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Referee #1 Comments 1 
The manuscript on “ML in Stream/River Water Temperature Modeling, a review and metrics for 2 
evaluation” focuses on providing a comprehensive review of ML studies, including traditional and recent 3 
methods in ML and AI, on stream temperature modeling and prediction. Overall, the manuscript is well-4 
written and covers most of the relevant papers, but there are a few strategic points I would like to share 5 
with the authors:  6 
 7 
AUTHOR RESPONSE: We appreciate the referee’s feedback and think the manuscript is much 8 
improved as a result. For reference, we separated some referee comments into a, b, etc., to provide a more 9 
organized response. Thank you for your time and insight. Proposed new/edited text is in BLUE. 10 
 11 
 12 
1a. Figures 1 & 2 & 3 & table 2: The manuscript provides a table for multiple metrics such as R2, NSE, 13 
RMSE, and MAE, and suggested a rate of numbers to rate the ML methods’ performances. This table is 14 
based on the metrics that have been achieved by the studies in the previous years which are reflected in 15 
figures 1 & 2 & 3. However, those studies vary in terms of case studies, number of basins included in the 16 
study, running regional or local models. We know that ML models are prone to overfitting, especially for 17 
stream temperature that follows a relatively sinusoidal curve through a year, which means it is more 18 
predictable for complex models such as LSTM. However, it means the models are prone to easily overfit. 19 
Therefore, I suggest the authors encourage the stream temperature researchers to go towards making more 20 
generalizable models and less overfitted. For example, instead of suggesting performance metrics, the 21 
authors can provide a few steps to make sure the models are not overfitted or underfitted. For instance, 22 
always considering a spatial test on ungauged sites (basins). We know that spatial tests are more difficult 23 
tasks rather than temporal tests.  24 
 25 
AUTHOR RESPONSE: We agree that the SWT studies vary spatially/temporally and that ML models 26 
risk overfitting. We appreciate the referee’s comments in pointing out areas of improvement and suggest 27 
adding the following: 1) a new subsection under section 2.4 “SWT Predictions using ML” on 28 
overfitting/underfitting and 2) a diagram showing initial steps to mitigate overfitting. The new text is 29 
below: 30 
 31 
Section 2.4.X, Overfitting and Underfitting  32 
 33 

When a model is too complex, i.e., has too many features or too many parameters relative to the 34 
number of observations, or is forced to overextend its capabilities, i.e., make predictions with 35 
insufficient training data, the model runs the risk of overfitting (Srivastava et al., 2014). An 36 
overfitting model fits the training data “too well”, capturing noise and details that provide high 37 
accuracy on a training dataset, only to perform poorly once the model encounters “unseen” data in 38 
testing/validation (Xu and Liang, 2021). Scenarios where overfitting may be temporarily acceptable 39 
are those where: 1) model development is at its preliminary stages, where the interest is in a “proof of 40 
life” concept, 2) when the objective is to identify heavily-relied on features by the model, i.e., feature 41 
importance, or 3) in highly-controlled modeling environments where the expected data will be 42 
consistently similar to the training dataset. The latter is more likely in certain industrial applications 43 
and unlikely in the changing nature of hydrology.  44 

 45 
In contrast, underfitting occurs when a model is too simple to capture any patterns in the data, which 46 
can also lead to terrible performance in training, testing and validation. Underfitting can occur with 47 
inadequate model features, poor model complexity or when regularization techniques, (e.g., L1 or L2 48 
regularization), are over-used, making the model too rigid and unable to respond to changes in the 49 
data. Given the propensity of machine learning models to effectively learn the training data, 50 
underfitting is less of an issue in ML whereas overfitting can be widespread. In the following 51 
diagram, we present an example workflow to transition away from overfitting and towards 52 
generalizability. We further encourage modelers to actively transition towards making more 53 
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generalizable models, which are in theory, more capable of performing well across diverse scenarios 1 
and datasets, which will become increasingly important with the persistence of climate extremes.    2 

 3 
Figure XX. Diagram showing steps that can be taken in modeling process to mitigate overfitting. 4 
 5 
 6 
1b. Therefore, it is acceptable to get lower performance on ungauged basins, however, the metrics should 7 
not be vastly different from temporal tests. A more challenging experiment is to test the trained model on 8 
regions that have not been seen by the model. In theory, if a model has been able to capture true relations 9 
between the driving factors on stream temperature, it should achieve a relatively decent performance on 10 
basins with different hydrologic, geologic, and climatic characteristics from the trained basins. As a 11 
researcher on SWT, I would rather to have a model that passes all these three tests (temporal, ungaged, 12 
unseen regions) with relatively close metrics, rather than having a model that gives high performance in 13 
temporal tests and low performance in the other two tests.  14 
 15 
AUTHOR RESPONSE: We agree. The referee mentions a key point that having a SWT model pass all 16 
three tests for temporal, ungaged, and unseen regions may be more qualitatively sound, but as of initial 17 
submission, we had not yet seen any ML-SWT papers that test for all three cases. A newly published 18 
example, Philippus et al. (2024), has been added. For example, Topp et al. (2023) held out a region to be 19 
considered “unseen” but did not test for ungaged basins. Hani et al. (2023) used an inverse weighted 20 
distance interpolation method to estimate values for ungaged sites but did not test for “unseen” data. 21 
Souaissi et al. (2023) used a leave-one-out cross-validation technique to mimic the estimation of 22 
quantiles at ungaged sites by temporarily removing the gaged site information, which is arguably not 23 
testing for new, ungaged sites but rather “unseen” (i.e., tested only within the development dataset, not 24 
for new sites). Siegel et al. (2023), a non-ML paper tested for “ungaged” and “unseen” data, but did not 25 
perform a temporal test. We further agree with the theory posited by the referee that a model capturing 26 
true relations should perform acceptably, however, we have yet to see a study that has captured all true 27 
relations.   28 

Initial Model Runs and Preliminary Testing
•Is the model capturing general patterns? 
•Use cross-validation (i.e., k-fold, leave-one-out), to compare 

training and testing/validation performance.
•If possible, collect/use more data.

Spatial/Temporal Focused Testing & Compare
•Ex: train w/ low-elev. gages and validate w/ high elev. gages. 
•Ex: train w/ 2/3 decades of data and validate w/ other 1/3.

Apply Regularization Techniques
•Add regularization terms, i.e. L1 (Lasso) and L2 (Ridge) 

penalties to loss function to constrain model complexity.

Simplify the Model/Reduce Complexity
•Feature Importance: use fewer parameters, remove 

redundant/irrelevant parameters 
•For deep NNs, reduce # of layers or neurons per layer.

Early Stopping/Dropout/Ensemble methods
•Early stopping: stop training when validation performance 

starts to degrade.
•For NNs, use Dropout to randomly drop units (and 

connections) during training to limit over-reliance on specific 
neural paths. Dropout can be coupled with early stopping.

•Use ensemble methods to improve generalization.
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  1 
We have added a few sentences (blue is new) to the Discussion subsection titled “ML as Knowledge 2 
Discovery” where we urge for TUURTs (Temporal, Unseen, Ungaged Region Tests)’:  3 

 4 
 5 

Our review finds that ML studies examining SWT have been conducted from a computational 6 
perspective, one with a focus on comparing techniques and performance metrics as opposed to 7 
explaining the nature of SWT dynamics or influencing processes. While it is understandable that not 8 
every ML-SWT paper aims to explain physical processes, we think the SWT community should come 9 
together and agree on a baseline of tests that all ML-SWT models should undergo for model 10 
robustness and transferability. Along these lines, we urge consideration of TUURTs (temporal, 11 
unseen, ungaged region tests) for future ML-SWT models as a helpful step towards not only better 12 
modeling practices but also increased model transparency and robustness. For this, we clarify that 13 
testing for “unseen” cases means testing only within the developmental dataset, whereas testing for 14 
“ungaged” cases means testing for new sites that have not been previously seen by the model at all. 15 
Recent ML-SWT studies have only applied one or two of the tests, but not all three (Topp et al., 16 
2023; Hani et al., 2023, Souassi et al., 2023). Siegel et al. (2023), a non-ML SWT paper, tested for 17 
ungaged and unseen data but did not perform a temporal test. A relatively new study, Philippus et al. 18 
(2024), appears to be the only published SWT-ML study that purposefully applied TUURTs with 19 
some success. 20 

 21 
 22 
2. Evaluation of Data Requirements: The manuscript does not extensively discuss the challenges that 23 
ML ST modelers are facing with. Different ML models have varying data requirements, but the review 24 
does not thoroughly discuss the data needs for each type of model. For example, ML models are 25 
dependent on data. If we compare the availability of streamflow observation data availability versus the 26 
SWT observation data, we realize there is a massive gap here, which impacts the studies and reduces the 27 
SWT model performances. I suggest, while the authors encouraging the researchers and water institutes to 28 
collect more data, they add their comments on this issue and discuss how researchers can reduce the 29 
impact of this problem in their models.  30 
 31 
AUTHOR RESPONSE: We agree with the referee that issues remain with data requirement limitations. 32 
We propose adding a new ‘Discussion’ subsection, titled ‘ML Data Requirements vs. Availability’ stating 33 
the following: 34 
 35 

While, in recent years, access to hydrologic data has improved (Miller et al., 2022; CUAHSI, 36 
2024), data remains scarce in several hydrologic applications including SWT research, particularly 37 
because continual project management and funding to not only place but also maintain stream 38 
temperature sensors, can be expensive and/or time-consuming to undertake. As a result, in the 21st 39 
century, the scarcity of data remains a large impediment for the application of machine learning in 40 
SWT modeling. What is more, the question of data quantity (how much data do you have?) versus 41 
quality (how much diverse data is needed?) continues to hinder ML-use in hydrologic applications. 42 
Xu and Liang (2021) make the excellent point that one year of streamflow data (can swap for stream 43 
temperature) at 15-minute intervals equals about ~35,000 points, which may seem like a lot, but is 44 
unlikely to be enough to properly train a ML model due to autocorrelation and limited exposure to 45 
diverse types of data that are naturally encountered with a longer time-series (Xu and Liang, 2021). 46 
For example, machine learning models may only predict flood volumes they have previously seen 47 
(Kratzert et al., 2019). While data requirements for ML remain high, there are some strategies that 48 
researchers have used to alleviate the impact of this issue.   49 

One strategy that hydrologists in other fields have used to tackle this problem is data 50 
augmentation, which can be applied spatially or temporally to create new training examples that the 51 
ML model can learn from. Spatial augmentation can be done by means of interpolation methods, i.e., 52 
kriging or distance weighting to create new data points or by generating synthetic data based on 53 
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expected physical patterns to fill gaps in data coverage (Baydaroğlu and Demir, 2024). Temporal data 1 
augmentation can be done by shifting, scaling or adding noise to existing time series to create new 2 
training examples for the model to consider (Skoulikaris et al., 2022). Alternatively, and not a new 3 
idea, would be to use the statistical technique known as seasonal decomposition, which breaks down a 4 
time series into its main components, i.e., the trend, seasonal patterns and residual components 5 
(Apaydin et al., 2021; He et al., 2022). These can then be recombined to generate new data and train 6 
the model for improved accuracy (Apaydin et al., 2021). In addition to data augmentations, data 7 
requirements can be alleviated by considering the help of unsupervised transfer learning, i.e., use pre-8 
trained models on similar tasks to reduce amount of data needed for training, or semi-supervised 9 
learning, such as few shot learning, i.e., combine a small percent of labeled data with larger percent of 10 
unlabeled data to improve model performance (Yang et al., 2023). By implementing these strategies, 11 
researchers in other hydrologic fields have shown that models can be improved with less data, 12 
strategies that are likely transferable to SWT research. 13 

 14 
 15 

3. Future Directions Could Be Expanded: Although the paper concludes with a general discussion of 16 
future challenges, it does not offer specific, actionable directions for future research. Highlighting key 17 
areas where ML can advance, such as the use of satellite data, sensor networks, or the fusion of climate 18 
models with ML, would provide more meaningful insights. In this concept, we can learn from hydrologic 19 
community and capitalize on their experience and what they learned. The ML hydrologic community is 20 
moving toward making global models, incorporating mechanistic models into their ML framework and 21 
learning the governing factors, flow prediction with predicted inputs (predicted meteorological inputs) 22 
and last but not least, providing a seamless simulation in streams in CONUS/global scale. Therefore, I 23 
would ask the authors to add their comments on where the future direction of SWT community should be 24 
and how SWT community can achieve the future objectives and what the barriers are.  25 
 26 
AUTHOR RESPONSE: We agree and appreciate the referee’s feedback. We propose adding a new 27 
‘Discussion’ subsection, titled ‘4.3 Future Directions of SWT Modeling’, with the following: 28 
 29 

The utility of ML in hydrologic modeling has come a long way, with interest seemingly growing 30 
exponentially (Nearing et al., 2021). With the novelty of ML, it is easy to get lost in the value of how 31 
well a model performs and ignore the science, but with several decades of ML-experience, we think it 32 
necessary to urge the scientific community to purposefully use ML address physically-meaningful 33 
questions and not just create ML for the sake of creating. Given this, Varadharajan et al. (2022) laid 34 
out an excellent discussion on opportunities for advancement of ML in water quality modeling, see 35 
section 3 of publication (Varadharajan et al., 2022). Here we highlight some of the questions from 36 
Varadharajan et al. (2022) that can be considered in the context of what the objectives of the SWT 37 
community should be in the ML era, namely: 1) How do we use physical knowledge (re: heat 38 
exchange equations, radiation influence) to improve models and process understanding? Rahmani et 39 
al. (2023) coupled NNs with the physical knowledge from SNTEMP, a one-dimensional stream 40 
temperature model that calculates the transfer of energy to or from a stream segment by either heat 41 
flux equations or advection, but found that even with SNTEMP, their flexible NNs exhibited 42 
substantial variance in prediction and needed to be constrained by further multi-dimensional 43 
assessments (Rahmani et al., 2023). In short, if our use of physics in machine learning makes our 44 
models worse, we must know why.  45 

A second question that needs addressing is 2) How do we deal with predictive uncertainty in ML 46 
used for SWT modeling? According to Moriasi et al. (2007), uncertainty analysis is the process of 47 
quantifying the level of confidence in any given model output based on five guidelines: 1) the quality 48 
and amount of observations (data), 2) the lack of observations due to poor or limited field monitoring, 49 
3) the lack of knowledge of physical processes or operational procedures (instrumentation), 4) the 50 
approximation of our mathematical equations, and 5) the robustness of model sensitivity analysis and 51 
calibration. For example, in rainfall-runoff modeling, researchers have proposed benchmarking to 52 
examine uncertainty predictions of ML rainfall-runoff modeling (Klotz et al., 2022). For stream 53 
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temperature modeling, researchers have attempted to address the role of uncertainty in deep learning 1 
model (RGCN, LSTM) prediction using the Monte Carlo Dropout (Zwart, Oliver, et al., 2023) and a 2 
unimodal mixture density network approach (Zwart, Diaz, et al., 2023).  3 

Other questions that SWT-ML studies should consider is 3) How do we make ML models 4 
generalize better, specifically with regards to ungaged basins? And 4) How can ML models be 5 
improved to predict extremes? As ML models advance to use satellite data, include more sensor 6 
networks and/or couple with climate models, there is a logical next step toward creating generalizable 7 
models that can account for extremes. In our review, only two papers by the same group (Rahmani et 8 
al., 2020, 2023) conducted a CONUS-scale approach towards SWT-ML modeling, omitting 9 
hydrologically important regions in the southwest (CA) and southeast (FL). Recently, a satellite 10 
remote sensing paper used RF to model monthly stream temperature across the CONUS and tested for 11 
temporal (walk-forward validation), unseen and ‘true’ ungaged regions (Philippus et al., 2024). We 12 
have also learned that ML models such as LSTMs, generally only make predictions within the bounds 13 
of their training data (Kratzert et al., 2019), which is a limitation for predicting extremes. Thus, we 14 
strongly urge the community to work towards ML models that generalize better and/or are more 15 
robust towards predictions of extremes.   16 

Finally, 5) How can we build ML models such that they are seen as trustworthy and 17 
interpretable by the hydrologic community? To answer this question, we must address a technical 18 
barrier (black-box issues, data limitations, model uncertainty) and a social barrier (i.e., educated 19 
skepticism of ML due to novelty, little understanding of computer science basics and/or coding 20 
experience). If we are to incorporate ML into more of the decision-making process, it makes sense 21 
that ML must be transparent and understandable to more than just computer scientists (Varadharajan 22 
et al., 2022). For example, Topp et al. (2023) recently used explainable AI to elucidate how ML 23 
architectures affected the SWT model’s spatial and temporal dependencies, and how that in turn 24 
affected the model’s accuracy. Addressing this technical barrier can also be done by improving access 25 
to data, which has seen remarkable progress thanks to web repositories such as NSF-funded 26 
CUAHSI’s Hydro share (CUAHSI, 2024) and GitHub (GitHub, 2024). In the United States, data 27 
access to state and locally-based data remains limited, and should be addressed. In terms of the social 28 
barrier, education about ML and ML-use is key. Societal interest in ML has thankfully also lead to a 29 
plethora of educational resources and ML walk-through videos and tutorials in Tensorflow (Abadi et 30 
al., 2015), PyTorch (Abadi et al., 2015), and Google Colab (Bison, 2019). With how fast ML-use is 31 
evolving, short communication pieces (Lapuschkin et al., 2019) and opinion pieces (Kratzert et al., 32 
2024) with clear examples about an ML-issue and practical solutions could also help make ML 33 
challenges more transparent and therefore accessible to the hydrologic community-at-large.  34 

 35 
Added citations used for new subsection, 4.3 Future Directions of SWT Modeling: 36 

1) Apaydin, H., Taghi Sattari, M., Falsafian, K., and Prasad, R.: Artificial intelligence modelling integrated with 37 
Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow 38 
predictions, Journal of Hydrology, 600, 126506, https://doi.org/10.1016/j.jhydrol.2021.126506, 2021. 39 

2) Baydaroğlu, Ö. and Demir, I.: Temporal and spatial satellite data augmentation for deep learning-based rainfall 40 
nowcasting, Journal of Hydroinformatics, 26, 589–607, https://doi.org/10.2166/hydro.2024.235, 2024. 41 

3) CUAHSI. 2024. Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Water 42 
Data Portal: https://www.cuahsi.org/community/water-data-portals, last access: 13 November 2024. 43 

4) Kratzert, F., Gauch, M., Klotz, D. and Nearing, G., 2024. HESS Opinions: Never train an LSTM on a single 44 
basin. Hydrology and Earth System Sciences Discussions, 2024, pp.1-19. 45 

5) Kwak, J., St-Hilaire, A., and Chebana, F.: A comparative study for water temperature modelling in a small basin, 46 
the Fourchue River, Quebec, Canada, Hydrological Sciences Journal, 1–12, 47 
https://doi.org/10.1080/02626667.2016.1174334, 2016. 48 

6) Philippus, D., Sytsma, A., Rust, A., and Hogue, T. S.: A machine learning model for estimating the temperature of 49 
small rivers using satellite-based spatial data, Remote Sensing of Environment, 311, 114271, 50 
https://doi.org/10.1016/j.rse.2024.114271, 2024. 51 

https://colab.research.google.com/
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7) Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: 1 
What Role Does Hydrological Science Play in the Age of Machine Learning?, Water Resources Research, 57, 2 
e2020WR028091, https://doi.org/10.1029/2020WR028091, 2021. 3 

8) Skoulikaris, C., Venetsanou, P., Lazoglou, G., Anagnostopoulou, C., and Voudouris, K.: Spatio-Temporal 4 
Interpolation and Bias Correction Ordering Analysis for Hydrological Simulations: An Assessment on a 5 
Mountainous River Basin, Water, 14, 660, https://doi.org/10.3390/w14040660, 2022. 6 

9) Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way to 7 
Prevent Neural Networks from Overfitting, Journal of Machine Learning Research, 15, 30, 2014. 8 

10) Yang, M., Yang, Q., Shao, J., Wang, G., and Zhang, W.: A new few-shot learning model for runoff prediction: 9 
Demonstration in two data scarce regions, Environmental Modelling & Software, 162, 105659, 10 
https://doi.org/10.1016/j.envsoft.2023.105659, 2023. 11 

11) GitHub. 2024. About Git and Github: https://docs.github.com/en/get-started/start-your-journey/about-github-12 
and-git, last access: 14 November 2024. 13 

12) Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W. and Müller, K.R., 2019. Unmasking Clever 14 
Hans predictors and assessing what machines really learn. Nature communications, 10(1), p.1096. 15 

13) Zwart, J.A., Oliver, S.K., Watkins, W.D., Sadler, J.M., Appling, A.P., Corson‐Dosch, H.R., Jia, X., Kumar, V. and 16 
Read, J.S., 2023. Near‐term forecasts of stream temperature using deep learning and data assimilation in support 17 
of management decisions. JAWRA Journal of the American Water Resources Association, 59(2), pp.317-337. 18 

14) Zwart, J.A., Diaz, J., Hamshaw, S., Oliver, S., Ross, J.C., Sleckman, M., Appling, A.P., Corson-Dosch, H., Jia, 19 
X., Read, J. and Sadler, J., 2023. Evaluating deep learning architecture and data assimilation for improving 20 
water temperature forecasts at unmonitored locations. Frontiers in Water, 5, p.1184992. 21 

15) Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S. and 22 
Nearing, G., 2022. Uncertainty estimation with deep learning for rainfall–runoff modeling. Hydrology and 23 
Earth System Sciences, 26(6), pp.1673-1693. 24 

16) M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. 25 
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. 26 
Levenberg, D. Mané, M. Schuster, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I. Sutskever, 27 
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, 28 
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015. TensorFlow. 29 
Website: https://www.tensorflow.org/   30 

17) A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. 31 
Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. 32 
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Website: 33 
https://arxiv.org/abs/1912.01703   34 

18) Bisong, E. (2019). Google Colaboratory. In: Building Machine Learning and Deep Learning Models on Google 35 
Cloud Platform. Apress, Berkeley, CA. Website: https://doi.org/10.1007/978-1-4842-4470-8_7  36 

 37 

4. The manuscript walked through many ML and AI models. An important factor of the ML and AI 38 
models are the inputs. I assume you faced a variety of inputs that have been used in the models. That 39 
would be informative to the readers, if the authors add their observations that what kind of inputs that 40 
have been missed to be used, either because it is not available yet or it is even missed. For instance, 41 
whether there is any geophysical attribute, climatic attributes, or any forcings that is worth to be extracted 42 
and used in ML models.   43 

AUTHOR RESPONSE: We appreciate the referee’s feedback. In the Supplementary Materials, Table S1 44 
contains some of the suggested data by the referee, such as: period considered, region examined, temporal 45 
resolution of SWT, spatial scale of study, and hydrometeorological parameters used for modeling. We 46 
provided the information as Supplementary Material because Tables S1 and S2 are seven pages alone, 47 
which may risk making the review lengthier than it already is. We have added text to the manuscript 48 

https://www.tensorflow.org/
https://arxiv.org/abs/1912.01703
https://doi.org/10.1007/978-1-4842-4470-8_7
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regarding model inputs and moved the LASSO paragraph (original lines 247-253) to this section because 1 
we think it can more smoothly follow the paragraph on feature importance.  2 
 3 
This section will precede the “Local” and “Regional” subsections of 2.4 and be titled Model Inputs for 4 
ML-SWT: 5 
 6 

Using air temperature (AT) to better understand SWT has been considered since at least the 7 
1960s, when Ward (1963) and Edinger et al. (1968) discussed the influence of air temperature on 8 
SWT. Since then, studies have used varying input variables (see Table S1), however, the model inputs 9 
of AT and SWT continue to be the most used in ML-modeling studies. In particular, studies have 10 
used AT from time periods outside of the known SWT record to improve model performance (Sahoo 11 
et al., 2009; Piotrowski et al., 2015; Graf et al., 2019). In addition to AT and SWT, flow discharge has 12 
been used to attempt to constrain SWT (Foreman et al., 2001; Tao et al., 2008; St-Hilaire et al., 2011; 13 
Grbić et al., 2013; Piotrowski et al., 2015; Graf et al., 2019; Qiu et al., 2020). Traditionally-used 14 
model inputs include precipitation (Cole et al., 2014; Jeong et al., 2016; Rozos, 2023), wind 15 
direction/speed (Hong and Bhamidimarri, 2012; Cole et al., 2014; Jeong et al., 2016; Kwak et al., 16 
2016; Temizyurek and Dadaser-Celik, 2018; Abdi et al., 2021; Jiang et al., 2022), barometric pressure 17 
(Cole et al., 2014), landform attributes (Risley et al., 2003; DeWeber and Wagner, 2014; Topp et al., 18 
2023; Souaissi et al., 2023), and many more (see Table S1).  19 

In the last few years, including the day-of-year as an input, DOY (Qiu et al., 2020; Heddam et 20 
al., 2022; Drainas et al., 2023; Rahmani et al., 2023) and humidity where available (Cole et al., 2014; 21 
Hong and Bhamidimarri, 2012; Kwak et al., 2016; Temizyurek and Dadaser-Celik, 2018; Abdi et al., 22 
2021), have also shown to better capture the seasonal patterns of SWT (Qiu et al., 2020; Philippus et 23 
al., 2024). With improved access to remote sensing data, there has also been a notable increase of 24 
satellite products such as estimates of sky cover (Cole et al., 2014), solar radiation (Kwak et al., 2016; 25 
Topp et al., 2023; Majerska et al., 2024), sunshine per day (Drainas et al., 2023) and potential ET 26 
(Rozos, 2023; Topp et al., 2023). However, more research is needed to better understand the 27 
influence of newer model inputs on SWT (Zhu and Piotrowski, 2020).  28 

Most recently, SWT studies focused on the CONUS-scale have chosen to use as many model 29 
inputs as available, with Wade et al. (2023), a point-scale CONUS ML study using over 20 variables, 30 
while Rahmani et al. (2023) created a LSTM model and considered over 30 variables to simulate 31 
SWT. Despite the use of diverse data, the models performed only satisfactorily and were deemed not 32 
generalizable, leaving much room for improvement in CONUS-scale modeling of SWT. With the 33 
compilation of larger and larger datasets, feature importance in ML, that is the process of using 34 
techniques to assign a score to model input features based on how good the features are at predicting 35 
a target variable, can be an efficient way to improve data comprehension, model performance, and 36 
model interpretability, the latter of which can dually serve as a transparency marker of which features 37 
are driving predictions. Methods for measuring feature importance include using correlation criteria 38 
(Pearson’s r, Spearman’s rho), permutation feature importance (shuffling feature values, measuring 39 
decrease in model performance), linear regression feature importance  (larger absolute values indicate 40 
greater importance), or if using CART/RF/gradient boosting, entropy impurity measurements can be 41 
insightful (Venkateswarlu and Anmala, 2023).  42 

 43 
Moved from section 2.3.1, original lines 246-253 to new section Model Inputs for ML-SWT: 44 

For example, one technique that can be used to improve ML model parameter selection is the 45 
Least Absolute Shrinkage and Selection Operator (LASSO), a regression technique used for feature 46 
selection (Tibshirani, 1996). Research utilizing ML models for SWT frequency analysis at ungaged 47 
basins used the LASSO method to select explanatory variables for two ML models (Souaissi et al., 48 
2023). The LASSO method consists of a shrinkage process where the method penalizes coefficients 49 
of regression variables by minimizing them to zero (Tibshirani, 1996). The number of coefficients set 50 
to zero depends on the adjustment parameter, which controls the severity of the penalty. Thus, the 51 
method can perform both feature selection and parameter estimation, an advantage when examining 52 
large datasets (Xu & Liang, 2021). 53 
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5. Lack of Clear Structure in the Evaluation: Although the paper aims to summarize the performance 1 
evaluation metrics for ML models in SWT prediction, the organization of these sections feels somewhat 2 
scattered. A more systematic approach could improve clarity, such as separating the analysis based on 3 
time scales (e.g., hourly, daily, monthly) or spatial scales (local, regional, continental). This would make 4 
it easier for readers to find the relevant insights based on their application. For instance, a stream 5 
temperature model in monthly scale is different from a daily or hourly scale models on many aspects. As 6 
an example, the complexity of a daily model is different from a monthly temperature models. A monthly 7 
model may not need all inputs of a daily model to capture the monthly changes. The authors can add their 8 
overall opinion of what types of models are better fitted to which time scale. In ML models, it is 9 
important to know the scope of the model, whether it is a local model that needs to be calibrated site by 10 
site, or it is a model that  is designed to work for multiple sites (a regional model). I believe that would be 11 
informative to consider the modeling approach when methods are compared.  12 
 13 
AUTHOR RESPONSE: We appreciate the opportunity to clarify. Initially, we did create a performance 14 
metric comparison by spatial scale for the most-cited metric, RMSE (42 papers cited) and plotted RMSE 15 
by study for regional/CONUS scale and local scale (found in the HYDROSHARE repository but not in 16 
the manuscript), however we found minimal performance metric differences between the 17 
regional/CONUS studies and the local scale studies, which we state on Table 1 in the manuscript. 18 
 19 
One of the possible reasons why we found no differences is due to the inherent variability of each 20 
individual publication’s goals and a self-limiting behavior where earlier studies published less data than 21 
later studies. Additionally, one of the challenges of performance metric choice in the hydrologic modeling 22 
community is that authors choose whatever performance metric they prefer with little regard to what 23 
everyone else is doing (though this is improving). This inconsistency in choice limits which performance 24 
metrics we can summarize for readers and makes for challenging cross-comparison. Given how fast ML 25 
is advancing and being applied for hydrologic applications, we do not believe it wise to opinionate on 26 
which ML model is better or worse. We think the choice is in the reader’s hands and comes down to what 27 
the research question/goal is, the time frame of the research project, and the author’s own objectives. We 28 
think that what we have done instead, with summarizing publications (see Tables S1 and S2) and 29 
highlighting performance metrics, allows the reader to identify what has already been done in the ML-30 
SWT field so that they can then make their own informed decisions about their research questions and 31 
methods. As part of the supplementary info, Tables S1 includes summarized information stating the time 32 
scale, spatial scale, region and time period considered of each study while Table S2 lists the data analysis 33 
techniques and/or ML algorithms used, as well as the training/validation/testing percentages/time periods 34 
as reported by the study. 35 
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6. The authors need to decide first who are the readers of the papers. Whether the paper serves to new-1 
commers to ML and AI methodologies in stream temperature community or it serves to researchers that 2 
are already familiar with basics of ML and AI methods.  3 
 4 

AUTHOR RESPONSE: We agree with the referee that the purpose of the review should be more clearly 5 
stated. We drafted this paper to serve as a middle ground between traditional modelers and more well-6 
versed ML users. The intended audience are hydrologic modelers who have heard of AI/ML and want a 7 
summary of what has been done in SWT modeling using ML. Our dual objective is also for this to be a 8 
reference for what to expect from ML performance. At the same time, we want ML researchers to be 9 
aware of where their models stand compared to other modelers while communicating that an “A+ grade” 10 
is actually more common (and therefore the new average) relative to what they are used to in hydrologic 11 
modeling. We have added a few sentences in the introduction, under section 1.2 ‘Study Objectives’ of the 12 
manuscript to state who the intended audience is: 13 

1.2. Study Objective (new in blue) 14 

The current work includes an extensive literature review of studies that used ML algorithms/models for 15 
river/SWT modeling, hindcasting and forecasting. The intent of this review is two-fold: 1) to introduce 16 
ML for hydrologists who have computer modeling experience and are interested in pursuing ML-use for 17 
their SWT studies, and 2) to provide a broad overview of machine learning applications in SWT. For 18 
ML experts, we think that this review could also prove useful as reference for how ML has been applied 19 
in the field of SWT modeling and where improvement is needed. Overall, this article aims to serve as a 20 
bridge between hydrologists and machine learning experts. Our review includes papers cited by Zhu and 21 
Piotrowski (2020), who previously conducted a study of ANNs used in SWT modeling, however, we 22 
provide a comprehensive examination of peer-reviewed journals that use any type of artificial 23 
intelligence/ML algorithm to model or evaluate river/SWT […]  24 
 25 
 26 

7a. While the paper provides an extensive review of ML applications in SWT modeling, it focuses 27 
heavily on listing the types of ML models used rather than deeply analyzing their applications, strengths, 28 
weaknesses, and performance differences. A more critical analysis of the pros & cons of each model type 29 
could provide greater value to researchers choosing the appropriate model for their specific needs. To 30 
provide a few examples, I refer to lines 136 – 143 & lines 146 – 159 & lines 263 - 292.  31 
 32 

AUTHOR RESPONSE: Thank you for the opportunity to clarify. We provided supplementary tables to 33 
summarize study information, for example, Tables S1 includes summarized information stating the time 34 
scale, spatial scale, region and time period considered of each study while Table S2 lists the data analysis 35 
techniques and/or ML algorithms used, as well as the training/validation/testing percentages/time periods 36 
as reported by the study. We think the “pros/cons” and “strengths/weakness” vary depending on the 37 
research goal and question, and the robustness of ML models allows them to cater to most problems, 38 
which is why we think instead of opinionating, it is better that we provide concrete specifications on the 39 
models used and allow the reader to decide based on their objectives. 40 
 41 
 42 
7b. The first half of the paragraph that is written in lines 136 – 143 explains the fundamentals of the 43 
method, which may not be necessary to be long, and the rest is an example of the method usage. 44 
However, this paragraph could have been enriched by statements like the advantages and disadvantages 45 
of this method compared to other existing ML methods or even to a linear regression method, or a 1D 46 
mechanistic method (although they are not ML methods, but the comparison is beneficial to the readers). 47 
The authors also can add their statement of under what conditions they think the method is beneficial.  48 
 49 

AUTHOR RESPONSE: We agree and show how we could edit the text to include describing the 50 
advantages and disadvantages of K-nn: 51 
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 1 
K-nearest neighbors (K-nn) is a type of versatile supervised ML algorithm (Fix & Hodges, 1952; 2 

Cover & Hart, 1967) used to solve nonparametric classification and regression problems. It is one of 3 
the oldest algorithms (Fix & Hodges, 1952; Cover & Hart, 1967) considered within classical ML. The 4 
K-nn algorithm uses proximity between data points to make classifications or evaluations about the 5 
grouping of any given data point (Acito, 2023). K-nn gained popularity in the 2010s due to its 6 
simplicity in implementation and understanding, making it accessible to hydrologic researchers and 7 
practitioners. While less used today,  For example, St.-Hilaire et al. (20122011) used various K-nn 8 
model configurations to model SWT for the Moisie River in northern Quebec, Canada, finding that. T 9 
the best K-nn model required prior-day SWT data and day-of-year (DOY), an indicator of seasonality 10 
(St. Hilaire et al., 2011). Other advantages of K-nn include its non-assumptions of the underlying 11 
distribution of the data, allowing it to handle nonlinear complexities without requiring a solid model 12 
structure as is the case for some physical models (St-Hilaire et al., 2011). The disadvantages of K-nn 13 
are quite large however, as it has been found to be computationally intensive, requiring extensive 14 
cross-validation, is affected by irrelevant/redundant features that impact performance, and is 15 
impractical for large-scale applications (i.e., scalability issues), due to its high memory and 16 
computational requirements (Acito, 2023). For example, Heddam et al. (2022) For five stream 17 
stations in Poland, Heddam et al. (2022) compared K-nn with other ML algorithms, finding that K-nn 18 
was outperformed by other MLs such as least squares support vector machine and neural networks. 19 
performed poorly compared to other ML algorithms. The use of K-nn may still be apt for simple, 20 
local cases but we advise considering other MLs for more complex or larger-use cases due to the 21 
aforementioned. 22 

 23 
 24 
7c. Lines 146 – 153 explains PCA & ck-means clustering on data reduction application, however, it is not 25 
clear under what conditions we can use them.  26 
 27 
AUTHOR RESPONSE: We agree. We propose adding text to clarify: 28 
 29 

Krishnaraj and Deka (2020) used K-means to organize spatial grouping for water quality monitoring 30 
stations for dry and wet regions along the Gangas River basin in India to identify whether pollution 31 
patterns could be discerned. 32 
 33 
Using PCA, Krishnaraj and Deka (2020) found that certain water quality parameters (dissolved 34 
oxygen, sulfate, electrical conductivity) were more dominant in the dry season compared to the wet 35 
season (total dissolved solids, sodium, potassium, sodium, chlorine, chemical oxygen demand), data 36 
which could be used to cater the monitoring program to the important parameters. In their study, 37 
SWT was not a dominant parameter, likely in part because the SWT of large downstream rivers like 38 
the Gangas River are generally less variable due to their larger volume and stronger thermal buffer. 39 
Used k-means and PCA in the Ganga River Basin of India to find spatiotemporal patterns of water 40 
quality parameters, including SWT. 41 

 42 
 43 
7d. Additionally, that would be nice for readers if the authors add feature importance to their comparison 44 
as it has been used more frequently in streamflow and soil moisture prediction studies.  45 
 46 

AUTHOR RESPONSE: We agree and added text on feature importance to a section on model inputs as 47 
suggested (please see comment #4 for full text). The text specific to feature importance is below: 48 
 49 

Most recently, SWT studies focused on the CONUS-scale have chosen to use as many model 50 
inputs as available, with Wade et al. (2023), a point-scale CONUS ML study using over 20 variables, 51 
while Rahmani et al. (2023) created a LSTM model and considered over 30 variables to simulate 52 
SWT. Despite the use of diverse data, the models performed only satisfactorily and were deemed not 53 
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generalizable, leaving much room for improvement in CONUS-scale modeling of SWT. With the 1 
compilation of larger and larger datasets, feature importance in ML, that is the process of using 2 
techniques to assign a score to model input features based on how good the features are at predicting 3 
a target variable, can be an efficient way to improve data comprehension, model performance, and 4 
model interpretability, the latter of which can dually serve as a transparency marker of which features 5 
are driving predictions. Methods for measuring feature importance include using correlation criteria 6 
(Pearson’s r, Spearman’s rho), permutation feature importance (shuffling feature values, measuring 7 
decrease in model performance), linear regression feature importance  (larger absolute values indicate 8 
greater importance), or if using CART/RF/gradient boosting, entropy impurity measurements can be 9 
insightful (Venkateswarlu and Anmala, 2023).  10 

 11 
 12 
7e. Lines 263 – 292 are organized in three paragraphs while providing general knowledge about ANNs 13 
with relatively less direct relations to water temperature application.   14 
 15 
AUTHOR RESPONSE: We appreciate the reviewer’s feedback and are open to making changes to 16 
improve the manuscript for the reader. Referee #3 made a similar comment about this section, and we 17 
now wonder if it would be better to provide the description of ANN variants and alternatives (lines 263-18 
320) as part of an appendix. We think it would still be helpful to keep the information, but we also agree 19 
that it may be too extensive for the main text. In this way, the manuscript can be made more concise while 20 
also keeping the details as a section of the manuscript for anyone who is interested in reading further.  21 
 22 
Following this line of thinking, we can add the following to point the reader to the appendix: 23 
 24 

“For more detail on traditional ANNs, with descriptions of ANN variants and backpropagation 25 
alternatives, we refer the reader to appendix A.” 26 
 27 

 28 
Minor corrections: 29 
 30 

1. Line 13: There is a typo that changes the meaning of the sentence. It should be “… with in situ …” or 31 
“… with in-situ …”. 32 

 33 
AUTHOR RESPONSE: Thank you for pointing this out, we have fixed the typo to read “with in-situ”. 34 
 35 
 36 
2. Line 132: There is a typo here too. It should be “long short-term memory”. Although I am trying to 37 

catch them, there is a chance that I miss some of them. I recommend the authors to carefully re-read 38 
the manuscript or ask help from a fresh pair of eyes to find these types of typos.  39 

 40 
AUTHOR RESPONSE: Thank you! We have revised the text to read “long short-term memory” and 41 
reviewed the text accordingly. 42 
 43 
 44 
3. Lines 208 – 210: to make the sentence more accurate, it needs to be stated whether these are local 45 

models or one model for multiple sites. Additionally, I believe by “NNs” here, the authors mean 46 
feedforward neural network, which are totally different from recurrent neural networks.  47 

 48 
AUTHOR RESPONSE: Yes, we agree with both points. We have clarified that a feed-forward NN was 49 
used and revised the sentence to make it more accurate: 50 
 51 
 52 

In the case of A SWT modeling study comparing the output of three model versions of DT, GPR, and 53 
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feed-forward neural networks for daily SWT modeling multiple sites and prediction, found that DTs 1 
can could perform similarly to GPR and feed-forward neural networks when detailed statistics of air 2 
temperature, day-of-year, and discharge were included NNs (Zhu, Nyarko, Hadzima-Nyarko, Heddam, 3 
et al., 2019). 4 

 5 
 6 
4. Line 541: “at” is missed. It is .. All journals examined used at least …”  7 
 8 
AUTHOR RESPONSE: Thank you! We have added the word “at”. 9 
 10 


