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We sincerely thank the reviewer for the thoughtful and constructive feedback. Below, we provide 

detailed responses to each comment, along with explanations of how and where the corresponding 

revisions have been incorporated into the manuscript with track changes. Line numbers may vary 

slightly depending on formatting. 

 

Anonymous Referee #3’ s comments: 

 

I want to thank the authors for addressing my comments and making the necessary changes to 

the manuscript. However, I have one more comment that needs more clarification from the 

authors and therefore suggest a minor revision. 

 

Authors’ answer: Thank you for your thoughtful review and kind acknowledgment of our earlier 

responses. We appreciate your additional comment and provide the requested clarifications below. 

 

1: It remains unclear to me how the multi-quantile loss is implemented. Given that all three models 

are deterministic, how would each model generate the quantile prediction \hat{Q}^q_\tau in 

Eq.(29)? The authors argue that "the uncertainty arises from the MQL formulation, which 

estimates conditional quantiles of discharge 𝑄𝑡+ℎ|𝑋𝑡" in the response letter. The description is 

too general to capture the details fully. Please provide a mathematical explanation of how a given 

deterministic model generates the quantile used in Eq. (29) during the model optimization process 

 

Authors’ answer: Thank you for asking for a precise formulation. Let 𝒟 = {(𝑋𝑡 , 𝑦𝑡+ℎ)}𝑡=1
𝑁  denote 

the training pairs, where 𝑋𝑡 is the input context (past 24 h of discharge in our setup) and 𝑦𝑡+ℎ is 

the discharge ℎ hours ahead. For a fixed horizon ℎ and a set of quantile levels {𝜏𝑘}𝑘=1
𝐾 , each model 

𝑓𝜃 (LSTM, N-HiTS, N-BEATS) is trained to output the vector of conditional quantiles directly: 

𝐐̂𝑡+ℎ   =   𝑓𝜃(𝑋𝑡)   =   (𝑄̂𝑡+ℎ
 𝜏1 , … , 𝑄̂𝑡+ℎ

 𝜏𝐾 ) ∈ ℝ𝐾 . 

Training minimizes the multi-quantile (pinball) loss, summed over times and quantile levels: 

ℒ(𝜃)   =   
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∑  

𝐾
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𝜌𝜏𝑘
 (𝑦𝑡+ℎ − 𝑄̂𝑡+ℎ

 𝜏𝑘 ) ,          𝜌𝜏(𝑢) = max  ⁣(𝜏𝑢,  (𝜏 − 1)𝑢) 

 

Equivalently, with the indicator form, 

𝜌𝜏(𝑢) = (𝜏 − 𝟙{𝑢<0}) 𝑢. 

 

Because 𝜌𝜏 is convex and piecewise linear, its (sub)gradient with respect to the prediction 𝑄̂𝑡+ℎ
 𝜏  is: 
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∂𝜌𝜏(𝑦 − 𝑄̂ 𝜏)

∂𝑄̂ 𝜏
= {

−(1 − 𝜏), 𝑦 − 𝑄̂ 𝜏 < 0,

−𝜏,                     𝑦 − 𝑄̂ 𝜏 > 0,
 

 

This yields standard backpropagation updates under Adam optimizer. No sampling is involved: the 

quantile 𝑄̂𝑡+ℎ
 𝜏  is the model’s direct output, learned by minimizing the pinball loss at level 𝜏. 

Uncertainty bands are then formed from these quantile outputs. For a 95% interval, we use the 

MQL-trained 𝜏 = 0.025 and 𝜏 = 0.975 predictions, i.e., [𝑄̂𝑡+ℎ
 0.025, 𝑄̂𝑡+ℎ

 0.975]. This captures aleatoric 

uncertainty conditional on 𝑋𝑡.  

We expanded and clarified this method in the revised version of the manuscript. See Lines 444 - 

452. 

 

 

 

#We thank the reviewer for the insightful and constructive comments.  

 

 

 

 

  


