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Referee #3 Comments 1 
I believe that this manuscript is a very useful and extensive methods literature review regarding stream 2 
temperature modeling. I would recommend approval with minor revisions to provide additional details 3 
from the reviewed literature and correct minor writing aspects; I had no problem with the general 4 
structure/flow or quality. 5 

AUTHOR RESPONSE: We thank the referee for their time and feedback, we believe the manuscript is 6 
better as a result. We address specific referee comments below. Proposed new/edited text is in BLUE. 7 
 8 
 9 
1. Section 2.3.3 (“Newer/recent ML algorithms”) introduces RNNs, CNNs, and GNNs sufficiently, but it 10 
should probably give some description and reference to attention-based transformers. I am not aware of 11 
their application to SWT, but they are responsible for broader interest in ML (e.g., ChatGPT, which was 12 
cited earlier) and have had mixed success in hydrologic modeling. This class of models seems easily 13 
placed as a future direction.  14 

AUTHOR RESPONSE: We agree. A literature search on Google Scholar in November 2024 found no 15 
publications specifically using attention-based transformers for SWT, but we are happy to add some text 16 
about their potential to section 2.3.3: 17 
 18 

Attention-based transformers are a more novel type of deep learning that has led to advancements in 19 
natural language processing, in the form of ChatGPT, Microsoft’s CoPilot, Google’s Gemini and 20 
others. Due to their exponential success in the last few years, attention-based transformer models have 21 
been used in geological science fields such as oceanography for sea surface temperature prediction 22 
(Shi et al., 2024), hydrology for streamflow and runoff prediction (Ghobadi and Kang, 2022; Wei, 23 
2023) and remote sensing for streambed land use change classification (Bansal and Tripathi, 2024). As 24 
a relatively new DL tool, attention-based transformers have yet to be used for SWT, but their 25 
aforementioned applications in other geological science fields suggest it is only a matter of time before 26 
we see their use in SWT modeling. 27 

 28 
 29 
2. There are some examples of unusual subsection and paragraph formatting. For example, section 1.1 is 30 
one paragraph which is approximately 1 page long. It seems that this is excessively large for one 31 
paragraph and that a named subsection should perhaps be more than just one (regularly sized) paragraph. 32 
Line 201 has another approximately 1-page-long paragraph, this area might be better organized with 33 
another level of subsections rather than fitting the more extensive references of decision trees into 1 34 
paragraph.  35 

AUTHOR RESPONSE: We appreciate the opportunity to clarify. For section 1.1 (line 35), the 2nd 36 
paragraph begins on line 46, with the words “Aided by the continued…”. The same occurs after Line 201, 37 
where the RF and XGBoost paragraph begins on line 238. The manuscript follows the Copernicus 38 
manuscript template (screenshot below) which appears to not provide for paragraph indentation.  39 
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 1 
At the referee’s suggestion, we can add subsections to section 2.3.1 to distinguish algorithms as follows:  2 

2.3.1.1 K-nearest neighbors (starts line 138),  3 
2.3.1.2 Cluster analysis and variants (line 145),  4 
2.3.1.3 Support vector machine and regression (line 160),  5 
2.3.1.4 Gaussian Process Regression (line 189),  6 
2.3.1.5 Decision trees and Classification and Regression Trees (line 202),  7 
2.3.1.6 Random Forests and XGBoost (line 215) 8 

 9 
We also think that we can make section 2.3.1.6 (lines 226-253) more concise now because model inputs 10 
are now a separate section (section 2.4.X). Below is our suggested reduction, with the last LASSO 11 
paragraph also being moved to model inputs and selection: 12 
 13 

Feigl et al. (2021) tested the performance of six ML models, including RF and XGBoost have been 14 
used to predict SWT for Austrian catchments with minor differences in model performance, for daily 15 
SWT prediction in 10 Austrian catchments. Results showed minor difference in model performance, 16 
with a median RMSE difference of 0.08 °C between tested ML models (Feigl et al., 2021). Using RF 17 
and XGBoost along with four other ML models, Jiang et al. (2022) tested the performance of six ML 18 
models in estimating estimated daily SWT below dams in China, finding. They found that day of 19 
year, stream flow flux and AT to be was most influential for the prediction of SWT, followed by 20 
stream flow flux and AT (Jiang et al., 2022). Weierbach et al. (2022) used XGBoost and SVR to 21 
predict SWT at monthly time scales for the Pacific Northwest region of the U.S., finding that an 22 
ensemble XGBoost outperformed all modeling configurations for spatiotemporal predictions in 23 
unmonitored basins, . In contrast to Jiang et al. (2022), Weierbach et al. (2022) found AT as the 24 
primary driver of monthly SWT. for all 78 sites in the Pacific Northwest region of the U.S. (which 25 
included areas affected by dams), followed by month of year and solar radiation. Zanoni et al. (2022) 26 
used RF and a deep learning model to develop regional models of SWT and other water quality 27 
parameters, finding that RF performance was comparatively less effective at detecting non-linear 28 
relationships, though both models identified AT as most influential than to the deep learning model. 29 
They found AT to be most influential, with day of the year, and year of observation as possible 30 
replacements where AT was not available (Zanoni et al., 2022).  31 

Souassi et al. (2023) tested compared the performance of two ML models, RF and XGBoost, with non-32 
parametric models for the regional estimation of maximum SWT at ungaged locations in Switzerland, 33 
finding no significant differences between the ML performance and the non-parametric model 34 
performances, which was attributed to the lack of a large dataset as required by the ML models. Hani 35 
et al. (2023) used four supervised ML models – MARS, GAM, SVM, and RF to model potential thermal 36 
refuge area (PTRA) at an hourly timestep for two tributary confluences of the Sainte-Marguerite River 37 
in Canada. RF had the highest accuracy at both locations in terms of hourly PTRA estimates and 38 
modeling SWT (Hani et al., 2023). Wade et al. (2023) conducted a CONUS-scale study using RF 410 39 
USGS sites with four years of daily SWT and discharge to examine maximum SWT. They used RF to 40 
estimatefound that max SWT and thermal sensitivity (Wade et al., 2023), finding Study findings 41 
identifiedthat AT was theas most influential control followed by other properties (watershed 42 
characteristics, hydrology, anthropogenic impact).  43 

 44 
 45 
3. There is an extensive background of traditional ANNs (2.3.2) which is debatably too extensive given 46 
the description of ANN variants and backpropagation alternatives (e.g., lines 284-320), which are 47 
relatively niche and rare. The content already exists and is not wrong, but if length were a concern, I 48 
would reduce this area.  49 
 50 
AUTHOR RESPONSE: We appreciate the reviewer’s feedback and are open to making changes to 51 
improve the manuscript for readability. Referee #1 made a similar comment about this section, and we 52 
now propose providing the description of ANN variants and alternatives (lines 263-320) as part of an 53 
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appendix. We think it would still be helpful to keep the ANN information, but we also agree that it may 1 
be too extensive for the main text. In this way, the manuscript can be made more concise while also 2 
keeping the details as a section of the manuscript for anyone who is interested in reading further. 3 
Following this line of thinking, we can add the following to point the reader to the appendix: 4 
 5 

“For more detail on traditional ANNs, with descriptions of ANN variants and backpropagation 6 
alternatives, we refer the reader to appendix A.” 7 

 8 
 9 
4. This work does not address predictive uncertainty, or the lack thereof associated with the ML literature 10 
review. I think that would be a worthwhile addition because I suspect most efforts lack that (e.g., referring 11 
to https://doi.org/10.5194/hess-26-1673-2022 ). A counterexample to the lack of uncertainty 12 
quantification, which may also be relevant to section 2.5, could be work led by Jacob Zwart focusing on 13 
SWT for reservoir operations (thermal releases). Examples being https://doi.org/10.1111/1752-14 
1688.13093 or https://doi.org/10.3389/frwa.2023.1184992  15 
 16 
AUTHOR RESPONSE: We appreciate the referee’s insight in bringing these publications to our 17 
attention. Based on their relevancy, we have added Klotz et al. 2022, Zwart et al. 2023a and 2023b to our 18 
manuscript and included their RMSE values in our review. First, we added text on predictive uncertainty 19 
in the new ‘Discussion’ subsection, titled ‘Future Directions of SWT Modeling’ (this section also 20 
addresses ref #1, comment #3): 21 

 22 
The utility of ML in hydrologic modeling has come a long way, with interest seemingly growing 23 

exponentially (Nearing et al., 2021). With the novelty of ML, it is easy to get lost in the value of how 24 
well a model performs and ignore the science, but with several decades of ML-experience, we think it 25 
necessary to urge the scientific community to purposefully use ML address physically-meaningful 26 
questions and not just create ML for the sake of creating. Given this, Varadharajan et al. (2022) laid 27 
out an excellent discussion on opportunities for advancement of ML in water quality modeling, see 28 
section 3 of publication (Varadharajan et al., 2022). Here we highlight some of the questions from 29 
Varadharajan et al. (2022) that can be considered in the context of what the objectives of the SWT 30 
community should be in the ML era, namely: 1) How do we use physical knowledge (re: heat 31 
exchange equations, radiation influence) to improve models and process understanding? Rahmani et 32 
al. (2023) coupled NNs with the physical knowledge from SNTEMP, a one-dimensional stream 33 
temperature model that calculates the transfer of energy to or from a stream segment by either heat 34 
flux equations or advection, but found that even with SNTEMP, their flexible NNs exhibited 35 
substantial variance in prediction and needed to be constrained by further multi-dimensional 36 
assessments (Rahmani et al., 2023). In short, if our use of physics in machine learning makes our 37 
models worse, we must know why.  38 

A second question that needs addressing is 2) How do we deal with predictive uncertainty in ML 39 
used for SWT modeling? According to Moriasi et al. (2007), uncertainty analysis is the process of 40 
quantifying the level of confidence in any given model output based on five guidelines: 1) the quality 41 
and amount of observations (data), 2) the lack of observations due to poor or limited field monitoring, 42 
3) the lack of knowledge of physical processes or operational procedures (instrumentation), 4) the 43 
approximation of our mathematical equations, and 5) the robustness of model sensitivity analysis and 44 
calibration. For example, in rainfall-runoff modeling, researchers have proposed benchmarking to 45 
examine uncertainty predictions of ML rainfall-runoff modeling (Klotz et al., 2022). For stream 46 
temperature modeling, researchers have attempted to address the role of uncertainty in deep learning 47 
model (RGCN, LSTM) prediction using the Monte Carlo Dropout (Zwart, Oliver, et al., 2023) and a 48 
unimodal mixture density network approach (Zwart, Diaz, et al., 2023).  49 

Other questions that SWT-ML studies should consider is 3) How do we make ML models 50 
generalize better, specifically with regards to ungaged basins? And 4) How can ML models be 51 
improved to predict extremes? As ML models advance to use satellite data, include more sensor 52 
networks and/or couple with climate models, there is a logical next step toward creating generalizable 53 

https://doi.org/10.5194/hess-26-1673-2022
https://doi.org/10.1111/1752-1688.13093
https://doi.org/10.1111/1752-1688.13093
https://doi.org/10.3389/frwa.2023.1184992
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models that can account for extremes. In our review, only two papers by the same group (Rahmani et 1 
al., 2020, 2023) conducted a CONUS-scale approach towards SWT-ML modeling, omitting 2 
hydrologically important regions in the southwest (CA) and southeast (FL). Recently, a satellite 3 
remote sensing paper used RF to model monthly stream temperature across the CONUS and tested for 4 
temporal (walk-forward validation), unseen and ‘true’ ungaged regions (Philippus et al., 2024). We 5 
have also learned that ML models such as LSTMs, generally only make predictions within the bounds 6 
of their training data (Kratzert et al., 2019), which is a limitation for predicting extremes. Thus, we 7 
strongly urge the community to work towards ML models that generalize better and/or are more 8 
robust towards predictions of extremes.   9 

Finally, 5) How can we build ML models such that they are seen as trustworthy and 10 
interpretable by the hydrologic community? To answer this question, we must address a technical 11 
barrier (black-box issues, data limitations, model uncertainty) and a social barrier (i.e., educated 12 
skepticism of ML due to novelty, little understanding of computer science basics and/or coding 13 
experience). If we are to incorporate ML into more of the decision-making process, it makes sense 14 
that ML must be transparent and understandable to more than just computer scientists (Varadharajan 15 
et al., 2022). For example, Topp et al. (2023) recently used explainable AI to elucidate how ML 16 
architectures affected the SWT model’s spatial and temporal dependencies, and how that in turn 17 
affected the model’s accuracy. Addressing this technical barrier can also be done by improving access 18 
to data, which has seen remarkable progress thanks to web repositories such as NSF-funded 19 
CUAHSI’s Hydro share (CUAHSI, 2024) and GitHub (GitHub, 2024). In the United States, data 20 
access to state and locally-based data remains limited, and should be addressed. In terms of the social 21 
barrier, education about ML and ML-use is key. Societal interest in ML has thankfully also lead to a 22 
plethora of educational resources and ML walk-through videos and tutorials in Tensorflow (Abadi et 23 
al., 2015), PyTorch (Abadi et al., 2015), and Google Colab (Bison, 2019). With how fast ML-use is 24 
evolving, short communication pieces (Lapuschkin et al., 2019) and opinion pieces (Kratzert et al., 25 
2024) with clear examples about an ML-issue and practical solutions could also help make ML 26 
challenges more transparent and therefore accessible to the hydrologic community-at-large.  27 

 28 
We have added a few lines to section 2.5 Decision Support with the provided citations:  29 
 30 

Further focusing on the Delaware River Basin, Zwart, Oliver, et al. (2023) used data assimilation 31 
and an LSTM to generate 1-day and 7-day forecasts of daily maximum SWT for the purpose of aiding 32 
reservoir managers in decisions about when to release water to cool streams. Following up on this 33 
study was Zwart, Diaz, et al. (2023), who used a LSTM and a RGCN, to generate 7-day forecasts of 34 
daily maximum SWT for monitored and unmonitored locations in the Delaware River Basin. The 35 
study found that the RGCN with data assimilation performed best for ungaged locations and for 36 
higher SWT, which can serve as valuable information for reservoir operators to consider while 37 
drafting release schedules.  38 

 39 
5. In section 3 (e.g., 3.1, 3.3, 3.4), I would recommend adding some discussion regarding the equivalence 40 
or lack of between lower-case r and r-squared, upper-case R-squared, and NSE. I am very comfortable 41 
stating that for the purpose of this continuously valued model evaluation, upper case R-squared and NSE 42 
are equivalent, but I am less comfortable making the assertation that lower case r and r-squared are (in all 43 
the papers reporting this value). This is likely further complicated by the reviewed literature using the 44 
lower-case r-squared and R-squared interchangeably, but given the 0-1 range, the high value skew, and 45 
the special case/conditional equivalences, I believe these values should all be reported together to 46 
characterize goodness of fit – especially that upper case R-squared and NSE should not be separated. 47 

 48 
AUTHOR RESPONSE: We agree. We propose the following to address the referee’s comments: 49 
 50 
- Revise section 3.1 text to clearly distinguish between lower-case r, r-squared r2, and upper-case R2 : 51 

 52 
The square of r is denoted as r2, or known as the square of the correlation coefficient, with values 53 

https://colab.research.google.com/
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of r2 ranging from 0 to 1. The r2 metric is commonly used in simple linear regression to assess the 1 
goodness of fit by measuring the fraction of the variance in one variable (i.e., observations) that can be 2 
explained by the other variable (i.e., predictors). The metric r2 tends to be confused with R2, the latter 3 
which is a statistical measure that represents the proportion of variance explained by the independent 4 
variable(s) in a multiple linear regression model (Helsel and Hirsch, 2002). Part of the confusion may 5 
be related to the fact that R2 shares the same range of 0 to 1, with R2 = 1 indicating that the model can 6 
explain all the variance, and vice versa. We note here that while both r2 and R2 share similarities in that 7 
they measure the proportion of variance, R2 is more commonly used for multiple linear regression 8 
context, while r2 is best suited for simple linear regressions. To prevent confusion, we strongly suggest 9 
that r, r2 and R2 always be reported together (even if as a supplement to a manuscript) to characterize 10 
goodness-of-fit. The r and R2 metrics are typically used for normally distributed data that follows a 11 
bivariate normal distribution (Helsel and Hirsch, 2002). 12 

 13 
- Add text stating that upper R2 and NSE should always be provided together in section 3.4: 14 
 15 
1st paragraph, added after 1st sentence:  16 

Having reviewed the literature and in agreement with previous published recommendations 17 
(Moriasi et al., 2007), we recommend that a combination of standard regression (i.e., r, r2, R2), 18 
dimensionless (i.e., NSE), and error index statistics (i.e., RMSE, MAE, PBIAS) be used for model 19 
evaluation and reported together in future publications. 20 

 21 
3rd paragraph, added last sentence:   22 

Overall, these complimentary metrics should always be reported together as they provide a 23 
broader evaluation of model performance, i.e., NSE measures a model’s predictive skill and error 24 
variance, while R2 assesses how well the model explains the variability of the data. 25 

 26 
- In section 3.4, remove all r2 values from Figure 1, only R2 citations (17) remain. The median R2 for 27 

training stayed the same (0.93), while the testing R2 went from 0.95 to 0.94, and the validation R2 went 28 
from 0.92 to 0.93. Overall, changes were insignificant. Below is a screenshot of the “Old (left)” and 29 
“Revised (right)” Figure 1 for reference. 30 
 31 

 32 

 33 
 34 
 35 
 36 
6. In line 761, it feels controversial and a step too far to say ML models should be held to a higher 37 
standard. It feels less problematic to apply these higher, seemingly attainable standards to all SWT 38 
models. For example, a physics-based model is not "very good" by virtue of being a physics-based model, 39 
instead it is the same "satisfactory" label because its physics are not sufficient or accurate enough to do 40 
what the ML models can.  41 

AUTHOR RESPONSE: We appreciate the referee’s point of view and are open to discussion. Perhaps 42 
instead of saying “higher standard”, we can say “additional standards”, but we think that additional 43 

Revised Old 
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standards are warranted nonetheless, not only in terms of performance metrics but also to improve model 1 
transparency, eradicate black-box confusion and encourage user confidence. We disagree that a physics-2 
based model should be in the same “satisfactory” performance metric category because the intention of 3 
performance metrics is to identify what fits the data best (which data-driven ML excel at), whereas the 4 
general intention of physics-based models is to adhere to whatever governing equations have been 5 
employed. This review shows that we have been blinded by the excellence of ML performance metrics 6 
relative to physics-based and statistically-based models, and we need to be aware of this short sight 7 
moving forward. 8 
 9 
 10 
7. If possible, in addition to considering spatial extents and temporal resolution of the papers, it would be 11 
interesting to know the aggregation level of data - if that is reported and what all the possibilities are. For 12 
example, individual gages with input data collected at the same gage location in situ, remotely sensed data 13 
subset to the drainage area for the reach that a gage is on. Are any works modeling dense transects along a 14 
river or modeling raster grid cells up and across a river (i.e., the 2D surface area), etc.  15 

AUTHOR RESPONSE: Thank you for the opportunity to clarify. We provided supplementary table S1 16 
to summarize study information regarding time period, temporal resolution, spatial resolution and 17 
hydrometeorological parameters considered by the cited studies. Responding to your comment, in our 18 
review, we saw that the aggregation level of data is more often than not, left unreported and unclear by 19 
studies (and reporting is not mandatory as a lot of data is pre-processed before utilization in modeling, 20 
adding to transparency questions). We do think discerning all the possibilities of data aggregation could 21 
make for an interesting follow-up study for the larger hydrologic community, which could focus solely on 22 
data manipulation, processing and augmentation for ML.   23 
 24 
 25 
Additional literature to consider. Not necessary 26 

8. The paragraph at line 385 related to process guidance prompted me to recommend 27 
https://doi.org/10.1029/2023WR035327 as very relevant. The reference is concerned with comparing 28 
different hybrid ML methods for SWT modeling to represent groundwater processes which aren’t as 29 
represented here (e.g., relative to reservoir influence/reservoir adjacent modeling). 30 

AUTHOR RESPONSE: Thank you for the suggestion, we agree that the challenge of including 31 
groundwater influence in SWT modeling warrants more research. We want to clarify that we did not 32 
include this reference as it appears to be a conference paper and not subjected to journal standards of peer 33 
review. That being said, the authors of the suggested manuscript went on to publish similar work in Water 34 
Resources Research, which we cite in this review (Topp et al., 2023).  35 
 36 

9. In section 4.2, https://doi.org/10.1029/2020WR028091 may be a very relevant addition in-line with the 37 
author’s narrative.  38 

AUTHOR RESPONSE: Thank you for the suggestion, we enjoyed reading it and think it insightful. We 39 
added it to a proposed new ‘Discussion’ subsection, titled ‘Future Directions of SWT Modeling’, in the 40 
first sentence (please see our response to ref #1, comment #4 for the full text): 41 
 42 

“The utility of ML in hydrologic modeling has come a long way, with interest seemingly growing 43 
exponentially (Nearing et al., 2021).” 44 

 45 
 46 
 47 
 48 
 49 
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Minor writing comments:  1 

1.The sentence beginning on line 51 perhaps uses too bold language when stating “AI … create 2 
reasonable choices”. Many users of AI and scientists have concerns regarding the reasonableness of AI. 3 
Maybe it would be more accurate to further connect with the latter part of that sentence and say that “AI 4 
… learn optimal patterns to meet stated objectives” (which may or may not be broadly reasonable) 5 

AUTHOR RESPONSE: That is a good point. Reasonableness is fluid. We agree with the referee and 6 
have updated the sentence as follows: 7 
 8 

“Artificial intelligence (AI) describes technologies that can incorporate and assess inputs from an 9 
environment, create reasonable choices, learn optimal patterns and implement actions to meet stated 10 
objectives or performance metrics (Xu & Liang, 2021; Varadharajan et al., 2022).” 11 

 12 
 13 
2. Starting at line 131, “We define newer ML as those introduced in hydrologic modeling in the few 14 
years,” perhaps this should say “in recent years”? 15 

AUTHOR RESPONSE: We agree, thank you for the suggestion, we have updated the text to say, “in 16 
recent years”. 17 
 18 
 19 
3. At line 380, although it can be inferred, “WNN” is never explicitly defined. 20 

AUTHOR RESPONSE: Thank you for catching that, we have defined the acronym. 21 
 22 
 23 
4. At line 541, “all journals examined used least one”, perhaps this should say, “at least one” 24 

AUTHOR RESPONSE: Thank you! We have added the word “at”. 25 
 26 
 27 
5. By typo/mistake, it appears that two subsections in section 3 are titled "Model Performance Metrics: 28 

Error Indices" 29 

AUTHOR RESPONSE: Yes, thank you for catching that mistake. Subsection 3.3 should have said 30 
“Model Performance Metrics: Dimensionless” because the subsection summarizes NSE, KGE, etc. We 31 
have updated the subsection header accordingly.  32 
 33 
 34 
6. At line 610, there is a typo claiming an upper bound of -1 35 

AUTHOR RESPONSE: Yes, that was a typo. Thank you for catching that, we have updated the text to 36 
just say “0 to 1”. 37 
 38 
 39 
7. I have the benefit of reviewing 3rd, so I read the other reviewer’s comments after making my own. I 40 

agree that a characterization of the validation and test sets used would be very beneficial (e.g., spatial, 41 
temporal, spatiotemporal exclusion, etc.), but I believe the concerns of overfitting are potentially 42 
overstated by the other reviewers given that this manuscript reports train, validation, and test set 43 
metrics (and the very strong agreement between the three). 44 

AUTHOR RESPONSE: Thank you for your time and energy in reviewing this manuscript. With regards 45 
to the concerns of overfitting, we include below our response to referee #1, comment #1A. We think that 46 
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the referee comment with regard to “characterization of the validation and test sets” is related to referee 1 
comment #1B, which we also include below:  2 
 3 
Section 2.4.X Overfitting and Underfitting:  4 
 5 

When a model is too complex, i.e., has too many features or too many parameters relative to the 6 
number of observations, or is forced to overextend its capabilities, i.e., make predictions with 7 
insufficient training data, the model runs the risk of overfitting (Srivastava et al., 2014). An 8 
overfitting model fits the training data “too well”, capturing noise and details that provide high 9 
accuracy on a training dataset, only to perform poorly once the model encounters “unseen” data in 10 
testing/validation (Xu and Liang, 2021). Scenarios where overfitting may be temporarily acceptable 11 
are those where: 1) model development is at its preliminary stages, where the interest is in a “proof of 12 
life” concept, 2) when the objective is to identify heavily-relied on features by the model, i.e., feature 13 
importance, or 3) in highly-controlled modeling environments where the expected data will be 14 
consistently similar to the training dataset. The latter is more likely in certain industrial applications 15 
and unlikely in the changing nature of hydrology.  16 

 17 
In contrast, underfitting occurs when a model is too simple to capture any patterns in the data, which 18 
can also lead to terrible performance in training, testing and validation. Underfitting can occur with 19 
inadequate model features, poor model complexity or when regularization techniques, (e.g., L1 or L2 20 
regularization), are over-used, making the model too rigid and unable to respond to changes in the 21 
data. Given the propensity of machine learning models to effectively learn the training data, 22 
underfitting is less of an issue in ML whereas overfitting can be widespread. In the following 23 
diagram, we present an example workflow to transition away from overfitting and towards 24 
generalizability. We further encourage modelers to actively transition towards making more 25 
generalizable models, which are in theory, more capable of performing well across diverse scenarios 26 
and datasets, which will become increasingly important with the persistence of climate extremes.    27 

 28 
Response to ref #1, comment #1B: We have added a few sentences (blue is new) to the Discussion 29 
subsection titled “ML as Knowledge Discovery” where we urge for TUURTs (Temporal, Unseen, 30 
Ungaged Region Tests)’:  31 
 32 

Our review finds that ML studies examining SWT have been conducted from a computational 33 
perspective, one with a focus on comparing techniques and performance metrics as opposed to 34 
explaining the nature of SWT dynamics or influencing processes. While it is understandable that not 35 
every ML-SWT paper aims to explain physical processes, we think the SWT community should come 36 
together and agree on a baseline of tests that all ML-SWT models should undergo for model 37 
robustness and transferability. Along these lines, we urge consideration of TUURTs (temporal, 38 
unseen, ungaged region tests) for future ML-SWT models as a helpful step towards not only better 39 
modeling practices but also increased model transparency and robustness. For this, we clarify that 40 
testing for “unseen” cases means testing only within the developmental dataset, whereas testing for 41 
“ungaged” cases means testing for new sites that have not been previously seen by the model at all. 42 
Recent ML-SWT studies have only applied one or two of the tests, but not all three (Topp et al., 43 
2023; Hani et al., 2023, Souassi et al., 2023). Siegel et al. (2023), a non-ML SWT paper, tested for 44 
ungaged and unseen data but did not perform a temporal test. A relatively new study, Philippus et al. 45 
(2024), appears to be the only published SWT-ML study that purposefully applied TUURTs with 46 
some success. 47 

 48 
 49 

Disclaimer: I propose some additional literature (n = 4-5), and I am a coauthor on 1 of them. I do not 50 
view including that literature as mandatory, and only proposed additional sources based on their 51 
relevance to the content of this manuscript. I selected "No" to anonymity to avoid any appearance of 52 
subversive influence. 53 


