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Abstract. Soil aquifer treatment (SAT) systems are used to remove pollutants from treated wastewater and store freshwater

for reclamation and reuse. However, the accumulation of microbial biomass in the soil pore space, bioclogging, reduces water

infiltration and hinders SAT efficiency. Since SAT systems play a crucial role in maintaining water resilience by providing an

alternative to freshwater supply, optimizing their operation is essential to ensure their effectiveness. However, SAT systems are

complex and dynamic systems that involve coupled interactions between microbial activity, water infiltration, and bioclogging5

in unsaturated media. This work proposes a continuum model that accounts for all these processes while distinguishing between

active and inactive biomass, with the latter split into labile and recalcitrant fractions. The model is used to replicate a laboratory

column experiment of bioclogging under unsaturated conditions and to explore how to optimize the operation of SAT systems.

Specifically, we determined optimal wetting and drying periods that maximize water input to the SAT system while maintaining

nutrient transformation rates. Our simulations show that the dry/wet time ratio controls biomass spatial distribution over depth.10

In contrast, the dry time extent dictates the degree of recovery of the soil relative to its initial (clean) infiltration capacity. We

discuss the potential of this model to be extended to larger-scale experiments and to inform daily SAT operations in the field.

1 Introduction

Managed aquifer recharge (MAR) is the process of recharging water into an aquifer for later recovery (Dillon et al., 2019).

Soil-Aquifer Treatment (SAT) systems are a subset of MAR, where treated wastewater is infiltrated through the vadose zone15

to remove pollutants such as nutrients and pathogens (Bouwer, 1991; Fox et al., 2001; Sharma and Kennedy, 2017). MAR

strategies and SAT systems are crucial for water resilience, providing an alternative to freshwater supply (Dillon et al., 2020).

Conventional wastewater treatment is responsible for significant energy consumption (Electric Power Research Institute Inc.,

2013). Replacing tertiary treatment with SAT systems using infiltration ponds represents a low-energy demand alternative

(Goren et al., 2014; Sharma and Kennedy, 2017). Reclaimed water from SAT systems has been used extensively; for example,20

more than 160× 106 m3/yr of wastewater reclamation plant effluent is used annually for crop irrigation in Israel (Arad et al.,

2023). Figure 1 shows a schematic of SAT operation: the effluent of a wastewater reclamation plant is placed on an infiltration
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pond, where it infiltrates the soil and its quality improves during its passage through the subsurface until reaching an extraction

well.

Water quality is significantly improved in SAT systems because, during infiltration, naturally occurring processes take place:25

filtration of suspended solids and fine particles, contaminant adsorption to soil minerals (Bradford et al., 2013), and biogeo-

chemical transformations (Rauch and Drewes, 2005; Mienis and Arye, 2018; Gharoon and Pagilla, 2021). Despite the large

spatial scales that aquifers span, most of these transformations occur at the vadose zone, a hot spot where electron donors,

acceptors, and microbes meet. In the case of dissolved organic carbon, it is rapidly metabolized via aerobic respiration, i.e.,

using dissolved oxygen as the electron acceptor. Similarly, nitrification, the oxidation of ammonium into nitrate, also occurs30

under aerobic conditions where microbes use ammonia and dissolved oxygen as a means of energy production. Denitrification,

i.e., the reduction of nitrate, can also happen in SAT systems, in hotspots where oxygen is depleted, and microbes utilize nitrate

to oxidize dissolved organic carbon (Bouwer, 2002; Elkayam et al., 2015).

Microbial growth and metabolism result in biomass accumulation in the soil pore space, impeding water flow, lowering

infiltration rates, and subsequently hindering aquifer recharge (Bouwer, 2002); process known as bioclogging. Operational35

controls in SAT systems, such as drying and wetting cycles, are imposed to allow air to penetrate the soil, replenish with

oxygen, desiccate biomass, and restore infiltration rates (Ben Moshe et al., 2021). More recalcitrant clogging materials can

continue accumulating and drying alone might not be enough to recover infiltration rates. At that point, mechanical scraping

of the clogging layer is needed to restore the permeability and infiltration rate of the SAT system (Bouwer, 2002; Negev et al.,

2020).40
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Figure 1. SAT drying and wetting cycles schematic. Adopted from Bear and Cheng (2010, Chapter 3.4), Dillon (2005); Grinshpan et al.

(2021).

The downside of the strategy of drying cycles is that it dramatically decreases the total volume of water that can be treated

by SAT, as water does not infiltrate the soil during those periods (Bouwer, 2002). Maximizing water input to SAT while

maintaining nutrient transformation rates is essential in maintaining SAT operation; however, determining optimal wetting and

drying periods relies mainly on the experience of the SAT operators (Sharma and Kennedy, 2017). Efforts to understand the

underlying mechanisms of bioclogging in SAT have combined column experiments (Abel et al., 2014; Ben Moshe et al., 2020),45
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pore-scale investigations, and numerical models (Srivastava and Jim Yeh, 1992; Soleimani et al., 2009; Berlin et al., 2015;

Ben Moshe et al., 2021) that attempt to uncover the dynamics of unsaturated flow, microbial metabolism, and bioclogging.

In this paper, we propose a continuum model to account for microbial metabolism, infiltration, and bioclogging in unsatu-

rated media, distinguishing between active and inactive biomass, with the latter split between labile and recalcitrant fractions

(Figure 2). Labile inactive biomass broadly encompasses dead cells, extracellular polymeric substances (EPS), and other mi-50

crobial products. Recalcitrant inactive biomass refers to biologically inert material that is not readily biodegraded and accumu-

lates within the pore space (Rittmann and MacCarty, 2020). Microbial growth only leads to the formation of the labile fraction,

whereas microbial decay leads to the formation of both labile and recalcitrant fractions (Laspidou and Rittmann, 2002; Mannina

et al., 2023). While both active and inactive biomass contribute to bioclogging, only active biomass metabolism contributes to

nutrient transformations. In biofilms, for instance, most biomass is inactive as more than 90% is EPS (Flemming and Wingen-55

der, 2010). Bioengineering models have considered this biomass fractionation (Ni et al., 2011; Rittmann and MacCarty, 2020),

but modeling efforts of bioclogging under unsaturated conditions in soils or SAT systems usually do not (e.g., Brovelli et al.,

2009; Kildsgaard and Engesgaard, 2001; Clement et al., 1996; Berlin et al., 2015; Mohanadhas and Kumar, 2019; Soleimani

et al., 2009; Ben Moshe et al., 2021).

Our model is validated against measurements of the spatial distribution of active and inactive biomass, data collected from60

unsaturated column experiments by Rosenzweig (2011, Chapter 8). We then use the model to simulate drying cycles to assess

their effect on the hydraulic performance of the column and discuss how these results can be used to optimize SAT operation.
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Figure 2. Conceptual model of the active and inactive biomass categorization. fe is the fraction of substrate used for energy production, and

fs = (1−fe) is the fraction that goes into biomass generation. Biomass can either be active cells or EPS; thus, fs is also distributed into the

true yield Y and a flab fraction. Adapted from Ni et al. (2011) and Rittmann and MacCarty (2020).
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2 Methods

2.1 Unsaturated flow

The Richards equation is numerically solved to model water flow under unsaturated conditions. We extended this governing65

equation (Eq. 1) to account for porous media deformations that arises from bioclogging.

(
nc(h)

) ∂h

∂t
+ sw

∂n

∂t
=∇

((
K0 K̂(h)K̂(n)

)
∇(h + z)

)
(1)

In Eq. 1, n represents soil porosity, sw is the volumetric water saturation, c(h) is the hydraulic capacity function, K0 is the

hydraulic conductivity of clean (biomass free) saturated porous media, h is the capillary head, and z is depth. The factor K̂(h)

corresponds to the relative reduction in hydraulic conductivity due to unsaturated conditions, which is calculated using the70

van Genuchten and Mualem models (Van Genuchten, 1980; Mualem, 1976). The factor K̂(n) represents the loss of hydraulic

conductivity due to reductions in porosity result of bioclogging (Section 2.4).

The van Genuchten model is widely used to describe the water saturation as a function of the capillary head sw(h). This

model is defined in Eqs. 2a and 2b, where sw,sat is the maximum water saturation, sw,res is the residual saturation and se is an

effective saturation function of the capillary head.75

sw =se(h)(sw,sat− sw,res) + sw,res (2a)

se(h) =
1

(1 + (−αh)η)m (2b)

In Eq. 2b, α, η and m = 1− 1
η are empirical constants that depend on the soil and are determined experimentally. Under

saturated conditions, the matric head is greater than zero and se = 1. The Mualem model is defined in Eq. 3 and it is used to

calculate the relative hydraulic conductivity of soil under unsaturated conditions K̂(h).80

K̂(h) =
√

se

(
1−

(
1− s1/m

e

)m)2

(3)

The capillary capacity c(h) is defined as the derivative of the water saturation with respect to the capillary head. This function

is calculated analytically from the van Genucthen and Mualem models as shown in Eq. 4.

c(h) =
dsw

dh
= αηm(sw,sat− sw,res)(−αh)η−1 (1 + (−αh)η)−m−1 (4)

These equations are numerically solved using OpenFOAM (Weller et al., 1998) building upon the solver RichardsFoam85

(Orgogozo et al., 2014; Orgogozo, 2022).
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2.2 Reactive transport of dissolved constituents

Eq. 5 shows a general expression for the reactive transport of a dissolved constituent i with aqueous concentration Ci. q is the

specific (Darcy) water discharge, D is the dispersion coefficient, andR(Ci) is a reaction term that encompasses all the sources

and sinks of each component on the reaction network. In this case, where only aerobic respiration is considered, i can be either90

dissolved organic carbon (DOC, as the electron donor) or dissolved oxygen (O2, as the electron acceptor).

∂nsw Ci

∂t
=∇ · (D∇Ci)− ·∇qCi + nswR(Ci) (5)

Definitions forR(Ci) are provided in Eq. 6. The DOC sinks correspond to their consumption by aerobic respirators, whereas

sources include hydrolysis and depolymerization of inactive biomass. Aerobic respiration consumes dissolved oxygen, and it

is replenished according to the unsaturated conditions that allow air to replenish.95

R(CDOC) =− rDOC|ahXah + khyd|labXlab + khyd|recXrec (6a)

R(CO2) =−α1 rDOC|ahXah + Mn
(
saCO2|sat ζO2 − swCO2

)
(6b)

In Eq. 6, rDOC|ah is the rate of DOC utilization by aerobic heterotrophs, and khyd|lab and khyd|rec are the rates of labile

and recalcitrant biomass hydrolysis, respectively. X X represents the mass of biomass per representative elemental volume.100

The subindex ah indicates aerobic heterotrophs active biomass, lab denotes inactive labile biomass, and rec represents the

recalcitrant inactive biomass. α1 is a unit conversion factor between electron donor and acceptor based on the stoichiometry of

DOC oxidation. sa is the volumetric air saturation, M is the oxygen phase transfer rate (i.e, from the air to the water phase),

CO2|sat = 9mg/L is the dissolved oxygen concentration at saturation, and ζO2 = 1−CO2/CO2|sat is a term ensuring that oxygen

dissolution stops as saturation is reached.105

Details on the rate of nutrient utilization r is described in Eq. 7, where q̂ah denotes the maximum substrate utilization rate

for aerobic heterotrophs, KDOC|ah is the half-saturation constant for substrate consumption, and KO2|ah is the half-saturation

constant for electron acceptor utilization. r follows dual-Monod kinetics, thus, transformation rates are proportional to micro-

bial content and the concentration of both electron donor and acceptor (Brovelli et al., 2009; Bae and Rittmann, 2000; Rittmann

and MacCarty, 2020).110

rDOC,ah = q̂ah
CDOC

KDOC|ah + CDOC

CO2

KO2|ah + CO2

ζX (7)

The term ζX is the microbial growth-limiting term by pore-space availability, which is defined in Eq. 8, where ρX is the

mass density of biomass in aqueous media, n0 the porosity for clean porous media and nmin the minimum possible porosity

after bioclogging.
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ζX = 1− Xah + Xlab + Xrec

ρX (n0−nmin)
(8)115

2.3 Microbial growth and biomass

Microbial biomass is considered immobile, and its evolution over time depends on two terms: a reaction term R that encom-

passes their growth and decay, and a diffusion-like term that represents microbial expansion rate towards neighboring volumes

(Tronnolone et al., 2018).

∂Xj

∂t
=∇ · (κ∇Xj) +R(Xj) (9)120

In Eq. 9, the subindex j refers to either active or inactive biomass. Active biomass refers to one of the metabolic groups that

could be modeled; this case will be limited to only aerobic heterotrophs (ah). Inactive biomass can be labile (lab) or recalcitrant

(rec). The term κ represents the cell diffusivity and its value can range between 10−13 and 10−10 m2 s−1 (Tronnolone et al.,

2018). A representative value of κ = 10−11 m2 s−1 was selected, and we checked that model results were not significantly

sensitive to this parameter. The reaction term R(Xj) depends on the type of biomass; definitions are given below in Eq. 10.125

R(Xah) =(Yah rDOC,ah− bah)Xah (10a)

R(Xlab) = flab rDOC,ahXah + fd bahXah− khyd|labXlab (10b)

R(Xrec) = (1− fd)bahXah− khyd|recXrec (10c)

In Eq. 10a, Y represents the true yield, which is the fraction of substrate that is converted into active biomass, and rDOC130

is the substrate utilization rate (Eq. 7). Microbial decay is modeled as a first-order reaction with a rate of b, leading to the

generation of both types of inactive biomass. The fraction of active biomass that decays into the labile pool is fd (Eq. 10b) and

the remnant (1−fd) decays into the recalcitrant pool (Eq. 10c, Figure 2). Hydrolysis and depolymerization of inactive biomass

are expressed as first-order reaction processes with rate khyd, where khyd|rec < khyd|lab. Labile inactive biomass like EPS is

also generated during microbial metabolism, and this fraction is accounted for in the first term on the right hand side of Eq.135

10b (Figure 2).

2.4 Bioclogging and permeability loss

During growth, biomass fills up the empty spaces in soil that allow water flow through, which results in a decrease in the soil’s

effective porosity. Therefore, porosity is linked with biomass content following Eq. 11, where
∑

j Xj is the sum of active and

inactive biomass.140

6

https://doi.org/10.5194/hess-2024-251
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



n = n0−
1

ρX

∑

j

Xj (11)

Several macroscopic models have been proposed to describe permeability changes in terms of changes in the soil’s effec-

tive porosity under saturated conditions. Hommel et al. (2018) presented a compilation of such porosity-permeability models

and concluded that a simple power law is a good first approximation since no further assumptions are required for sub-REV

processes. Eq. 12 shows the bioclogging model adopted based on a Kozeny-Carman equation (Hommel et al., 2018; Saave-145

dra Cifuentes et al., 2023), where K̂(n) is the relative hydraulic conductivity penalized by porosity reduction. The lower limit

on hydraulic conductivity accounts for the assumption that biomass itself is also permeable (Pintelon et al., 2012; Hassannayebi

et al., 2021).

K̂(n) =
K0−Kmin

K0

(
n−nmin

n0−nmin

)3

+
Kmin

K0
(12)

We have considered that changes in hydraulic conductivity due to unsaturated conditions are independent from changes due150

to bioclogging. This allowed us to split the hydraulic conductivity K(h,n) into separate terms K = K0 K̂(h)K̂(n). However,

biomass content can change unsaturated flow parameters in soils (Rosenzweig, 2011; Volk et al., 2016).

2.5 Experimental data

Column experiments under unsaturated conditions were conducted and reported by Rosenzweig (2011, Chapter 8). The column

was 60cm long and filled with Caesarea sand. Its saturated hydraulic conductivity K0 = 1.24cm/min was determined using155

a constant head permeameter (Dane and Clarke Topp, 2002), and the unsaturated flow parameters in Table 1 were determined

using the hanging column method and the pressure plate method (Rosenzweig et al., 2012). The porous medium was sterilized

and inoculated with Pseudomonas Putida F1, an obligate aerobe (Palleroni, 2015). An initial flow rate of 1mL/min was

imposed to guarantee unsaturated conditions from the beginning of the experiment. Over time, bioclogging drove the infiltration

rate lower than the injection rate, and water ponding at the top of the column was evident.160

At the end of the experiment, profiles of microbial counts, protein content, and water content were measured over depth.

Microbial counts and protein content measurements served as a proxy for active and total biomass, respectively. Microbial

counts were not directly translated into the units of simulated active biomass, so only their trends are compared. In contrast,

protein content measurements are translated to total inactive biomass, considering the fractionation of proteins and carbohy-

drates in biomass. In Eq. 13, Xin|experiment represents the total inactive biomass measured at the end of the column experiment,165

Protein content is the measured data and Protein percentage = 0.68 is based on the data from Malamis and Andreadakis

(2009).

Xin|experiment =
Protein content
Protein fraction

(13)
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Table 1. Column experiment characteristics and unsaturated soil properties.

Parameter Value

Geometry

Length 0.60 m

Diameter 0.08 m

Initial flow rate 1.00 mL/min

Soil characteristics

Grain size range 105 to 590 × 10−6m

Saturated hydraulic conductivity K0 2.067× 10−4 m/s

Unsaturated flow parameters

Residual water saturation sw,res 0.0312

Maximum water saturation sw,sat 1.0

van Genuchten fitting exponent η 7.26

van Genuchten fitting parameter α 2.79 m−1

Experiments from Rosenzweig (2011, Chapter 8).

2.6 Computational domain and model parameterization

Reactive transport equations were coupled and solved simultaneously with unsaturated flow using the same finite-volume170

mesh. The computational domain corresponded to a 1D representation of the column experiment, discretized with element size

∆z = 0.01m. The time step was variable and bounded to ∆t≤ 10s to ensure the Courant–Friedrichs–Lewy (CFL) condition

remained less than 1.0 during all simulations. We compiled data for microbial growth parameters from previous models in the

literature and adopted those biogeochemical parameters for our model. Values and sources are provided in Table 2.

Initial conditions for active biomass reflected a small homogeneous inoculum along the domain, setting Xah(z, t = 0) =175

0.1mg/L. Inactive biomass is set to zero at the beginning of each simulation. Since the hydraulic conductivity field is tied to

the total biomass distribution, it begins at its clean-state value and decreases as the simulation advances, reflecting biomass

generation. This is a crucial difference with the SAT optimization model proposed by (Ben Moshe et al., 2021), where a

low hydraulic conductivity layer is imposed in the uppermost part of the column. In our model, as in other biomass substrate

formulations (e.g., Taylor and Jaffé, 1990b), the formation of such a low-permeability layer is the result of the biogeochemical-180

unsaturated flow coupling, and it is not an imposed constraint on the model.

To simulate wet and dry conditions, the boundary conditions at the top of the column are modified as shown in Figure 3. A

fixed-gradient condition is applied to the top boundary during wetting periods to represent the water influx into the column.

This gradient is recalculated at every time step, given that K changes due to clogging. Drying periods are represented by

imposing a zero-gradient at the top. To ensure free flow at the bottom of the column, a constant unit gradient is set for h. To185
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Table 2. Microbial growth, metabolism, and biomass parameters. Values compiled from various sources: Berlin et al. (2015); Taylor and

Jaffé (1990b); Mostafa and Van Geel (2012); Thullner et al. (2004); Brovelli et al. (2009); Kildsgaard and Engesgaard (2001); Rittmann and

MacCarty (2020).

Parameter Value Units

Aerobic respirators

Max. specific rate of substrate utilization q̂ah 8.1e− 5 1/s

Microbial decay (die-off) rate bah 3.5× 10−6 1/s

True yield Yah 0.49 −
Half-reaction constant for electron donor KDOC|ah 10e− 3 kg/m3

Half-reaction constant for electron acceptor KO2|ah 0.5e− 3 kg/3

Half-reaction constant for nitrogen source K
NH+

4 |ah
0.1e− 3 kg/m3

Inactive biomass

Biodegradable fraction of dead biomass fd 0.80 −
Fraction of substrate used to form EPS flab 0.18 −
Hydrolysis rate of EPS and labile biomass khyd|lab 1.97e− 6 1/s

Hydrolysis rate of recalcitrant biomass khyd|rec 1.97e− 7 1/s

calibrate our model, we fitted the simulated biomass distribution to the experiment measurements of inactive biomass profiles.

The biomass density parameter ρX was set as the fitting parameter. We found that adopting a value of ρX = 10g/L gave a

good fit and agreed in order of magnitude with values from the literature (Thullner et al., 2004; Kildsgaard and Engesgaard,

2001; Mostafa and Van Geel, 2012).

2.7 Drying periods and hydraulic efficiency190

We investigated the impact of different drying periods using the same model. We fixed the wetting time to 450min and tested

dry/wet time ratios ranging from 6 to 0, where the latter case corresponded to a constant water injection. We also explored the

effect of different drying times, maintaining a set dry/wet time ratio of 4.5. These simulations were run up to 80 days until

biomass fractionation reached a steady state. The long-term hydraulic loading rate is used to calculate hydraulic efficiency,

defined as the total infiltrated volume per unit area divided by the duration of the experiment (Bouwer, 2002).195
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Figure 3. Computational domain for simulating column experiment results.

3 Results

3.1 Comparison with experimental depth profiles

Figure 4 displays the biomass distributions over depth at the end of the column experiment. Panel a shows the active biomass

profile calculated from the numerical model, superimposed on the experimental data. The experimental data and the model

prediction align regarding their spatial distribution, as aerobic heterotrophs accumulate near the top of the column. This trend200

is expected because the maximum dissolved oxygen and organic carbon concentration are present at this boundary (Taylor and

Jaffé, 1990a). Microbial metabolism leaves fewer electron donor and acceptor available to sustain microbes in deeper sections,

resulting in fewer active cells in the deeper parts of the column. Nutrient limitation arises from two interlinked factors: microbial

metabolism depletes dissolved constituents, reducing concentrations in lower regions, while bioclogging and reduced inflow

into the column hinder nutrient supply. The accumulation of inactive biomass near the column’s surface, depicted in Panel b,205

reflects this trend, as it is a byproduct of heterotrophic metabolism.
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Figure 4. Biomass spatial distribution from experimental data and the numerical model. Panel a shows the active biomass over depth. Panel

b displays the inactive biomass, which consists of the sum of labile and recalcitrant fractions.

3.2 Evolution of biomass over time

From the numerical model, we tracked the evolution over time of the water infiltration rate and the total biomass in the domain

(Figure 5a - b). Early times in the system correspond to the exponential stage of microbial growth, characterized by high

substrate transformation rates facilitated by the unclogged porous media. This is reflected in the fast increment of total active210

biomass that peaks at 2.1e− 2kg/m2 at t = 4.0d. Simultaneously, inactive biomass accumulates, and bioclogging becomes

noticeable as the decline of water influx into the system (Figure 5a). As biomass clogs the system, less water infiltrates the

column, and less substrate is available to sustain the already generated active biomass. Its decline ensues, as evidenced in the

tail of the plot after t = 4d. At this point, inactive biomass becomes the dominant fraction of the total biomass. Inactive biomass

continues to accumulate and sustains the clogged state. After t = 20d, active biomass content has fallen to a relatively constant215

value, and the system reaches a steady state where inactive biomass dominates. By the end of the experiment (t = 23d), influx

water dropped to 3% of the original 1 mL/min injection imposed. Active, labile, and recalcitrant biomass percentages are 3%,

80%, and 17%, respectively. Even though the column experiment was finalized after 23 days, we continued the simulation to

check that the steady state was conserved.

3.3 Drying cycles220

We investigated the impact of cycling drying and wetting periods using the same model conditions. We simulated wetting

cycles by introducing water into the top of a column and letting it infiltrate, followed by drying cycles without any water
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flux. The amount of water influx used for wetting cycles was consistent with the experimental conditions. The simulation was

extended to 80 days to observe multiple alternations between wetting and drying cycles until the system reached an apparent

steady state. Figures 5c and d show the evolution over time of water influx and total biomass under dry/wet cycles of 1800/450225

min, respectively. This is just one of the time combinations tested and further explained in Section 3.4. Water and nutrient input

are interrupted during the drying periods, reflected as the dips in influx in Figure 5c. This triggers periods of active biomass

decay evident in the repetitive declines in Figure 5d. The fast exponential growth phase that characterized the constant wetting

experiment (Figure 5b) is strongly attenuated under the cycling of drying periods. In this case, total active biomass peaks at

9.7× 10−3kg/m2, half of the maximum achieved under constant wetting conditions. Moreover, the time to reach the peak in230

total active biomass is delayed to t = 11d. This behavior is expected because substrate delivery is interrupted, and active cells

are limited to consuming hydrolyzed inactive biomass nearby. Just as microbial growth is restricted, bioclogging also occurs

more slowly, as apparent from the rate at which the water influx decreases over time. Still, inactive biomass builds up in the

domain, and a clogged stationary state is reached.
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Figure 5. Water influx (a) and fractionation of the total biomass over time (b) for a column experiment under constantly wet conditions.

Water influx (c) and total biomass over time (d) under dry/wet cycles of 1800-450 min.

This particular comparison between constantly wet and alternating dry/wet cycles of 1800-450 min was introduced because235

both simulations achieve a long-term hydraulic loading rate of 2.3× 10−2m/s. However, the extent of the drying periods and
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the dry/wet time ratio affect the hydraulic performance. In fact, we are interested in evaluating how imposing those drying

periods in the system translates to an operational benefit in increasing the long-term hydraulic loading rate.

3.4 Link between dry/wet time ratios and hydraulic performance

In order to explore the effect of dry/wet time rations in the hydraulic response of an SAT, we ran simulations under a constant240

wetting time twet of 450 minutes and tested a range of drying time. From each dry/wet time ratio, we calculated the total volume

of water infiltrated over time and the long-term hydraulic loading rate. The water volume infiltrated over time was calculated by

integrating the water influx over time (Figure 6a), and it serves as a hydraulic performance metric. Unsurprisingly, a constantly

wet condition performs better than any of the dry/wet cycling strategies for early times (t < 60d). This is explained by the

fact that the initial condition of the soil is a clean, unclogged state, so imposing drying periods reduces the amount of water245

infiltrating the system. The benefits of drying periods become evident only after a long-term operation when bioclogging has

intensified and can be offset. After t < 60d, the cumulative volumes of infiltrated water associated with some of the simulations

surpass that of the constantly wet case (Figure 6a). In fact, a time exists at which a dry/wet cycling strategy pays off because

the infiltrated volume of water surpasses the constantly wet alternative, and, therefore, it can be considered more advantageous

from a hydraulic optimization perspective. However, not every dry/wet time ratio has the potential to surpass the performance of250

the always-wet simulation eventually. Very short drying periods display low infiltration volumes even after long-term operation,

and the rate at which this infiltrated water volume grows over time (i.e., the infiltration rate at the end time) remains equal to

or lower than that of a fully bioclogged system.

Another way to summarize hydraulic efficiency comes from the long-term hydraulic loading rate in Figure 6 b. This metric

is calculated as the ratio between the water volume infiltrated by the end of the simulation over the simulated time (in this case,255

80d) (Bouwer, 2002). This time was chosen because it corresponds to the point when an apparent steady state was observed

for all simulations. The constant wet simulation’s hydraulic loading rate is set as a reference to determine which dry/wet

ratios achieve better hydraulic performance. In our particular set-up, dry/wet ratios higher than 4.5 outperform the always-wet

strategy after t = 80d.

Interestingly, longer drying periods also promote higher total biomass contents, a trend evident in Figure 7 a. We observed260

that dry/wet time ratios greater than 2.0 exhibit greater biomass accumulation than constantly wet simulation, which is again

used as a comparison reference. In fact, there is a statistically significant correlation between dry-wet time ratio and total

biomass in the domain (p−value < 0.001). A clue to this link is found in the spatial distribution of the active biomass at

the end of the simulations, illustrated in Figure 7 b. These results indicate that drying periods facilitate the growth of higher

amounts of active biomass in the deeper regions of the column. In contrast, the characteristic distribution of biomass that265

develops from the constantly wet condition, with sharp accumulation near the top of the column, becomes more uniform under

dry/wet conditions. Interestingly, the depth profiles of inactive biomass (Figures 7c-d) remain moderately unmodified relative

to the constantly wet case. The most noticeable distinction is that higher contents of inactive biomass accumulate in deeper

regions, and lower contents remain close to the top boundary. This follows the same trend observed from the distribution of

active biomass.270
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3.5 Link between dry time duration and hydraulic performance

Up to this point, we evaluated the effect of dry/wet time ratios while keeping a constant wetting time of 450min. Hereafter, we

consider a constant dry/wet time ratio of 4.5, and we evaluate the impact of different drying times over the same simulation

setup. Figure 8 shows the cumulative water volume (a) and the long-term hydraulic loading rate (a) of simulations under
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different dry time durations. These two metrics reflect hydraulic performance, and most simulations outperform the constantly275

wet case used as a comparison reference. For example, the cumulative water infiltrated in cases with tdry > 2000min is greater

than that of the constantly wet case. In fact, around t≈ 30d, the simulations with the longest dry times surpass the volume of

water infiltrated achieved under a constantly wet condition. This same behavior is reflected in the long-term hydraulic loading

rate of our simulations, thus, in this sense, most simulations hydraulically outperform the constantly wet case.
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Figure 8. Long term hydraulic loading as a function of the drying time, under constant dry-wet time ratio of 4.5

In Figure 8b, a trend is observed where longer drying periods lead to higher long-term hydraulic loading rates. This is280

because longer dry times can restore the infiltration rates to a state closer to the clean, unclogged condition. However, this

benefit only goes so far, as drying and oxidation of recalcitrant inert biomass can take significantly more extended periods,

making it impractical for SAT purposes. Longer drying times achieve higher long-term hydraulic loading rates, but that benefit

plateaus and must reach a maximum. In theory, there exists a long enough dry time where all the labile and recalcitrant biomass

has desiccated and oxidized, restoring the perfectly unclogged state. However, even longer drying periods will result in low285

long-term infiltration rates. In the extreme case of tdry →∞, i.e., the trivial constantly dry case, the long-term loading rate

must return to zero. In any case, these results show that hydraulic optimization is not limited to finding an optimal dry/wet time

ratio but also involves finding the drying time itself.

Finally, Figure 9a shows the total biomass and its fractionation at the end of each simulation, varying the drying time.

All cases with drying cycles exhibit a total biomass accumulation higher than the constantly wet reference case (tdry = 0).290

However, longer drying times do not seem to have a discernible effect on the total biomass accumulation or its fractionation

(p−value > 0.01). This result starkly contrasts the correlation found between total biomass and dry/wet time presented in the

previous section. The profiles over depth of each biomass fraction are presented in Figures 9b-d. All cases appear to converge

to the same spatial distribution of active biomass, reflecting the similar profiles of labile and recalcitrant inactive biomass.
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equal to 4.5.

Therefore, neither the spatial distribution nor the total amount of active biomass is sensitive to the drying time duration, but295

they are to the dry/wet time ratio.

4 Discussion

Alternation of drying cycles is a common and inexpensive strategy to revert bioclogging in infiltration ponds; however, deter-

mining optimal operation strategies based on a physically-based understanding of the underlying processes remains elusive. In-

situ and experimental data on microbial communities’ spatial distribution, growth, and dynamics under unsaturated conditions300

are scarce, while mathematical models oversimplify the tight coupling between flow and biogeochemistry. SAT optimization

depends on the specific goals set for the wastewater treatment and reuse system. For instance, more significance can be given

to carbon removal or nitrate mineralization, while water storage and hydraulic performance are prioritized in other cases. Our

exploration focuses on the latter, evaluating the drying times and the dry/wet time ratios that maximize the long-term hydraulic

loading rate. We demonstrate the existence of a dry/wet time ratio threshold above which this strategy outperforms a constant305

influx of water. Our simulations suggest that the dry/wet ratio also controls the spatial distribution of active biomass in the soil

column, as higher ratios promote a more homogeneous distribution over depth. This is in contrast to the typical bioclogging

profile with heterotrophic biomass accumulation in the topmost regions. The link between biomass distribution and dry/wet

time ratio is explained by the possibility of nutrient-rich water penetrating deeper regions while the growth of active biomass

at the topmost layer is constrained.310

The conceptual model proposed for soil biomass fractionation is a simple representation that fills a gap in bioclogging

modeling by distinguishing between active and inert biomass. This differentiation is crucial because only active cells contribute
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to substrate utilization, while inert by-products contribute to soil bioclogging but not to nutrient transformations. Mostafa and

Van Geel (2012) highlighted this gap and recommended a post-processing step to calculate bioclogging. They suggested that

inactive biomass accounted for twice the active biomass content and that a fifth of that inactive portion corresponded to the315

recalcitrant fraction. Active and inert biomass fractions vary over time, as the active fraction dominates early growth stages and

the inert fraction accumulates over time and dominates at steady states. Brangarí et al. (2018) proposed a model that tracks the

development of different biomass compartments for EPS, active, and dormant cells, along with extracellular enzymes. While

this biomass representation is a valuable resource for research and testing of hypotheses, the downside of having complex

descriptions of biomass is that it becomes difficult to link them with field data and practical applications (Brangarí et al., 2018).320

Striking a balance between capturing essential phenomena and ensuring that the model is simple enough to be validated with

available data can be challenging. Our proposed approach to compartmentalize active and inactive biomass is a commonly

applied strategy in bioreactor modeling applications (Ni et al., 2011).

We focused our parameter exploration on the calibration of the biomass density term ρX because previous research had

shown the sensitivity of bioclogging models to this parameter (Brovelli et al., 2009, , Suppl. Figures A1 and A2). We conducted325

additional simulations to investigate the sensitivity of other less studied parameters, such as the spreading rate κ (Suppl.

Figures A3 and A4) and the biomass permeability Kmin (Suppl. Figure A5), which affect the biomass spatial distribution.

However, changes to these parameters did not significantly alter the resulting biomass profiles. Considering that the column

experiment dealt with a single bacterial species growing within a fairly homogeneous media, we retrieved values from the

literature for other biochemical parameters, such as the substrate consumption rate and the half-saturation constant. These330

values fitted the experimental data well and gave a fair representation of the heterotrophic activity under unsaturated conditions

in our simulations. In addition, EPS and other inactive biomass are expected to maintain a hydrated micro-environment for

active cells (Or et al., 2007), which might explain why a dramatic change in metabolism parameters was not required. This

might not be valid for more abrupt water saturation changes, as experimental data suggests that microbes adapt to water

stress periods, devoting more resources to EPS generation to retain moisture and increase survival under very dry conditions335

(Flemming and Wingender, 2010; Roberson and Firestone, 1992). We considered the proportion of substrate used for cell

synthesis (Y ) and for EPS generation (flab) to be constant over time and independent of the water saturation as the wet periods

in our experiments still yielded unsaturated conditions; however, the variability of these growth parameters from saturation to

desiccation needs further exploration.

Wetting periods in infiltration ponds correspond to flooding conditions, as opposed to the wetting period in our column340

experiment, which corresponded to a slow injection aimed at keeping unsaturated conditions during all times in the experi-

ment. Similarly, the DOC concentration of a water reclamation plant effluent is much lower (around 10 mg/L) than the DOC

concentration from the lysogeny broth used to feed the Pseudomonas Putida in the column. Nevertheless, exploring those

particular settings to characterize SAT systems effectively is a matter of modifying the boundary conditions of the model that

we have presented. A recommended path for future experimentation is to set up conditions analogous to field operation, so345

combined with our model, we can draw more robust conclusions of hydraulically optimal dry/wet time ratios and drying times

apt to SAT system conditions. Likewise, other field conditions not captured by our simulations could be readily integrated into
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our modeling framework. For example, sunlight drives photosynthesis in the infiltration ponds, leading to dissolved oxygen

over-saturation, and the effluent infiltrated during the day is more oxidized than that during night (Goren et al., 2014). These

factors might affect optimal day-to-day operation; thus, all of these variables integrated into the model have the potential to350

convert this piece of research software into a SAT operation decision-making tool.

Biomass accumulation also affects the water retention of soils (Philippot et al., 2023; Volk et al., 2016; Costa et al., 2018;

Colica et al., 2014). For example, experiments from Rosenzweig et al. (2012) showed that EPS content, using xanthan gum

as a surrogate, enhanced Caesarea sand’s water retention. Two parameters were clearly affected, namely, the maximum water

saturation sw,sat and the exponent η in the van Genuchten model (Eq. 2b). The former was linked to increased soil porosity355

due to the expansion of xanthan after hydration, whereas the former was linked to the soil’s water retention capacity. As data is

lacking, we did not explicitly introduce a constitutive relation between biomass content and unsaturated flow properties. Still,

this behavior can potentially shift the optimal drying periods to longer than predicted because water retention increases with

biomass content.

5 Conclusions360

Our study explored the alternation of drying cycles in infiltration ponds to mitigate bioclogging and enhance the hydraulic

performance of SAT systems. We propose a simple conceptual model for fractionating soil biomass into active and inert

compartments, which provides a good fit for experimental data and can be potentially extended to describe other metabolic

pathways. We focused our parameter exploration on the biomass density term, which was found to be sensitive and critical

for bioclogging modeling. Our simulations showed that the dry/wet time ratio is pivotal in controlling the spatial distribution365

of aerobic respirators in the soil column. A threshold exists above which this strategy outperforms a constant influx of water.

While our findings cannot be directly generalized to field SAT operations due to the dissimilarities between laboratory and

real-world conditions, they provide a solid basis for further research and optimization of SAT systems.

Code and data availability. Source code for the numerical model is available in Zenodo at Saavedra Cifuentes (2024).

Appendix A: Appendix370
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Figure A1. Biomass profiles under different values of biomass density ρX . Typical values are around 10 g/L.
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Figure A2. Total integrated biomass under different values of biomass density ρX . Typical values are around 10 g/L.
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Figure A3. Biomass profiles under different values of diffusive growth coefficients κ. Values over 10−10 m/s are not expected.
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Figure A4. Total integrated biomass under different values of diffusive growth coefficients κ. Values over 10−10 m/s are not expected.
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