Hydrology and Earth System Sciences Manuscript title: Ratio Limits of Water Storage and Outflow in Rainfallrunoff Process

Response to Anonymous Referees

Dear Editor Roberto Greco

We sincerely thank you and the two referees for their examination of this manuscript. The valuable comments from referees are very helpful for us to revise and improve this manuscript. Based on the referees' comments, we revised the manuscript, and the revised parts are marked in red color in the revised manuscript. Please kindly go through our responses below. Thank you very much.

Kind regards

Zhu

Response to First Referee

No	Comments	Response
Gen	eral comments:	
G- 1	This manuscript investigates the realtionship between the inside average water depth (H) and outlet water depth (h) in an arbitrary catchment which is assumed to be a conceptual water tank. After evaluating the water storage ratio curve (H/h) sensitivity to the catchment area, the Manning's coefficient, the slope gradient and the rainfall intensity, they propose the application of this variable within a simplified yet apparently quite effective rainfall-runoff model named distributed runoff model (DRM), and positively compare the results with an already validated diffusion wave (DW) approximation of the shallow water equations by numerical simulations for simulating ground surface runoff. The paper has some useful elements, but in my opinion it cannot be published in its current format due to the following reasons:	We sincerely thank you for your valuable time to review our manuscript and for providing valuable comments, We are grateful for your guidance and correction in our English grammar, spelling, and sentences. The valuable comments are very helpful for us to revise and improve this manuscript. Based on your comments, we revised the manuscript, and the revised parts are marked in red color in the track changes version of the manuscript. Please kindly go through our responses below. To save you time in checking our revisions, we have listed your comments and our corresponding modifications one by one in the table below, which includes the original text (quotation marks), your comments (bold font), our corrections (red color), and our responses.
G- 2	without any introduction regarding the aim and the methodology of the work	and the methodology of the work in the abstract beginning part as follows: Flash floods typically occur suddenly within hours of heavy

		rainfall. Accurate forecasting of flash floods in advance using the two-dimensional (2D) shallow water equations (SWEs) remains a challenge, due to the governing equations of SWEs being difficult-to-solve partial differential equations (PDEs). Aiming at shortening the computational time and gaining more time for issuing early warnings of flash floods, a new relationship between water storage and outflow in the rainfall-runoff process is attempted to be constructed by assuming the catchment as a water storage system.
		Thank you very much for your criticism. We revised the Discussions and Conclusions section. We added more discussion of the results. In particular, the limitations of numerical analysis are discussed, such as the neglect of groundwater and the parts that need to be discussed in depth in the future. The revision is as follows:
G- 3	the discussion is basically absent, the authors just sum up the main results with no added comments	Discussions and Conclusions: Based on an impermeable conceptual slope model, numerical simulations of the rainfall-runoff process are performed by using the diffusion wave (DW) approximation of SWEs. A "plume" shaped nonlinear relationship between water storage and outflow, defined as the water storage ratio, is found between the inside average water depth and the outlet water depth in a catchment. The water storage ratio is controlled by three limits, namely upper limit, steady limit, and lower limit with the value of approximately 1.0, 0.625, and 0.4125, respectively. Under the control of the three limits, meteorological, vegetation, and terrain conditions only affect the size of the "plume" without changing its shape. The regular curve shape of the water storage ratio provides the possibility to construct a correlation between the water storage ratio, a hydrological- hydrodynamic integrated model-DRM, is established, which shows high calculation accuracy and computational efficiency. This is because the governing equations of DRM are ordinary differential equations (ODEs), which are much easier to solve than nonlinear partial differential equations (PDEs). However, the calculations of DRM and DW only involve the confluence part of surface water and infiltration. While the interbasin groundwater flow as inputs to the watershed (exfiltration) and evaporation are not considered, this is inconsistent with the real rainfall-runoff process in the watershed and may lead to deviations in the calculation results. Therefore, the flow exchange between surface water and groundwater during the existence and extinction of runoff also needs to be further realized by establishing a dynamic coupling model of surface water and groundwater. In addition, the water storage and discharge are limited to envelope lines, and the discharge/water depth process lines during water rising and falling showed a grid-shaped distribution, which might be the cause of the looped rating curve, i.e., higher discharges for the rising limb than fo

		recession limb at the same stage. Rainfall, especially weak rainfall (i.e. rainfall intensity is less than 5.0 mm h ⁻¹) significantly affects the fluctuations of water storage ratio. The fluctuations of water storage ratio during a real rainfall event can be divided into three modes, that is Mode I identified as inverse S-shape type during the rainfall beginning stage, Mode II identified as Wave type during the weak rainfall duration stage, and Mode III identified as checkmark type during rainfall end stage. It is worth noting that a qualitative determination of the three fluctuation modes of water storage ratio during rainfall events is obtained, but the quantitative analysis still needs to be further carried out in the future. The findings in this study provide a key to establishing a simpler prediction model for flash floods. The water storage ratio has been proven to be effective in improving the effectiveness and efficiency of flood forecasting. Therefore, the determination of the nonlinear relationship of the water storage ratio curve under different geographical scenarios will provide new ideas for simulation and early warning of flash floods.
G- 4	results are presented in terms of comparison between DW and DRM for a real rainfall event, but no real runoff data (not even discharge) is used	Yes, we have checked the effectiveness and efficiency of DRM compared to the shallow water equations (SWEs), including the comparison of computational time and space requirements. We found that the results of DRM agree well with the results calculated by SWEs and measured data on different spatial scales (Abdul and Gillham system: $0.112 \times 10-6 \text{ km}^2$, V-catchment system: 1.62 km^2 , and Kusaki dam, Japan: 254km ²).
		$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

		6 6 6 6 6 6 6 6 6 6 6 6 6 6
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Figure A: comparison of the calculation results of DRM with SWEs and measured data (a) Abdul and Gillham system: 0.112×10^{-6} km ² ,(b) V-catchment system: 1.62 km ² , and (c) Kusaki dam, Japan: 254km ² . We also added a Section 5 to discuss the effectiveness of DRM under the consideration of the infiltration and compared the DRM discharge results with the reference results. We found that after considering the infiltration, the discharge calculated by DRM agrees well with the reference results.
G- 5	the overall writing needs some improvement (see the attached file)	Thank you very much for your comments. We revised the text point by point according to your attached comments. Please check our responses below.
Spec	aftic comments:	
	Abstract:	Thank you very much for your comment. We added the
S-	Comment: At least a couple of	following sentences dealing with the aims and methods of
1	introductive sentences (e.g.	this research before the first sentence:
	sentences dealing with the aims	Flash floods typically occur suddenly within hours of heavy

		and methods of this research) are needed before the current first sentence, which already addresses the results of the work.	rainfall. Accurate forecasting of flash floods in advance using the two-dimensional (2D) shallow water equations (SWEs) remains a challenge, due to the governing equations of SWEs being difficult-to-solve partial differential equations (PDEs). Aiming at shortening the computational
			flash floods, a new relationship between water storage and outflow in the rainfall-runoff process is attempted to be constructed by assuming the catchment as a water storage
	C	1.22, "41,-"	system. Thank and the first statistic and this Facilish and the
	3- 2	Comment: Not needed	error. We have deleted it
	<u>-</u> S-	L31: "rainfall"	Thank you very much for your comment. We have revised
	3	Comment: (i.e. when rainfall	the expression.
		L38: "dollars direct economic	Thank you very much for your comment. We have revised
	S- ⊿	loss" Comment: dollars in direct	the expression.
	т	economic losses	
		L39-40: "Weather prediction-	Thank you very much for your comment. We have moved this sentence to line 55 and combined this sentence with other sentences:
S- 5	S- 5	based distributed hydrological/hydraulic models are considered to be an effective strategy for flood forecasting (Ming, et al., 2020)." Comment: Move this sentence to line 55	Flood simulation provides an effective means of flood forecasting to reduce property and life losses in flood- threatened areas around the world. Particularly, weather prediction-based distributed hydrological/hydraulic models are considered to be an effective strategy for flood simulation (Ming, et al., 2020). Hence, a large number of scholars are committed to improving the simulation efficiency or simulation accuracy of distributed hydrological/hydraulic models.
	S- 6	L42-44: "Based on the daily satellite imagery at 250-metre resolution of the 913 large flood events in the same period, a total inundation area of 2.23 million km2, with 255-290million people were estimated directly affected by floods (Tellman, et al., 2021)." Comment: This sentence does not read very well, consider rephrasing it	Thank you very much for your comment. We have rephrased it. Based on 250-meter resolution daily satellite images of 913 major flood events during the same period, the total area inundated by floods is estimated to be 2.23 million km2 and the directly affected population is estimated to be 255 to 290 million (Tellman, et al., 2021)
	S- 7	L50-51: "(e.g., Taklimakan Desert (Li and Yao, 2023) and Atacama Desert (Cabré, et al., 2023))" Comment:(e.g. in the Taklimakan Desert and the Atacama Desert, as reported by Li and Yao, 2023 and by Cabré et al., 2023 respectively) L60: "one-dimension(1D)"	Thank you very much for your comment. We have revised the expression.
	8	Comment: one-dimensional (1D)	the expression.

S- 9	L57-63: "Accordingly, they have developed many forms of hydrological models (e.g., Stanford Watershed Model IV (SWM) (Crawford and Linsley, 1966), SHE/MIKESHE model (Abbott, et al., 1986), Tank model (Sugawara, 1995), Soil and Water Assessment Tool (SWAT) (Arnold and Williams, 1987), TOPMODEL (Beven and Kirkby, 1979), etc.), hydrodynamic models (the one- dimension(1D) Saint-Venant equation (Köhne, et al., 2011), the two-dimensions (2D) shallow water equations (SWEs) (Camassa, et al., 1994), and the three-dimensions (3D) integrated equations of runoff and seepage (Mori, et al., 2015)), or coupling models of the two (Kim, et al., 2012; Liu, et al., 2019; Hoch, et al., 2019)" Comment: See if you can avoid using brackets within brackets, for example using dashes to include the lists of models. This will help the readability of the paragraph	Thank you very much for your comment. Indeed, we're not very good at dealing with using brackets within brackets. We revised the sentence and tried our best to avoid using brackets within brackets. The revised sentence is: Accordingly, they have developed many forms of hydrological models and hydrodynamic models. Among them, the hydrological models include Stanford Watershed Model IV—SWM (Crawford and Linsley, 1966), SHE/MIKESHE model (Abbott, et al., 1986), Tank model (Sugawara, 1995), Soil and Water Assessment Tool— SWAT (Arnold and Williams, 1987), and TOPMODEL (Beven and Kirkby, 1979), etc. The hydrodynamic models include the one-dimension (1D) Saint-Venant equation (Köhne, et al., 2011), the two-dimensions (2D) shallow water equations (SWEs) (Camassa, et al., 1994), and the three-dimensions (3D) integrated equations of runoff and seepage (Mori, et al., 2015). In addition, a variety of hydrological-hydrodynamic coupling models have also been proposed by Kim, et al. (2012); Liu, et al. (2019); Hoch, et al. (2019), and other scholars.
S- 10	L65: "due to its governing equations are a" Comment:either due to the fact that its governing equations are a or due to its governing equations being a	Thank you very much for your comment. We have revised the expression to "due to its governing equations being a
S- 11	L67-68: "(GPU parallel computing (Crossley, et al., 2010) or advanced numerical scheme (Sanders, et al., 2010))" Comment:get rid of the outer brackets, introduciind the sentence with "e.g. applying" or something similar	Thank you very much for your comment. We got rid of the outer brackets and revised the sentence as : e.g. applying GPU parallel computing (Crossley, et al., 2010) or advanced numerical scheme (Sanders, et al., 2010)
S- 12	L89: "Eq. 2" Comment:Before this sentence, you should list the variables which are present in equation 2. Then after eq. 3 you list only the ones you did not list before	Thank you very much for your comment. We list the variables which are present in Eq.2 and list only ones we did not before after Eq.3.
S-	L93: ","	Thank you very much for your comment. We have deleted

13	Comment: not needed	the comma.
	L93: "q is conceptual outflow (m	Thank you very much for your comment. We have revised
S-	s-1, $q=Q/A$ (m $s-1$)"	the expression.
14	Comment:q=Q/A is conceptual	
	outflow (units);	
S-	L98: "designed"	Thank you very much for your comment. We have revised
15	Comment:design	the word.
10	L121: "rainfall intensity rainfall	Thank you very much for your comment. We have deleted
S-	intensity"	the repeated words
16	Comment:No	the repeated words.
		Thank you yerry much for your comment. We have added
S-	L121: "(f)"	the description of Fig. 2 feet.
	Comment:Figure not described in	(f) collection of the choice twenty one water storage ratio
1/	the caption	(1) conection of the above twenty one water storage failo
G	L124: resemble a snape of	Thank you very much for your comment. We have revised
S-	"plume"	the expression.
18	Comment: resemble the shape	
	of a "plume".	
	L124-125: "Higher water storage	Thank you very much for your comment. We have added
	ratio (H/h) for the water-rising	the verb. The sentence is revised as:
	limb than for the water-falling	
S-	limb at the same outlet water	When the water outlet depth is the same, the water storage
19	depth."	ratio (H/h) of the water-rising limb is higher than that of the
	Comment: This sentence has no	water-falling limb.
	verb in it, rephrase it or connect	
	it to the previous one	
	I 124 125: "To obtain further	Thank you very much for your comment. We have revised
	L134-155. To obtain further	the expression. We connected it to the previous sentence:
	Insights into the causes for the	To obtain further insights into the causes for the formation
S-	limb and the water falling limb	of the water-rising limb and the water-falling limb of the
20	af the system store as notice system?	water storage ratio curve, the ratio of discharge (i.e., the
	of the water storage ratio curve.	ratio of the total outflows (Q_{out}) to the total inflows (Q_{in}) ,
	Comment: no verb in this	and the water depth (h) along the slope are discussed in Fig.
	sentence	3a and Fig. 3b, respectively.
~	L136: "(Oin)"	Thank you very much for your comment. We have added
S-	Comment: I think another closed	the closed bracket.
21	bracket is needed here	
	L139: "by power function	Thank you very much for your comment. We have revised
S-	(h=kxa)"	the expression
22	Comment: by a power function	
22	of general form h=	
S	I 161: "the"	Thank you very much for your comment. We have revised
22	Comment: a	"the" to "a"
23	L 166: "due to the covering	Thank you very much for your commont. We have revised
	aduations of DPM is ordinary"	the expression
C	Common to the	uie expression.
	due to the coverning coverti	
	due to the governing equations	
5-		
24	DRM being an ordinary	
	or	
	due to the fact that the governing	
	equations of DRM is an	
	ordinary	
S-	L167: "which governed"	Thank you very much for your comment. We have added

25	Comment:which is governed	the "is".
S- 26	L183: "i.e., 1#, 2#, 3#, 4#, and 5# fluctuation" Comment: identified as in Fig.5 there's no need to use "i.e." nor to repeat "fluctuation"	Thank you very much for your comment. We have revised the expression as: identified as $1^{\#}$, $2^{\#}$, $3^{\#}$, $4^{\#}$, and $5^{\#}$ in Fig. 6a and $6^{\#}$, $7^{\#}$, $8^{\#}$, $9^{\#}$, and $10^{\#}$ in Fig. 6b.
S- 27	L201: "Fig. 7. Time-dependent discharge calculated by DRM and DW model." Comment:It would be nice to plot also the measured data	We are very sorry, as our laboratory has just been established and currently does not have a rainfall simulator and monitoring instruments, so we compared the calculation results of DRM with different commercial software, experimental results in the literature, and field monitoring results.
S- 28	L202: "6.Discussions and Conclusions" Comment:There is actually no discussion here, this is just summing up the results. Also, it is too similar to the abstract.	Thank you very much for your comment. We rewrote the Discussions and Conclusions section. Please refer to our response to Comment No. G-3.

Response to Second Referee

No	Comments	Response	
•			
Gene	eral comments:		
	This study establishes the existence of a nonlinear relationship between the average water depth within the watershed and the outlet water depth (i.e., water storage ratio), and investigates the factors influencing the fluctuations of this ratio. The authors also introduce the Distributed Runoff Model as a means to simplify the hydrodynamic model, with the goal of improving the effectiveness and efficiency of flood forecasting. While the idea presented is valuable and the findings are interesting, the quality of the paper requires improvement before publication.	We sincerely thank you for your valuable time to review our manuscript and for providing valuable comments. The valuable comments are very helpful for us to revise and improve this manuscript. Based on the your comments, we revised the manuscript and the revised parts are marked by red colour in the track changes version of the manuscript. Please kindly go through our responses below.	
Spec	ific comments:		
	Figure 4 and lines 158 to 170 discussed the effectiveness and efficiency of DRM, yet there is a lack of evidence demonstrating that DRM is computationally more efficient. Should this be addressed by comparing computational time, space requirements, or other relevant aspects?	Thank you very much for your comment. Yes, in our previous work, we have checked the effectiveness and efficiency of DRM compared to the shallow water equations (SWEs), including the comparison of computational time and space requirements. We found that the results of DRM agree well with the results calculated by SWEs or measured data on different spatial scales (Abdul and Gillham system: 0.112×10^{-6} km ² , conceptual slope model: 1×10^{-3} km ² , V-catchment system: 1.62 km ² , and Nissho Pass, Japan: 0.1356 km ²) as shown in Fig. A below. The calculation time of DRM is greatly shortened compared with SWEs, as shown in Table A below. Table A shows the calculation efficiency improvement of DRM compared to SWEs. The calculation efficiency has increased by $70\% \sim 90\%$. The related works have been published in Journal of Hydrology in 2022.	

Table A Calculation efficiency improvement of DRM compared to SWEs.

Table A: Calculation efficiency improvement of DRM compared to shallow water equation	ons.
ruble in culculation entereney improvement of brain compared to shanow water equal	OTTO

Model	Catchment area	Simulation time	Calculation time of shallow water equations	Calculation time of DRM	The improvement of calculation efficiency
Impermeable		1•h-	14-s	3-s.	78.6%
conceptual	1×10-3+ km ²	1•d-	93-s.	12-s.	87.1%
slope model		3•d-	517 s.	57 s.	89.0%

However, when we performed the above validation works, we did not find the nonlinear relationship between the average water depth within the watershed and the outlet water depth (i.e., water storage ratio) at that time. We assumed it is a constant, although the use of this constant has also been able to achieve good calculation accuracy. In this paper, we find that the assumption of constant is insufficient. An exact nonlinear curve should be given.

For more validation details, please refer to our previous work:

Zhu, Y.L., Zhang, Y.F., Yang, J., Nguyen, B. T., & Wang, Y. (2022.9). A novel method for calculating distributed water depth and flow velocity of stormwater runoff during the heavy rainfall events. Journal of Hydrology, 612, 128064.

https://doi.org/10.1016/j.jhydrol.2022.128064

Figure 7 indicates that the
simulation results of DRM closely
match those of DW. However, can
we confidently draw thisThank you very much for your comment. We added the
analysis of another rainfall event as plotted in Fig. 5(b) and Fig.
7(b). Combined with our explanation of your previous
comment, we have the confidence to draw this conclusion (that

	realized by establishing a dynamic coupling model of surface water and groundwater.
	In addition, the water storage and discharge are limited to envelope lines and the discharge/water depth process lines during water rising and falling showed a grid-shaped distribution, which might be the cause of the looped rating curve, i.e., higher discharges for the rising limb than for the recession limb at the same stage. Rainfall, especially weak rainfall (i.e. rainfall intensity is less than 5.0 mm h ⁻¹) significantly affects the fluctuations of water storage ratio. The fluctuations of water storage ratio during a real rainfall event can be divided into three modes, that is Mode I identified as inverse S-shape type during rainfall beginning stage, Mode II identified as Wave type during weak rainfall duration stage, and Mode III identified as check mark type during rainfall end stage. It is wroth noting that a qualitative determination of the three fluctuation modes of water storage ratio during rainfall events are obtained, but quantitative analysis still needs to be further carried out in the future.
	The findings in this study provide a key to establish a simpler prediction model for flash floods. The water storage ratio has been proved to be effective in improving the effectiveness and efficiency of flood forecasting. Therefore, the determination of the nonlinear relationship of the water storage ratio curve under different geographical scenarios will provide new ideas for simulation and early warning of flash floods.
The last paragraph of the Introduction Section lacks clarity in introducing/summarizing your study and needs to be revised.	Thank you very much for your comment. We revised the last paragraph of the Introduction Section to increase clarity in introducing/summarizing. The revised paragraph is: "Efficient and stable solution of the hydrodynamic model has long been an important issue in flood forecasting. Since the SWEs are nonlinear hyperbolic PDEs, the increase in the calculation domain and the increase in the degree of discreteness will greatly increase the difficulty of solving SWEs. In addition, when using high-resolution terrain to improve model calculation accuracy, non-physical phenomena such as false high flow velocity in steep terrain will also occur, resulting in calculation distortion and a sharp increase in calculation time. Hence, we try to ignore the complex exchange/transfer process of mass and momentum (hydrodynamic models), and also abandon the empirical relationships (hydrological models) between the input (precipitation), the transmission (flow rate) and the output (discharge) in the catchment area. A catchment is regarded as a semi-open water storage system, and the complex problem is simplified into three megascopic variables, i.e., inflow, water storage and outflow. For any watershed, the complex internal flow processes could be ignored if the physical mechanism between inflow, water storage, and outflow can be found under different meteorological, geographical and geological conditions. In other words, if we can give a physical-based relationship between the three megascopic variables, flood forecasting will become much simpler. For this goal, a "plume" shaped nonlinear relationship between the inside average water

	depth and the outlet water depth, namely the water storage ratio curve, was found by using the calculation results of the hydrodynamic model."
Does this study assume that the interbasin groundwater flow is not considered as inputs to the	Thank you very much for your comment. Yes, we added a Section 5 to consider infiltration in DRM and compared the results of DRM with reference results. We found that after consider the infiltration, the discharge calculated by DRM agrees well with the reference results. Please check the Section 5 below: 5.Validation of DRM with considering infiltration calculated by Horton infiltration method. In the above section, the simulations of DW and DRM are based on an impermeable conceptual slope model as shown in Fig. 1c. After considering infiltration in the DW and DRM, the Eq. 2 and Eq. 3 become: $\frac{\partial h}{\partial t} - \nabla \left(\frac{h^{\frac{5}{3}}}{n_m \sqrt{ 5 }} \nabla (h+z) \right) = R - I \qquad (4)$ $\begin{cases} \frac{dH}{dt} = R - q - I \\ \left(H = \eta h = \eta \left(\frac{n_m}{\sqrt{5}} \right)^{0.6} q^{0.6} \left(\frac{A}{B} \right)^{0.6} \end{cases}$ Infiltration (I) is calculated by Horton's infiltration model (Horton, 1933), which suggests an exponential equation for modeling the soil infiltration capacity f_p (m s ⁻¹): $f_p(t) = f_c + (f_0 - f_c)e^{-kt} \qquad (6)$ where f_0 is the initial infiltration capacities (m s ⁻¹), f_c is
watershed? Please clarify and provide a clear statement regarding this assumption in the	the final infiltration capacities (m s ⁻¹), k represents the rate of decrease in the capacity (s ⁻¹). The infiltration parameter sets are listed in Table 1
Methods Section.	Table 1 Infiltration parameter sets
	$\frac{1}{k} (s^{-1}) \qquad \qquad f_c (m s^{-1})$
	2.43×10 ⁻³ 3.272×10 ⁻⁵
	A rainfall event begins with a weak precipitation intensity. When the rainfall intensity is less than the infiltration capacity, all the rainwater will infiltrate into the soil. While, when the rainfall intensity exceeds the soil infiltration capacity, the surface water is generated, and Horton law (Eq. 6) applies: $I = \begin{cases} R(t) & \text{if } R(t) \leq f_p(t) \\ f_p(t) & \text{if } R(t) > f_p(t) \end{cases}$ (7) Results of outlet discharge (Q) and runoff volume (ROV) calculated by DW and DRM are compared with the reference results adopted from Fernández-Pato et al., (2016) as shown in Fig. 5. Fig. 5a shows the comparison of results under a uniform design rainfall. In this case, the rain volume is 75,000 m3 with a duration of 250 minutes (min.). Fig. 5b shows the comparison of results under a non-uniform rainfall. Rain volume is 75,000 m3 with a duration of 250 minutes (min.). From Fig. 5, it can be recognized that after considering infiltration, except that the calculation results of

