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Hydrology and Earth System Sciences,  1 
Manuscript #HESS-2024-256 2 
January 25th, 2025 3 
 4 
 5 
 6 
Subject: Response to Comments on Review Paper “Machine Learning in River/Stream Water 7 
Temperature Modeling: a review and metrics for evaluation” 8 
 9 
 10 
 11 
 12 
Dear Dr. Christa Kelleher, Mr. Jeremy Diaz and referees #1 and #2, 13 
 14 
 15 
We thank you for your time and patience in reviewing our manuscript. We have revised the manuscript in 16 
line with referee feedback and think the manuscript is much improved as a result. This document serves 17 
as our written author response to referee comments.  18 
 19 
This document separates responses by referee: referee #1 (pages 2 - 14), #2 (pages 15 - 20), and #3 (pages 20 
21 – 30). Where referee comments had several parts, we separated the comments into “1a, 1b, etc.,” to 21 
both indicate that the part belonged to one comment, and allow for a more organized response. Otherwise, 22 
all comments were kept in their original format.  23 
 24 
For revisions, new/edited text is in BLUE, while removed text is shown as being crossed out. The 25 
statement “revised lines XXX-XXX” indicates the in-line placement in the track-changes manuscript “2-26 
Track-Changes-Manuscript-HESS-2024-256”, where the described changes will be found. The 27 
manuscript “3-Clean-Manuscript-HESS-2024-256” is the “final” version. 28 

 29 
Once again, thank you kindly for your time and consideration.  30 
 31 
 32 
 33 
 34 
Sincerely, 35 
 36 
 37 
 38 
 39 
 40 
Claudia R. Corona   Terri S. Hogue 41 
Postdoctoral Fellow   Dean, Earth and Society Programs 42 
Colorado School of Mines   Colorado School of Mines 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
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Referee #1 Comments 1 
The manuscript on “ML in Stream/River Water Temperature Modeling, a review and metrics for 2 
evaluation” focuses on providing a comprehensive review of ML studies, including traditional and recent 3 
methods in ML and AI, on stream temperature modeling and prediction. Overall, the manuscript is well-4 
written and covers most of the relevant papers, but there are a few strategic points I would like to share 5 
with the authors:  6 
 7 
AUTHOR RESPONSE: We appreciate the referee’s feedback and think the manuscript is much 8 
improved as a result. For reference, we separated some referee comments into a, b, etc., to provide a more 9 
organized response. Thank you for your time and insight. Proposed new/edited text is in BLUE. Revised 10 
lines in the track-changes manuscript are indicated by the statement: (revised lines XXX-XXX). 11 
 12 
 13 
1a. Figures 1 & 2 & 3 & table 2: The manuscript provides a table for multiple metrics such as R2, NSE, 14 
RMSE, and MAE, and suggested a rate of numbers to rate the ML methods’ performances. This table is 15 
based on the metrics that have been achieved by the studies in the previous years which are reflected in 16 
figures 1 & 2 & 3. However, those studies vary in terms of case studies, number of basins included in the 17 
study, running regional or local models. We know that ML models are prone to overfitting, especially for 18 
stream temperature that follows a relatively sinusoidal curve through a year, which means it is more 19 
predictable for complex models such as LSTM. However, it means the models are prone to easily overfit. 20 
Therefore, I suggest the authors encourage the stream temperature researchers to go towards making more 21 
generalizable models and less overfitted. For example, instead of suggesting performance metrics, the 22 
authors can provide a few steps to make sure the models are not overfitted or underfitted. For instance, 23 
always considering a spatial test on ungauged sites (basins). We know that spatial tests are more difficult 24 
tasks rather than temporal tests.  25 
 26 
AUTHOR RESPONSE: We agree that the SWT studies vary spatially/temporally and that ML models 27 
risk overfitting. We appreciate the referee’s comments in pointing out areas of improvement and we 28 
suggest adding the following: 1) a new subsection 2.4.1 “SWT Predictions using ML” on 29 
overfitting/underfitting that suggests the need for temporal- and spatially-focused testing as suggested by 30 
the referee, and 2) a diagram showing initial steps to mitigate overfitting. The new text is below: 31 
 32 
*new Section 2.4.1, Identifying Model Complexity (revised lines 464-483) 33 
 34 

The strong success of ML-use in SWT modeling warrants a brief and broad overview on identifying 35 
model complexity to minimize overfitting and underfitting” of models. When a model is too complex, 36 
i.e., has too many features or  parameters relative to the number of observations, or is forced to 37 
overextend its capabilities, i.e., make predictions with insufficient training data, the model runs the 38 
risk of overfitting (Srivastava et al., 2014). An overfitted model fits the training data “too well”, 39 
capturing noise and details that provide high accuracy on a training dataset, only to perform poorly 40 
once the model encounters “unseen” data in testing/validation (Xu and Liang, 2021). Scenarios where 41 
overfitting may be temporarily acceptable are: 1) model development is at preliminary stages, the 42 
interest is in a “proof of life” concept, 2) when the objective is to identify heavily-relied on features 43 
by the model, i.e., feature importance, or 3) in highly-controlled modeling environments where the 44 
expected data will be consistently similar to the training dataset. The latter is more likely in industrial 45 
applications and unlikely in the changing nature of hydrology.  46 

 47 
In contrast, underfitting occurs when a model is too simple to capture any patterns in the data, which 48 
can also lead to unsatisfactory performance in training, testing and validation. Underfitting can occur 49 
with inadequate model features, poor model complexity or when regularization techniques, (e.g., L1 50 
or L2 regularization), are over-used, making the model too rigid and unable to respond to changes in 51 
the data. Given the propensity of ML models to effectively learn the training data, underfitting is less 52 
of an issue in ML whereas overfitting can be widespread. In Figure 1, we present an example 53 
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workflow that researchers can use to transition away from overfitting and towards generalizability. In 1 
the five-step outline (Fig. 1), we suggest the need for “Temporal, Unseen, Ungaged Region Tests” 2 
(TUURTs), which is a call for temporal and spatially-focused testing that can be used to strengthen 3 
model robustness. 4 

 5 
Revised lines 484-486:  6 

 7 
Figure 1. Diagram outlining steps that can be taken in modeling process to mitigate overfitting. 8 
 9 
 10 
1b. Therefore, it is acceptable to get lower performance on ungauged basins, however, the metrics should 11 
not be vastly different from temporal tests. A more challenging experiment is to test the trained model on 12 
regions that have not been seen by the model. In theory, if a model has been able to capture true relations 13 
between the driving factors on stream temperature, it should achieve a relatively decent performance on 14 
basins with different hydrologic, geologic, and climatic characteristics from the trained basins. As a 15 
researcher on SWT, I would rather to have a model that passes all these three tests (temporal, ungaged, 16 
unseen regions) with relatively close metrics, rather than having a model that gives high performance in 17 
temporal tests and low performance in the other two tests.  18 
 19 
AUTHOR RESPONSE: We agree. The referee mentions a key point that having a SWT model pass all 20 
three tests for temporal, ungaged, and unseen regions may be more qualitatively sound, but as of this 21 
review, we had not yet seen any ML-SWT papers that test for all three cases. For example, Topp et al. 22 
(2023) held out a region to be considered “unseen” but did not test for ungaged basins. Hani et al. (2023) 23 
used an inverse weighted distance interpolation method to estimate values for ungaged sites but did not 24 
test for “unseen” data. Souaissi et al. (2023) used a leave-one-out cross-validation technique to mimic 25 
the estimation of quantiles at ungaged sites by temporarily removing the gaged site information, which is 26 

Initial Model Runs and Preliminary Training & Testing

• Is the model capturing general patterns? 

• Use cross-validation (i.e., k-fold, leave-one-out), to compare 
training and testing/validation performance.

• If possible, collect/use more data.

Temporal, Unseen, Ungaged Region Tests (TUURTs)

• Conduct temporal/spatial focused testing (TUURTs). 

• Temporal example: train w/ 2/3 years of data and test/validate with 
remainder.

• Unseen (can be temporal or spatial) example: training data (ex: 70%) 
isolated from testing data (ex: 30%).

• Ungaged (spatial) example: Testing for new sites where 1) no data 
exists and 2) region has not been "seen" by the model at all.

Apply Regularization Techniques

• Add regularization terms, i.e. L1 (Lasso) and L2 (Ridge) penalties to 
loss function to constrain model complexity.

Simplify the Model/Reduce Complexity

• Feature Importance: use fewer parameters, remove 
redundant/irrelevant parameters 

• For deep NNs, reduce # of layers or neurons per layer.

Early Stopping/Dropout/Ensemble methods

• Early stopping: stop training when validation performance starts to 
degrade.

• For NNs, use Dropout to randomly drop units (and connections) 
during training to limit over-reliance on specific neural paths. 

• Dropout can be coupled with early stopping.

• Use ensemble methods to improve generalization.
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arguably not testing for new, ungaged sites but rather “unseen” (i.e., tested only within the development 1 
dataset, not for new sites). Siegel et al. (2023), a non-ML paper tested for “ungaged” and “unseen” data, 2 
but did not perform a temporal test. A newly published example, Philippus et al. (2024), which 3 
considered spatial testing on ungaged basins, has been added. We further agree with the theory posited 4 
by the referee that a model capturing true relations should perform acceptably, however, we have yet to 5 
see a study that has adequately captured all true relations.   6 

  7 
We have added a few sentences (blue is new) to the Discussion subsection 4.3, “ML Use for Knowledge 8 
Discovery” where we further urge for the use of TUURTs (Temporal, Unseen, Ungaged Region Tests)’ 9 
(revised lines 914-925): 10 
 11 

While it is understandable that not every ML-SWT paper aims to explain physical processes, the 12 
SWT community should agree on a baseline of tests that all ML-SWT models  undergo to assess 13 
model robustness and transferability. Specifically, we urge use of TUURTs (Temporal, Unseen, 14 
Ungaged Region Tests) for future ML-SWT models as a helpful step towards better modeling 15 
practices, increased model transparency and robustness (Fig.1). As stated in figure 1, for TUURTs, 16 
testing for “unseen” cases means testing only within the developmental dataset, whereas testing for 17 
“ungaged” cases means testing for new sites that have no data and have not been previously seen by 18 
the model at all. Due to the difficulty of conducting spatial tests compared to temporal tests, few ML-19 
SWT studies have applied one or two of the tests, and rarely all three (Topp et al., 2023; Hani et al., 20 
2023, Souassi et al., 2023). For example, Siegel et al. (2023), a non-ML SWT paper, tested for 21 
ungaged regions and unseen data but did not perform a temporal test. To our knowledge, Philippus et 22 
al. (2024), appears to be the only published SWT-ML study that applied TUURTs with some success. 23 
We further encourage modelers to shift towards more generalizable models, which are in theory, 24 
more capable of performing well across diverse scenarios and datasets, and stand to become 25 
increasingly important with the unpredictability of climate extremes. 26 

 27 
 28 
2. Evaluation of Data Requirements: The manuscript does not extensively discuss the challenges that 29 
ML ST modelers are facing with. Different ML models have varying data requirements, but the review 30 
does not thoroughly discuss the data needs for each type of model. For example, ML models are 31 
dependent on data. If we compare the availability of streamflow observation data availability versus the 32 
SWT observation data, we realize there is a massive gap here, which impacts the studies and reduces the 33 
SWT model performances. I suggest, while the authors encouraging the researchers and water institutes to 34 
collect more data, they add their comments on this issue and discuss how researchers can reduce the 35 
impact of this problem in their models.  36 
 37 
AUTHOR RESPONSE: We agree with the referee that issues remain with data requirement limitations. 38 
We propose adding a new ‘Discussion’ subsection, titled ‘ML Data Requirements vs. Availability’ stating 39 
the following: 40 
 41 
*new section 4.2 ML Data Requirements vs. Data Availability (revised lines 881-906). 42 
 43 

While, in recent years, access to hydrologic data has improved (Miller et al., 2016; CUAHSI, 2024), 44 
data remains scarce for many hydrologic applications including SWT research, particularly because 45 
continual project management and funding to place and maintain stream temperature sensors, can be 46 
expensive and/or time-consuming to undertake. As a result, in the 21st century, the scarcity of data 47 
remains a large impediment for the application of machine learning in SWT modeling. What is more, 48 
the question of data quantity (how much data do you have?) versus quality (how much diverse data is 49 
needed?) continues to hinder ML use in hydrologic applications. Xu and Liang (2021) make the 50 
excellent point that one year of streamflow data (can swap for stream temperature) at 15-minute 51 
intervals equals about ~35,000 points, which may seem extensive, but is unlikely to be enough to 52 
properly train a ML model due to autocorrelation and limited exposure to diverse types of data that 53 
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are naturally encountered with a longer time-series (Xu and Liang, 2021). For example, machine 1 
learning models may only predict flood volumes they have previously seen (Kratzert et al., 2019). 2 
While data requirements for ML remain high, there are some strategies that researchers have used to 3 
alleviate this impact.   4 

One strategy that hydrologists in other fields have used to tackle this problem is data 5 
augmentation, which can be applied spatially or temporally to create new training examples that the 6 
ML model can learn from. Spatial augmentation can be done by means of interpolation methods, i.e., 7 
kriging or distance weighting to create new data points or by generating synthetic data based on 8 
expected physical patterns to fill gaps in data coverage (Baydaroğlu and Demir, 2024). Temporal data 9 
augmentation can be done by shifting, scaling or adding noise to existing time series to create new 10 
training examples (Skoulikaris et al., 2022). Alternatively, and not a new idea,  is to use the statistical 11 
technique known as seasonal decomposition, which breaks down a time series into its main 12 
components, i.e., the trend, seasonal patterns and residual components (Apaydin et al., 2021; He et 13 
al., 2022). These can then be recombined to generate new data and train the model for improved 14 
accuracy (Apaydin et al., 2021). In addition to data augmentations, data requirements can be 15 
alleviated by considering the help of unsupervised transfer learning, i.e., use pre-trained models on 16 
similar tasks to reduce amount of data needed for training, or semi-supervised learning, such as few 17 
shot learning, i.e., combine a small percent of labeled data with larger percent of unlabeled data to 18 
improve model performance (Yang et al., 2023). By implementing these strategies, researchers in 19 
other hydrologic fields have shown that models can be improved with less data, strategies that are 20 
likely transferable to SWT research. 21 

 22 
 23 

3. Future Directions Could Be Expanded: Although the paper concludes with a general discussion of 24 
future challenges, it does not offer specific, actionable directions for future research. Highlighting key 25 
areas where ML can advance, such as the use of satellite data, sensor networks, or the fusion of climate 26 
models with ML, would provide more meaningful insights. In this concept, we can learn from hydrologic 27 
community and capitalize on their experience and what they learned. The ML hydrologic community is 28 
moving toward making global models, incorporating mechanistic models into their ML framework and 29 
learning the governing factors, flow prediction with predicted inputs (predicted meteorological inputs) 30 
and last but not least, providing a seamless simulation in streams in CONUS/global scale. Therefore, I 31 
would ask the authors to add their comments on where the future direction of SWT community should be 32 
and how SWT community can achieve the future objectives and what the barriers are.  33 
 34 
AUTHOR RESPONSE: We agree and appreciate the referee’s feedback. We propose adding a new 35 
‘Discussion’ subsection, titled ‘4.4 Future Directions of SWT Modeling’, with the following: 36 
 37 
*new Section 4.4 Future Directions of SWT Modeling, (revised lines 944-991): 38 
 39 

The utility of ML in hydrologic modeling has advanced significantly, with interest seemingly 40 
growing exponentially (Nearing et al., 2021). With the novelty of ML, it is easy to over-value model 41 
performance and ignore the physics of the system , but with several decades of ML-experience, we 42 
advocate it is necessary to purposefully use ML to address physically-meaningful questions and not 43 
just create ML for the sake of creating. Given this, Varadharajan et al. (2022) laid out an excellent 44 
discussion on opportunities for advancement of ML in water quality modeling, see section 3 of 45 
publication of Varadharajan et al. (2022). (Varadharajan et al., 2022)Here we highlight some of the 46 
questions from Varadharajan et al. (2022) that can be considered in the context of what objectives the 47 
SWT community should be using in the ML era, namely: 1) How do we use physical knowledge (re: 48 
heat exchange equations, radiation influence) to improve models and process understanding? 49 
Rahmani et al. (2023) coupled NNs with the physical knowledge from SNTEMP, a one-dimensional 50 
stream temperature model that calculates the transfer of energy to or from a stream segment by either 51 
heat flux equations or advection, but found that even with SNTEMP, their flexible NNs exhibited 52 
substantial variance in prediction and needed to be constrained by further multi-dimensional 53 
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assessments (Rahmani et al., 2023). In short, if our use of physics in machine learning makes our 1 
models worse, we should understand why.  2 

A second question that needs addressing is 2) How do we deal with predictive uncertainty in ML 3 
used for SWT modeling? According to Moriasi et al. (2007), uncertainty analysis is the process of 4 
quantifying the level of confidence in any given model output based on five guidelines: 1) the quality 5 
and amount of observations (data), 2) the lack of observations due to poor or limited field monitoring, 6 
3) the lack of knowledge of physical processes or operational procedures (instrumentation), 4) the 7 
approximation of our mathematical equations, and 5) the robustness of model sensitivity analysis and 8 
calibration. For example, in rainfall-runoff modeling, researchers have proposed benchmarking to 9 
examine uncertainty predictions of ML rainfall-runoff modeling (Klotz et al., 2022). For stream 10 
temperature modeling, researchers have attempted to address the role of uncertainty in deep learning 11 
model (RGCN, LSTM) predictions using the Monte Carlo Dropout (Zwart, Oliver, et al., 2023) and a 12 
unimodal mixture density network approach (Zwart, Diaz, et al., 2023).  13 

Other questions that SWT-ML studies should consider is 3) How do we make ML models 14 
generalize better, specifically with regards to ungaged basins? And 4) How can ML models be 15 
improved to predict extremes? As ML models advance to use satellite data, include more sensor 16 
networks and/or couple with climate models, there is a logical next step toward creating generalizable 17 
models that can account for extremes. In our review, only two papers by the same group (Rahmani et 18 
al., 2020, 2023) conducted a CONUS-scale approach towards SWT-ML modeling, omitting 19 
hydrologically important regions in the southwest (CA) and southeast (FL). Recently, a satellite 20 
remote sensing paper used RF to model monthly stream temperature across the CONUS and tested for 21 
temporal (walk-forward validation), unseen and ‘true’ ungaged regions (Philippus et al., 2024). We 22 
have also learned that ML models such as LSTMs, generally only make predictions within the bounds 23 
of their training data (Kratzert et al., 2019), which is a limitation for predicting extremes. Thus, we 24 
strongly urge the community to work towards ML models that generalize better and/or are more 25 
robust towards predictions of extremes.   26 

Finally, 5) How can we build ML models such that they are seen as trustworthy and 27 
interpretable by the hydrologic community? To answer this question, we must address a technical 28 
barrier (black-box issues, data limitations, model uncertainty) and a social barrier (i.e., educated 29 
skepticism of ML due to novelty, little understanding of computer science basics and/or coding 30 
experience). If we are to incorporate ML into decision-making processes, it makes sense that ML 31 
must be transparent and understandable to more than just computer or data scientists (Varadharajan et 32 
al., 2022). For example, Topp et al. (2023) recently used explainable AI to elucidate how ML 33 
architectures affected the SWT model’s spatial and temporal dependencies, and how that in turn 34 
affected the model’s accuracy. Addressing this technical barrier can also be done by improving access 35 
to data, which has seen remarkable progress thanks to web repositories such as NSF-funded 36 
CUAHSI’s Hydro share (CUAHSI, 2024) and GitHub (GitHub, 2024). In the United States, data 37 
access to state and locally-based data remains limited, and should be addressed. In terms of the social 38 
barrier, education about ML and ML-use is key. Societal interest in ML has thankfully also lead to a 39 
plethora of educational resources and ML walk-through videos and tutorials in Tensorflow (Abadi et 40 
al., 2016), PyTorch (Paszke et al., 2019), and Google Colab (Bisong, 2019). With the speed at which 41 
ML-use is evolving, short communication pieces (Lapuschkin et al., 2019) and opinion pieces 42 
(Kratzert et al., 2024) with clear examples about an ML-issue and practical solutions  will also help 43 
make ML challenges more transparent and therefore accessible to the hydrologic community-at-44 
large.  45 

 46 
Added citations used for new subsection, 4.4 Future Directions of SWT Modeling: 47 

1) Apaydin, H., Taghi Sattari, M., Falsafian, K., and Prasad, R.: Artificial intelligence modelling integrated with 48 
Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow 49 
predictions, Journal of Hydrology, 600, 126506, https://doi.org/10.1016/j.jhydrol.2021.126506, 2021. 50 

2) Baydaroğlu, Ö. and Demir, I.: Temporal and spatial satellite data augmentation for deep learning-based rainfall 51 
nowcasting, Journal of Hydroinformatics, 26, 589–607, https://doi.org/10.2166/hydro.2024.235, 2024. 52 

https://colab.research.google.com/
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3) CUAHSI. 2024. Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Water 1 
Data Portal: https://www.cuahsi.org/community/water-data-portals, last access: 13 November 2024. 2 

4) Kratzert, F., Gauch, M., Klotz, D. and Nearing, G., 2024. HESS Opinions: Never train an LSTM on a single 3 
basin. Hydrology and Earth System Sciences Discussions, 2024, pp.1-19. 4 

5) Kwak, J., St-Hilaire, A., and Chebana, F.: A comparative study for water temperature modelling in a small basin, 5 
the Fourchue River, Quebec, Canada, Hydrological Sciences Journal, 1–12, 6 
https://doi.org/10.1080/02626667.2016.1174334, 2016. 7 

6) Philippus, D., Sytsma, A., Rust, A., and Hogue, T. S.: A machine learning model for estimating the temperature of 8 
small rivers using satellite-based spatial data, Remote Sensing of Environment, 311, 114271, 9 
https://doi.org/10.1016/j.rse.2024.114271, 2024. 10 

7) Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: 11 
What Role Does Hydrological Science Play in the Age of Machine Learning?, Water Resources Research, 57, 12 
e2020WR028091, https://doi.org/10.1029/2020WR028091, 2021. 13 

8) Skoulikaris, C., Venetsanou, P., Lazoglou, G., Anagnostopoulou, C., and Voudouris, K.: Spatio-Temporal 14 
Interpolation and Bias Correction Ordering Analysis for Hydrological Simulations: An Assessment on a 15 
Mountainous River Basin, Water, 14, 660, https://doi.org/10.3390/w14040660, 2022. 16 

9) Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way to 17 
Prevent Neural Networks from Overfitting, Journal of Machine Learning Research, 15, 30, 2014. 18 

10) Yang, M., Yang, Q., Shao, J., Wang, G., and Zhang, W.: A new few-shot learning model for runoff prediction: 19 
Demonstration in two data scarce regions, Environmental Modelling & Software, 162, 105659, 20 
https://doi.org/10.1016/j.envsoft.2023.105659, 2023. 21 

11) GitHub. 2024. About Git and Github: https://docs.github.com/en/get-started/start-your-journey/about-github-22 
and-git, last access: 14 November 2024. 23 

12) Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W. and Müller, K.R., 2019. Unmasking Clever 24 
Hans predictors and assessing what machines really learn. Nature communications, 10(1), p.1096. 25 

13) Zwart, J.A., Oliver, S.K., Watkins, W.D., Sadler, J.M., Appling, A.P., Corson‐Dosch, H.R., Jia, X., Kumar, V. and 26 
Read, J.S., 2023. Near‐term forecasts of stream temperature using deep learning and data assimilation in support 27 
of management decisions. JAWRA Journal of the American Water Resources Association, 59(2), pp.317-337. 28 

14) Zwart, J.A., Diaz, J., Hamshaw, S., Oliver, S., Ross, J.C., Sleckman, M., Appling, A.P., Corson-Dosch, H., Jia, 29 
X., Read, J. and Sadler, J., 2023. Evaluating deep learning architecture and data assimilation for improving 30 
water temperature forecasts at unmonitored locations. Frontiers in Water, 5, p.1184992. 31 

15) Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S. and 32 
Nearing, G., 2022. Uncertainty estimation with deep learning for rainfall–runoff modeling. Hydrology and 33 
Earth System Sciences, 26(6), pp.1673-1693. 34 

16) M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. 35 
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. 36 
Levenberg, D. Mané, M. Schuster, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I. Sutskever, 37 
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, 38 
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015. TensorFlow. 39 
Website: https://www.tensorflow.org/   40 

17) A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. 41 
Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. 42 
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Website: 43 
https://arxiv.org/abs/1912.01703   44 

18) Bisong, E. (2019). Google Colaboratory. In: Building Machine Learning and Deep Learning Models on Google 45 
Cloud Platform. Apress, Berkeley, CA. Website: https://doi.org/10.1007/978-1-4842-4470-8_7  46 

 47 

https://www.tensorflow.org/
https://arxiv.org/abs/1912.01703
https://doi.org/10.1007/978-1-4842-4470-8_7
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4. The manuscript walked through many ML and AI models. An important factor of the ML and AI 1 
models are the inputs. I assume you faced a variety of inputs that have been used in the models. That 2 
would be informative to the readers, if the authors add their observations that what kind of inputs that 3 
have been missed to be used, either because it is not available yet or it is even missed. For instance, 4 
whether there is any geophysical attribute, climatic attributes, or any forcings that is worth to be extracted 5 
and used in ML models.   6 

AUTHOR RESPONSE: We appreciate the referee’s feedback. In the Supplementary Materials, Table S1 7 
contains some of the suggested data by the referee, such as: period considered, region examined, temporal 8 
resolution of SWT, spatial scale of study, and hydrometeorological parameters used for modeling. We 9 
provided the information as Supplementary Material because Tables S1 and S2 are seven pages alone, 10 
which may risk making the review lengthier than it already is. We have added text to the manuscript 11 
regarding model inputs and moved the LASSO paragraph (original lines 247-253) to this section because 12 
we think it can more smoothly follow the paragraph on feature importance. 13 
 14 
*new section 2.4.2 Model Inputs for ML-SWT (revised lines 488-516): 15 
 16 

Using air temperature (AT) to better understand SWT has been considered since the 1960s, when 17 
Ward (1963) and Edinger et al. (1968) discussed the influence of air temperature on SWT. Since then, 18 
studies have used varying input variables (see Table S1), however, the model inputs of AT and SWT 19 
continue to be the most used in ML-modeling studies. In particular, studies have used AT from time 20 
periods outside of the known SWT record to improve model performance (Sahoo et al., 2009; 21 
Piotrowski et al., 2015; Graf et al., 2019). In addition to AT and SWT, flow discharge has been used 22 
to attempt to constrain SWT (Foreman et al., 2001; Tao et al., 2008; St-Hilaire et al., 2011; Grbić et 23 
al., 2013; Piotrowski et al., 2015; Graf et al., 2019; Qiu et al., 2020). Traditionally-used model inputs 24 
include precipitation (Cole et al., 2014; Jeong et al., 2016; Rozos, 2023), wind direction/speed (Hong 25 
and Bhamidimarri, 2012; Cole et al., 2014; Jeong et al., 2016; Kwak et al., 2016; Temizyurek and 26 
Dadaser-Celik, 2018; Abdi et al., 2021; Jiang et al., 2022), barometric pressure (Cole et al., 2014), 27 
landform attributes (Risley et al., 2003; DeWeber and Wagner, 2014; Topp et al., 2023; Souaissi et 28 
al., 2023), and many more (see Table S1).  29 

In the last few years, including the day-of-year as an input, DOY (Qiu et al., 2020; Heddam et 30 
al., 2022; Drainas et al., 2023; Rahmani et al., 2023) and humidity (Cole et al., 2014; Hong and 31 
Bhamidimarri, 2012; Kwak et al., 2016; Temizyurek and Dadaser-Celik, 2018; Abdi et al., 2021), 32 
have also shown to better capture the seasonal patterns of SWT (Qiu et al., 2020; Philippus et al., 33 
2024). With improved access to remote sensing data, there has also been a notable increase of satellite 34 
products such as estimates of sky cover (Cole et al., 2014), solar radiation (Kwak et al., 2016; Topp et 35 
al., 2023; Majerska et al., 2024), sunshine per day (Drainas et al., 2023) and potential ET (Rozos, 36 
2023; Topp et al., 2023). However, more research is needed to better understand the influence of 37 
newer model inputs on SWT (Zhu and Piotrowski, 2020).  38 

Recently, SWT studies focused on the CONUS-scale have chosen to use as many model inputs 39 
as available, with Wade et al. (2023), a point-scale CONUS ML study using over 20 variables, while 40 
Rahmani et al. (2023) created a LSTM model and considered over 30 variables to simulate SWT. 41 
Despite the use of diverse data, the models in these studies performed only satisfactorily and were 42 
deemed not generalizable, leaving much room for improvement in CONUS-scale modeling of SWT. 43 
With the compilation of larger and larger datasets, feature importance in ML, that is the process of 44 
using techniques to assign a score to model input features based on how good the features are at 45 
predicting a target variable, can be an efficient way to improve data comprehension, model 46 
performance, and model interpretability, the latter of which can dually serve as a transparency marker 47 
of which features are driving predictions. Methods for measuring feature importance include using 48 
correlation criteria (Pearson’s r, Spearman’s rho), permutation feature importance (shuffling feature 49 
values, measuring decrease in model performance), linear regression feature importance  (larger 50 
absolute values indicate greater importance), or if using CART/RF/gradient boosting, entropy 51 
impurity measurements can be insightful (Venkateswarlu and Anmala, 2023).  52 

 53 
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Moved part of section 2.3.1, original (lines 246-253) to section 2.4.2 Model Inputs for ML-SWT (moved 1 
to lines 517-523): 2 

For example, one technique that can be used to improve ML model parameter selection is the 3 
Least Absolute Shrinkage and Selection Operator (LASSO), a regression technique used for feature 4 
selection (Tibshirani, 1996). Research utilizing ML models for SWT frequency analysis at ungaged 5 
basins used the LASSO method to select explanatory variables for two ML models (Souaissi et al., 6 
2023). The LASSO method consists of a shrinkage process where the method penalizes coefficients 7 
of regression variables by minimizing them to zero (Tibshirani, 1996). The number of coefficients set 8 
to zero depends on the adjustment parameter, which controls the severity of the penalty. Thus, the 9 
method can perform both feature selection and parameter estimation, an advantage when examining 10 
large datasets (Xu & Liang, 2021). 11 

 12 
5. Lack of Clear Structure in the Evaluation: Although the paper aims to summarize the performance 13 
evaluation metrics for ML models in SWT prediction, the organization of these sections feels somewhat 14 
scattered. A more systematic approach could improve clarity, such as separating the analysis based on 15 
time scales (e.g., hourly, daily, monthly) or spatial scales (local, regional, continental). This would make 16 
it easier for readers to find the relevant insights based on their application. For instance, a stream 17 
temperature model in monthly scale is different from a daily or hourly scale models on many aspects. As 18 
an example, the complexity of a daily model is different from a monthly temperature models. A monthly 19 
model may not need all inputs of a daily model to capture the monthly changes. The authors can add their 20 
overall opinion of what types of models are better fitted to which time scale. In ML models, it is 21 
important to know the scope of the model, whether it is a local model that needs to be calibrated site by 22 
site, or it is a model that  is designed to work for multiple sites (a regional model). I believe that would be 23 
informative to consider the modeling approach when methods are compared.  24 
 25 
AUTHOR RESPONSE: We appreciate the opportunity to clarify. Initially, we compiled a performance 26 
metric comparison by spatial scale for the most-cited metric, RMSE (42 papers cited) and plotted RMSE 27 
by study for regional/CONUS scale and local scale (located in HYDROSHARE repository but not the 28 
manuscript, see plots on next page for comparison). The comparison found minimal difference in RMSE 29 
between the regional/CONUS studies and the local scale studies, which we summarize in Table 1.  30 
 31 
Given the speed at which ML is advancing and being applied for hydrologic applications, we do not think 32 
it wise to opinionate on which ML model is better or worse. Instead, our aim is to inform the reader on 33 
current studies and metrics, which we do by providing data as supplementary info, such as Tables S1 34 
which states the time scale, spatial scale, region and time period considered of each study while Table S2 35 
lists the data analysis techniques and/or ML algorithms used, as well as the training/validation/testing 36 
percentages/time periods as reported by the study. We think that summarizing publications (see Tables S1 37 
and S2) and compiling performance metrics allows the reader to identify what has already been done in 38 
the ML-SWT field so that they can then make their own informed decisions depending on their research 39 
questions, model selection, project time frame, etc.  40 
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6. The authors need to decide first who are the readers of the papers. Whether the paper serves to new-1 
commers to ML and AI methodologies in stream temperature community or it serves to researchers that 2 
are already familiar with basics of ML and AI methods.  3 
 4 

AUTHOR RESPONSE: We agree with the referee that the purpose of the review should be more clearly 5 
stated. We drafted this paper to serve as a middle ground between traditional modelers and more well-6 
versed ML users. The intended audience are hydrologic modelers who have heard of AI/ML and want a 7 
summary of what has been done in SWT modeling using ML. Our dual objective is also for this to be a 8 
reference for assessment of ML performance. At the same time, we want ML researchers to be aware of 9 
where their models stand compared to other modelers while communicating that an “A+ grade” is 10 
actually more common (and therefore the new average) relative to what they are used to in hydrologic 11 
modeling. We have added a few sentences in the introduction, under section 1.2 ‘Study Objectives’ of the 12 
manuscript to state who the intended audience is: 13 

1.2. Study Objective (new in blue, revised lines 64-68) 14 

The current work includes an extensive literature review of studies that used ML algorithms/models for 15 
river/SWT modeling, hindcasting and forecasting. The intent of this review is two-fold: 1) to introduce 16 
ML for hydrologists who have modeling experience and are interested in pursuing ML-use for their SWT 17 
studies, and 2) to provide a broad overview of machine learning applications in SWT. For ML experts, 18 
we think that this review could also prove useful as reference for how ML has been applied in the field 19 
of SWT modeling and where improvement is needed. Overall, this article aims to serve as a bridge 20 
between hydrologists and machine learning experts. Our review includes papers cited by Zhu and 21 
Piotrowski (2020), who previously conducted a study of ANNs used in SWT modeling, however, we 22 
provide a comprehensive examination of peer-reviewed journals that use any type of artificial 23 
intelligence/ML algorithm to model or evaluate river/SWT […]  24 
 25 
 26 

7a. While the paper provides an extensive review of ML applications in SWT modeling, it focuses 27 
heavily on listing the types of ML models used rather than deeply analyzing their applications, strengths, 28 
weaknesses, and performance differences. A more critical analysis of the pros & cons of each model type 29 
could provide greater value to researchers choosing the appropriate model for their specific needs. To 30 
provide a few examples, I refer to lines 136 – 143 & lines 146 – 159 & lines 263 - 292.  31 
 32 

AUTHOR RESPONSE: Thank you for the opportunity to clarify. We provided supplementary tables to 33 
summarize study information, for example, Tables S1 includes summarized information stating the time 34 
scale, spatial scale, region and time period considered of each study while Table S2 lists the data analysis 35 
techniques and/or ML algorithms used, as well as the training/validation/testing percentages/time periods 36 
as reported by the study. We think the “pros/cons” and “strengths/weakness” vary depending on the 37 
research goal and question, and the robustness of ML models allows them to cater to most problems, 38 
which is why rather than opinionating, we provide concrete specifications on the models used and allow 39 
the reader to decide based on their objectives. 40 
 41 
 42 
7b. The first half of the paragraph that is written in lines 136 – 143 explains the fundamentals of the 43 
method, which may not be necessary to be long, and the rest is an example of the method usage. 44 
However, this paragraph could have been enriched by statements like the advantages and disadvantages 45 
of this method compared to other existing ML methods or even to a linear regression method, or a 1D 46 
mechanistic method (although they are not ML methods, but the comparison is beneficial to the readers). 47 
The authors also can add their statement of under what conditions they think the method is beneficial.  48 
 49 

AUTHOR RESPONSE: We agree with the reviewer. We have revised the text to describe the 50 
advantages and disadvantages of K-nn, section 2.3.1.1 (crossed out is deleted, revised lines 166-181): 51 
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 1 
K-nearest neighbors (K-nn) is a type of versatile supervised ML algorithm (Fix & Hodges, 1952; 2 
Cover & Hart, 1967) used to solve nonparametric classification and regression problems. It is one of 3 
the oldest algorithms (Fix & Hodges, 1952; Cover & Hart, 1967) considered within classical ML. The 4 
K-nn algorithm uses proximity between data points to make classifications or evaluations about the 5 
grouping of any given data point (Acito, 2023). K-nn gained popularity in the 2000s due to its 6 
simplicity in implementation and understanding, making it readily accessible to hydrologic 7 
researchers and practitioners. While less used today,  For example, St.-Hilaire et al. (20122011) used 8 
various K-nn model configurations to model SWT for the Moisie River in northern Quebec, Canada, 9 
finding that. T the best K-nn model required prior-day SWT data and day-of-year (DOY), an indicator 10 
of seasonality (St. Hilaire et al., 2011). Advantages of K-nn include its non-assumptions of the 11 
underlying distribution of the data, allowing it to handle nonlinear complexities without requiring a 12 
solid model structure as is the case for some physical models (St. Hilaire et al., 2011). Disadvantages 13 
of K-nn are that it is computationally intensive, may require extensive cross-validation, performance 14 
can be affected by irrelevant/redundant features, and due to its high memory and computational 15 
needs, is impractical for large-scale applications, i.e., scalability issues, (Acito, 2023). For example, 16 
Heddam et al. (2022) For example, Heddam et al. (2022) For five stream stations in Poland, Heddam 17 
et al. (2022) compared K-nn with other ML algorithms, finding that K-nn was outperformed by other 18 
MLs such as least squares support vector machine and neural networks. performed poorly compared 19 
to other ML algorithms. The use of K-nn may still be reasonable for simple, local cases but we advise 20 
considering other MLs for more complex or larger-use cases. 21 

 22 
 23 
7c. Lines 146 – 153 explains PCA & ck-means clustering on data reduction application, however, it is not 24 
clear under what conditions we can use them.  25 
 26 
AUTHOR RESPONSE: We agree. We propose adding text to clarify: 27 
 28 
Added lines 192-193: 29 

Krishnaraj and Deka (2020) used K-means to organize spatial grouping for water quality monitoring 30 
stations for dry and wet regions along the Gangas River basin in India to identify whether pollution 31 
patterns could be discerned. 32 
 33 

Added lines 198-203: 34 
Using PCA, Krishnaraj and Deka (2020) found that certain water quality parameters (dissolved 35 
oxygen, sulfate, electrical conductivity) were more dominant in the dry season compared to the wet 36 
season (total dissolved solids, sodium, potassium, sodium, chlorine, chemical oxygen demand), data 37 
which could be used to cater the monitoring program to the important parameters. In their study, 38 
SWT was not a dominant parameter, likely in part because the SWT of large downstream rivers like 39 
the Gangas River are generally less variable due to their larger volume and stronger thermal buffer. 40 
Used k-means and PCA in the Ganga River Basin of India to find spatiotemporal patterns of water 41 
quality parameters, including SWT. 42 

 43 
 44 
7d. Additionally, that would be nice for readers if the authors add feature importance to their comparison 45 
as it has been used more frequently in streamflow and soil moisture prediction studies.  46 
 47 

AUTHOR RESPONSE: We agree and added text on feature importance to a section on model inputs as 48 
suggested (please see comment #4 for full text).  49 
 50 
The text specific to feature importance is below (revised lines 506-516): 51 
 52 

Recently, SWT studies focused on the CONUS-scale have chosen to use as many model inputs 53 



   

 

13 

 

as available, with Wade et al. (2023), a point-scale CONUS ML study using over 20 variables, while 1 
Rahmani et al. (2023) created a LSTM model and considered over 30 variables to simulate SWT. 2 
Despite the use of diverse data, the models in these studies performed only satisfactorily and were 3 
deemed not generalizable, leaving much room for improvement in CONUS-scale modeling of SWT. 4 
With the compilation of larger and larger datasets, feature importance in ML, that is the process of 5 
using techniques to assign a score to model input features based on how good the features are at 6 
predicting a target variable, can be an efficient way to improve data comprehension, model 7 
performance, and model interpretability, the latter of which can dually serve as a transparency marker 8 
of which features are driving predictions. Methods for measuring feature importance include using 9 
correlation criteria (Pearson’s r, Spearman’s rho), permutation feature importance (shuffling feature 10 
values, measuring decrease in model performance), linear regression feature importance  (larger 11 
absolute values indicate greater importance), or if using CART/RF/gradient boosting, entropy 12 
impurity measurements can be insightful (Venkateswarlu and Anmala, 2023).  13 

 14 
 15 
7e. Lines 263 – 292 are organized in three paragraphs while providing general knowledge about ANNs 16 
with relatively less direct relations to water temperature application.   17 
 18 
AUTHOR RESPONSE: We appreciate the reviewer’s feedback and are open to making changes to 19 
improve the manuscript for the reader. Referee #3 made a similar comment about this section, and we 20 
now wonder if it would be better to provide the description of ANN variants and alternatives (lines 263-21 
320) as part of an appendix. We think it would still be helpful to keep the information, but we also agree 22 
that it may be too extensive for the main text. In this way, the manuscript can be made more concise while 23 
also keeping the details as a section of the manuscript for anyone who is interested in reading further.  24 
 25 
Following this line of thinking, we can point the reader to the appendix (revised lines 326-327):  26 
 27 

“For more detail on traditional ANNs, with descriptions of ANN variants and backpropagation 28 
alternatives, we refer the reader to Appendix A.” 29 
 30 

We have added Appendix A after the conclusion (revised lines 1014 – 1075). 31 
 32 

Minor corrections: 33 
 34 

1. Line 13: There is a typo that changes the meaning of the sentence. It should be “… with in situ …” or 35 
“… with in-situ …”. 36 

 37 
AUTHOR RESPONSE: Thank you for pointing this out, we have fixed the typo to read “with in-situ” 38 
(revised line 13). 39 
 40 
 41 
2. Line 132: There is a typo here too. It should be “long short-term memory”. Although I am trying to 42 

catch them, there is a chance that I miss some of them. I recommend the authors to carefully re-read 43 
the manuscript or ask help from a fresh pair of eyes to find these types of typos.  44 

 45 
AUTHOR RESPONSE: Thank you! We have revised the text to read “long short-term memory” 46 
(revised line 160) and reviewed the text accordingly. 47 
 48 
 49 
3. Lines 208 – 210: to make the sentence more accurate, it needs to be stated whether these are local 50 

models or one model for multiple sites. Additionally, I believe by “NNs” here, the authors mean 51 
feedforward neural network, which are totally different from recurrent neural networks.  52 

 53 
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AUTHOR RESPONSE: Yes, we agree with both points. We have clarified that a feed-forward NN was 1 
used and revised the sentence to make it more accurate (revised lines 263-266): 2 
 3 

In the case of A SWT modeling study comparing the output of three model versions of DT, GPR, and 4 
feed-forward neural networks for daily SWT modeling multiple sites and prediction, found that DTs 5 
can could perform similarly to GPR and feed-forward neural networks when detailed statistics of air 6 
temperature, day-of-year, and discharge were included NNs (Zhu, Nyarko, Hadzima-Nyarko, Heddam, 7 
et al., 2019). 8 

 9 
 10 
4. Line 541: “at” is missed. It is .. All journals examined used at least …”  11 
 12 
AUTHOR RESPONSE: Thank you! We have added the word “at” (revised line 681). 13 
 14 
  15 
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Referee #2 Comments 1 
This is a meaningful manuscript that provides a thorough review of ML approaches for SWT modeling 2 
and their evaluation metrics. I believe that the current scientific community has indeed developed a broad 3 
understanding of the integration of ML into stream temperature modeling. Hence, while the manuscript 4 
presents a comprehensive overview, incorporating more in-depth insights could enhance its appeal to 5 
readers and significantly increase its contribution to the field. The review covers a wealth of content, 6 
including recent articles and other reviews, but the sections are somewhat loosely structured, with key 7 
points relatively briefly mentioned. 8 

AUTHOR RESPONSE: We thank the referee for their time and feedback, we believe the manuscript is 9 
stronger as a result. We address specific referee comments below. For reference, we separated some 10 
referee comments into a, b, etc., to provide a more organized response.  Proposed new/edited text is in 11 
BLUE. Revised lines in the track-changes manuscript are indicated by: (revised lines XXX-XXX). 12 
 13 
 14 
1. For instance, in the first section (Overview: SWT Model Types), the author provides a solid overview 15 
of statistical, physical, and ML models. However, a more detailed analysis of the comparative strengths 16 
and weaknesses of physical and ML models would strengthen the discussion. The models are presented in 17 
a nearly linear developmental order in this review, but it would be beneficial to mention some points, for 18 
example, [if] physical models perform well, why ML models are adopted[?].  19 

AUTHOR RESPONSE: The referee makes a good point with regards to the question of “if physical 20 
models perform well, why are ML models being adopted?”. We have expanded the section 2.3 “Artificial 21 
Intelligence Models in SWT Modeling” to discuss this (revised lines 136-156): 22 
 23 

In the last decade, computing advances in AI have started to offer several advantages for using machine 24 
learning (ML) in hydrology that are comparable to physically based models (Cole et al., 2014; Zhu et 25 
al., 2019; Rehana and Rajesh, 2023). In contrast to traditional physically based models, the code 26 
underlying ML models are generally open-source and publicly available allowing for near real-time 27 
accessible advances and user feedback, whereas the source code for some physically based models may 28 
be inaccessible to the public due to being privately managed (MIKE suite of models) or the model 29 
software may be publicly available but take years to publish updates (USGS MODFLOW, Simunek’s 30 
HYDRUS). One advantage that has made ML increasingly appealing includes its ability to learn 31 
directly from the data (i.e., data driven), which can be useful when the underlying physics are not fully 32 
understood or are considered too complex to model accurately.  33 

Additionally, ML models are more efficient in making predictions compared to the time-intensive 34 
solvers of physically based models. ML models can also handle the challenge of scalability, that is 35 
managing large datasets and seamlessly deploying across various computer platforms and applications 36 
(Rehana and Rajesh, 2023). Air2stream, a hybrid statistical-physically based SWT model (Toffolon and 37 
Piccolroaz, 2015; Piccolroaz et al., 2016), initially outperformed earlier ML models such as Gaussian 38 
Process Regression (Zhu et al., 2019). However, in the last few years, Air2stream has had its 39 
performance matched and even exceeded by recent neural networks models (Feigl et al., 2021; Rehana 40 
and Rajesh, 2023).  41 

Finally, with computer processing power improving and the emergent field of quantum computing, 42 
there is a strong belief  that using ML and by extension AI, in science applications will drive innovation 43 
to the point where natural patterns and insights not currently apparent in physical modeling will be 44 
uncovered (Varadharajan et al., 2022). Thus, while physically based models are considered tried-and-45 
true, thereby invaluable for their interpretability and grounding in established physics, ML models have 46 
the potential for growth – where they can be used to first complement and eventually lead as powerful 47 
tools for prediction, optimization, and understanding in increasingly complex and data-rich 48 
environments. 49 

 50 
New citation: 51 
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Toffolon, M. and Piccolroaz, S., 2015. A hybrid model for river water temperature as a function of air 1 
temperature and discharge. Environmental Research Letters, 10(11), p.114011. 2 

 3 
2. How to gain the trust of traditional model users in ML methods? (This question is inherently 4 
challenging, as model users often have preferences based on their own familiarity with certain models and 5 
may exhibit biases against alternative approaches. However, it may be worthy to acknowledge this in the 6 
review.) This discussion could extend to the choice between different ML models as well, as conclusions 7 
favoring one model over another often depend on the specific context of the study. Many conclusions are 8 
applicable only under particular circumstances, so a generalization such as “a certain model is better 9 
suited to a particular type of problem” is more appropriate.  10 

AUTHOR RESPONSE: We agree and appreciate the referee’s feedback. We address this comment in 11 
our response to referee #1 for comment #3 (copied below) where we discuss how researchers can work to 12 
present their ML models as trustworthy. For this, we propose adding a new ‘Discussion’ subsection titled 13 
‘4.4 Future Directions of SWT Modeling’ (revised lines 944-991): 14 
 15 

The utility of ML in hydrologic modeling has advanced significantly, with interest seemingly 16 
growing exponentially (Nearing et al., 2021). With the novelty of ML, it is easy to over-value model 17 
performance and ignore the physics of the system, but with several decades of ML-experience, we 18 
advocate it is necessary  to purposefully use ML to address physically-meaningful questions and not 19 
create ML for the sake of creating. Given this, Varadharajan et al. (2022) laid out an excellent 20 
discussion on opportunities for advancement of ML in water quality modeling, see section 3 of 21 
publication Varadharajan et al., (2022). Here we highlight some of the questions from Varadharajan 22 
et al. (2022) that can be considered in the context of what objectives the SWT community should be 23 
using in the ML era, namely: 1) How do we use physical knowledge (re: heat exchange equations, 24 
radiation influence) to improve models and process understanding? Rahmani et al. (2023) coupled 25 
NNs with the physical knowledge from SNTEMP, a one-dimensional stream temperature model that 26 
calculates the transfer of energy to or from a stream segment by either heat flux equations or 27 
advection, but found that even with SNTEMP, their flexible NNs exhibited substantial variance in 28 
prediction and needed to be constrained by further multi-dimensional assessments (Rahmani et al., 29 
2023). In short, if our use of physics in machine learning makes our models worse, we should 30 
understand why.  31 

A second question that needs addressing is 2) How do we deal with predictive uncertainty in ML 32 
used for SWT modeling? According to Moriasi et al. (2007), uncertainty analysis is the process of 33 
quantifying the level of confidence in any given model output based on five guidelines: 1) the quality 34 
and amount of observations (data), 2) the lack of observations due to poor or limited field monitoring, 35 
3) the lack of knowledge of physical processes or operational procedures (instrumentation), 4) the 36 
approximation of our mathematical equations, and 5) the robustness of model sensitivity analysis and 37 
calibration. For example, in rainfall-runoff modeling, researchers have proposed benchmarking to 38 
examine uncertainty predictions of ML rainfall-runoff modeling (Klotz et al., 2022). For stream 39 
temperature modeling, researchers have attempted to address the role of uncertainty in deep learning 40 
model (RGCN, LSTM) prediction using the Monte Carlo Dropout (Zwart, Oliver, et al., 2023) and a 41 
unimodal mixture density network approach (Zwart, Diaz, et al., 2023).  42 

Other questions that SWT-ML studies should consider is 3) How do we make ML models 43 
generalize better, specifically with regards to ungaged basins? And 4) How can ML models be 44 
improved to predict extremes? As ML models advance to use satellite data, include more sensor 45 
networks and/or couple with climate models, there is a logical next step toward creating generalizable 46 
models that can account for extremes. In our review, only two papers by the same group (Rahmani et 47 
al., 2020, 2023) conducted a CONUS-scale approach towards SWT-ML modeling, omitting 48 
hydrologically important regions in the southwest (CA) and southeast (FL). Recently, a satellite 49 
remote sensing paper used RF to model monthly stream temperature across the CONUS and tested for 50 
temporal (walk-forward validation), unseen and ‘true’ ungaged regions (Philippus et al., 2024). We 51 
have also learned that ML models such as LSTMs, generally only make predictions within the bounds 52 
of their training data (Kratzert et al., 2019), which is a limitation for predicting extremes. Thus, we 53 
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strongly urge the community to work towards ML models that generalize better and/or are more 1 
robust towards predictions of extremes.   2 

Finally, 5) How can we build ML models such that they are seen as trustworthy and interpretable 3 
by the hydrologic community? To answer this question, we must address a technical barrier (black-4 
box issues, data limitations, model uncertainty) and a social barrier (i.e., educated skepticism of ML 5 
due to novelty, little understanding of computer science basics and/or coding experience). If we are to 6 
incorporate ML into decision-making processes, it makes sense that ML must be transparent and 7 
understandable to more than just computer or data scientists (Varadharajan et al., 2022). For example, 8 
Topp et al. (2023) recently used explainable AI to elucidate how ML architectures affected the SWT 9 
model’s spatial and temporal dependencies, and how that in turn affected the model’s accuracy. 10 
Addressing this technical barrier can also be done by improving access to data, which has seen 11 
remarkable progress thanks to web repositories such as NSF-funded CUAHSI’s Hydro share 12 
(CUAHSI, 2024) and GitHub (GitHub, 2024). In the United States, data access to state and locally-13 
based data remains limited, and should be addressed. In terms of the social barrier, education about 14 
ML and ML-use is key. Societal interest in ML has thankfully also lead to a plethora of educational 15 
resources and ML walk-through videos and tutorials in Tensorflow (Abadi et al., 2016), PyTorch 16 
(Paszke et al., 2019), and Google Colab (Bisong, 2019). With the speed at which ML-use is evolving, 17 
short communication pieces (Lapuschkin et al., 2019) and opinion pieces (Kratzert et al., 2024) with 18 
clear examples about an ML-issue and practical solutions will also help make ML challenges more 19 
transparent and therefore accessible to the hydrologic community-at-large.  20 

 21 

3a. Furthermore, the author may not clearly (separately) present the generalization capabilities of ML 22 
models in temporal and spatial contexts, which is crucial for data split. The model ability of 23 
generalization over time is particularly meaningful for climate change studies, where overfitting (common 24 
for ML studies) may lead to highly unreliable projections. Spatial generalization is useful for applying 25 
models to new regions or watersheds (ungauged stream/river/watershed).   26 

AUTHOR RESPONSE: We agree. Referee #1 made a similar comment (ref #1, comment #1A) about 27 
overfitting and having ML undergo more testing and we propose to address both comments by adding: 1) 28 
a new subsection 2.4.1, titled “Identifying model complexity”, which discusses overfitting/underfitting, 29 
with 2) a diagram with initial steps to mitigate overfitting. The new text is below: 30 
 31 
*new Section 2.4.1, Identifying Model Complexity (revised lines 464-483) 32 
 33 

The strong success of ML-use in SWT modeling warrants a brief and broad overview on identifying 34 
model complexity to minimize overfitting and underfitting” of models. When a model is too complex, 35 
i.e., has too many features or  parameters relative to the number of observations, or is forced to 36 
overextend its capabilities, i.e., make predictions with insufficient training data, the model runs the 37 
risk of overfitting (Srivastava et al., 2014). An overfitted model fits the training data “too well”, 38 
capturing noise and details that provide high accuracy on a training dataset, only to perform poorly 39 
once the model encounters “unseen” data in testing/validation (Xu and Liang, 2021). Scenarios where 40 
overfitting may be temporarily acceptable are: 1) model development is at preliminary stages, the 41 
interest is in a “proof of life” concept, 2) when the objective is to identify heavily-relied on features 42 
by the model, i.e., feature importance, or 3) in highly-controlled modeling environments where the 43 
expected data will be consistently similar to the training dataset. The latter is more likely in industrial 44 
applications and unlikely in the changing nature of hydrology.  45 
 46 

In contrast, underfitting occurs when a model is too simple to capture any patterns in the data, 47 
which can also lead to unsatisfactory performance in training, testing and validation. Underfitting can 48 
occur with inadequate model features, poor model complexity or when regularization techniques, 49 
(e.g., L1 or L2 regularization), are over-used, making the model too rigid and unable to respond to 50 
changes in the data. Given the propensity of ML models to effectively learn the training data, 51 
underfitting is less an issue in ML whereas overfitting can be widespread. In Figure 1, we present an 52 

https://colab.research.google.com/
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example workflow that researchers can use to transition away from overfitting and towards 1 
generalizability. In the five-step outline (Fig. 1), we suggest the need for “Temporal, Unseen, 2 
Ungaged Region Tests” (TUURTs), which is a call for temporal and spatially-focused testing that can 3 
be used to strengthen model robustness. 4 

 5 
Revised lines 484-486:  6 

 7 
Figure 1. Diagram outlining steps that can be taken in modeling process to mitigate overfitting. 8 
 9 
We propose to address the comment about generalization and a similar one made by ref #1 (comment # 3) 10 
by adding a new Discussion subsection, ‘4.4 Future Directions of SWT Modeling’. Below is our selected 11 
response where we state that models should work towards generalizability (revised lines 966-975). For 12 
full text, please see comment #2:  13 
 14 

Other questions that SWT-ML studies should consider are 3) How do we make ML models 15 
generalize better, specifically with regards to ungaged basins? And 4) How can ML models be 16 
improved to predict extremes? As ML models advance to use satellite data, include more sensor 17 
networks and/or couple with climate models, there is a logical next step toward creating generalizable 18 
models that can account for extremes. In our review, only two papers by the same group (Rahmani et 19 
al., 2020, 2023) conducted a CONUS-scale approach towards SWT-ML modeling, omitting 20 
hydrologically important regions in the southwest (CA) and southeast (FL). Recently, a satellite 21 
remote sensing paper used RF to model monthly stream temperature across the CONUS and tested for 22 
temporal (walk-forward validation), unseen and ‘true’ ungaged regions (Philippus et al., 2024). We 23 
have also learned that ML models such as LSTMs, generally only make predictions within the bounds 24 
of their training data (Kratzert et al., 2019), which is a limitation for predicting extremes. Thus, we 25 
strongly urge the community to work towards ML models that generalize better and/or are more 26 

Initial Model Runs and Preliminary Training & Testing

• Is the model capturing general patterns? 

• Use cross-validation (i.e., k-fold, leave-one-out), to compare 
training and testing/validation performance.

• If possible, collect/use more data.

Temporal, Unseen, Ungaged Region Tests (TUURTs)

• Conduct temporal/spatial focused testing (TUURTs). 

• Temporal example: train w/ 2/3 years of data and test/validate with 
remainder.

• Unseen (can be temporal or spatial) example: training data (ex: 70%) 
isolated from testing data (ex: 30%).

• Ungaged (spatial) example: Testing for new sites where 1) no data 
exists and 2) region has not been "seen" by the model at all.

Apply Regularization Techniques

• Add regularization terms, i.e. L1 (Lasso) and L2 (Ridge) penalties to 
loss function to constrain model complexity.

Simplify the Model/Reduce Complexity

• Feature Importance: use fewer parameters, remove 
redundant/irrelevant parameters 

• For deep NNs, reduce # of layers or neurons per layer.

Early Stopping/Dropout/Ensemble methods

• Early stopping: stop training when validation performance starts to 
degrade.

• For NNs, use Dropout to randomly drop units (and connections) 
during training to limit over-reliance on specific neural paths. 

• Dropout can be coupled with early stopping.

• Use ensemble methods to improve generalization.
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robust towards predictions of extremes.   1 
 2 

3b. Additionally, the review does not systematically address the critical issue of model input selection, 3 
which is essential in ML modeling. Model inputs for SWT modeling may include hydrometeorological 4 
and physical parameters (or other attributes used in different studies), they play a role in model 5 
performance and should be discussed in this part.  6 

AUTHOR RESPONSE: Thank you for pointing out this area in need of clarity. Referee #1, comment #4 7 
had a similar question about model input, and we propose adding the paragraph below in response to 8 
both. Additionally, we want to note that we included in Supplementary Materials, Table S1, which 9 
contains some of the suggested data by the referee, such as: period considered, region examined, temporal 10 
resolution of SWT, spatial scale of study, and hydrometeorological parameters used for modeling. 11 
 12 
*new subsection 2.4.2, Model Inputs for ML-SWT (revised lines 488-516): 13 
 14 

Using air temperature (AT) to better understand SWT has been considered since the 1960s, when 15 
Ward (1963) and Edinger et al. (1968) discussed the influence of air temperature on SWT. Since then, 16 
studies have used varying input variables (see Table S1), however, the model inputs of AT and SWT 17 
continue to be the most used in ML-modeling studies. In particular, studies have used AT from time 18 
periods outside of the known SWT record to improve model performance (Sahoo et al., 2009; 19 
Piotrowski et al., 2015; Graf et al., 2019). In addition to AT and SWT, flow discharge has been used 20 
to attempt to constrain SWT (Foreman et al., 2001; Tao et al., 2008; St-Hilaire et al., 2011; Grbić et 21 
al., 2013; Piotrowski et al., 2015; Graf et al., 2019; Qiu et al., 2020). Traditionally-used model inputs 22 
include precipitation (Cole et al., 2014; Jeong et al., 2016; Rozos, 2023), wind direction/speed (Hong 23 
and Bhamidimarri, 2012; Cole et al., 2014; Jeong et al., 2016; Kwak et al., 2016; Temizyurek and 24 
Dadaser-Celik, 2018; Abdi et al., 2021; Jiang et al., 2022), barometric pressure (Cole et al., 2014), 25 
landform attributes (Risley et al., 2003; DeWeber and Wagner, 2014; Topp et al., 2023; Souaissi et 26 
al., 2023), and many more (see Table S1).  27 

In the last few years, including the day-of-year as an input, DOY (Qiu et al., 2020; Heddam et al., 28 
2022; Drainas et al., 2023; Rahmani et al., 2023) and humidity (Cole et al., 2014; Hong and 29 
Bhamidimarri, 2012; Kwak et al., 2016; Temizyurek and Dadaser-Celik, 2018; Abdi et al., 2021), 30 
have also shown to better capture the seasonal patterns of SWT (Qiu et al., 2020; Philippus et al., 31 
2024). With improved access to remote sensing data, there has also been a notable increase of satellite 32 
products such as estimates of sky cover (Cole et al., 2014), solar radiation (Kwak et al., 2016; Topp et 33 
al., 2023; Majerska et al., 2024), sunshine per day (Drainas et al., 2023) and potential ET (Rozos, 34 
2023; Topp et al., 2023). However, more research is needed to better understand the influence of 35 
newer model inputs on SWT (Zhu and Piotrowski, 2020).  36 

Recently, SWT studies focused on the CONUS-scale have chosen to use as many model inputs as 37 
available, with Wade et al. (2023), a point-scale CONUS ML study using over 20 variables, while 38 
Rahmani et al. (2023) created a LSTM model and considered over 30 variables to simulate SWT. 39 
Despite the use of diverse data, the models in these studies performed only satisfactorily and were 40 
deemed not generalizable, leaving much room for improvement in CONUS-scale modeling of SWT. 41 
With the compilation of larger and larger datasets, feature importance in ML, that is the process of 42 
using techniques to assign a score to model input features based on how good the features are at 43 
predicting a target variable, can be an efficient way to improve data comprehension, model 44 
performance, and model interpretability, the latter of which can dually serve as a transparency marker 45 
of which features are driving predictions. Methods for measuring feature importance include using 46 
correlation criteria (Pearson’s r, Spearman’s rho), permutation feature importance (shuffling feature 47 
values, measuring decrease in model performance), linear regression feature importance  (larger 48 
absolute values indicate greater importance), or if using CART/RF/gradient boosting, entropy 49 
impurity measurements can be insightful (Venkateswarlu and Anmala, 2023).  50 

 51 
 52 
 53 
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Moved part of section 2.3.1, original (lines 246-253) to section 2.4.2 Model Inputs for ML-SWT (moved 1 
to lines 517-523): 2 
 3 

For example, one technique that can be used to improve ML model parameter selection is the 4 
Least Absolute Shrinkage and Selection Operator (LASSO), a regression technique used for feature 5 
selection (Tibshirani, 1996). Research utilizing ML models for SWT frequency analysis at ungaged 6 
basins used the LASSO method to select explanatory variables for two ML models (Souaissi et al., 7 
2023). The LASSO method consists of a shrinkage process where the method penalizes coefficients 8 
of regression variables by minimizing them to zero (Tibshirani, 1996). The number of coefficients set 9 
to zero depends on the adjustment parameter, which controls the severity of the penalty. Thus, the 10 
method can perform both feature selection and parameter estimation, an advantage when examining 11 
large datasets (Xu & Liang, 2021). 12 

 13 
 14 
4. In the second section, the authors do an excellent job summarizing model evaluation metrics. However, 15 
considering that ML models are often optimized to achieve superior performance on these metrics, there 16 
is (always) a risk of overfitting. Thus, beyond focusing on metrics, the review should also highlight the 17 
importance of more rigorous evaluation to further assess generalization ability. For instance, if a SWT 18 
model is built to run climate change scenarios, additional testing and more rigorous designs are essential 19 
to evaluate the model's ability to generalize over time. For robust long-term predictions, the model is 20 
supposed to maintain robust predictive performance in completely unseen periods, rather than being 21 
limited to a specific temporal range.  22 

AUTHOR RESPONSE: We agree. This comment has similar themes to our response to #3a regarding 23 
overfitting and highlighting the need for generalization, please see comment #3a for a full response.  24 
 25 
For the comment regarding having ML undergo more rigorous testing, we propose adding the following 26 
discussion for more rigorous testing for MLs. We added a few sentences (blue is new) to the Discussion 27 
subsection 4.3 “ML as Knowledge Discovery” where we urge for TUURTs (Temporal, Unseen, Ungaged 28 
Region Tests)’ (revised lines 914-925):  29 
 30 

While it is understandable that not every ML-SWT paper aims to explain physical processes, the 31 
SWT community should agree on a baseline of tests that all ML-SWT models undergo to assess model 32 
robustness and transferability. Specifically, we urge use of TUURTs (Temporal, Unseen, Ungaged 33 
Region Tests) for future ML-SWT models as a helpful step towards better modeling practices, 34 
increased model transparency and robustness (Fig.1). As stated in figure 1, for TUURTs, testing for 35 
“unseen” cases means testing only within the developmental dataset, whereas testing for “ungaged” 36 
cases means testing for new sites that have no data and have not been previously seen by the model at 37 
all. Due to the difficulty of conducting spatial tests compared to temporal tests, few ML-SWT studies 38 
have applied one or two of the tests, and rarely all three (Topp et al., 2023; Hani et al., 2023, Souassi et 39 
al., 2023). For example, Siegel et al. (2023), a non-ML SWT paper, tested for ungaged regions and 40 
unseen data but did not perform a temporal test. To our knowledge, Philippus et al. (2024), appears to 41 
be the only published SWT-ML study that applied TUURTs with some success. We further encourage 42 
modelers to shift towards more generalizable models, which are in theory, more capable of performing 43 
well across diverse scenarios and datasets and stand to become increasingly important with the 44 
unpredictability of climate extremes. 45 

 46 
Overall, this review is informative and well-researched, and with more refined organization and deeper 47 
exploration of these key issues, it could make a substantial contribution to the field of SWT research. 48 

AUTHOR RESPONSE: Thank you! This would certainly not be possible without the insightful 49 
feedback from referees. 50 
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Referee #3 Comments 1 
I believe that this manuscript is a very useful and extensive methods literature review regarding stream 2 
temperature modeling. I would recommend approval with minor revisions to provide additional details 3 
from the reviewed literature and correct minor writing aspects; I had no problem with the general 4 
structure/flow or quality. 5 

AUTHOR RESPONSE: We thank the referee for their time and feedback, we believe the manuscript is 6 
better as a result. We address specific referee comments below. Proposed new/edited text is in BLUE. 7 
Revised lines in the track-changes manuscript are indicated by the statement: (revised lines XXX-XXX). 8 
 9 
 10 
1. Section 2.3.3 (“Newer/recent ML algorithms”) introduces RNNs, CNNs, and GNNs sufficiently, but it 11 
should probably give some description and reference to attention-based transformers. I am not aware of 12 
their application to SWT, but they are responsible for broader interest in ML (e.g., ChatGPT, which was 13 
cited earlier) and have had mixed success in hydrologic modeling. This class of models seems easily 14 
placed as a future direction.  15 

AUTHOR RESPONSE: We agree. A literature search on Google Scholar at the end of 2024 found no 16 
publications specifically using attention-based transformers for SWT modeling, but we can add text about 17 
their potential to section 2.3.3 (revised lines 456-462): 18 
 19 

Attention-based transformers are a more novel type of deep learning that has led to advancements 20 
in natural language processing, in the form of ChatGPT, Microsoft’s CoPilot, Google’s Gemini and 21 
others. Due to their exponential success in the last few years, attention-based transformer models have 22 
been used in geological science fields such as oceanography for sea surface temperature prediction 23 
(Shi et al., 2024), hydrology for streamflow and runoff prediction (Ghobadi and Kang, 2022; Wei, 24 
2023) and remote sensing for streambed land use change classification (Bansal and Tripathi, 2024). As 25 
a relatively new AI tool, attention-based transformers have yet to be used for SWT (to our knowledge), 26 
but their applications in other geological science fields suggest it is only a matter of time before their 27 
use is observed in SWT modeling. 28 

 29 
 30 
2. There are some examples of unusual subsection and paragraph formatting. For example, section 1.1 is 31 
one paragraph which is approximately 1 page long. It seems that this is excessively large for one 32 
paragraph and that a named subsection should perhaps be more than just one (regularly sized) paragraph. 33 
Line 201 has another approximately 1-page-long paragraph, this area might be better organized with 34 
another level of subsections rather than fitting the more extensive references of decision trees into 1 35 
paragraph.  36 

AUTHOR RESPONSE: Thank you for pointing this out. We have consulted other published HESS 37 
articles and it appears that the first paragraph of a section is not indented but the subsequent paragraphs 38 
are. We have revised the manuscript to follow the Copernicus manuscript template (screenshot below). 39 
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 1 
At the referee’s suggestion, we can add subsections to section 2.3.1 to distinguish algorithms as follows:  2 

2.3.1.1 K-nearest neighbors (starts line 165),  3 
2.3.1.2 Cluster analysis and variants (line 182),  4 
2.3.1.3 Support vector machine and regression (line 204),  5 
2.3.1.4 Gaussian Process Regression (line 234),  6 
2.3.1.5 Decision trees and Classification and Regression Trees (line 255),  7 
2.3.1.6 Random Forests and XGBoost (line 272) 8 

 9 
 10 
We propose making section 2.3.1.6 (original lines 226-253) more concise given the newly separate Model 11 
Inputs for ML-SWT section (new section 2.4.2). Below is the revised text for section 2.3.1.6 (blue is new, 12 
revised lines 284-313): 13 
 14 

RF and XGBoost, have been used to predictfor daily SWT prediction in 10for Austrian catchments, 15 
Results with results showing ed minor differences in model performance, with a median RMSE 16 
difference of 0.08 °C between tested ML models (Feigl et al., 2021). Using RF and XGBoost along 17 
with four other ML models, Jiang et al. (2022) tested the performance of six ML models in 18 
estimateding daily SWT below dams in China, finding. They found that day of year, was most 19 
influential for the prediction of SWT, followed by stream flow flux and AT to be most influential in 20 
the prediction of SWT (Jiang et al., 2022). Weierbach et al. (2022) used XGBoost and SVR to predict 21 
SWT at monthly time scales for the Pacific Northwest region of the U.S., finding showing that an 22 
ensemble XGBoost outperformed all modeling configurations for spatiotemporal predictions in 23 
unmonitored basins, In contrast to Jiang et al. (2022), Weierbach et al. (2022) foundwith AT 24 
identified as the primary driver of monthly SWT. for all 78 sites in the Pacific Northwest region of 25 
the U.S. (which included areas affected by dams), followed by month of year and solar radiation. 26 
Zanoni et al. (2022) used RF and a deep learning model to develop regional models of SWT and other 27 
water quality parameters, finding thatwith RF performance was comparitively less effective at 28 
detecting non-linear relationships than to the deep learning model, though both models identified 29 
They found AT to beas most influential, with day of the year, and year of observation as possible 30 
replacements where AT was not available (Zanoni et al., 2022). 31 

Souassi et al. (2023) tested the performance of two ML models, RF and XGBoost, with non-32 
parametric models for the regional estimation of maximum SWT at ungaged locations in Switzerland, 33 
finding no significant differences between the ML performance and the non-parametric model 34 
performances, which was attributed to the lack of a large dataset as required by the ML models. Hani 35 
et al. (2023) used four supervised ML models – MARS, GAM, SVM, and RF to model potential 36 
thermal refuge area (PTRA) at an hourly timestep for two tributary confluences of the Sainte-37 
Marguerite River in Canada. RF had the highest accuracy at both locations in terms of hourly PTRA 38 
estimates and modeling SWT (Hani et al., 2023). Wade et al. (2023) conducted a CONUS-scale study 39 
using 410 USGS sites with four years of daily SWT and discharge to examine maximum SWT. They 40 
used RF to estimate max SWT and thermal sensitivity (Wade et al., 2023), finding that AT was the 41 
most influential control followed by other properties (watershed characteristics, hydrology, 42 
anthropogenic impact). 43 

 44 
 45 
3. There is an extensive background of traditional ANNs (2.3.2) which is debatably too extensive given 46 
the description of ANN variants and backpropagation alternatives (e.g., lines 284-320), which are 47 
relatively niche and rare. The content already exists and is not wrong, but if length were a concern, I 48 
would reduce this area.  49 
 50 
AUTHOR RESPONSE: We appreciate the reviewer’s feedback and propose making changes to improve 51 
the manuscript for readability. Referee #1 made a similar comment about this section, and we propose 52 
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moving the description of ANN variants and alternatives (lines 263-320) to Appendix A. We think it 1 
would still be helpful to keep the ANN information, while also agreeing that it may be too extensive for 2 
the main text. In this way, the manuscript can be made more concise while also keeping the details as a 3 
section of the manuscript for anyone who is interested in reading further. Following this line of thinking, 4 
we removed lines 322-379 from the main text and moved to Appendix A. We provide the following to 5 
note the appendix (revised lines 326-327): 6 
 7 

“For more detail on traditional ANNs, with descriptions of ANN variants and backpropagation 8 
alternatives, we refer the reader to appendix A.” 9 

 10 
We have added Appendix A after the conclusion (revised lines 1015 – 1075). 11 
 12 
 13 
4. This work does not address predictive uncertainty, or the lack thereof associated with the ML literature 14 
review. I think that would be a worthwhile addition because I suspect most efforts lack that (e.g., referring 15 
to https://doi.org/10.5194/hess-26-1673-2022 ). A counterexample to the lack of uncertainty 16 
quantification, which may also be relevant to section 2.5, could be work led by Jacob Zwart focusing on 17 
SWT for reservoir operations (thermal releases). Examples being https://doi.org/10.1111/1752-18 
1688.13093 or https://doi.org/10.3389/frwa.2023.1184992  19 
 20 
AUTHOR RESPONSE: We appreciate the referee’s insight in bringing these publications to our 21 
attention. Based on their relevancy, we have added Klotz et al. 2022, Zwart et al. 2023a and 2023b and 22 
included their RMSE values in our review. First, we added text on predictive uncertainty in the new 23 
‘Discussion’ subsection titled, ‘4.4 Future Directions of SWT Modeling’, which also addresses ref #1, 24 
comment #3, (revised lines 944-991): 25 

 26 
The utility of ML in hydrologic modeling has advanced significantly, with interest seemingly 27 

growing exponentially (Nearing et al., 2021). With the novelty of ML, it is easy to over-value model 28 
performance and ignore the physics of the system , but with several decades of ML-experience, we 29 
advocate it is necessary to purposefully use ML to address physically-meaningful questions and not 30 
just create ML for the sake of creating. Given this, Varadharajan et al. (2022) laid out an excellent 31 
discussion on opportunities for advancement of ML in water quality modeling, see section 3 of 32 
publication of Varadharajan et al. (2022). (Varadharajan et al., 2022)Here we highlight some of the 33 
questions from Varadharajan et al. (2022) that can be considered in the context of what objectives the 34 
SWT community should be using in the ML era, namely: 1) How do we use physical knowledge (re: 35 
heat exchange equations, radiation influence) to improve models and process understanding? 36 
Rahmani et al. (2023) coupled NNs with the physical knowledge from SNTEMP, a one-dimensional 37 
stream temperature model that calculates the transfer of energy to or from a stream segment by either 38 
heat flux equations or advection, but found that even with SNTEMP, their flexible NNs exhibited 39 
substantial variance in prediction and needed to be constrained by further multi-dimensional 40 
assessments (Rahmani et al., 2023). In short, if our use of physics in machine learning makes our 41 
models worse, we should understand why.  42 

A second question that needs addressing is 2) How do we deal with predictive uncertainty in ML 43 
used for SWT modeling? According to Moriasi et al. (2007), uncertainty analysis is the process of 44 
quantifying the level of confidence in any given model output based on five guidelines: 1) the quality 45 
and amount of observations (data), 2) the lack of observations due to poor or limited field monitoring, 46 
3) the lack of knowledge of physical processes or operational procedures (instrumentation), 4) the 47 
approximation of our mathematical equations, and 5) the robustness of model sensitivity analysis and 48 
calibration. For example, in rainfall-runoff modeling, researchers have proposed benchmarking to 49 
examine uncertainty predictions of ML rainfall-runoff modeling (Klotz et al., 2022). For stream 50 
temperature modeling, researchers have attempted to address the role of uncertainty in deep learning 51 
model (RGCN, LSTM) predictions using the Monte Carlo Dropout (Zwart, Oliver, et al., 2023) and a 52 
unimodal mixture density network approach (Zwart, Diaz, et al., 2023).  53 

https://doi.org/10.5194/hess-26-1673-2022
https://doi.org/10.1111/1752-1688.13093
https://doi.org/10.1111/1752-1688.13093
https://doi.org/10.3389/frwa.2023.1184992
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Other questions that SWT-ML studies should consider is 3) How do we make ML models 1 
generalize better, specifically with regards to ungaged basins? And 4) How can ML models be 2 
improved to predict extremes? As ML models advance to use satellite data, include more sensor 3 
networks and/or couple with climate models, there is a logical next step toward creating generalizable 4 
models that can account for extremes. In our review, only two papers by the same group (Rahmani et 5 
al., 2020, 2023) conducted a CONUS-scale approach towards SWT-ML modeling, omitting 6 
hydrologically important regions in the southwest (CA) and southeast (FL). Recently, a satellite 7 
remote sensing paper used RF to model monthly stream temperature across the CONUS and tested for 8 
temporal (walk-forward validation), unseen and ‘true’ ungaged regions (Philippus et al., 2024). We 9 
have also learned that ML models such as LSTMs, generally only make predictions within the bounds 10 
of their training data (Kratzert et al., 2019), which is a limitation for predicting extremes. Thus, we 11 
strongly urge the community to work towards ML models that generalize better and/or are more 12 
robust towards predictions of extremes.   13 

Finally, 5) How can we build ML models such that they are seen as trustworthy and interpretable 14 
by the hydrologic community? To answer this question, we must address a technical barrier (black-15 
box issues, data limitations, model uncertainty) and a social barrier (i.e., educated skepticism of ML 16 
due to novelty, little understanding of computer science basics and/or coding experience). If we are to 17 
incorporate ML into decision-making processes, it makes sense that ML must be transparent and 18 
understandable to more than just computer or data scientists (Varadharajan et al., 2022). For example, 19 
Topp et al. (2023) recently used explainable AI to elucidate how ML architectures affected the SWT 20 
model’s spatial and temporal dependencies, and how that in turn affected the model’s accuracy. 21 
Addressing this technical barrier can also be done by improving access to data, which has seen 22 
remarkable progress thanks to web repositories such as NSF-funded CUAHSI’s Hydro share 23 
(CUAHSI, 2024) and GitHub (GitHub, 2024). In the United States, data access to state and locally-24 
based data remains limited, and should be addressed. In terms of the social barrier, education about 25 
ML and ML-use is key. Societal interest in ML has thankfully also lead to a plethora of educational 26 
resources and ML walk-through videos and tutorials in Tensorflow (Abadi et al., 2016), PyTorch 27 
(Paszke et al., 2019), and Google Colab (Bisong, 2019). With the speed at which ML-use is evolving, 28 
short communication pieces (Lapuschkin et al., 2019) and opinion pieces (Kratzert et al., 2024) with 29 
clear examples about an ML-issue and practical solutions  will also help make ML challenges more 30 
transparent and therefore accessible to the hydrologic community-at-large.  31 

 32 
Added citations used for new subsection, 4.4 Future Directions of SWT Modeling: 33 

1) Apaydin, H., Taghi Sattari, M., Falsafian, K., and Prasad, R.: Artificial intelligence modelling integrated with 34 
Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow 35 
predictions, Journal of Hydrology, 600, 126506, https://doi.org/10.1016/j.jhydrol.2021.126506, 2021. 36 

2) Baydaroğlu, Ö. and Demir, I.: Temporal and spatial satellite data augmentation for deep learning-based rainfall 37 
nowcasting, Journal of Hydroinformatics, 26, 589–607, https://doi.org/10.2166/hydro.2024.235, 2024. 38 

3) CUAHSI. 2024. Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Water 39 
Data Portal: https://www.cuahsi.org/community/water-data-portals, last access: 13 November 2024. 40 

4) Kratzert, F., Gauch, M., Klotz, D. and Nearing, G., 2024. HESS Opinions: Never train an LSTM on a single 41 
basin. Hydrology and Earth System Sciences Discussions, 2024, pp.1-19. 42 

5) Kwak, J., St-Hilaire, A., and Chebana, F.: A comparative study for water temperature modelling in a small basin, 43 
the Fourchue River, Quebec, Canada, Hydrological Sciences Journal, 1–12, 44 
https://doi.org/10.1080/02626667.2016.1174334, 2016. 45 

6) Philippus, D., Sytsma, A., Rust, A., and Hogue, T. S.: A machine learning model for estimating the temperature of 46 
small rivers using satellite-based spatial data, Remote Sensing of Environment, 311, 114271, 47 
https://doi.org/10.1016/j.rse.2024.114271, 2024. 48 
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 34 

We have also added text to section 2.5 Decision Support with the provided citations (revised lines 663-35 
668):  36 
 37 

Further focusing on the Delaware River Basin, Zwart, Oliver, et al. (2023) used data assimilation 38 
and an LSTM to generate 1-day and 7-day forecasts of daily maximum SWT for the purpose of aiding 39 
reservoir managers in decisions about when to release water to cool streams. Following up on this 40 
study was Zwart, Diaz, et al. (2023), who used a LSTM and a RGCN, to generate 7-day forecasts of 41 
daily maximum SWT for monitored and unmonitored locations in the Delaware River Basin. The 42 
study found that the RGCN with data assimilation performed best for ungaged locations and for 43 
higher SWT, which can serve as valuable information for reservoir operators to consider while 44 
drafting release schedules.  45 

 46 
 47 
5. In section 3 (e.g., 3.1, 3.3, 3.4), I would recommend adding some discussion regarding the equivalence 48 
or lack of between lower-case r and r-squared, upper-case R-squared, and NSE. I am very comfortable 49 

https://www.tensorflow.org/
https://arxiv.org/abs/1912.01703
https://doi.org/10.1007/978-1-4842-4470-8_7
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stating that for the purpose of this continuously valued model evaluation, upper case R-squared and NSE 1 
are equivalent, but I am less comfortable making the assertation that lower case r and r-squared are (in all 2 
the papers reporting this value). This is likely further complicated by the reviewed literature using the 3 
lower-case r-squared and R-squared interchangeably, but given the 0-1 range, the high value skew, and 4 
the special case/conditional equivalences, I believe these values should all be reported together to 5 
characterize goodness of fit – especially that upper case R-squared and NSE should not be separated. 6 

 7 
AUTHOR RESPONSE: We agree. We propose the following to address the referee’s comments: 8 
 9 
- Revise section 3.1 text to distinguish between lower-case r, r-squared r2, and upper-case R2 (revised 10 

lines 697-710): 11 
 12 

Pearson’s r, also known as the correlation coefficient, is useful for determining the strength and 13 
direction (i.e., positive, negative) of a simple linear relationship (Helsel and Hirsch, 2002). Values of r, 14 
range from -1 to +1, where r < 0 indicates a negative correlation and r > 0 indicates a positive 15 
correlation (Legates and McCabe, 1999). The square of r is denoted as R2 r2, or known as the square of 16 
the correlation coefficient, with values of r2 ranging from 0 to 1. The r2 metric is commonly used in 17 
simple linear regression to assess the goodness of fit by of determination, which represents measuring 18 
the fraction of the variance in one variable (i.e., observations) that can be explained by the other 19 
variable (i.e., predictors). The metric r2 tends to be confused with R2, the latter which is a statistical 20 
measure that represents the proportion of variance explained by the independent variable(s) in a 21 
multiple linear regression model (Helsel and Hirsch, 2002). Part of the confusion may be related to the 22 
fact that R2 shares the same range of from 0 to 1, with R2 = 1 suggesting indicating that the model can 23 
explain all the variance, and vice versa. We note that while both r2 and R2 share similarities in that they 24 
measure the proportion of variance, R2 is more commonly used for multiple linear regression context, 25 
while r2 is best suited for simple linear regressions. To reduce confusion, we strongly suggest that r, r2 26 
and R2 always be reported together (even if as a supplement to a manuscript) to characterize goodness-27 
of-fit. The r and R2 metrics are typically used for normally distributed data that follows a bivariate 28 
normal distribution (Helsel and Hirsch, 2002). 29 

 30 
 31 

- Add text stating that upper R2 and NSE should always be provided together in section 3.4: 32 
 33 
1st paragraph, added after 1st sentence (revised lines 785-789):  34 

Having reviewed the literature and in agreement with previous published recommendations 35 
(Moriasi et al., 2007), we recommend that a combination of standard regression (i.e., r, r2, R2), 36 
dimensionless (i.e., NSE), and error index statistics (i.e., RMSE, MAE, PBIAS) be used for model 37 
evaluation and reported together in future publications. 38 

 39 
2nd paragraph, remove the statement about r and R2 (revised lines 792-793): 40 

We note that for the 11 studies that used Pearson’s r (see Table S1), and given that r and R2 are 41 
directly related, we converted r to R2 for ease of comparison on fig. 1. 42 

 43 
3rd paragraph, added last sentence (revised lines 803-805):   44 

Overall, these complimentary metrics should always be reported together as they provide a 45 
broader evaluation of model performance, i.e., NSE measures a model’s predictive skill and error 46 
variance, while R2 assesses how well the model explains the variability of the data. 47 

 48 
- In section 3.4, remove all r2 values from Figure 1, only R2 citations (17) remain. The median R2 for 49 

training stayed the same (0.93), while the testing R2 went from 0.95 to 0.94, and the validation R2 went 50 
from 0.92 to 0.93. Overall, changes were insignificant. Below is a screenshot of the “Original (top)” 51 
and “Revised (bottom)” Figure 1 for reference. 52 
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 36 
 37 
6. In line 761, it feels controversial and a step too far to say ML models should be held to a higher 38 
standard. It feels less problematic to apply these higher, seemingly attainable standards to all SWT 39 
models. For example, a physics-based model is not "very good" by virtue of being a physics-based model, 40 
instead it is the same "satisfactory" label because its physics are not sufficient or accurate enough to do 41 
what the ML models can.  42 

AUTHOR RESPONSE: We appreciate the referee’s point of view. Perhaps instead of saying “separate, 43 
higher standard”, we can say “additional standards” (see revised line 1002), but we think that additional 44 
standards are warranted nonetheless, not only in terms of performance metrics but also to improve model 45 
transparency, eradicate black-box confusion and encourage user confidence. We disagree that a physics-46 
based model should be in the same “satisfactory” performance metric category because the intention of 47 
performance metrics is to identify what fits the data best (which data-driven ML excel at), whereas the 48 
general intention of physics-based models is to adhere to whatever governing equations have been 49 
employed. Our review indicates that we have been somewhat blinded by the excellence of ML 50 
performance metrics relative to physics-based and statistically-based models, and more awareness is 51 
needed moving forward. 52 
 53 

Revised 

Original 
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 1 
7. If possible, in addition to considering spatial extents and temporal resolution of the papers, it would be 2 
interesting to know the aggregation level of data - if that is reported and what all the possibilities are. For 3 
example, individual gages with input data collected at the same gage location in situ, remotely sensed data 4 
subset to the drainage area for the reach that a gage is on. Are any works modeling dense transects along a 5 
river or modeling raster grid cells up and across a river (i.e., the 2D surface area), etc.  6 

AUTHOR RESPONSE: Thank you for the opportunity to clarify. We provided supplementary table S1 7 
to summarize study information regarding time period, temporal resolution, spatial resolution and 8 
hydrometeorological parameters considered by the cited studies. Responding to your comment, in our 9 
review, we saw that the aggregation level of data is more often than not, left unreported and unclear by 10 
studies (and reporting is not mandatory as a lot of data is pre-processed before utilization in modeling, 11 
adding to transparency questions). We do think discerning all the possibilities of data aggregation could 12 
make for an interesting follow-up study for the larger hydrologic community, which could focus solely on 13 
data manipulation, processing and augmentation for ML.   14 
 15 
 16 
Additional literature to consider. Not necessary 17 

8. The paragraph at line 385 related to process guidance prompted me to recommend 18 
https://doi.org/10.1029/2023WR035327 as very relevant. The reference is concerned with comparing 19 
different hybrid ML methods for SWT modeling to represent groundwater processes which aren’t as 20 
represented here (e.g., relative to reservoir influence/reservoir adjacent modeling). 21 

AUTHOR RESPONSE: Thank you for the suggestion, we agree that the challenge of including 22 
groundwater influence in SWT modeling warrants more research. We want to clarify that we did not 23 
include this reference as it appears to be a conference paper and not subjected to journal standards of peer 24 
review. That being said, the authors of the suggested manuscript went on to publish similar work in Water 25 
Resources Research, which we cite in this review (Topp et al., 2023).  26 
 27 

9. In section 4.2, https://doi.org/10.1029/2020WR028091 may be a very relevant addition in-line with the 28 
author’s narrative.  29 

AUTHOR RESPONSE: Thank you for the suggestion, we enjoyed reading it and think it insightful. We 30 
added it to new ‘Discussion’ subsection, titled ‘4.4 Future Directions of SWT Modeling’, in the first 31 
sentence (please see our response to ref #1, comment #4 for the full text), revised lines 944-945: 32 
 33 

“The utility of ML in hydrologic modeling has come a long way, with interest seemingly growing 34 
exponentially (Nearing et al., 2021).” 35 

 36 
 37 
Minor writing comments:  38 

1.The sentence beginning on line 51 perhaps uses too bold language when stating “AI … create 39 
reasonable choices”. Many users of AI and scientists have concerns regarding the reasonableness of AI. 40 
Maybe it would be more accurate to further connect with the latter part of that sentence and say that “AI 41 
… learn optimal patterns to meet stated objectives” (which may or may not be broadly reasonable) 42 

AUTHOR RESPONSE: That is a good point. Reasonableness is fluid. We agree with the referee and 43 
have updated the sentence as follows (revised lines 51-53): 44 
 45 

“Artificial intelligence (AI) describes technologies that can incorporate and assess inputs from an 46 
environment, create reasonable choices, learn optimal patterns and implement actions to meet stated 47 
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objectives or performance metrics (Xu & Liang, 2021; Varadharajan et al., 2022).” 1 
 2 
 3 
2. Starting at line 131, “We define newer ML as those introduced in hydrologic modeling in the few 4 
years,” perhaps this should say “in recent years”? 5 

AUTHOR RESPONSE: We agree, thank you for the suggestion, we have updated the text to say, “in 6 
recent years” (revised line 159). 7 
 8 
 9 
3. At line 380, although it can be inferred, “WNN” is never explicitly defined. 10 

AUTHOR RESPONSE: Thank you for catching that, we have defined the acronym (revised line 445). 11 
 12 
 13 
4. At line 541, “all journals examined used least one”, perhaps this should say, “at least one” 14 

AUTHOR RESPONSE: Thank you! We have added the word “at” (revised line 681). 15 
 16 
 17 
5. By typo/mistake, it appears that two subsections in section 3 are titled "Model Performance Metrics: 18 

Error Indices" 19 

AUTHOR RESPONSE: Yes, thank you for catching this error. Subsection 3.3 should have said 20 
“Dimensionless” because the subsection summarizes dimensionless metrics. We have updated the 21 
subsection header accordingly (title, revised line 739).  22 
 23 
 24 
6. At line 610, there is a typo claiming an upper bound of -1 25 

AUTHOR RESPONSE: Yes, that was a typo. Thank you for catching that, we have updated the text to 26 
just say “0 to 1” (revised line 759). 27 
 28 
 29 
7. I have the benefit of reviewing 3rd, so I read the other reviewer’s comments after making my own. I 30 

agree that a characterization of the validation and test sets used would be very beneficial (e.g., spatial, 31 
temporal, spatiotemporal exclusion, etc.), but I believe the concerns of overfitting are potentially 32 
overstated by the other reviewers given that this manuscript reports train, validation, and test set 33 
metrics (and the very strong agreement between the three). 34 

AUTHOR RESPONSE: Thank you for your time and energy in reviewing this manuscript. With regards 35 
to the concerns of overfitting, we include below our response to referee #1, comment #1A. We think that 36 
the referee comment with regard to “characterization of the validation and test sets” is related to referee 37 
#1, comment #1B, which we also include below:  38 
 39 
New subsection 2.4.1 Identifying Model Complexity (revised lines 464-483):  40 
 41 

The strong success of ML-use in SWT modeling warrants a brief and broad overview on identifying 42 
model complexity to minimize overfitting and underfitting” of models. When a model is too complex, 43 
i.e., has too many features or  parameters relative to the number of observations, or is forced to 44 
overextend its capabilities, i.e., make predictions with insufficient training data, the model runs the 45 
risk of overfitting (Srivastava et al., 2014). An overfitted model fits the training data “too well”, 46 
capturing noise and details that provide high accuracy on a training dataset, only to perform poorly 47 
once the model encounters “unseen” data in testing/validation (Xu and Liang, 2021). Scenarios where 48 
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overfitting may be temporarily acceptable are: 1) model development is at preliminary stages, the 1 
interest is in a “proof of life” concept, 2) when the objective is to identify heavily-relied on features 2 
by the model, i.e., feature importance, or 3) in highly-controlled modeling environments where the 3 
expected data will be consistently similar to the training dataset. The latter is more likely in industrial 4 
applications and unlikely in the changing nature of hydrology.  5 

 6 
In contrast, underfitting occurs when a model is too simple to capture any patterns in the data, 7 

which can also lead to unsatisfactory performance in training, testing and validation. Underfitting can 8 
occur with inadequate model features, poor model complexity or when regularization techniques, 9 
(e.g., L1 or L2 regularization), are over-used, making the model too rigid and unable to respond to 10 
changes in the data. Given the propensity of ML models to effectively learn the training data, 11 
underfitting is less of an issue in ML whereas overfitting can be widespread. In Figure 1, we present 12 
an example workflow that researchers can use to transition away from overfitting and towards 13 
generalizability. In the five-step outline (Fig. 1), we suggest the need for “Temporal, Unseen, 14 
Ungaged Region Tests” (TUURTs), which is a call for temporal and spatially-focused testing that can 15 
be used to strengthen model robustness. 16 

 17 
Response to ref #1, comment #1B: We have added a few sentences (blue is new) to the Discussion 18 
subsection 4.3, “ML Use for Knowledge Discovery” where we further urge for the use of TUURTs 19 
(Temporal, Unseen, Ungaged Region Tests)’ (revised lines 914-925): 20 
 21 

While it is understandable that not every ML-SWT paper aims to explain physical processes, the 22 
SWT community should agree on a baseline of tests that all ML-SWT models  undergo to assess 23 
model robustness and transferability. Specifically, we urge use of TUURTs (Temporal, Unseen, 24 
Ungaged Region Tests) for future ML-SWT models as a helpful step towards better modeling 25 
practices, increased model transparency and robustness (Fig.1). As stated in figure 1, for TUURTs, 26 
testing for “unseen” cases means testing only within the developmental dataset, whereas testing for 27 
“ungaged” cases means testing for new sites that have no data and have not been previously seen by 28 
the model at all. Due to the difficulty of conducting spatial tests compared to temporal tests, few ML-29 
SWT studies have applied one or two of the tests, and rarely all three (Topp et al., 2023; Hani et al., 30 
2023, Souassi et al., 2023). For example, Siegel et al. (2023), a non-ML SWT paper, tested for 31 
ungaged regions and unseen data but did not perform a temporal test. To our knowledge, Philippus et 32 
al. (2024), appears to be the only published SWT-ML study that applied TUURTs with some success. 33 
We further encourage modelers to shift towards more generalizable models, which are in theory, 34 
more capable of performing well across diverse scenarios and datasets, and stand to become 35 
increasingly important with the unpredictability of climate extremes. 36 

 37 

Disclaimer from Reviewer: I propose some additional literature (n = 4-5), and I am a coauthor on 1 of 38 
them. I do not view including that literature as mandatory, and only proposed additional sources based 39 
on their relevance to the content of this manuscript. I selected "No" to anonymity to avoid any 40 
appearance of subversive influence. 41 

AUTHOR RESPONSE: Thank you! This would certainly not be possible without the insightful 42 
feedback from referees. 43 

 44 


