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Referee #2 Comments 1 
This is a meaningful manuscript that provides a thorough review of ML approaches for SWT modeling 2 
and their evaluation metrics. I believe that the current scientific community has indeed developed a broad 3 
understanding of the integration of ML into stream temperature modeling. Hence, while the manuscript 4 
presents a comprehensive overview, incorporating more in-depth insights could enhance its appeal to 5 
readers and significantly increase its contribution to the field. The review covers a wealth of content, 6 
including recent articles and other reviews, but the sections are somewhat loosely structured, with key 7 
points relatively briefly mentioned. 8 

AUTHOR RESPONSE: We thank the referee for their time and feedback, we believe the manuscript is 9 
stronger as a result. We address specific referee comments below. For reference, we separated some 10 
referee comments into a, b, etc., to provide a more organized response.  Proposed new/edited text is in 11 
BLUE. 12 
 13 
 14 
1. For instance, in the first section (Overview: SWT Model Types), the author provides a solid overview 15 
of statistical, physical, and ML models. However, a more detailed analysis of the comparative strengths 16 
and weaknesses of physical and ML models would strengthen the discussion. The models are presented in 17 
a nearly linear developmental order in this review, but it would be beneficial to mention some points, for 18 
example, [if] physical models perform well, why ML models are adopted[?].  19 

AUTHOR RESPONSE: The referee makes a good point with regards to the question of “if physical 20 
models perform well, why are ML models being adopted?”. We have expanded the section “Artificial 21 
Intelligence Models in SWT Modeling” to discuss this: 22 
 23 

“In the last decade, computing advances in AI have started to offer several advantages for using 24 
machine learning (ML) in hydrology that are comparable to physically based models (Cole et al., 2014; 25 
Zhu et al., 2019; Rehana and Rajesh, 2023). In contrast to traditional physically based models, the code 26 
underlying ML models are generally open-source and publicly available allowing for near real-time 27 
accessible advances and user feedback, whereas the source code for some physically based models may 28 
be inaccessible to the public due to being privately managed (MIKE suite of models) or the model 29 
software may be publicly available but take years to publish updates (USGS MODFLOW, Simunek’s 30 
HYDRUS). One advantage that has made ML increasingly appealing includes its ability to learn 31 
directly from the data (i.e., data driven), which can be useful when the underlying physics are not fully 32 
understood or are considered too complex to model accurately.  33 

Additionally, ML models are more efficient in making predictions compared to the time-intensive 34 
solvers of physically based models. ML models can also handle the challenge of scalability, that is 35 
managing large datasets and seamlessly deploying across various computer platforms and applications 36 
(Rehana and Rajesh, 2023). Air2stream, a hybrid statistical-physically based SWT model (Toffolon and 37 
Piccolroaz, 2015; Piccolroaz et al., 2016), initially outperformed earlier ML models such as Gaussian 38 
Process Regression  (Zhu et al., 2019). Though in the last few years, Air2stream has had its performance 39 
matched and even exceeded by recent neural networks models (Feigl et al., 2021; Rehana and Rajesh, 40 
2023).  41 

Finally, with computer processing power improving and the emergent field of quantum computing, 42 
there is a strong belief amongst scientists, stakeholders and the public, that using ML and by extension 43 
AI, in science applications will drive innovation to the point where natural patterns and insights not 44 
currently apparent in physical modeling will be uncovered (Varadharajan et al., 2022). Thus, while 45 
physically based models are considered tried-and-true, thereby invaluable for their interpretability and 46 
grounding in established physics, ML models have the potential for growth – where they can be used 47 
to first complement and eventually lead as powerful tools for prediction, optimization, and 48 
understanding in increasingly complex and data-rich environments.” 49 

 50 
 51 
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New citation: 1 
Toffolon, M. and Piccolroaz, S., 2015. A hybrid model for river water temperature as a function of air 2 

temperature and discharge. Environmental Research Letters, 10(11), p.114011. 3 
 4 
2. How to gain the trust of traditional model users in ML methods? (This question is inherently 5 
challenging, as model users often have preferences based on their own familiarity with certain models and 6 
may exhibit biases against alternative approaches. However, it may be worthy to acknowledge this in the 7 
review.) This discussion could extend to the choice between different ML models as well, as conclusions 8 
favoring one model over another often depend on the specific context of the study. Many conclusions are 9 
applicable only under particular circumstances, so a generalization such as “a certain model is better 10 
suited to a particular type of problem” is more appropriate.  11 

AUTHOR RESPONSE: We agree and appreciate the referee’s feedback. We address this comment in 12 
our response to referee #1 for comment #3 (copied below) titled “Future Directions”, where we discuss 13 
how researchers can work to present their ML models as trustworthy. For this, we propose adding a new 14 
‘Discussion’ subsection, titled ‘Future Directions of SWT Modeling’, with the following: 15 
 16 

The utility of ML in hydrologic modeling has come a long way, with interest seemingly growing 17 
exponentially (Nearing et al., 2021). With the novelty of ML, it is easy to get lost in the value of how 18 
well a model performs and ignore the science, but with several decades of ML-experience, we think it 19 
necessary to urge the scientific community to purposefully use ML address physically-meaningful 20 
questions and not just create ML for the sake of creating. Given this, Varadharajan et al. (2022) laid 21 
out an excellent discussion on opportunities for advancement of ML in water quality modeling, see 22 
section 3 of publication (Varadharajan et al., 2022). Here we highlight some of the questions from 23 
Varadharajan et al. (2022) that can be considered in the context of what the objectives of the SWT 24 
community should be in the ML era, namely: 1) How do we use physical knowledge (re: heat 25 
exchange equations, radiation influence) to improve models and process understanding? Rahmani et 26 
al. (2023) coupled NNs with the physical knowledge from SNTEMP, a one-dimensional stream 27 
temperature model that calculates the transfer of energy to or from a stream segment by either heat 28 
flux equations or advection, but found that even with SNTEMP, their flexible NNs exhibited 29 
substantial variance in prediction and needed to be constrained by further multi-dimensional 30 
assessments (Rahmani et al., 2023). In short, if our use of physics in machine learning makes our 31 
models worse, we must know why.  32 

A second question that needs addressing is 2) How do we deal with predictive uncertainty in ML 33 
used for SWT modeling? According to Moriasi et al. (2007), uncertainty analysis is the process of 34 
quantifying the level of confidence in any given model output based on five guidelines: 1) the quality 35 
and amount of observations (data), 2) the lack of observations due to poor or limited field monitoring, 36 
3) the lack of knowledge of physical processes or operational procedures (instrumentation), 4) the 37 
approximation of our mathematical equations, and 5) the robustness of model sensitivity analysis and 38 
calibration. For example, in rainfall-runoff modeling, researchers have proposed benchmarking to 39 
examine uncertainty predictions of ML rainfall-runoff modeling (Klotz et al., 2022). For stream 40 
temperature modeling, researchers have attempted to address the role of uncertainty in deep learning 41 
model (RGCN, LSTM) prediction using the Monte Carlo Dropout (Zwart, Oliver, et al., 2023) and a 42 
unimodal mixture density network approach (Zwart, Diaz, et al., 2023).  43 

Other questions that SWT-ML studies should consider is 3) How do we make ML models 44 
generalize better, specifically with regards to ungaged basins? And 4) How can ML models be 45 
improved to predict extremes? As ML models advance to use satellite data, include more sensor 46 
networks and/or couple with climate models, there is a logical next step toward creating generalizable 47 
models that can account for extremes. In our review, only two papers by the same group (Rahmani et 48 
al., 2020, 2023) conducted a CONUS-scale approach towards SWT-ML modeling, omitting 49 
hydrologically important regions in the southwest (CA) and southeast (FL). Recently, a satellite 50 
remote sensing paper used RF to model monthly stream temperature across the CONUS and tested for 51 
temporal (walk-forward validation), unseen and ‘true’ ungaged regions (Philippus et al., 2024). We 52 
have also learned that ML models such as LSTMs, generally only make predictions within the bounds 53 
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of their training data (Kratzert et al., 2019), which is a limitation for predicting extremes. Thus, we 1 
strongly urge the community to work towards ML models that generalize better and/or are more 2 
robust towards predictions of extremes.   3 

Finally, 5) How can we build ML models such that they are seen as trustworthy and 4 
interpretable by the hydrologic community? To answer this question, we must address a technical 5 
barrier (black-box issues, data limitations, model uncertainty) and a social barrier (i.e., educated 6 
skepticism of ML due to novelty, little understanding of computer science basics and/or coding 7 
experience). If we are to incorporate ML into more of the decision-making process, it makes sense 8 
that ML must be transparent and understandable to more than just computer scientists (Varadharajan 9 
et al., 2022). For example, Topp et al. (2023) recently used explainable AI to elucidate how ML 10 
architectures affected the SWT model’s spatial and temporal dependencies, and how that in turn 11 
affected the model’s accuracy. Addressing this technical barrier can also be done by improving access 12 
to data, which has seen remarkable progress thanks to web repositories such as NSF-funded 13 
CUAHSI’s Hydro share (CUAHSI, 2024) and GitHub (GitHub, 2024). In the United States, data 14 
access to state and locally-based data remains limited, and should be addressed. In terms of the social 15 
barrier, education about ML and ML-use is key. Societal interest in ML has thankfully also lead to a 16 
plethora of educational resources and ML walk-through videos and tutorials in TensorFlow (Abadi et 17 
al., 2015), PyTorch (Abadi et al., 2015), and Google Colab (Bison, 2019). With how fast ML-use is 18 
evolving, short communication pieces (Capuchin et al., 2019) and opinion pieces (Kratzert et al., 19 
2024) with clear examples about an ML-issue and practical solutions could also help make ML 20 
challenges more transparent and therefore accessible to the hydrologic community-at-large.  21 

 22 
 23 
3a. Furthermore, the author may not clearly (separately) present the generalization capabilities of ML 24 
models in temporal and spatial contexts, which is crucial for data split. The model ability of 25 
generalization over time is particularly meaningful for climate change studies, where overfitting (common 26 
for ML studies) may lead to highly unreliable projections. Spatial generalization is useful for applying 27 
models to new regions or watersheds (ungauged stream/river/watershed).   28 

AUTHOR RESPONSE: We agree. Referee #1 made a similar comment (ref #1, comment #1A) about 29 
overfitting and having ML undergo more testing and we propose to address both comments by adding: 1) 30 
a subsection under “section 2.4 SWT Predictions using ML” on overfitting/underfitting and 2) a diagram 31 
showing initial steps to mitigate overfitting. The new text is below: 32 
 33 
Subsection 2.4.X Overfitting and Underfitting  34 
 35 

When a model is too complex, i.e., has too many features or too many parameters relative to the 36 
number of observations, or is forced to overextend its capabilities, i.e., make predictions with 37 
insufficient training data, the model runs the risk of overfitting (Srivastava et al., 2014). An 38 
overfitting model fits the training data “too well”, capturing noise and details that provide high 39 
accuracy on a training dataset, only to perform poorly once the model encounters “unseen” data in 40 
testing/validation (Xu and Liang, 2021). Scenarios where overfitting may be temporarily acceptable 41 
are those where: 1) model development is at its preliminary stages, where the interest is in a “proof of 42 
life” concept, 2) when the objective is to identify heavily-relied on features by the model, i.e., feature 43 
importance, or 3) in highly-controlled modeling environments where the expected data will be 44 
consistently similar to the training dataset. The latter is more likely in certain industrial applications 45 
and unlikely in the changing nature of hydrology.  46 

 47 
In contrast, underfitting occurs when a model is too simple to capture any patterns in the data, 48 

which can also lead to terrible performance in training, testing and validation. Underfitting can occur 49 
with inadequate model features, poor model complexity or when regularization techniques, (e.g., L1 50 
or L2 regularization), are over-used, making the model too rigid and unable to respond to changes in 51 
the data. Given the propensity of machine learning models to effectively learn the training data, 52 

https://colab.research.google.com/
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underfitting is less of an issue in ML whereas overfitting can be widespread. In the following 1 
diagram, we present an example workflow to transition away from overfitting and towards 2 
generalizability. We further encourage modelers to actively transition towards making more 3 
generalizable models, which are in theory, more capable of performing well across diverse scenarios 4 
and datasets, which will become increasingly important with the persistence of climate extremes.    5 

 6 
 7 

 8 
Figure XX. Diagram showing steps that can be taken in modeling process to mitigate overfitting. 9 
 10 
 11 
With regards to generalization, we propose to address this comment and a similar one made by ref #1 12 
(comm# 3) by adding a new Discussion subsection, titled ‘Future Directions of SWT Modeling’. Below is 13 
our response in that section (full section is copied at comment #2) about generalization:  14 
 15 

Another question that SWT-ML studies should consider is 2) How do we make ML models 16 
generalize better, specifically with regards to ungaged basins? And 3) How can ML models be 17 
improved to predict extremes? As ML models advance to use satellite data, incorporate more sensor 18 
networks and/or couple with climate models, there is a logical next step towards creating 19 
generalizable models. In our review, only two papers (Rahmani et al., 2020, 2023) conducted a 20 
CONUS-scale approach towards SWT-ML modeling, but omitted large parts of the southwest (CA) 21 
and southeast (FL), two hydrologically important regions. Recently, a satellite remote sensing RF was 22 
used to model monthly SWT across the CONUS and tested for temporal (walk-forward validation), 23 
unseen and ‘true’ ungaged regions, with the model architecture potentially generalizable due to it not 24 
being location-specific (Philippus et al., 2024). We have also learned that certain ML models such as 25 
LSTMs, can only predict within the bounds of their training data (Kratzert et al., 2019), which is a 26 
limitation for predicting extremes. Thus, we strongly urge the community to work towards ML 27 
models that generalize better and/or are more robust towards predictions of extremes.  28 

Initial Model Runs and Preliminary Testing
•Is the model capturing general patterns? 
•Use cross-validation (i.e., k-fold, leave-one-out), to compare 

training and testing/validation performance.
•If possible, collect/use more data.

Spatial/Temporal Focused Testing & Compare
•Ex: train w/ low-elev. gages and validate w/ high elev. gages. 
•Ex: train w/ 2/3 decades of data and validate w/ other 1/3.

Apply Regularization Techniques
•Add regularization terms, i.e. L1 (Lasso) and L2 (Ridge) 

penalties to loss function to constrain model complexity.

Simplify the Model/Reduce Complexity
•Feature Importance: use fewer parameters, remove 

redundant/irrelevant parameters 
•For deep NNs, reduce # of layers or neurons per layer.

Early Stopping/Dropout/Ensemble methods
•Early stopping: stop training when validation performance 

starts to degrade.
•For NNs, use Dropout to randomly drop units (and 

connections) during training to limit over-reliance on specific 
neural paths. Dropout can be coupled with early stopping.

•Use ensemble methods to improve generalization.
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3b. Additionally, the review does not systematically address the critical issue of model input selection, 1 
which is essential in ML modeling. Model inputs for SWT modeling may include hydrometeorological 2 
and physical parameters (or other attributes used in different studies), they play a role in model 3 
performance and should be discussed in this part.  4 

AUTHOR RESPONSE: Thank you for pointing out this area in need of clarity. Referee #1, comment #4 5 
had a similar question about model input, and we propose adding the paragraph below in response to 6 
both. Additionally, we want to note that we included in Supplementary Materials, Table S1, which 7 
contains some of the suggested data by the referee, such as: period considered, region examined, temporal 8 
resolution of SWT, spatial scale of study, and hydrometeorological parameters used for modeling. 9 
 10 
This section will likely precede the “Local” and “Regional” subsections of 2.4 and be titled Model Inputs 11 
for ML-SWT: 12 
 13 

Using air temperature (AT) to better understand SWT has been considered since at least the 14 
1960s, when Ward (1963) and Edinger et al. (1968) discussed the influence of air temperature on 15 
SWT. Since then, studies have used varying input variables (see Table S1), however, the model inputs 16 
of AT and SWT continue to be the most used in ML-modeling studies. In particular, studies have 17 
used AT from time periods outside of the known SWT record to improve model performance (Sahoo 18 
et al., 2009; Piotrowski et al., 2015; Graf et al., 2019). In addition to AT and SWT, flow discharge has 19 
been used to attempt to constrain SWT (Foreman et al., 2001; Tao et al., 2008; St-Hilaire et al., 2011; 20 
Grbić et al., 2013; Piotrowski et al., 2015; Graf et al., 2019; Qiu et al., 2020). Traditionally-used 21 
model inputs include precipitation (Cole et al., 2014; Jeong et al., 2016; Rozos, 2023), wind 22 
direction/speed (Hong and Bhamidimarri, 2012; Cole et al., 2014; Jeong et al., 2016; Kwak et al., 23 
2016; Temizyurek and Dadaser-Celik, 2018; Abdi et al., 2021; Jiang et al., 2022), barometric pressure 24 
(Cole et al., 2014), landform attributes (Risley et al., 2003; DeWeber and Wagner, 2014; Topp et al., 25 
2023; Souaissi et al., 2023), and many more (see Table S1).  26 

In the last few years, including the day-of-year as an input, DOY (Qiu et al., 2020; Heddam et 27 
al., 2022; Drainas et al., 2023; Rahmani et al., 2023) and humidity where available (Cole et al., 2014; 28 
Hong and Bhamidimarri, 2012; Kwak et al., 2016; Temizyurek and Dadaser-Celik, 2018; Abdi et al., 29 
2021), have also shown to better capture the seasonal patterns of SWT (Qiu et al., 2020; Philippus et 30 
al., 2024). With improved access to remote sensing data, there has also been a notable increase of 31 
satellite products such as estimates of sky cover (Cole et al., 2014), solar radiation (Kwak et al., 2016; 32 
Topp et al., 2023; Majerska et al., 2024), sunshine per day (Drainas et al., 2023) and potential ET 33 
(Rozos, 2023; Topp et al., 2023). However, more research is needed to better understand the 34 
influence of newer model inputs on SWT (Zhu and Piotrowski, 2020).  35 

Most recently, SWT studies focused on the CONUS-scale have chosen to use as many model 36 
inputs as available, with Wade et al. (2023), a point-scale CONUS ML study using over 20 variables, 37 
while Rahmani et al. (2023) created a LSTM model and considered over 30 variables to simulate 38 
SWT. Despite the use of diverse data, the models performed only satisfactorily and were deemed not 39 
generalizable, leaving much room for improvement in CONUS-scale modeling of SWT. With the 40 
compilation of larger and larger datasets, feature importance in ML, that is the process of using 41 
techniques to assign a score to model input features based on how good the features are at predicting 42 
a target variable, can be an efficient way to improve data comprehension, model performance, and 43 
model interpretability, the latter of which can dually serve as a transparency marker of which features 44 
are driving predictions. Methods for measuring feature importance include using correlation criteria 45 
(Pearson’s r, Spearman’s rho), permutation feature importance (shuffling feature values, measuring 46 
decrease in model performance), linear regression feature importance  (larger absolute values indicate 47 
greater importance), or if using CART/RF/gradient boosting, entropy impurity measurements can be 48 
insightful (Venkateswarlu and Anmala, 2023).  49 

 50 
Moved from section 2.3.1, (original lines 246-253) to new section Model Inputs for ML-SWT: 51 

For example, one technique that can be used to improve ML model parameter selection is the 52 
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Least Absolute Shrinkage and Selection Operator (LASSO), a regression technique used for feature 1 
selection (Tibshirani, 1996). Research utilizing ML models for SWT frequency analysis at ungaged 2 
basins used the LASSO method to select explanatory variables for two ML models (Souaissi et al., 3 
2023). The LASSO method consists of a shrinkage process where the method penalizes coefficients 4 
of regression variables by minimizing them to zero (Tibshirani, 1996). The number of coefficients set 5 
to zero depends on the adjustment parameter, which controls the severity of the penalty. Thus, the 6 
method can perform both feature selection and parameter estimation, an advantage when examining 7 
large datasets (Xu & Liang, 2021). 8 

 9 
 10 
4. In the second section, the authors do an excellent job summarizing model evaluation metrics. However, 11 
considering that ML models are often optimized to achieve superior performance on these metrics, there 12 
is (always) a risk of overfitting. Thus, beyond focusing on metrics, the review should also highlight the 13 
importance of more rigorous evaluation to further assess generalization ability. For instance, if a SWT 14 
model is built to run climate change scenarios, additional testing and more rigorous designs are essential 15 
to evaluate the model's ability to generalize over time. For robust long-term predictions, the model is 16 
supposed to maintain robust predictive performance in completely unseen periods, rather than being 17 
limited to a specific temporal range.  18 

AUTHOR RESPONSE: We agree. This comment has similar themes to our response to #3a regarding 19 
overfitting and highlighting the need for generalization, please see comment #3a for a full response.  20 
 21 
For the comment regarding having ML undergo more rigorous testing, we propose adding the following 22 
discussion for more rigorous testing for MLs. We added a few sentences (blue is new) to the Discussion 23 
subsection titled “ML as Knowledge Discovery” where we urge for TUURTs (Temporal, Unseen, 24 
Ungaged Region Tests)’:  25 
 26 

Our review finds that ML studies examining SWT have been conducted from a computational 27 
perspective, one with a focus on comparing techniques and performance metrics as opposed to 28 
explaining the nature of SWT dynamics or influencing processes. While it is understandable that not 29 
every ML-SWT paper aims to explain physical processes, we think the SWT community should come 30 
together and agree on a baseline of tests that all ML-SWT models should undergo for model 31 
robustness and transferability. Along these lines, we urge consideration of TUURTs (temporal, 32 
unseen, ungaged region tests) for future ML-SWT models as a helpful step towards not only better 33 
modeling practices but also increased model transparency and robustness. For this, we clarify that 34 
testing for “unseen” cases means testing only within the developmental dataset, whereas testing for 35 
“ungaged” cases means testing for new sites that have not been previously seen by the model at all. 36 
Recent ML-SWT studies have only applied one or two of the tests, but not all three (Topp et al., 37 
2023; Hani et al., 2023, Souassi et al., 2023). Siegel et al. (2023), a non-ML SWT paper, tested for 38 
ungaged and unseen data but did not perform a temporal test. A relatively new study, Philippus et al. 39 
(2024), appears to be the only published SWT-ML study that purposefully applied TUURTs with 40 
some success. 41 

 42 
 43 
Overall, this review is informative and well-researched, and with more refined organization and deeper 44 
exploration of these key issues, it could make a substantial contribution to the field of SWT research. 45 

AUTHOR RESPONSE: Thank you! This would certainly not be possible without the insightful 46 
feedback from referees. 47 


