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Thanks to the reviewer for reviewing our manuscript. We sincerely appreciate the time and 

effort you dedicated to carefully evaluating our work and providing valuable comments and 

suggestions. Your insights have significantly contributed to improving the quality of our 

manuscript. We have addressed each of your comments accordingly, and our responses are 

provided below. Reviewer comments are highlighted in red, while our responses are in black. 

General comments 

This study analyses the propagation of drought hazards to socio-economic impacts using 

GDIS data, incorporating multiple drought indices and developing a novel CDI. The results 

indicate that CDI outperforms other indices, underscoring its utility in risk assessment and 

prioritization of affected areas. The scope of the study fits well with the journal's theme of 

the study interactions with human activity, particularly in relation to droughts1. 

Although the paper is well-written and structured, it does present some limitations in 

addressing the socio-economic aspects under study. Additionally, the results provided are 

insufficient to definitively support the conclusions. Based on the results presented in this 

paper, it cannot be definitively stated that the CDI index alone can determine the existence 

of socio-economic drought. After reviewing the manuscript and based on these comments, I 

recommend that the manuscript be reconsidered after a major revision to address the 

identified shortcomings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Specific comments 

1. The work uses the Global Disaster (GDIS) dataset distributed by SEDAC NASA to 

identify study areas, which are referred to as GDIS drought events. It is considered that the 

socio-economic variables used by this database to classify the area as affected should be 

detailed more precisely, since, as indicated in the discussion, vulnerability depends on the 

degree of development of the country in which it is located, and therefore the characterisation 

of the socio-economic variables is an important aspect to consider. The introduction should 

be expanded to include a detailed description of the socio- economic aspects related to 

drought and present the state of the art in this field. 

Thanks to the reviewer for this insightful comment. As suggested, we have expanded the 

introduction to provide a clearer overview of the socio-economic impacts of drought and 

the current state of the art in this field. We have edited the introduction section and new 

details are added a new paragraph (Lines 86 to 96) that discusses the variation in drought 

impacts based on development levels, the importance of socio-economic vulnerability, and 

the limitations of earlier impact datasets. We also explain how the recently developed GDIS 

dataset addresses these gaps by offering sub-national socio-economic impact data for 

global analysis. 

Revised text (Lines 86 to 96):  

“Droughts have significant socio-economic impacts, including crop losses, food insecurity, 

income reduction, water shortages, and displacement. The severity of these effects varies 

by region, depending on development level, infrastructure, and adaptive capacity. In high-

income areas, systems like irrigation and insurance help reduce impacts, while in low-

income regions, even moderate droughts can trigger crises (Brooks et al., 2005; and Pak-

Uthai and Faysse, 2018). Recent studies (Panwar and Sen, 2020; and Udmale et al., 2014) 

highlight the importance of incorporating socio-economic vulnerability into drought 

assessments. However, the direct link between drought hazards and their socio-economic 

repercussions remains underexplored, partly due to the limited availability of reliable 

global impact data. Earlier efforts, such as the U.S. Drought Impact Reporter and the 

European Drought Impact Report Inventory, provided region-specific insights but lacked 

global coverage. To address this, the Geocoded Disaster (GDIS) dataset, developed from 

EM-DAT, offers geocoded disaster locations and detailed sub-national data on affected 

population, fatalities, and economic losses. By overcoming previous limitations, GDIS 

enables spatial analysis of drought impacts across diverse socio-economic contexts.” 

2. This study exclusively utilises climatic variables, such as rainfall and temperature, along 

with indices like soil moisture and the vegetation index NDVI, without incorporating socio- 

economic variables. It is important to explain why these variables are not included in 

characterising drought events. 

Thank you for your comment. The main objective of our study is to evaluate the 

performance of combined versus single drought indicators by comparing them against 

observed drought event data from the GDIS database. GDIS provides subnational records 

of actual socio-economic drought-related events, and we use this dataset as an 

observational benchmark for this study. 

In this study, we deliberately did not include socio-economic variables as part of the 

drought indicators. Our aim is to assess how well agro-climatological indices, such as 

precipitation, temperature, soil moisture, NDVI, and CDI, can reflect or correspond to real-

world drought events rather than attempt to model those events directly. Including socio-

economic variables in the indicators would have complicated the evaluation, as it would 



mean comparing GDIS data against indicators that already include similar information, 

potentially biasing the results and reducing the objectivity of our assessment. 

We acknowledge that some regional studies have incorporated socio-economic data; such 

as crop prices or agricultural losses, for drought monitoring (e.g., Brown & Funk, 2008; 

Lobell & Burke, 2010; Wang et al., 2022). However, these approaches are often limited to 

specific regions and lack the global consistency required for a study of this scale. Our scope 

is therefore distinct: rather than modeling socio-economic drought events, we evaluate the 

capacity of agro-climatological indicators alone to serve as reliable proxies for observed 

drought events globally. 

Moreover, for operational drought monitoring and policymaking, particularly at global and 

subnational scales, consistent, high-resolution, and continuous datasets are essential. 

Currently available socio-economic datasets often lack such spatial and temporal 

consistency. Therefore, identifying agro-climatological indicators that closely align with 

observed drought events can help strengthen early warning systems and support more 

effective policy decisions, especially in data-scarce regions. 

These details have also been included in the revised manuscript (Discussion section, lines 

592 to 596) as follows: 

"While some regional studies have used socio-economic data such as crop prices or 

agricultural losses for drought monitoring (e.g., Brown & Funk, 2008; Lobell & Burke, 

2010), we exclude such variables to avoid overlapping with the GDIS, which already 

incorporates socio-economic factors like the number of affected individuals, deaths, and 

total damage caused by drought. Our focus is on evaluating how well agro-climatological 

indices, such as CDI, SPI, and NDVI, capture drought events based on climatic and 

environmental conditions. Additionally, globally consistent socio-economic datasets are 

often limited, and their availability may vary by region, making agro-climatological based 

indicators more practical and reliable for large-scale drought monitoring." 

 

3. Given the global scope of this work, only climatological and vegetation predictors are 

utilised, without considering any socio-economic factors. An important question arises: 

Are there regions where the proposed index identifies periods of drought that are not 

recorded as such by the GDIS database? Figure 5 illustrates that certain areas experiencing 

extreme drought are not within any GDIS polygons. Additionally, it is noteworthy that 

Figure 5 does not include any European countries. 

Thank you for this valuable observation. We fully agree with your point, and indeed, our 

analysis revealed several instances where the CDI detected drought conditions that were 

not recorded in the GDIS database. These discrepancies are acknowledged and discussed 

in detail in Section 4.2 (lines 432-440) of the manuscript as follows: 

 

“CDI detected severe drought events in South Argentina during 2014–15, Namibia in 2013, 

and parts of Europe in 2018, which were not reflected in GDIS event records. These 

instances highlight that not all agro-climatic droughts lead to recorded socio-economic 

impacts, especially in regions with strong adaptation and mitigation capacities. Practices 

such as advanced irrigation, drought-resistant crop varieties, or effective early warning 

systems may help manage the agricultural and societal impacts of climatic stress, thereby 

reducing the likelihood of such events being recorded in GDIS. It is also important to note 

that GDIS does not comprehensively capture all real-world drought events, particularly in 

regions with limited reporting mechanisms or institutional capacity. As a result, some 



drought events, especially in low-income or remote areas may go undocumented despite 

having significant local impacts.” 

Regarding the absence of European countries in Figure 5, we would like to clarify that this 

figure presents a sample representation of selected drought events globally and does not 

suggest that Europe did not experience droughts. In fact, CDI-detected events in Europe, 

such as the 2018 drought are discussed in the manuscript, and for further clarity, a sample 

map of European events is attached herewith (Figure 1). However, we also wish to 

highlight that, in comparison to other regions, Europe and Australia show fewer drought-

related entries in the GDIS database. This supports our broader observation that developed 

regions (e.g., Europe, USA, Australia) tend to report fewer socio-economic drought events 

possibly due to stronger infrastructure, better preparedness, and adaptive capacity. This 

contrast further underscores the importance of evaluating agro-climatic indicators like CDI, 

which can identify stress conditions even when no disaster impacts are formally reported, 

especially in data-scarce or impact-resilient regions. 

  

Figure 1. Comparison of CDI Detected Droughts and GDIS Events Over Europe: (a) 2017 

Drought Over Italy with Strong CDI–GDIS Overlap, and (b) 2018 Drought Over Spain and 

Surrounding Regions Detected by CDI but Not Captured by GDIS. 

4. In section 2.3 it is indicated that soil moisture is obtained using a weighting for each of 

the strata; however, it is not detailed how it is obtained, and the way in which this is done 

should be explained, since it is one of the variables used to characterise the combined 

drought index, and as shown in the weights in Figure 4, this variable is quite important in 

the determination of this combined factor. 

Thank you for your comment. We appreciate the opportunity to clarify the method used to 

derive the soil moisture input for CDI, given its importance in the analysis. We used the 

ERA5-Land soil moisture dataset (European Centre for Medium-Range Weather Forecasts, 

2023), obtained from the Copernicus Climate Data Store, covering the period 2001 to 2021 

with a spatial resolution of 0.1° × 0.1° and monthly temporal resolution. This dataset 

provides soil moisture values across four depth levels: (Layer 1: 0–7 cm, Layer 2: 7–28 cm, 

Layer 3: 28–100 cm, Layer 4: 100–289 cm). For our analysis, we used the first three layers 

(0–100 cm) to represent root-zone soil moisture, which is widely mentioned in the literature 

as critical for agricultural drought monitoring (e.g., Bolten et al., 2010; Entekhabi et al., 

2010; Sehgal et al., 2017). Root-zone moisture reflects the water available for vegetation 

and crops and is particularly relevant for assessing impacts visible through NDVI and other 

surface stress indicators. To obtain a single representative soil moisture value for the top 

1 m, we calculated a weighted average of the three layers based on their respective 

thicknesses. This approach ensures that deeper layers, which store more moisture and 

contribute more significantly to long-term water availability, are proportionally 



represented, while still capturing the sensitivity of upper layers to short-term dry 

conditions. 

We excluded the fourth layer (100–289 cm) from the analysis, as it extends well beyond 

typical rooting depths and is less responsive to seasonal surface drought, especially in 

relation to vegetation stress and agricultural impacts. The resulting root-zone soil moisture 

value was then standardized (e.g., using z-scores) and integrated into the CDI framework 

along with other drought-relevant indicators. 

This explanation has been added in the revised manuscript under Section 2.3, lines 151-

159, as follows: 

“We used the ERA5 Land soil moisture dataset (European Centre for Medium-Range 

Weather Forecasts, 2023) acquired from the Copernicus Climate Data Store for the study 

period from 2001 to 2021. The monthly data products, with a spatial resolution of 0.1 x 0.1 

degrees, were used for the study. The soil moisture datasets were available for different 

soil depth levels: first (0–7 cm), second (7–28 cm), third (28–100 cm), and fourth (100–

289 cm). For our analysis, we used the first three layers (0–100 cm) to represent root-zone 

soil moisture, which is widely recognized in the literature  (Bolten et al., 2010; Sawada, 

2018; Sehgal et al., 2017) as critical for agricultural drought monitoring. To obtain a single 

representative value for soil moisture in the top 1 m, we employed a weighted averaging 

method using the respective thicknesses of the first three layers. The resulting weighted 

root-zone soil moisture layer was then standardized (e.g., using z-scores) and integrated 

into the CDI framework along with other drought-relevant indicators.” 

 

5. Section 2.5 states that ‘we assumed January as the starting month and December as the 

end month of the respective event, and further analysis was carried out’. Taking into 

account that the hydrological year in many databases is from October to September, It 

Would be important to know what percentage of the data used assume an unknown period, 

and to analyse the sensitivity of the results obtained to a possible alteration of the 

hydrological year. 

Thank you for your insightful comment. In our dataset of 2,142 drought events derived 

from the GDIS database, 143 events (~6.7%) did not have a specified start month. For these 

events, we assumed January (month 1) as the default starting month to ensure their 

inclusion in the analysis. 

We acknowledge that the hydrological year varies across regions. However, given that the 

number of events with missing start months represents a small proportion of the total 

dataset (<7%), we believe that this assumption has a minimal impact on the overall results. 

The number of such events and their percentage have now been explicitly mentioned in the 

revised manuscript under Section 2.5, lines 183-185 as: 

 “In some cases (143 events out of 2142 ~6.7%), due to the unavailability of monthly details 

in EM-DAT, we assumed January as the starting month and December as the end month 

of the respective event, and further analysis was carried out.” 

6. Regarding the results section, the results are presented in absolute terms by quantifying 

the number of detected and undetected events, which makes them difficult to understand. 

The quantification of the accuracy of the proposed methodology should be done using 

specific metrics obtained from a confusion matrix, detailing: Accuracy, Precision, recall, 

specificity, F1-score, AUC, etc. This will allow the discussion section to be completed by 

comparing similar metrics from previous work. 

Thank you for your valuable feedback. In response to your comment regarding the 



evaluation of our methodology using specific performance metrics, we have now included 

a detailed assessment of ‘recall’ (a key metric from the confusion matrix) across multiple 

scenarios. As shown in the new figure (below figure 2), we evaluated all five drought 

indices under four time windows: (a) Actual Event Period (AEP), (b) One Month Prior + 

AEP, (c) Two Months Prior + AEP, and (d) Three Months Prior + AEP. 

We chose recall as a primary metric in this comparison because of its importance in drought 

detection, capturing as many actual drought events as possible is critical for early warning 

systems and risk mitigation. As such, higher recall values indicate better detection 

capability. 

Across windows all the time, CDI consistently outperforms or is on par with other indices, 

especially when short droughts are excluded (i.e., longer droughts of ≥2 months). Example: 

In panel (a), CDI has the highest recall (0.94) when considering longer drought events. In 

panels (b), (c), and (d), CDI maintains recall values of 0.96–0.97, outperforming or 

matching the best-performing indices in each respective window. This shows the 

robustness and sensitivity of CDI in capturing drought events over both short- and long-

term windows. 

We agree that NDVI and SSMI show relatively high recall in specific cases (panel b, One 

Month Prior + AEP); such behavior is expected due to their sensitivity to vegetation stress 

and soil moisture. However, CDI demonstrates the most robust and consistent recall 

overall, across all scenarios and time windows, highlighting its superior ability to detect 

drought events under different conditions. 

We also acknowledge the importance of evaluating performance through a complete 

confusion matrix, including false positives, false negatives, and derived metrics such as 

precision, specificity, and F1-score. However, this requires a complete and unbiased 

ground-truth dataset. As discussed in our response to a previous comment, GDIS does not 

capture all real-world drought events due to limitations in reporting infrastructure, 

particularly in data-scarce regions. As a result, metrics that rely on the assumption of full 

event coverage (such as precision or specificity) may be unreliable in this context. 

Therefore, we focused on recall as the most informative and robust metric for evaluating 

detection performance in a globally heterogeneous impact reporting system like GDIS. 

However, your suggestion to explore additional performance metrics derived from the full 

confusion matrix is highly valuable and could be an excellent direction for future 

extensions of this study, particularly when more comprehensive ground-truth data becomes 

available. 

This analysis and the newly generated figure have been added to the revised manuscript as 

follows (Section 4.3, lines 481–487):  

For comparative analysis of drought detection performance, recall serves as a crucial 

metric, as it quantifies the ability of each index to correctly identify actual drought events. 

High recall is especially important in early warning systems where missing events can lead 

to unmitigated impacts. As illustrated in Appendix 7, the CDI index consistently 

outperforms others across all time windows, particularly for events lasting ≥2 months, 

where it achieves recall values between 0.94 and 0.97, demonstrating robust and reliable 

drought detection capability. For a more comprehensive understanding of detection 

performance, additional metrics derived from a full confusion matrix, such as precision, 

specificity, and F1-score, could provide further insights and represent a promising direction 

for future work. 

 



 
 

  

Figure 2: Comparative recall performance of five drought indices (CDI, NDVI, SSMI, SPI, 

and STI) across different time windows and event durations. 

 

7. From the visual analysis of Figure 7, it cannot be concluded that the combined index is 

clearly better than the individual indices, as indicated in line 525 as the results represented 

in that figure the combined index performs almost as well as the NDVI and in some cases 

slightly worse. 

Thank you for pointing out this. We acknowledge that in some individual cases (as shown 

in Figure 7), other indices, such as NDVI or SSMI, show slightly higher event counts than 

CDI. This variation is expected because, NDVI and SSMI are highly sensitive to vegetation 

and soil moisture changes, which may capture localized drought signatures more 

prominently in certain periods. 

However, our intention was not to claim that CDI outperforms all indices in every 

individual instance. Rather, the overall trend across different time windows and event 

durations demonstrates that CDI consistently maintains high performance, combining 

information from multiple indicators. This makes it more robust and generalizable across 

diverse drought conditions. We have revised the language in line 525 to better reflect this 

revised interpretation, in the revised manuscript (section 5: discussion, lines 606-609) as 

follows,  

“The comparative analysis between the CDI and other individual parameter-based indices 

suggests that CDI offers a strong overall capability for detecting GDIS events, showing 

robust performance across time windows and a closer association with socio-economic 

impacts.” 

8. The analysis of the accuracy of the different indices could be completed with information 

on the socio-economic characteristics of each region as well as the typology of land cover 

in the region analysed, the accuracy metrics according to these variables in order to be able 

to conclude in a quantifiable way under which conditions one index performs better than 

another. 



We thank the reviewer for the valuable suggestion. In response, now we have extended 

the analysis to include a zonal-level evaluation of index performance across the four 

major Köppen climate zones (Arid, Temperate, Tropical, and Cold). To carry out this 

analysis, initially GDIS polygons were spatially intersected with the respective climate 

zone shapefiles. However, due to topological limitations when working with two polygon 

layers, a direct one-to-one assignment was not always feasible. To address this, a 50% 

spatial overlap criterion was applied to assign each GDIS event to a climate zone. This 

ensured meaningful spatial classification and avoided ambiguous assignments. Applying 

this rule resulted in 2161 zonally attributed GDIS events, a slight increase from the 

original 2142 events due to partial overlaps at climate zone boundaries. 

For each of these events, the start and end dates were used to extract corresponding values 

from multiple drought indices (CDI, SPI, SSMI, NDVI, STI). A threshold of -1 was used 

to determine whether an index detected a drought event. Based on this, index-wise 

detection counts were computed for each zone. 

This analysis helps quantify the accuracy of each index under distinct climatological 

conditions, shedding light on their behavior under different topographies and regional 

drought patterns. The results are presented in the figure below.  

We also thank the reviewer for suggesting the use of land cover typology and socio-

economic characteristics. Incorporating these dimensions would be a valuable extension 

and offers a promising direction for future development of this research. 

 

Figure 9. Zone-wise accuracy of drought indices (CDI, SPI, SSMI, NDVI, STI) in 

detecting GDIS events across four Köppen climate zones: Arid, Tropical, Temperate, and 

Cold. The bar heights represent the percentage of GDIS events accurately captured by 

each index (threshold = -1), and the numbers inside the bars indicate the absolute number 

of consistent detections. The total number of GDIS events considered per zone is: Arid – 

571, Tropical – 949, Temperate – 453, Cold – 188 (Total = 2161). 

 

This figure shows that while individual indices perform well under certain climate 

regimes (e.g., SSMI and NDVI in arid zones), the CDI consistently demonstrates high 



association with GDIS events across all zones, suggesting its robustness and general 

applicability. This figure and analysis have also been included in the revised manuscript 

as Figure 9., and the detailed analysis is mentioned in section 4.3 lines 522 to 536: 

“Figure 9 represents the zonal validation results for drought index performance across 

four climate zones (Arid, Tropical, Temperate, and Cold) based on Köppen’s climate 

classification (threshold criterion: -1). The figure highlights how different indices perform 

differently under varying climatic conditions, while the CDI demonstrates consistently 

high detection accuracy across all zones. In the Arid zone (a), CDI detected 95.4% of 

GDIS events (the highest among all indices), while SSMI and NDVI also performed well 

with 93.0% and 90.5%, respectively. This can be attributed to the high sensitivity of 

NDVI and SSMI to vegetation and soil moisture stress, which are obvious under arid 

conditions. However, in the Cold zone (d), individual index performance dropped 

noticeably, with SPI detecting only 66.0% of events, whereas CDI still maintained 80.3% 

detection. Similarly, in the Temperate zone (c), both CDI and SSMI showed strong 

association with GDIS at 87.2% and 89.2%, respectively, indicating that some indices 

may be better suited for certain climate types. In contrast, Tropical zone (b) showed 

relatively lower detection percentages for all indices, with CDI still leading at 80.9%. 

SSMI performance in tropical and cold zones was lower, possibly due to dense vegetation 

cover and higher variability in surface moisture, which can limit the accuracy of soil 

moisture retrievals. These results emphasize that while individual indices can perform 

well in specific climate zones, their performance is not consistent across all zones. CDI, 

by integrating multiple indicators, offers more universally reliable detection, making it 

better suited for broader applications in drought monitoring across diverse climatic 

regions.” 

9. From line 470 to Figure 9, the purpose of testing the correlation between the combined 

index and the indices should be clarified. Considering that the combined index has been 

obtained from a principal component analysis of these variables, it is logical that it is 

correlated with the different parameters according to the weighting weights, it should be 

clarified what the purpose of this analysis is. 

Thank you for this observation. We agree that, since the CDI is derived through PCA, a 

certain level of correlation with its input indices is expected due to the weighting structure. 

However, the purpose of this correlation analysis was threefold: 

• To complement the spatially varying PCA weight maps by showing actual spatial 

alignment between CDI and its components over time. While the PCA weight maps 

reflect each component’s contribution during index construction, they do not directly 

represent how consistently each index aligns with CDI behavior in practice. 

• To account for the temporal variability of PCA weights. Since the PCA is performed 

monthly, the weights assigned to each component index vary over time. This makes it 

difficult to interpret long-term or spatial relationships between CDI and its components 

just by examining the weights. The correlation maps provide a more interpretable, time-

integrated view of these relationships. 

• To support the interpretation of CDI behavior across different climatic regions by 

identifying where specific indices (e.g., precipitation, NDVI, or SSMI) are more or less 

aligned with the composite CDI signal. This helps explain regional variations in CDI 

performance. 

For example, Figure 9 shows that SSMI consistently has a strong positive correlation with 

CDI across most regions, emphasizing the dominant and stable role of soil moisture in 



shaping the CDI signal globally. 

To clearly convey the purpose of this analysis, we have included an explanatory statement 

in the revised manuscript (Section 4.3, lines 543–545): 

"To better understand the spatial behavior of the CDI, a correlation analysis was performed 

(Figure 10) to examine how consistently each input index aligns with the composite signal 

across regions." 

10. As mentioned above, there are conclusions that are not justified by the results presented. 

Lines 593 to 595, The following is stated: ‘This novel index surpassed the performance of 

four commonly used single-parameter-based traditional indices, demonstrating superior 

accuracy in identifying GDIS droughts and effectively representing their socio- economic 

impacts’. However, as mentioned above, this conclusion is not supported by the 

information and results presented in this work. 

Thank you for pointing this out. We acknowledge that the original phrasing may have 

overstated the conclusion beyond what the presented results directly support. In the revised 

manuscript (lines 704–647), we have reworded the statement to more accurately reflect the 

findings. The revised text is as follows: 

 "The comparative analysis indicates that the proposed index performs consistently well 

across different drought scenarios and offers a more integrated representation of drought 

patterns, showing strong association with observed GDIS events and potential links to 

socio-economic impacts."  

This revised conclusion is based on the recall-based performance metrics (Appendix 7), 

correlation patterns (Figure 10), and visual comparisons that demonstrate CDI’s robustness 

across space and time. We believe this updated wording better aligns with the scope and 

evidence presented in the manuscript. 

 

11. Lines 599 to 600: The following is stated: ‘CDI-derived drought clusters exhibit a 

statistically significant representation of GDIS drought events (indicative of socio- 

economic impacts), with 95% of the GDIS events successfully 600 identified using the CDI’. 

However, to support this assertion, it is necessary to consider the full set of metrics from the 

confusion matrix. While the index may identify GDIS-catalogued drought events, it could 

also detect other drought events that do not necessarily have socio-economic effects. Based 

on the results presented in this paper, it cannot be conclusively stated that the CDI index 

alone can determine the existence of socio-economic drought. 

Thank you for this important clarification. We fully agree that detecting GDIS events alone 

does not confirm that the CDI can directly identify socio-economic droughts, as it may also 

detect events without documented impacts. Our intent was not to claim a deterministic 

relationship between CDI and socio-economic droughts, but rather to highlight the strong 

association between CDI-identified drought clusters and reported GDIS events. 

To address this, we have revised the statement in the revised manuscript (section 6, line 

712) to better reflect the scope of our findings. The updated sentence is as follows: 

 “CDI-derived drought clusters show strong spatial and temporal association with GDIS-

reported drought events, with approximately 95% of GDIS events successfully identified 

using the CDI. This suggests that the index effectively captures drought conditions that 

frequently align with documented socio-economic impacts.” 

A full confusion matrix requires reliable identification of false negatives, that is, actual 



socio-economic drought events that were not captured by GDIS. As discussed in earlier 

responses, this is not currently feasible due to the incomplete coverage of real-world 

drought impacts in GDIS. Therefore, our analysis is limited to comparing CDI signals 

against known, documented events and does not aim to establish CDI as a comprehensive 

socio-economic drought detector. Since there is no globally consistent and exhaustive 

database of socio-economic drought impacts, we cannot objectively determine which CDI-

identified events are true false negatives or simply unreported impacts, making such 

analysis infeasible at this stage. However, developing such a reference dataset and enabling 

robust false negative analysis would be a valuable direction for future research. 

 

Technical corrections 

1. It should be clarified whether the ranges in Figure 3 correspond to the classification set 

out in Figure 1, and if so, the nomenclature should be homogenised. 

Thank you for this observation. We clarify that the ranges in Figure 3 do not correspond to 

the classification presented in Figure 1. Figure 1 displays the CDI classification scheme, 

where values range from negative to positive, representing a range from wet to drier 

drought conditions. On the other hand, Figure 3 presents the frequency of drought events, 

using a color gradient from light yellow to dark red to indicate low to high drought 

frequency. While some of the color tones may appear visually similar between the two 

figures, they represent entirely different variables and scales. We have revised the figure 

caption for Figure 3 to clarify this distinction. The revised caption is as follows,  

“Figure 3. Spatial distribution of GDIS drought frequencies: (a) Global scale, (b) East 

Africa, (c) America, and (d) Asia. The drought frequencies range from one to eight, 

represented by shades from light yellow (low frequency) to dark brown (high frequency). 

Note: The color scheme used here is distinct from the CDI classification shown in Figure 

1 and represents event frequency, not drought intensity.” 

 

2. Figure 7 has very low resolution, however, as it is proposed to replace the figure with a 

display of the results in terms of the metrics of the confusion matrix, I understand that this 

figure will be replaced in its new format. 

Thank you for pointing this out. In the revised manuscript, Figure 7 has been replaced with 

a higher-resolution image to improve visual clarity. Additionally, as suggested, a confusion 

matrix–based recall analysis has been added as a new figure in Appendix 7 to provide a 

more quantitative comparison of index performance. 

 

 

 

                 ********************** Thank You ********************** 


