as core drivers for neural flood prediction (Windheuser et al., 2023).  74 

Earlier adaptations of these intelligent techniques showed promising results for flood prediction (e.g., Hsu 75 

et al., 1995; Tiwari and Chatterjee, 2010). However, recent efforts have taken NN application to the next 76 

level, providing uncertainty assessment (Sadeghi Tabas and Samadi, 2022) and improvements over various 77 

spatio-temporal scales, regions, and processes (e.g., Kratzert et al., 2018; Park and Lee, 2023; Zhang et al., 78 

2023). Nevo et al., (2022) were the first scholars who employed long short-term memory (LSTM) for flood 79 

stage prediction and inundation mapping, achieving notable success during the 2021 monsoon season. Soon 80 

after, Russo et al. (2023) evaluated various NN models for predicting flood depth in urban systems, 81 

highlighting the potential of data-driven models for urban flood prediction. Similarly, Defontaine et al. 82 

(2023) emphasized the role of NN algorithms in enhancing the reliability of flood predictions, particularly 83 

in the context of limited data availability. Windheuser et al., (2023) studied flood gauge height forecasting 84 

using images and time series data for two gauging stations in Georgia, USA. They used multiple NN models 85 

such as Convolutional Neural Network (ConvNet/CNN) and LSTM to forecast floods in near real-time (up 86 

to 72 hours). In a sequence, Wee et al., (2023) used Impact-Based Forecasting (IBF) to propose a Flood 87 

Impact-Based Forecasting system (FIBF) using flexible fuzzy inference techniques, aiding decision-makers 88 

in a timely response. Zou et al. (2023) proposed a Residual LSTM (ResLSTM) model to enhance and 89 

address flood prediction gradient issues. They integrated Deep Autoregressive Recurrent (DeepAR) with 90 

four recurrent neural networks (RNNs), including ResLSTM, LSTM, Gated Recurrent Unit (GRU), and 91 

Time Feedforward Connections Single Gate Recurrent Unit (TFC-SGRU), ). Theyand showed that 92 

ResLSTM achieved superior accuracy. While these studies reported the superiority of NN models for flood 93 

modeling, they highlighted a number of challenges, notably (i) the limited capability of proposed NN 94 

models to capture the spatial variability and magnitudes of extreme data over time, (ii) the lack of a 95 

sophisticated mechanism to capture different flood magnitudes and synthesize the prediction, and (iii) 96 

inability of the NN models to process data in parallel and capture the relationships between all elements in 97 

a sequential manner. 98 
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Recent advances in neural time series forecasting showed promising results that can be used to address the 99 

above challenges for flood prediction. Recent techniques include the adoption of the attention mechanism 100 

and Transformer-inspired approaches (Fan et al. 2019; Alaa and van der Schaar 2019; Lim et al. 2021) 101 

along with attention-free architectures composed of deep stacks of fully connected layers (Oreshkin et al. 102 

2020).  All of these approaches are relatively easy to scale up in terms of flood magnitudes (small to major 103 

flood predictions), compared to LSTM and have proven to be capable of capturing spatiotemporal 104 

dependencies (Challu et al., 2022). In addition, these architectures can capture input-output relationships 105 

implicitly while they tend to be more computationally efficient. Many state-of-the-art NN approaches for 106 

flood forecasting have been established based on LSTM. There are cell states in the LSTM networks that 107 

can be interpreted as storage capacity often used in flood generation schemes. In LSTM, the updating of 108 

internal cell states (or storages) is regulated through a number of gates: the first gate regulates the storage 109 

depletion, the second one regulates storage fluctuations, and the third gate regulates the storages outflow 110 

(Tabas and Samadi, 2022). The elaborate gated design of the LSTM partly solves the long-term dependency 111 

problem in flood time series prediction (Fang et al., 2020), although, the structure of LSTMs is designed in 112 

a sequential manner that cannot directly connect two nonadjacent portions (positions) of a time series. This 113 

indicates the fact that data dependencies can flow from left to right, rather than in both directions as in the 114 

case of the attention-based and Transformer approaches. 115 

In this paper, we take a step in this direction by developingdeveloped attention-free architecture, i.e.  Neural 116 

Hierarchical Interpolation for Time Series Forecasting (N-HiTS; Challu et al., 2022) and Network-Based 117 

Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS; Oreshkin et al., 2020) and 118 

benchmarked these models with LSTM for flood prediction. We developed fully connected N-BEATS and 119 

N-HiTS architectures using multi-rate data sampling, synthesizing the flood prediction outputs via multi-120 

scale interpolation. 121 

We implemented all algorithms for flood prediction on two headwater streams i.e., the Lower Dog River, 122 

Georgia, and the Upper Dutchmans Creek, North Carolina, USA. We selected two study areas to ensure 123 

that the results are reliable and comparable. The results of N-BEATS and N-HiTS techniques were 124 

compared with the benchmarking LSTM to understand how these techniques can improve the 125 

representations of rainfall and runoff dispensing over a recurrence process. Notably, this study represents a 126 

pioneering effort, as to the best of our knowledge, it this is the first instance in which the application of N-127 

BEATS and N-HiTS algorithms in the field of flood prediction has been explored. The scope of this research 128 

will focus on: 129 

(i)1.     Flood prediction in a hierarchical fashion with interpretable outputs: We built N-BEATS and 130 

N-HiTS for flood prediction with a very deep stack of fully connected layers to implicitly capture input-131 

output relationships with hierarchical interpolation capabilities. The predictions also involve programming 132 
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the algorithms with decreasing complexity and aligning their time scale with the final output through multi-133 

scale hierarchical interpolation and interpretable architecture. Predictions were aggregated in a hierarchical 134 

fashion that enabled the building of a very deep neural network with interpretable configurations. 135 

2.(ii)      Uncertainty quantification of the models by employing probabilistic approaches: a Multi-136 

Quantile Loss (MQL) was used to assess the 95th percentile prediction uncertainty (95PPU) of multiple 137 

flooding events. MQL was integrated as the loss function to account for probabilistic prediction. MQL 138 

trains the model to produce probabilistic forecasts by predicting multiple quantiles of the distribution of 139 

future values.  140 

3.(iii)     Exploring headwater stream response to flooding: Understanding the dynamic response of 141 

headwater streams to flooding is essential for managing downstream flood risks. Headwater streams 142 

constitute the uppermost sections of stream networks, usually comprising 60% to 80% of a catchment area. 143 

Given this substantial coverage and the tendency for precipitation to increase with elevation, headwater 144 

streams are responsible for generating and controlling the majority of runoff in downstream portions 145 

(MacDonald and Coe, 2007).  146 

The remainder of this paper is structured as follows. Section 2 presents the case study and data, NN models, 147 

performance metrics, and sensitivity and uncertainty approaches. Section 3 focuses on the results of flood 148 

predictions including sensitivity and uncertainty assessment and computation efficiency. Finally, Section 4 149 

concludes the paper. 150 

 151 

2. Methodology 152 

2.1. Case Study and Data 153 

This research used two headwater gauging stations located at the Lower Dog River watershed, Georgia 154 

(GA; USGS02337410, Dog River gauging station), and the Upper Dutchmans Creek watershed, North 155 

Carolina (NC; USGS0214269560, Killian Creek gauging station). As depicted in Figures 1 and 2, the Lower 156 

Dog River and the Upper Dutchmans Creek watersheds are located in the west and north parts of two 157 

metropolitan cities, Atlanta and Charlotte. As shown in Figure 1, the Lower Dog River stream gauge is 158 

established southeast of Villa Rica in Carroll County, where the USGS has regularly monitored discharge 159 

data since 2007 in 15-minute increments. The Lower Dog River is a stream with a length of 15.7 miles 160 

(25.3 km; obtained from the U.S. Geological Survey [USGS] National Hydrography Dataset high-161 

resolution flowline data), an average elevation of 851.94 meters, and the watershed area above this gauging 162 

station is 66.5 square miles (172 km2; obtained from the Georgia Department of Natural Resources). This 163 

watershed is covered by 15.2% residential area, 14.6% agricultural land, and  ⁓and ⁓70% forest (Munn et 164 

al., 2020). Killian Creek gauging station at the Upper Dutchmans Creek watershed is established 165 

in Montgomery County, North CarolinaNC, where the USGS has regularly monitored discharge data since 166 
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1995 in 15-minute increments. The Upper Dutchmans Creek is a stream with a length of 4.9 miles (7.9 km), 167 

an average elevation of 642.2 meters (see Table 1), and the watershed area above this gauging station is 4 168 

square miles (10.3 km2) with less than 3% residential area and about 93% forested land use (the United 169 

States Environmental Protection Agency). 170 

  171 

The Lower Dog River has experienced significant flooding in the last decades. For example, in September 172 

2009, the creek, along with most of northern GA, experienced heavy rainfall (5 inches, equal to 94 mm). 173 

The Lower Dog River, overwhelmed by large amounts of overland flow from saturated ground in the 174 

watershed, experienced massive flooding in September 2009 (Gotvald, 2010). The river crested at 33.8 feet 175 

(10.3 m) with a peak discharge of 59,900 cfs (1,700 m3/s), nearly six times the 100-year flood level 176 

(McCallum and Gotvald, 2010). In addition, Dutchmans Creek has experienced significant flooding in 177 

February 2020. According to local news (WCCB Charlotte, 2020), the flood in Gaston County caused 178 

significant infrastructure damage and community disruption. Key impacts included the threatened collapse 179 

of the Dutchman’s Creek bridge in Mt. Holly and the closure of Highway 7 in McAdenville.  , GA.  180 

 181 

Table 1.  The Lower Dog River and Upper Dutchmans Creek’s physical characteristics. 182 

Watershed 
USGS Station ID 

Number  

Average Elevation 

(m) 

Stream Length 

(km) 

Watershed area 

(km2) 

Lower Dog River 

watershed, GA 
USGS02337410 851.9 25.3 172 

Upper Dutchmans Creek 

watershed, NC 
USGS0214269560 642.2 7.9 10.3 

 183 
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 184 

Figure 1.  The Lower Dog River and The Upper Dutchmans Creek watersheds are located in GA and NC. 185 
The proximity of the watersheds to Atlanta and Charlotte (urban area) are also displayed on the map. 186 

 187 

To provide the meteorological forcing data, i.e., precipitation, temperature, and humidity, were extracted 188 

from the National Oceanic and Atmospheric Administration’s (NOAA) Local Climatological Data 189 

(LCD). We used the NOAA precipitation, temperature, and humidity data of Atlanta Hartsfield Jackson 190 

International Airport and Charlotte Douglas Airport stations as an input variable for neural network 191 

algorithms. The data has been monitored since January 1, 1948, and July 22, 1941, with an hourly interval 192 

which was used as an input variable for constructing neural networks. 193 

To fill in the missing values in the data, we used the spline interpolation method. We applied this method 194 

to fill the gaps in time series data, although the missing values were insignificant (less than 1%). In addition, 195 

we employed the Minimum Inter-Event Time (MIT) approach to precisely identify and separate individual 196 

storm events. The MIT-based event delineation is pivotal for accurately defining storm events. This method 197 

allowed us to isolate discrete rainfall episodes, aiding a comprehensive analysis of storm events. Moreover, 198 

it provided a basis for event-specific examination of flood responses, such as initial condition and cessation 199 

(loss), runoff generation, and runoff dynamics. 200 

 201 
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The hourly rainfall dataset consists of distinct rainfall occurrences, some consecutive and others clustered 202 

with brief intervals of zero rainfall. As these zero intervals extend, we aim to categorize them into distinct 203 

events. It's worth noting that even within a single storm event, we often encounter short periods of no 204 

rainfall, known as intra-storm zero values. In the MIT method, we defined a storm event as a discrete rainfall 205 

episode surrounded by dry periods both preceding and following it, determined by an MIT (Asquith et al., 206 

2005; Safaei-Moghadam et al., 2023). There are many means to determine an MIT value. One practical 207 

approximation is using serial autocorrelation between rainfall occurrences. MIT approach uses 208 

autocorrelation that measures the statistical dependency of rainfall data at one point in time with data at 209 

earlier, or lagged times within the time series. The lag time represents the gap between data points being 210 

correlated. When the lag time is zero, the autocorrelation coefficient is unity, indicating a one-to-one 211 

correlation. As the lag time increases, the statistical correlation diminishes, converging to a minimum value. 212 

This signifies the fact that rainfall events become progressively less statistically dependent or, in other 213 

words, temporally unrelated. To pinpoint the optimal MIT, we analyzed the autocorrelation coefficients for 214 

various lag times, observing the point at which the coefficient approaches zero. This lag time signifies the 215 

minimum interval of no rainfall, effectively delineating distinct rainfall events.  216 

2.2. Neural NetworkNN Algorithms  217 

2.2.1. LSTM 218 

LSTM is an RNN architecture widely used as a benchmark model for flood neural time series 219 

modeling. LSTM networks are capable of selectively learning order dependence in sequence prediction 220 

problems (Sadeghi Tabas and Samadi, 2022). These networks are powerful because they can capture the 221 

temporal features, especially the long-term dependencies (Hochreiter et al., 2001), and are independent of 222 

the length of the input data sequences meaning that each sample is independent from another one. 223 

The memory cell state within LSTM plays a crucial role in capturing extended patterns in data, making it 224 

well-suited for dynamic time series modeling such as flood prediction. An LSTM cell uses the following 225 

functions to compute flood prediction. 226 

𝑖𝑡 =  𝜎(𝐴𝑖𝑥𝑡  +  𝐵𝑖ℎ𝑡−1 +  𝑐𝑖) (Equation 1) 

𝑓𝑡 =  𝜎(𝐴𝑓𝑥𝑡  +  𝐵𝑓ℎ𝑡−1 +  𝑐𝑓) (Equation 2) 

𝑜𝑡 =  𝜎(𝐴𝑜𝑥𝑡  +  𝐵𝑜ℎ𝑡−1 +  𝑐𝑜) (Equation 3) 

https://pubs.usgs.gov/publication/70176110
https://pubs.usgs.gov/publication/70176110
https://nhess.copernicus.org/articles/23/1/2023/nhess-23-1-2023-discussion.html
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𝑚𝑡 =  𝑓𝑡  ⨀ 𝑚𝑡−1  + 𝑖𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝐴𝑔𝑥𝑡  +  𝐵𝑔ℎ𝑡−1 +  𝑐𝑔) (Equation 4) 

ℎ𝑡 =  𝑜𝑡  ⨀ 𝑡𝑎𝑛ℎ(𝑚𝑡) (Equation 5) 

Where 𝑥𝑡 and ℎ𝑡  represent the input and the hidden state at time step t, respectively. ⊙ denotes element-227 

wise multiplication, 𝑡𝑎𝑛ℎ stands for the hyperbolic tangent activation function, and 𝜎 represents the 228 

sigmoid activation function. 𝐴, 𝐵, and 𝑐 are trainable weights and biases that undergo optimization during 229 

the training process. 𝑚𝑡  and ℎ𝑡 are cell states at time step t that are employed in the input processing for 230 

the next time step. 𝑚𝑡  represents the memory state responsible for preserving long-term information, while 231 

ℎ𝑡 represents the memory state preserving short-term information. The LSTM cell consists of a forget gate 232 

ft, an input gate it and an output gate ot and has a cell state mt. At every time step t, the cell gets the data 233 

point xt with the output of the previous cell ht−1 (Windheuser et al., 2023). The forget gate then defines if 234 

the information is removed from the cell state, while the input gate evaluates if the information should be 235 

added to the cell state and the output gate specifies which information from the cell state can be used for 236 

the next cells.  237 

We used two LSTM layers with 128 cells in the first two hidden layers as encoder layers, which were then 238 

connected to two multilayer perceptron (MLP) layers with 128 neurons as decoder layers. The LSTM 239 

simulation was performed with these input layers along with the Adam optimizer (Kingma and Ba, 240 

2014), tanh activation function, and a single lagged dependent-variable value to train with a learning rate 241 

of 0.001. The architecture of the proposed LSTM model is illustrated in Figure 2. 242 
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 243 

Figure 2. The structure of LSTM programmed in this research. We used tanh and sigmoid as activation 244 
functions along with 2 layers of LSTM, 2 layers of MLP, and 128 cells in each layer.  245 

 246 

2.2.2. N-BEATS 247 

N-BEATS is a deep learning architecture based on backward and forward residual links and the very deep 248 

stack of fully connected layers specifically designed for sequential data forecasting tasks (Oreshkin et al., 249 

2020). This architecture has a number of desirable properties including interpretability. The N-BEATS 250 

architecture distinguishes itself from existing architectures in several ways. First, the algorithm approaches 251 

forecasting as a non-linear multivariate regression problem instead of a sequence-to-sequence 252 

challenge.  Indeed, the core component of this architecture (as depicted in Figure 3) is a fully connected 253 

non-linear regressor, which takes the historical data from a time series as input and generates multiple data 254 

points for the forecasting horizon. Second, the majority of existing time series architectures are quite limited 255 

in depth, typically consisting of one to five LSTM layers. N-BEATS employs the residual principle to stack 256 

a substantial number of layers together, as illustrated in Figure 3. In this configuration, the basic block not 257 

only predicts the next output but also assesses its contribution to decomposing the input, a concept that is 258 

referred to as "backcast" (see Oreshkin et al. 2020). 259 
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 262 

 263 

The basic building block in the architecture features a fork-like structure, as illustrated in Figure 3 (bottom). 264 

The 𝑙-th block (for the sake of brevity, the block index 𝑙 is omitted from Figure 3) takes its respective input, 265 

𝑥𝑙, and produces two output vectors: 𝑥𝑙 and 𝑦̂𝑙. In the initial block of the model, 𝑥𝑙 corresponds to the 266 

overall model input, which is a historical lookback window of a specific length, culminating with the most 267 

recent observed data point. For the subsequent blocks, 𝑥𝑙 is derived from the residual outputs of the 268 

preceding blocks. Each block generates two distinct outputs: 1. 𝑦̂𝑙: This represents the forward forecast of 269 

the block, spanning a duration of H time units. 2. 𝑥𝑙: This signifies the block's optimal estimation of 𝑥𝑙, 270 

which is referred to “backcast.” This estimation is made within the constraints of the functional space 271 

available to the block for approximating signals (Oreshkin et al., 2020). 272 

Internally, the fundamental building block is composed of two elements. The initial element involves a 273 

fully connected network, which generates forward expansion coefficient predictors, 𝜃𝑙
𝑓
, and a backward 274 

expansion coefficient predictor, 𝜃𝑙
𝑏. The second element encompasses both backward basis layers, 𝑔𝑙

𝑏, and 275 

forward basis layers, 𝑔𝑙
𝑓

. These layers take the corresponding forward 𝜃𝑙
𝑓
and backward 𝜃𝑙

𝑏expansion 276 

coefficients as input, conduct internal transformations using a set of basis functions, and ultimately yield 277 

the backcast, 𝑥𝑙, and the forecast outputs, 𝑦̂𝑙, as previously described by Oreshkin et al. (2020). The 278 

following equations describe the first element: 279 

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙),    ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1),     ℎ𝑙,3 = 𝐹𝐶𝑙,3(ℎ𝑙,2),       ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3). (Equation 6) 

𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4),        𝜃𝑙
𝑏 = LINEAR𝑙

𝑏(ℎ𝑙,4) (Equation 7) 

The LINEAR layer, in essence, functions as a straightforward linear projection, meaning 𝜃𝑙
𝑓

=  𝑊𝑙
𝑓

ℎ𝑙,4. As 280 

for the fully connected (FC) layer, it takes on the role of a conventional FC layer, incorporating RELU non-281 

linearity as an activation function.  282 

The second element performs the mapping of expansion coefficients 𝜃𝑙
𝑓
and 𝜃𝑙

𝑏 to produce outputs using 283 

basis layers, resulting in 𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) and 𝑥𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏). This process is defined by the following equation:  284 
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𝑦̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

dim (𝜃𝑙
𝑓

)

𝑖=1

,        𝑥̂𝑙 =  ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

dim (𝜃𝑙
𝑏)

𝑖=1

 (Equation 8) 

Within this context, 𝑣𝑖
𝑓

 and 𝑣𝑖
𝑏 represent the basis vectors for forecasting and backcasting, respectively, 285 

while 𝜃𝑙,𝑖
𝑓

 corresponds to the i-th element of 𝜃𝑙
𝑓
.  286 

The N-BEATS uses a novel hierarchical doubly residual architecture which is illustrated in Figure 3 (top 287 

and middle). This framework incorporates two residual branches, one traversing the backcast predictions 288 

of each layer, while the other traverses the forecast branch of each layer. The following equation describes 289 

this process: 290 

𝑥𝑙 =  𝑥𝑙−1 −  𝑥̂𝑙−1     ,     𝑦̂ = ∑ 𝑦̂𝑙

𝑙

 (Equation 9) 

As mentioned earlier, in the specific scenario of the initial block, its input corresponds to the model-level 291 

input 𝑥. In contrast, for all subsequent blocks, the backcast residual branch 𝑥𝑙 can be conceptualized as 292 

conducting a sequential analysis of the input signal. The preceding block eliminates the portion of the signal 293 

𝑥𝑙−1 that it can effectively approximate, thereby simplifying the prediction task for downstream blocks. 294 

Significantly, each block produces a partial forecast 𝑦̂𝑙 , which is initially aggregated at the stack level and 295 

subsequently at the overall network level, establishing a hierarchical decomposition. The ultimate forecast 296 

𝑦̂ is the summation of all partial forecasts (Oreshkin et al., 2020). 297 

The N-BEATS model has two primary configurations: generic and interpretable. These configurations 298 

determine how the model structures its blocks and how it processes time series data. In the generic 299 

configuration, the model uses a stack of generic blocks that are designed to be flexible and adaptable to 300 

various patterns in the time series data. Each generic block consists of fully connected layers with ReLU 301 

activation functions. The key characteristic of the generic configuration is its flexibility. Since the blocks 302 

are not specialized for any specific pattern (like trend or seasonality), they can learn a wide range of patterns 303 

directly from the data (Oreshkin et al., 2020). In the interpretable configuration, the model architecture 304 

integrates distinct trend and seasonality components. This involves structuring the basis layers at the stack 305 

level specifically to model these elements, allowing the stack outputs to be more easily understood. 306 

Trend Model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are polynomials of a small degree p, functions that vary slowly 307 

across the forecast window, to replicate monotonic or slowly varying nature of trends: 308 

https://arxiv.org/pdf/1905.10437.pdf
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𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

𝑡𝑖

𝑝

𝑖=0

 (Equation 10) 

The time vector 𝑡 = [0, 1, 2, … , 𝐻 − 2, 𝐻 − 1]𝑇/𝐻 is specified on a discrete grid ranging from 0 to 309 

(H−1)/H, projecting H steps into the future. Consequently, the trend forecast represented in matrix form is: 310 

𝑦̂𝑠,𝑙
𝑡𝑟 = 𝑇𝜃𝑠,𝑙

𝑓
 (Equation 11) 

 311 

Where the polynomial coefficients, 𝜃𝑠,𝑙
𝑓

, predicted by an FC network at layer l of stack s, are described by 312 

Equations (6) and (7). The matrix T, consisting of powers of t, is represented as [1, 𝑡, . . . , 𝑡𝑝]. When p is 313 

small, such as 2 or 3, it compels 𝑦̂𝑠,𝑙
𝑡𝑟to emulate a trend (Oreshkin et al., 2020). 314 

Seasonality model: In this stack 𝑔𝑠,𝑙
𝑏  and 𝑔𝑠,𝑙

𝑓
 are periodic functions, to capture the cyclical and recurring 315 

characteristics of seasonality, such that 𝑦𝑡 = 𝑦𝑡−∆, where ∆ is the seasonality period. The Fourier series 316 

serves as a natural foundation for modeling periodic functions: 317 

𝑦̂𝑠,𝑙 = ∑ 𝜃𝑠,𝑙,𝑖
𝑓

cos(2𝜋𝑖𝑡) + 𝜃𝑠,𝑙,𝑖+[𝐻/2]
𝑓

sin(2𝜋𝑖𝑡)

𝐻
2

−1

𝑖=0

 (Equation 12) 

 318 

Consequently, the seasonality forecast is represented in the following matrix form: 319 

𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 = 𝑆𝜃𝑠,𝑙

𝑓
 (Equation 13) 

𝑆 = [1, cos(2𝜋𝑡) , … , cos (2𝜋 [
𝐻

2
− 1] 𝑡) , sin(2𝜋𝑡), … , sin (2𝜋 [

𝐻

2
− 1] 𝑡) (Equation 14) 

 320 

Where the Fourier coefficients 𝜃𝑠,𝑙
𝑓

, that predicted by an FC network at layer l of stack s, are described by 321 

Equations (6) and (7). The matrix 𝑆 represents sinusoidal waveforms. As a result, the forecast 𝑦̂𝑠,𝑙
𝑠𝑒𝑎𝑠 322 

becomes a periodic function that imitates typical seasonal patterns (Oreshkin et al., 2020). 323 
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 325 

Figure 3. The N-BEATS modeling structure used in this research.  326 

 327 

2.2.3. N-HiTS 328 

N-HiTS builds upon the N-BEATS architecture but with improved accuracy and computational efficiency 329 

for long-horizon forecasting. N-HiTS utilizes multi-rate sampling and multi-scale synthesis of forecasts, 330 

leading to a hierarchical forecast structure that lowers computational demands and improves prediction 331 

accuracy (Challu et al., 2022). 332 

Like N-BEATS, N-HiTS employs local nonlinear mappings onto foundational functions within numerous 333 

blocks. Each block includes an MLP that generates backcast and forecast output coefficients. The backcast 334 

output refines the input data for the following blocks, and the forecast outputs are combined to generate the 335 

final prediction. Blocks are organized into stacks, with each stack dedicated to grasping specific data 336 

attributes using its own distinct set of functions. The network's input is a sequence of L lags (look-back 337 

period), with S stacks, each containing B blocks (Challu et al., 2022). 338 

Formatted: Font: 11 pt
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In each block, a MaxPool layer with varying kernel sizes (𝑘𝑙) is employed at the input, enabling the block 339 

to focus on specific input components of different scales. Larger kernel sizes emphasize the analysis of 340 

larger-scale, low-frequency data, aiding in improving long-term forecasting accuracy. This approach, 341 

known as multi-rate signal sampling, alters the effective input signal sampling rate for each block's MLP 342 

(Challu et al., 2022). 343 

Additionally, multi-rate processing has several advantages. It reduces memory usage, computational 344 

demands, the number of learnable parameters, and helps prevent overfitting, while preserving the original 345 

receptive field. The following operation is applicable to the input 𝑦𝑡−𝐿:𝑡,𝑙 of each block, with the first block 346 

(𝑙 = 1) using the network-wide input, where 𝑦𝑡−𝐿:𝑡,1  ≡  𝑦𝑡−𝐿:𝑡. 347 

𝑦𝑡−𝐿:𝑡,𝑙 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑦𝑡−𝐿:𝑡,𝑙 , 𝑘𝑙) (Equation 15) 

In many multi-horizon forecasting models, the number of neural network predictions matches the horizon's 348 

dimensionality, denoted as H. For instance, in N-BEATS, the number of predictions |𝜃𝑙
𝑓

| =  𝐻. This results 349 

in a significant increase in computational demands and an unnecessary surge in model complexity as the 350 

horizon H becomes larger (Challu et al., 2022).  351 

To address these challenges, N-HiTS proposes the use of temporal interpolation. This model manages the 352 

parameter counts per unit of output time (|𝜃𝑙
𝑓

| = ⌈𝑟𝑙  𝐻⌉) by defining the dimensionality of the interpolation 353 

coefficients with respect to the expressiveness ratio 𝑟𝑙. To revert to the original sampling rate and predict 354 

all horizon points, this model employs temporal interpolation through the function g: 355 

𝑦̂𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑓

), ∀𝜏 ∈  {𝑡 +  1, . . . , 𝑡 +  𝐻}, (Equation 16) 

𝑦̃𝜏,𝑙  =  𝑔(𝜏, 𝜃𝑙
𝑏), ∀𝜏 ∈  {𝑡 −  𝐿, . . . , 𝑡}, (Equation 17) 

𝑔(𝜏, 𝜃) =  𝜃[𝑡1] + (
𝜃[𝑡2] −  𝜃[𝑡1]

𝑡2 − 𝑡1
) (𝜏 −  𝑡1) (Equation 18) 

𝑡1  = arg min
𝑡∈𝜏:𝑡≤𝜏

𝜏 − 𝑡 ,      𝑡2 =   𝑡1 + 1/𝑟𝑙 (Equation 19) 

The hierarchical interpolation approach involves distributing expressiveness ratios over blocks, integrated 356 

with multi-rate sampling. Blocks closer to the input employ more aggressive interpolation, generating lower 357 

granularity signals. These blocks specialize in analyzing more aggressively subsampled signals. The final 358 

hierarchical prediction, 𝑦̂𝑡+1:𝑡+𝐻, is constructed by combining outputs from all blocks, creating 359 
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interpolations at various time-scale hierarchy levels. This approach maintains a structured hierarchy of 360 

interpolation granularity, with each block focusing on its own input and output scales (Challu et al., 2022). 361 

To manage a diverse set of frequency bands while maintaining control over the number of parameters, 362 

exponentially increasing expressiveness ratios are recommended. As an alternative, each stack can be 363 

dedicated to modeling various recognizable cycles within the time series (e.g., weekly, or daily) employing 364 

matching 𝑟𝑙. Ultimately, the residual obtained from backcasting in the preceding hierarchy level is 365 

subtracted from the input of the subsequent level, intensifying the next-level block's attention on signals 366 

outside the previously addressed band (Challu et al., 2022). 367 

𝑦̂𝑡+1:𝑡+𝐻  = ∑ 𝑦̂𝑡+1:𝑡+𝐻,𝑙

𝐿

𝑙=1

 (Equation 20) 

𝑦𝑡−𝐿:𝑡,𝑙+1  = 𝑦𝑡−𝐿:𝑡,𝑙 −  𝑦̃𝑡−𝐿:𝑡,𝑙 (Equation 21) 
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 369 

Figure 4. The structure of N-HiTS model programmed in this study. The architecture includes several 370 
Stacks, each Stack includes several Block, where each block consists of a MaxPool layer and a multi-371 

layer which learn to produce coefficients for the backcast and forecast outputs of its basis. 372 

2.3. Performance Metrics  373 

To comprehensively evaluate the accuracy of flood predictions, we utilized a suite of metrics, including 374 

Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), persistent Nash-Sutcliffe Efficiency (persistent-375 

NSE), Kling–Gupta efficiency (KGE; Gupta et al. 2009), Root Mean Square Error (RMSE), Mean 376 

Absolute Error (MAE), Peak Flow Error (PFE), and Time to Peak Error (TPE; Evin et al., 2023; Lobligeois 377 

et al., 2014). These metrics collectively facilitate a rigorous assessment of the model's performance in 378 

reproducing the magnitude of observed peak flows and the shape of the hydrograph.   379 

The Nash–Sutcliffe model efficiency coefficient (NSE; Nash and Sutcliffe, 1970) measures the model's 380 

ability to explain the variance in observed data and assesses the goodness-of-fit by comparing the observed 381 

and simulated hydrographs. In hydrological studies, the NSE index is a widely accepted measure for 382 

evaluating the fitting quality of models (McCuen et al., 2006). It is calculated as: 383 

https://www.sciencedirect.com/science/article/pii/S0022169409004843?via%3Dihub
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𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖)
2𝑛

𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜

̅̅̅̅ )
2𝑛

𝑖=1

 (Equation 22) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, 𝑄𝑜
̅̅̅̅  is the mean 384 

observed values and n is the number of data points. An NSE value of 1 indicates a perfect match between 385 

the observed and modeled data, while lower values represent the degree of departure from a perfect fit. 386 

As the models are designed to predict one hour ahead, the persistent-NSE is essential for evaluating their 387 

performance. The standard NSE measures the model's sum of squared errors relative to the sum of squared 388 

errors when the mean observation is used as the forecast value. In contrast, persistent-NSE uses the most 389 

recent observed data as the forecast value for comparison (Nevo et al., 2022). The persistent-NSE is 390 

calculated as: 391 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 − 𝑁𝑆𝐸 = 1 − 
∑ (𝑄𝑠𝑖

− 𝑄𝑜𝑖)
2𝑛

𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜𝑖−1)

2𝑛
𝑖=1

 (Equation 23) 

Where 𝑄𝑜𝑖
 represents the observed value at time 𝑖, 𝑄𝑠𝑖

 represents the simulated value at time 𝑖, 𝑄𝑜𝑖−1
is the 392 

observed value at the last time step (𝑖 − 1) and n is the number of data points.  393 

The KGE is a widely used performance metric in hydrological modeling and combines multiple aspects of 394 

model performance, including correlation, variability bias, and mean bias. The KGE metric is calculated 395 

using the following equation: 396 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (Equation 24) 

Where r represents Pearson correlation coefficient between observed 𝑄𝑜 and simulated 𝑄𝑠 values. 397 

𝛼 represents bias ratio, calculated as 𝛼 =
𝜇𝑠

𝜇𝑜
 where 𝜇𝑠 and 𝜇𝑜 are the means of simulated and observed data, 398 

respectively. 𝛽 represents variability ratio, calculated as 𝛽 =
𝜎𝑠

𝜇𝑠⁄
𝜎𝑜

𝜇𝑜⁄
 where 𝜎𝑠 and 𝜎𝑜 are the standard 399 

deviations of simulated and observed data, respectively. 400 

RMSE quantifies the average magnitude of errors between observed and modeled values, offering insights 401 

into the absolute goodness-of-fit, while MAE is a measure of the average absolute difference between the 402 

modeled values and the observed values and provides a measure of the average magnitude of errors. RMSE 403 

is calculated as: 404 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑄𝑜𝑖

− 𝑄𝑠𝑖
)2

𝑛

𝑖=1

 
(Equation 

2425) 

and MAE is calculated as: 405 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑄𝑜𝑖

− 𝑄𝑠𝑖|

𝑛

𝑖=1

 
(Equation 

2526) 

Where 𝑄𝑜𝑖
 represents observed value at time 𝑖, 𝑄𝑠𝑖

 represents simulated value at time 𝑖, and n is the number 406 

of data points. RMSE and MAE provide information about the magnitude of modeling errors, with smaller 407 

values indicating a better model fit.  408 

PFE quantifies the magnitude disparity between observed and modeled peak flow values. The PFE metric 409 

is defined as:  410 

𝑃𝐹𝐸 =  
|𝑄𝑜 𝑚𝑎𝑥

− 𝑄𝑠 𝑚𝑎𝑥|

𝑄𝑜 𝑚𝑎𝑥

 
(Equation 

2627) 

Where 𝑄𝑜 𝑚𝑎𝑥
 represents the observed peak flow value, and 𝑄𝑠 𝑚𝑎𝑥

 signifies the simulated peak flow value. 411 

The PFE metric, expressed as a dimensionless value, provides a quantitative measure of the relative error 412 

in predicting peak flow magnitudes concerning the observed values. A smaller PFE denotes more accurate 413 

modeling of peak flow magnitudes, with a value of zero indicating a perfect match. 414 

TPE assesses the temporal alignment of peak flows in the observed and modeled hydrographs. The TPE 415 

metric is computed as: 416 

𝑇𝑃𝐸 =  |𝑇𝑜 𝑚𝑎𝑥
−  𝑇𝑠 𝑚𝑎𝑥| 

(Equation 

2728) 

Where 𝑇𝑜 𝑚𝑎𝑥
 signifies the time at which the peak flow occurs in the observed hydrograph, and 𝑇𝑠 𝑚𝑎𝑥

 417 

represents the time at which the peak flow occurs in the simulated hydrograph. TPE that is measured in 418 

units of time (hours), provides insight into the precision of peak flow timing. Smaller TPE values indicate 419 

a superior alignment between the observed and modeled peak flow timing, while larger TPE values indicate 420 

discrepancies in the temporal occurrence of peak flows. 421 
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The utilization of these five metrics, PFE, persistent-NSE, TPE, NSE, and RMSE, collectively provides a 422 

robust and multifaceted assessment of flood prediction performance. This approach ensures that both the 423 

magnitude and timing of peak flows, as well as the overall hydrograph shape, are accurately calibrated and 424 

validated. 425 

2.4. Sensitivity and Uncertainty Analysis  426 

When implementing NN models, it's crucial to understand how each parameter affects the model's 427 

performance or outputs. To achieve this, we systematically excluded each parameter from the model one 428 

by one (the Leave-One-Out method). For each exclusion, we retrained the model without that specific 429 

parameter and then tested its performance against a test dataset. This method helps in understanding which 430 

parameters are most critical to the model's performance and which ones have a lesser impact. It also allows 431 

us to identify any parameters that may be redundant or have little effect on the overall outcome, thus 432 

potentially simplifying the model without sacrificing accuracy. 433 

In this study, we utilized probabilistic approaches to quantify the uncertainty in flood prediction. This 434 

method is rooted in statistical techniques employed for the estimation of unknown probability distributions, 435 

with a foundation in observed data. More specifically, we leveraged the Maximum Likelihood Estimation 436 

(MLE) approach, which entails the determination of parameter values that optimize the likelihood function. 437 

The likelihood function quantifies the probability of parameters taking particular values, given the observed 438 

realizations. 439 

Within our models, wWe incorporated the MQL as a probabilistic error metric into the algorithmic 440 

architecture. MQL performs an evaluation by computing the average loss for a predefined set of quantiles. 441 

This computation is grounded in the absolute disparities between predicted quantiles and their 442 

corresponding observed values. By considering multiple quantile levels, MQL provides a comprehensive 443 

assessment of the model’s ability to capture the distribution of the target variable, rather than focusing 444 

solely on point estimates.  445 

The MQL metric also aligns closely with the Continuous Ranked Probability Score (CRPS), a standard tool 446 

for evaluating predictive distributions. CRPS measures the difference between the predicted cumulative 447 

distribution function and the observed values by integrating over all possible quantiles. The limited behavior 448 

of MQL serves as an apt metric for assessing the accuracy of predictive distribution 𝐹̂𝑡, facilitated through 449 

the Continuous Ranked Probability Score (CRPS). The computation of CRPS involves a numerical 450 

integration technique that discretizes quantiles and applies a left Riemann approximation for CRPS integral 451 



23 

 

computation. This process culminates in the averaging of these computations over uniformly spaced 452 

quantiles, providing a robust evaluation of the predictive distribution 𝐹̂𝑡..  453 

To calculate the 95th percentile prediction uncertaintyPPU, we utilized the 0.95 quantile level within the 454 

MQL. This quantile level directly corresponds to the 95th percentile of the predicted distribution, providing 455 

an estimate of the 95% confidence interval. By examining the model's performance at this specific quantile, 456 

we effectively assessed its ability to accurately capture the predicted values with 95% confidence. 457 

Incorporating MQL as a central metric in our study underscores its suitability for probabilistic forecasting, 458 

particularly in the context of uncertainty quantification. Unlike traditional error metrics that focus on point 459 

predictions, MQL captures both central tendencies and variability by penalizing errors symmetrically across 460 

quantiles. This property ensures balanced and reliable assessments of the predictive distribution, ultimately 461 

enhancing the robustness and interpretability of flood prediction models. 462 

MQL (𝑄𝜏 , [𝑄̂𝜏
𝑞1  , … , 𝑄̂𝜏

𝑞𝑖]) =  
1

𝑛
 ∑  QL (𝑄𝜏 , 𝑄̂𝜏

𝑞𝑖)

𝑞𝑖

 
(Equation 

2829) 

CRPS (𝑄𝜏 , 𝐹̂𝜏) =  ∫ QL (𝑄𝜏 , 𝑄̂𝜏
𝑞𝑖)𝑑𝑞

1

0

 
(Equation 

2930) 

QL (𝑄𝜏 , 𝑄̂𝜏
𝑞

) =  
1

𝐻
 ∑ ((1 − 𝑞) (𝑄̂𝜏

𝑞
 −  𝑄𝜏) + 𝑞(𝑄𝜏  −  𝑄̂𝜏

𝑞
 ))

𝑡+𝐻

𝜏=𝑡+1

 
(Equation 

3031) 

Where 𝑄𝜏 represents observed value at time 𝜏, 𝑄̂𝜏
𝑞
 represents simulated value at time 𝜏, q is the slope of the 463 

quantile loss, and H is the horizon of forecasting. 464 
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 465 

Figure 5. The MQL function which shows loss values for different parameters of q when the true value is 466 
𝑄𝜏. 467 

Furthermore, we employed two key indices, the R-factor Factor and the P-Ffactor, to rigorously assess the 468 

quality of uncertainty performance in our hydrological modeling. These metrics are instrumental in 469 

quantifying the extent to which the model's predictions encompass the observed data, thereby providing 470 

valuable insights into the model's predictive accuracy and reliability. 471 

The P-factorFactor, or percentage of data within a 95PPU, is the first index used in this assessment. The P-472 

factor Factor quantifies the percentage of observed data that falls within the 95PPU, providing a measure 473 

of the model's predictive accuracy. The P-factor Factor can theoretically vary from 0% to a maximum of 474 

100%. A P-factor Factor of 100% signifies a perfect alignment between the model's predictions and the 475 

observed data within the uncertainty band. In contrast, a lower P-factor Factor indicates a reduced ability 476 

of the model to predict data within the specified uncertainty range. 477 

𝑃 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑟𝑎𝑘𝑒𝑡𝑒𝑑 𝑏𝑦 95𝑃𝑃𝑈

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
× 100 

(Equation 

3132) 

The R-factor Factor can be computed by dividing the average width of the uncertainty band by the standard 478 

deviation of the measured variable. The R-factorFactor, with a minimum possible value of zero, provides a 479 

measure of the spread of the uncertainty relative to the variability of the observed data. Theoretically, the 480 

R-factor Factor spans from 0 to infinity, and a value of zero implies that the model's predictions precisely 481 
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match the measured data, with the uncertainty band being very narrow in relation to the variability of the 482 

observed data. 483 

𝑅 − 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 95𝑃𝑃𝑈 𝑏𝑎𝑛𝑑

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
× 100 

(Equation 

3233) 

In practice, the quality of the model is assessed by considering the 95% prediction band with the highest P-484 

factor Factor and the lowest R-factorFactor. This specific band encompasses the majority of observed 485 

records, signifying the model's ability to provide accurate and reliable predictions while effectively 486 

quantifying uncertainty. A simulation with a P-factor Factor of 1 and an R-factor Factor of 0 signifies an 487 

ideal scenario where the model precisely matches the measured data within the uncertainty band 488 

(Abbaspour et al., 2007). 489 

Figure 6 shows the workflow of programming N-BEATS, N-HiTS, and LSTM for flood prediction. As 490 

illustrated, the initial step involved cleaning and preparing the input data, which was then used to feed the 491 

models. The workflow for each model and their output generation processes are depicted in Figure 6. We 492 

segmented the storm events using the MIT approach, as previously described. Following this, we conducted 493 

a sensitivity analysis using the Leave-One-Out method and performed uncertainty analysis using the MLE 494 

approach to construct the 95PPU band. This rigorous methodology ensures a robust evaluation of model 495 

performance under varying conditions and highlights the models' predictive reliability and resilience. We 496 

employed the “NeuralForecast” Python package to develop the N-BEATS, N-HiTS, and LSTM models. 497 

This package provides a diverse array of NN models with an emphasis on usability and robustness.  498 

 499 
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 500 

 501 

Figure 6. The workflow of N-BEATS, N-HiTS, and LSTM implementation. The upper section of the 502 
figure illustrates multiple steps from data preprocessing to model evaluation. The lower section provides a 503 
detailed view of the workflow and implementation for each model, highlighting the specific processes and 504 
methodologies employed in generating the outputs. Backpropagation Through Time (BPTT) trains LSTM 505 
by unrolling the model through time, computing gradients for each time step, and updating weights based 506 

on temporal dependencies. 507 

 508 

3. Results and Discussion 509 

3.1. Independent Storms Delineation 510 

MIT’s contextual delineation of storm events laid the groundwork for in-depth evaluation of rainfall events, 511 

enabling isolation and separation of rainfall events that led to significant flooding events. The nuanced 512 

outcomes of the MIT assessment contributed significantly to the understanding of rainfall variability and 513 

distribution as the dominant contributor to flood generation. 514 
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During modeling implementation, the initial imperative was the precise distinction of storm events within 515 

the precipitation time series data of each case study. Our findings demonstrate that on average a dry period 516 

of 7 hours serves as the optimal MIT time for both of our case studies. This outcome signifies that when a 517 

dry interval of more than 7 hours transpires between two successive rainfall events, these subsequent 518 

rainfalls should be considered two distinct storm events. This determination underlines the temporal 519 

threshold necessary for distinguishing between individual meteorological phenomena in two case studies. 520 

3.2. Hyperparameter Optimization 521 

In the context of hyperparameter optimization, we systematically considered and tuned various 522 

hyperparameters for the N-HiTS, N-BEATS, and LSTM. Following extensive exploration and fine-tuning 523 

of these hyperparameters, the optimal configurations were identified (see Table 2). For the N-HiTS model, 524 

the most favorable outcomes were achieved with the following hyperparameter settings: 2000 epochs, 525 

"identity" for scaler type, a learning rate of 0.001, a batch size of 32, input size of 24 hours, "identity" for 526 

stack type, 512 units for hidden layers of each stack, step size of 1, MQLoss as loss function, and "ReLU" 527 

for the activation function. As shown in Table 2, the N-HiTS model demonstrated superior performance 528 

with 4 stacks, containing 2 blocks each, and corresponding coefficients of 48, 24, 12, and 1, showcasing 529 

the significance of these settings for flood prediction.  530 

This hyperparameter optimization was also conducted for the N-BEATS model. In this model, we 531 

considered 2000 epochs, 3 stacks with 2 blocks, “identity” for scaler type, a learning rate of 0.001, a batch 532 

size of 32, input size of 24 hours, “identity” for stack type, 512 units for hidden layers of each stack, step 533 

size of 1, MQLoss as loss function, and “ReLU” for the activation function.  534 

Moreover, the LSTM as a benchmark model yielded its best results with 5000 epochs, an input size of 24 535 

hours, "identity" as the scaler type, a learning rate of 0.001, a batch size of 32, and "tanh" as the activation 536 

function. Furthermore, the LSTM's hidden state was most effective with two layers containing 128 units, 537 

and the MLP decoder thrived with two layers encompassing 128 units. These meticulously optimized 538 

hyperparameter settings represent the culmination of efforts to ensure that each model operates at its peak 539 

potential, facilitating accurate flood prediction. 540 

Table 2. Optimized values for the models hyperparameters. 541 

Hyperparameter N-HiTS N-BEATS LSTM 

Epoch 2000 2000 5000 

Scaler type identity identity standard 
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Learning rate 0.001 0.001 0.001 

Batch size 32 32 32 

Input size 24 hours 24 hours 24 hours 

Stack type 
Seasonality, trend, 

identity, identity 

Seasonality, 

trend, identity 
* 

Number of units in each 

hidden layer 
512 512 128 

Loss function MQLoss MQLoss MQLoss 

Activation function ReLU ReLU tanh 

Number of stacks 4 3 * 

Number of blocks in each 

stack 
2 2 * 

Stacks’ coefficients 48,24,12,1 * * 

*Not applicable 542 

In Table 2, "epoch" refers to the number of training steps, and "scaler type" indicates the type of scaler used 543 

for normalizing temporal inputs. The "learning rate" specifies the step size at each iteration while optimizing 544 

the model, and the "batch size" represents the number of samples processed in one forward and backward 545 

pass. The "loss function" quantifies the difference between the predicted outputs and the actual target 546 

values, while the "activation function" determines whether a neuron should be activated. The "stacks' 547 

coefficients" in the N-HITS model control the frequency specialization for each stack, enabling effective 548 

handling of different frequency components in the time series data. 549 

Another hyperparameter for all three models is input size, which is a parameter that determines the 550 

maximum sequence length for truncated backpropagation during training and the number of autoregressive 551 

inputs (lags) that the models considered for prediction. Essentially, input size represents the length of the 552 

historical series data used as input to the model. This parameter offers flexibility in the models, allowing 553 

them to learn from a defined window of past observations, which can range from the entire historical dataset 554 

to a subset, tailored to the specific requirements of the prediction task. In the context of flood prediction, 555 

determining the appropriate input size is crucial to adequately capture the meteorological data preceding 556 

the flood event. To address this, we calculated the time of concentration (TC) of the watershed system and 557 

set the input size to exceed this duration. According to the Natural Resources Conservation Service (NRCS), 558 

for typical natural watershed conditions, the TC can be calculated from lag time, the time between peak 559 

rainfall and peak discharge, using the formula: 𝐿𝑎𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝐶 ×  0.6 (NRCS, 2009). Specifically, the 560 
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average TC in the Lower Dog River watershed and Upper Dutchmans Creek watershed was found to be 19 561 

and 22 hours, respectively. As these represent the average TC for our case studies, we selected the 24 hours 562 

for input data, slightly longer than the averagecalculated avaerage TC, ensuring sufficient coverage of 563 

relevant meteorological data preceding all flood events. Through hyperparameter optimization, we 564 

determined that an input size of 24 hours was optimal for all the models, ensuring sufficient coverage of 565 

relevant meteorological data preceding flood events. 566 

3.3. Flood Prediction and Performance Assessment 567 

In this study, we conducted a comprehensive performance evaluation of N-HiTS, N-BEATS, and 568 

benchmarking benchmarked these models with LSTM models, utilizing two case studies: the Lower Dog 569 

River and the Upper Dutchmans Creek watersheds. Within these case studies, we trained and validated the 570 

models separately for each watershed across a diverse set of storm events from 01/10/2007 to 01/10/2022 571 

(15 years) in the Lower Dog River and from 21/12/1994 to 01/10/2022 (27 years) in the Upper Dutchmans 572 

Creek. The decision to train separate models for each catchment was made to account for the unique 573 

hydrological characteristics and local features specific to each watershed. By training models individually, 574 

we aimed to optimize performance by tailoring each model to the distinct rainfall-runoff relationship 575 

inherent in each catchment. All algorithms were validated tested using unseen flooding events that occurred 576 

between 14/12/2022 and 28/03/2023. In the Dog River gauging station, two winter storms i.e., January 3rd 577 

to January 5th, 2023 (Event 1) and February 17th to February 18th, 2023 (Event 2), as well as a spring flood 578 

event that occurred during March 26th to March 28th, 2023 (Event 3) were selected for testing. 579 

Additionally, three winter flooding events, i.e., December 14th to December 16th, 2022 (Event 4), January 580 

25th and January 26th, 2023 (Event 5), and February 11th to February 13th, 2023 (Event 6), were chosen 581 

to test the algorithms across the Killian Creek gauging station in the Upper Dutchmans Creek. The rainfall 582 

events corresponding to these flooding events were delineated using the MIT technique discussed in Section 583 

3.1. 584 

Our results for the Lower Dog River case study, explicitly demonstrated the accuracy of both N-HiTS and 585 

N-BEATS in generating the winter and spring flood hydrographs compared to the LSTM model across all 586 

selected storm events. Although, N-HiTS prediction slightly outperformed N-BEATS during winter 587 

prediction (January 3rd to January 5th, 2023). In this event, N-HiTS outperformed N-BEATS with a 588 

difference of 11.6% in MAE and 20% in RMSE. The N-HiTS slight outperformance (see Tables 3 and 4) 589 

is attributed to its unique structure that allows the model to discern and capture intricate patterns within the 590 

data. Specifically, N-HiTS predicted flooding events hierarchically using blocks specialized in different 591 

rainfall frequencies based on controlled signal projections, through expressiveness ratios, and interpolation 592 

of each block. The coefficients are then used to synthesize backcast through  593 
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𝑦̃𝑡 − 𝐿: 𝑡, 𝑙 and forecast (𝑦̃𝑡+1: 𝑡 + 𝐻, 𝑙) outputs of the block as a flood value.  The coefficients were locally 594 

determined along the horizon, allowing N-HiTS to reconstruct nonstationary signals over time.  595 

While the N-HiTS emerged as the most accurate in predicting flood hydrograph among the three models, 596 

its performance was somehow comparable with N-BEATS. The N-BEATS model exhibited good 597 

performance in two case studies. It consistently provided competitive results, demonstrating its capacity to 598 

effectively handle diverse storm events and deliver reliable predictions. N-BEATS has a generic and 599 

interpretable architecture depending on the blocks it uses. Interpretable configuration sequentially projects 600 

the signal into polynomials and harmonic basis to learn trend and seasonality components while generic 601 

configuration substitutes the polynomial and harmonic basis for identity basis and larger network’s depth. 602 

In this study, we used interpretable architecture, as it regularizes its predictions through projections into 603 

harmonic and trend basis that is well-suited for flood prediction tasks. Using interpretable architecture, 604 

flood prediction was aggregated in a hierarchical fashion. This enabled the building of a very deep neural 605 

network with interpretable flood prediction outputs.   606 

It is essential to underscore that, despite its strong performance, the N-BEATS model did not surpass the 607 

N-HiTS model in terms of NSE, Persistent-NSE, MAE, and RMSE for the Lower Dog River case study. 608 

Although both models showed almost the same KGE values. Notably, the N-BEATS model showcased 609 

superior results based on the PFE metric, signifying its exceptional capability in accurately predicting flood 610 

peaks. However, both N-HiTS and N-BEATS models overestimated the flood peak rate of Event 2 for the 611 

Lower Dog River watershed. This event, which occurred from February 17th  toth to February 18th, 2023, 612 

was flashy, short, and intense proceeded by a prior small rainfall event (from February 12th until February 613 

13th) that minimized the rate of infiltration. This flash flood event caused by excessive rainfall in a short 614 

period of time (<8 hours) was challenging to predict for both N-BEATS and N-HiTS models. In addition, 615 

predicting the magnitude of changes in the recession curve of the third event seems to be a challenge for 616 

both models. The specific part of the flood hydrograph after the precipitation event, where flood diminishes 617 

during a rainless is dominated by the release of runoff from shallow aquifer systems or natural storages. It 618 

seems both models showed a slight deficiency in capturing this portion of the hydrograph when the rainfall 619 

amount decreases over time in the Dog River gauging station.  620 

Conversely, in the Killian Creek gauging station, the N-BEATS model almost emerged as the top performer 621 

in predicting the flood hydrograph based on NSE, Persistent-NSE, RMSE, and PFE performance metrics 622 

(see Tables 3 and 4).  KGE values remained almost the same for both models. AlthoughIn addition, both 623 

N-BEATS and N-HiTS slightly overpredicted time to peak values for Event 5. This reflects the fact that 624 

when rainfall value varies randomly around zero, it provides less to no information for the algorithms to 625 
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learn the fluctuations and patterns in time series data. Both N-HiTS and N-BEATS provided comparable 626 

results for all events predicted in this study. N-HiTS builds upon N-BEATS by adding a MaxPool layer at 627 

each block. Each block consists of an MLP layer that learns to produce coefficients for the backcast and 628 

forecast outputs. This subsamples the time series and allows each stack to focus on either short-term or 629 

long-term effects, depending on the pooling kernel size. Then, the partial predictions of each stack are 630 

combined using hierarchical interpolation. This ability enhances N-HiTS capabilities to produce drastically 631 

improved, interpretable, and computationally efficient long-horizon flood predictions. 632 

In contrast, the performance of LSTM as a benchmark model lagged behind both N-HiTS and N-BEATS 633 

models for all events across two case studies. Despite its extensive applications in various hydrology 634 

domains, the LSTM model exhibited comparatively lower accuracy when tasked with predicting flood 635 

responses during different storm events. Focusing on NSE, Persistent-NSE. KGE, MAE, RMSE, and PFE 636 

metrics, it is noteworthy that all three models, across both case studies, consistently succeeded in capturing 637 

peak flow rates at the appropriate timing. All models demonstrated commendable results with respect to 638 

the TPE metric. In most scenarios, TPE revealed a value of 0, signifying that the models accurately 639 

pinpointed the peak flow rate precisely at the expected time. In some instances, TPE reached a value of 1, 640 

showing a deviation of one hour in predicting the peak flow time. This deviation is deemed acceptable, 641 

particularly considering the utilization of short, intense rainfall for our analysis.  642 

Our investigation into the performance of the three distinct forecasting models yielded compelling results 643 

pertaining to their ability to generate 95PPU, as quantified by the P-factor Factor and R-factorFactor. These 644 

factors serve as critical indicators for assessing the reliability and precision of the uncertainty bands 645 

produced by the MLE. Our findings demonstrated that the N-HiTS and N-BEATS models outperformed 646 

the LSTM model in mathematically defining uncertainty bands, in terms of R-factor Factor metric. The R-647 

factorFactor, a crucial metric for evaluating the average width of the uncertainty band, consistently favored 648 

the N-HiTS and N-BEATS models over their counterparts. This finding was consistent across a diverse 649 

range of storm events. In addition, Ccoupling MLE with the N-HiTS and N-BEATS models demonstrated 650 

superior performance in generating 95PPU when assessed through the P-factor Factor metric. The P-factor 651 

Factor represents another vital aspect of uncertainty quantification, focusing on the precision of the 652 

uncertainty bands.  653 

 654 

Figures 8 and 9 present graphical depictions of the predicted flood with uncertainty assessment for each 655 

model as well as Flow Duration Curve (FDC) across two gauging stations.  As illustrated, the uncertainty 656 

bands skillfully bracketed most of the observational data, reflecting the fact that MLE was successful in 657 
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reducing errors in flood prediction. FDC analysis also revealed that N-HiTS and N-BEATS models 658 

skillfully predicted the flood hydrograph, however, both models were particularly successful in predicting 659 

moderate to high flood events (1800-6000 and >6000 cfs). In the FDC plots, the x-axis denotes the 660 

exceedance probability, expressed as a percentage, while the y-axis signifies flood in cubic feet per second. 661 

Notably, these plots reveal distinctive patterns in the performance of the N-HiTS, N-BEATS, and LSTM 662 

models. Within the lower exceedance probability range, particularly around the peak flow, the N-HiTS and 663 

N-BEATS models demonstrated a clear superiority over the LSTM model, closely aligning with the 664 

observed data. This observed trend is consistent when examining the corresponding hydrographs. Across 665 

all events, the flood hydrographs generated by N-HiTS and N-BEATS exhibited a closer resemblance to 666 

the observed data, particularly in the vicinity of the peak timing and rate, compared to the hydrographs 667 

produced by the LSTM model. These findings underscore the enhanced predictive accuracy and reliability 668 

of the N-HiTS and N-BEATS models, particularly in predicting moderate to high flood events as well as 669 

critical hydrograph features such as peak flow rate and timing. The alignment of model-generated FDCs 670 

and hydrographs with observed data in the proximity of peak flow further establishes the efficacyefficiency 671 

of N-HiTS and N-BEATS in accurately reproducing the dynamics of flood generation mechanisms across 672 

two headwater streams.  673 

 674 

Table 3. Accuracy and uncertaintyThe performance metrics for the Lower Dog River flood predictions. 675 

Model Performance Metric Event 1 Event 2 Event 3 

N-HiTS 

NSE 0.995 0.991 0.992 

Persistent-NSE 0.947 0.931 0.948 

KGE 0.977 0.989 0.976 

RMSE 123.2 27.6 68.5 

MAE 64.1 12.0 37.8 

PFE 0.018 0.051 0.015 

TPE (hours) 0 1 0 

P-Factor 96.9 % 100 % 93.5 % 

R-Factor 0.27 0.40 0.33 

N-BEATS 

NSE 0.991 0.989 0.993 

Persistent-NSE 0.917  0.916 0.956 

KGE 0.984 0.984 0.98 

RMSE 154.1 30.5 62.5 

MAE 72.6 13.6 35.9 
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PFE 0.0005 0.031 0.0002 

TPE (hours) 0 1 0 

P-Factor 87.8 % 100 % 90.3 % 

R-Factor 0.17 0.23 0.24 

LSTM 

NSE 0.756 0.983 0.988 

Persistent-NSE -1.44 0.871 0.929 

KGE 0.765 0.978 0.971 

RMSE 841.1 37.9 79.5 

MAE 369.4 18.6 42 

PFE 0.258 0.036 0.016 

TPE (hours) 1 0 0 

P-Factor 81.8 % 93.1 % 96.7 % 

R-Factor 0.37 0.51 0.6 

 676 

Table 4. Accuracy and uncertaintyThe performance metrics for the Killian Creek flood predictions. 677 

Model Performance Metric Event 4 Event 5 Event 6 

N-HiTS 

NSE 0.99.08 %1 0.97.13 % 0.99.08 %1 

Persistent-NSE 0.885 0.806 0.844 

KGE 0.982 0.967 0.991 

RMSE 28.8 46.0 19.0 

MAE 17.9 23.8 11.5 

PFE 0.017 0.008 0.020 

TPE (hours) 0 0 0 

P-Factor 92.6 % 90.9 % 100 % 

R-Factor 0.39 0.48 0.45 

N-BEATS 

NSE 0.99.26 % 0.97.36 % 0.98.96 % 

Persistent-NSE 0.908 0.821 0.823 

KGE 0.972 0.951 0.973 

RMSE 25.7 44.2 20.2 

MAE 18.3 25.9 14.0 

PFE 0.006 0.008 0.019 

TPE (hours) 0 0 0 
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P-Factor 96.3 % 86.3 % 96.9 % 

R-Factor 0.43 0.53 0.43 

LSTM 

NSE 0.952 0.892 0.935 

Persistent-NSE 0.4 0.27 0.087 

KGE 0.92 0.899 0.901 

RMSE 65.7 89.2 50.3 

MAE 41.1 45 35.9 

PFE 0.031 0.058 0.098 

TPE (hours) 1 0 0 

P-Factor 70.4 % 72.73 % 9081.829 % 

R-Factor 0.66 0.7 0.65 

 678 

 679 
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 680 

Figure 7. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models for the three selected 681 
flooding events in the Lower Dog River gauging station. 682 

 683 

  684 
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685 
Figure 8. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models for the three selected 686 

flooding events in the Killian Creek gauging station.  687 

Furthermore, iIn our investigation, we conducted an analysis to assess the impact of varying input sizes on 688 

the performance of the N-HiTS, as the best model. We implemented four different durations as input sizes 689 

to observe the corresponding differences in modeling performance. Notably, one of the key metrics affected 690 

by changes in input size was 95PPU, which exhibited a general decrease with increasing input size. 691 

As detailed in Table 5, we observed a discernible trend in the R-Factor of the N-HiTS model as the input 692 

size was increased. Specifically, there was a decrease decline in the R-Factor as the input size expanded. 693 
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This trend underscores the influence of input size on model performance, particularly in terms of 95PPU 694 

band and accuracy. 695 

Overall, uncertainty analysis revealed that the integration ofcoupling MLE with N-HiTS and N-BEATS 696 

models demonstrated superior performance in generating 95PPU, effectively reducing errors in flood 697 

prediction. The MLE approach was more successful in reducing 95PPU bands of N-HiTS and N-BEATS 698 

models compared to the LSTM, as indicated by the R-factor Factor and P-factorFactor. The N-BEATS 699 

model demonstrated a narrower uncertainty band (lower R-factor Factor value), while the N-HiTS model 700 

provided higher precision. Furthermore, incorporating data with various sizes into the N-HiTS model led 701 

to a a reduction innarrower 95PPU and an improvement in the R-Factor, highlighting the significance of 702 

input size in enhancing model accuracy and reducing prediction uncertainty. 703 

Table 5. N-HiTS’s R-Factor results for three storm events in each case study, using 1 

hour, 2 hours, 12 hours, and 24 hours input size in training. 

Input Size 1 hour 6 hours 12 hours 24 hours 

Dog River, GA - Event 1 0.314 0.337 0.29 0.272 

Dog River, GA - Event 2 0.35 0.413 0.403 0.402 

Dog River, GA - Event 3 0.358 0.459 0.374 0.336 

Killian Creek, NC - Event 4 0.491 0.422 0.426 0.388 

Killian Creek, NC - Event 5 0.584 0.503 0.557 0.483 

Killian Creek, NC - Event 6 0.482 0.42 0.446 0.454 

 704 

3.4. Sensitivity Analysis   705 

In this study, we conducted a comprehensive sensitivity analysis of the N-HiTS, N-BEATS, and LSTM 706 

models to evaluate their responsiveness to meteorological variables, specifically precipitation, humidity, 707 

and temperature. The goal was to assess how the omission of input parameters impacts the overall 708 

modeling performance compared to their full-variable counterparts. 709 

To execute this analysis, we systematically trained each model by excluding meteorological variables one 710 

or more at a time, subsequently evaluating their predictive performance using the entire testing dataset. 711 

The results of our analysis indicated that N-HiTS and N-BEATS models exhibited minimal sensitivity to 712 

meteorological variables, as evidenced by the negligible impact on their performance metric (i.e., NSE, 713 

Persistent-NSE, KGE, RMSE, and MAE) upon parameter exclusion. 714 

Notably, as shown in Table 6, the performance of the N-HiTS model displayed a marginal deviation 715 

under variable omission, while the N-BEATS model exhibited consistent performance irrespective of the 716 
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inclusion or exclusion of meteorological variables. The structure of this algorithm is based on backward 717 

and forward residual links for univariate time series point forecasting which does not take into account 718 

other parameters in the prediction task.  These findings suggest that the predictive capabilities of N-HiTS 719 

and N-BEATS models predominantly rely on historical flood data. TheyBoth models demonstrated strong 720 

performance even without incorporating precipitation, temperature, or humidity data, , underscoring their 721 

resilience ability in flood prediction in the absence of specific meteorological inputs. This resilience to 722 

meteorological variability capability underscores the robustness of the N-HiTS and N-BEATS models, 723 

positioning them as viable tools and perhaps appropriate for real-time flood forecasting tasks where direct 724 

meteorological data may be limited or unavailable.  725 

 726 

Table 6. NSE Performance metrics’ values for N-HiTS, and N-BEATS, and LSTM models by excluding 727 

meteorological variables one or more at a time. 728 

Model 
Excluded 

Variables 
NSE 

Persistent-

NSE 
KGE RMSE MAE 

N-HiTS 

Using all variables 0.99.655 % 0.92 0.988 22.66 4.19 

Without 

Precipitation 
0.99.34 % 0.91 0.97 23.28 4.31 

Without Humidity 0.99.51 % 0.914 0.976 22.87 4.22 

Without 

Temperature 
0.99.549 % 0.921 0.985 22.43 4.14 

Discharge only 

prediction 
0.99.3 % 0.911 0.972 23.21 4.29 

N-BEATS 

Using all variables 0.99.42 % 0.978 0.992 11.80 2.13 

Without 

Precipitation 
0.99.42 % 0.978 0.991 11.86 2.17 

Without Humidity 0.99.42 % 0.978 0.991 11.81 2.16 

Without 

Temperature 
0.99.42 % 0.978 0.991 11.82 2.16 

Discharge only 

prediction 
0.99.42 % 0.978 0.991 11.96 2.17 

Using all variables 0.99.2 % 0.865 0.926 29.52 8.15 
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LSTM  

Without 

Precipitation 
0.97.93 % 0.665 0.892 39.46 19.83 

Without Humidity 0.99.13 % 0.843 0.925 31.73 9.15 

Without 

Temperature 
0.98.327 % 0.628 0.872 48.95 11.49 

Discharge only 

prediction 
0.97.6 % 0.576 0.692 52.28 33.5 

 729 

3.5 Computational Efficiency 730 

The computational efficiency of the N-HiTS, N-BEATS, and LSTM models, as well as a comparative 731 

analysis, is presented in Table 7. The study encompassed the entire process of training and predicting over 732 

the testing period, employing the optimized hyperparameters as previously described. Regarding the 733 

training time, it is noteworthy that the LSTM model exhibited the quickest performance. Specifically, 734 

LSTM demonstrated a training time that was 71% faster than N-HiTS and 93% faster than N-BEATS in 735 

the Lower Dog River watershed, while it was respectively,126% and 118% faster than N-HiTS and N-736 

BEATS in the Upper Dutchmans Creek, over training dataset. This is because LSTM has a simple 737 

architecture compared to the N-BEATS and N-HiTS and does not require multivariate features, hierarchical 738 

interpolation, and multi-rate data sampling. Perhaps, this outcome underscores the computational advantage 739 

of LSTM over other algorithms. 740 

Conversely, during the testing period, the N-HiTS model emerged as the fastest and delivered the most 741 

efficient results in comparison to the other models. Notably, N-HiTS displayed a predicting time that was 742 

33% faster than LSTM and 32% faster than N-BEATS. This finding highlights the computational efficiency 743 

of the N-HiTS model in the context of predicting processes. Our experiments unveiled an interesting 744 

contrast in the computational performance of these models. While LSTM excelled in terms of training time, 745 

it lagged behind when it came to the testing period. 746 

In the grand scheme of computational efficiency, model accuracy, and uncertainty analysis results, it 747 

becomes evident that the superiority of the N-HiTS and N-BEATS models in terms of accuracy and 748 

uncertainty analysis holds paramount importance. This significance is accentuated by the critical nature of 749 

flood prediction, where precision and certainty are pivotal. Therefore, computational efficiency must be 750 

viewed in the context of the broader objectives, with the accuracy and reliability of flood predictions taking 751 

precedence in ensuring the safety and preparedness of the affected regions.      752 

 753 
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Table 7. Computational costs of N-HiTS, N-BEATS, and LSTM models in the Dog River and Killian 754 

Creek gauging stations.  755 

 Training Time over Train Datasets 

(seconds)  

Predicting Time over Test Datasets 

(seconds) 

Model Lower Dog River Upper Dutchmans Creek Lower Dog River Upper Dutchmans Creek 

N-HiTS 256.032 374.569 1533.029 1205.526 

N-BEATS 288.511 361.599 2028.068 1482.305 

LSTM 149.173 165.827 2046.140 1792.444 

 756 

4. Conclusion 757 

This study examined multiple NN algorithms for flood prediction. We selected two headwater streams with 758 

minimal human impacts to understand how NN approaches can capture flood magnitude and timing for 759 

these natural systems. In conclusion, our study represents a pioneering effort in exploring and advancing 760 

the application of NN algorithms, specifically the N-HiTS and N-BEATS models, in the field of flood 761 

prediction. In our case studies, both N-HiTS and N-BEATS models achieved state-of-the-art results, 762 

outperforming LSTM as a recurrent benchmark model, particularly in one-hour prediction. While a one-763 

hour lead time may seem brief, it is highly significant for accurate flash flood prediction particularly in 764 

headwater streams an area with a proximity to large metropolitan cities, where rapid response is critical.  765 

These benchmarking results are arguably a pivotal part of this paperresearch. However, the N-BEATS 766 

model slightly emerged as a powerful and interpretable tool for flood prediction in most selected events. 767 

In addition, the results of the experiments described above demonstrated that N-HiTS multi-rate input 768 

sampling and hierarchical interpolation along with N-BEATS interpretable configuration are effective in 769 

learning location-specific runoff generation behaviors. Both algorithms with an MLP-based deep neural 770 

architecture with backward and forward residual links can sequentially project the data signal into 771 

polynomials and harmonic basis needed to predict intense storm behaviors with varied magnitudes.  The 772 

innovation in this study – besides benchmarking the LSTM model for headwater streams – was to tackle 773 

volatility and memory complexity challenges, by locally specializing flood sequential predictions into the 774 

data signal’s frequencies with interpretability, and hierarchical interpolation and pooling. Both N-HiTS and 775 

N-BEATS models offered similar performance as compared with the LSTM but also offered a level of 776 

interpretability about how the model learns to differentiate aspects of complex watershed-specific behaviors 777 

via data. The interpretability of N-HiTS and N-BEATS models stems from their designs. N-HiTS aims to 778 

enhance the accuracy of long-term time-series forecasts through hierarchical interpolation and multi-scale 779 
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data sampling, allowing it to focus on different data aspectspatterns, which prioritizes features essential for 780 

to understand flood trends, i.e., larger scalemagnitudes. N-BEATS leverages interpretable configurations 781 

with trend and seasonality projections, enabling it to decompose time series data into intuitive components. 782 

N-BEATS interpretable architecture is recommended for scarce data settings (such as flooding event), as it 783 

regularizes its predictions through projections unto harmonic and trend basis. These approaches improve 784 

model transparency by allowing understanding of how each part of the model contributes to the final 785 

prediction, particularly when applied to complex flood patterns. Both models also support multivariate 786 

series (and covariates) by flattening the model inputs to a 1-D series and reshaping the outputs to a tensor 787 

of appropriate dimensions. This approach provides flexibility to handle arbitrary numbers of features. 788 

Furthermore, both N-HiTS and N-BEATS models also support producing probabilistic predictions by 789 

specifying a likelihood parameter. In terms of sensitivity analysis, both N-HiTS and N-BEATS models 790 

maintain consistent performance even when trained without specific meteorological inputs. Although, 791 

during some flashy floods, the models encountered challenges in capturing the peak flows and the dynamics 792 

of the recession curve, which is directly related to groundwater contribution to flood hydrograph, both 793 

models arewere technically insensitive to rainfall data as an input variable. This, suggestings the fact that 794 

theyboth algorithms can learn discharge patterns in discharge data (which inherently include precipitation 795 

effects) without requiring meteorological datainput. This resilience ability underscores these models' ability 796 

robustness in to generate generating accurate predictions using historical flood data alone, making them 797 

valuable tools for flood prediction, especially in data-poor watersheds or even for real-time flood prediction 798 

when near real-time meteorological inputs are limited or unavailable.  In terms of computational efficiency, 799 

both N-HiTS and N-BEATS are trained almost at the same pace; however, N-HiTS predicted the test data 800 

much quicker than N-BEATS. Unlike N-HiTS and N-BEATS, LSTM excelled in reducing training time 801 

due to its simplicity and limited number of parameters. 802 

Moving forward, it is worth mentioning that predicting the magnitude of the recession curve of flood 803 

hydrographs was particularly challenging for all models. We argue that this is because the relation between 804 

base flow and time is particularly hard to calibrate due to ground-water effluent that is controlled by 805 

geological and physical conditions (vegetation, wetlands, wet meadows) in headwater streams. In addition, 806 

the situations of runoff occurrence are diverse and have a high measurement variance with high frequency 807 

that can make it difficult for NN the algorithms to fully capture discrete representation learning on time 808 

series.  809 

In future studies, it will be important to develop strategies to derive analogs to the interpretable 810 

configuration as well as multi-rate input sampling, hierarchical interpolation, and backcast residual 811 

connections that allow for the dynamic representation of flood times series data with different frequencies 812 

and nonlinearity. A dynamic representation of flood time series is, at least in principle, possible by 813 
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generating additive predictions in different bands of the time-series signals, reducing memory footprint and 814 

compute time, and improving architecture parsimony and accuracy. This would allow the model to “learn” 815 

interpretability and hierarchical representations from raw data to reduce complexity as the information 816 

flows through the network. Moreover, it is noteworthy that while a single station offers valuable localized 817 

data, particularly for smaller watersheds such as headwater streams where runoff is closely tied to 818 

immediate meteorological conditions, it may not fully capture the spatial heterogeneity of larger 819 

watersheds. For our specific case, the methods applied effectivelyherein captured significant runoffrunoff 820 

magnitude and flood dynamics in these streamssmall watersheds using a single station. However, we 821 

recognize that for broader areas, incorporating spatially distributed data would likely enhance model 822 

accuracy. Lastly, one could explore the idea of enhancing N-HiTS and N-BEATS (or NN algorithms, in 823 

general) performance with uncertainty quantification by using more robust Bayesian inference such as 824 

Bayesian Model Averaging (BMA) with fixed and flexible prior distributions (see Samadi et al., 2020) 825 

and/or Markov Chain Monte-Carlo optimization methods (Duane et al., 1987) addressing both aleatoric and 826 

epistemic uncertainties. We leave these approaches for future discussion and exploration in the context of 827 

flood neural time series prediction. 828 
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