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Abstract. Modern hydrology is embracing a data-intensive new era, information from diverse sources is currently providing 10 

support for hydrological inferences at broader scales. This results in a plethora of data reliability-related challenges that remain 

unsolved. The water budget non-closure is a widely reported phenomenon in hydrological and atmospheric systems. Many 

existing methods aim to enforce water budget closure constraints through data fusion and bias correction approaches, often 

neglecting the physical interconnections between water budget components. To solve this problem, this study proposes a 

Multisource Datasets Correction Framework grounded in Physical Hydrological Processes Modelling to enhance water budget 15 

closure, termed PHPM-MDCF. The concept of decomposing the total water budget residuals into inconsistency and omission 

residuals is embedded in this framework to account for different residual sources. We examined the efficiency of PHPM-

MDCF and the residuals distribution across 475 CONUS basins selected by hydrological simulation reliability. The results 

indicate that the inconsistency residuals dominate the total water budget residuals, exhibiting highly consistent spatiotemporal 

patterns. This portion of residuals can be significantly reduced through PHPM-MDCF correction and achieved satisfactory 20 

efficiency. The total water budget residuals have decreased by 49% on average across all basins, with reductions exceeding 

80% in certain basins. The credibility of the correction framework was further verified through noise experiments and 

comparisons with existing methods. In the end, we explored the potential factors influencing the distribution of residuals and 

found notable scale effects, along with the key role of hydro-meteorological conditions. This emphasizes the importance of 

carefully evaluating the water balance assumption when employing multisource datasets for hydrological inference in small 25 

and humid basins. 

1 Introduction 

Advances in measurement and monitoring techniques have revolutionized the hydrology research through providing an 

unprecedented opportunity to detect hydrology process (Sivapalan and Blöschl, 2017). Data availability is no longer the key 

constraint for conducting large-scale research as it once was. Approaches that works with large samples and multisource data 30 
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are now more attractive for hydrological studies (Nearing et al., 2021). In the absence of satisfactory in-situ observation, we 

can freely access data from different sources as complement, such as satellite remote sensing, radar, model simulation and 

reanalysis (Refsgaard et al., 2022). As such, whether at the watershed scale or the modelling scale (e.g., grid cells), we have 

multiple choices to represent water budget components, thereby facilitating hydrological inferences. This reality is also referred 

to as the fourth paradigm of hydrology (Peters-Lidard et al., 2017). 35 

 

However, every coin has two sides, the abundance of available data has brought challenges in data selection, confronting 

contemporary hydrologists with the task of filtering datasets. After excluding datasets that do not match the research scale and 

spatiotemporal coverage, we still have no idea about how to select the most suitable one from remaining datasets. In the past 

decades, extensive efforts have been made to evaluate the accuracy of datasets by referencing in-situ observation or ensemble 40 

of multisource data (Sahoo et al., 2011; Tang et al., 2020; Ansari et al., 2022). However, the fact remains that the “true value” 

is perpetually unattainable, rendering any form of reference data uncertain. For example, the undercatch phenomenon in rainfall 

measurements is well known, and it is difficult to eliminate the bias even with the application of undercatch corrections 

(Robinson and Clark, 2020). The issue of scale mismatches and the availability of site data in certain regions also pose 

challenges for data evaluation. Therefore, we argue that the evaluation based on reference data lakes sufficient reliability, 45 

highlighting the need for more widely applicable criteria in evaluating and correcting datasets from various sources. 

 

The law of mass conservation, typically represented in hydrology by the water balance, constitutes a fundamental principle 

applicable universally across time and space. Thus, the terrestrial water budget describes the physical consistency among 

different components of the water balance, which can serve as a criterion for evaluating and correcting datasets. For a closed 50 

basin, the water budget can be mathematically expressed as (Lehmann et al., 2022), 

d𝑇𝑊𝑆

d𝑡
= 𝑃 − 𝐸𝑇 − 𝑅, (1) 

where 
d𝑇𝑊𝑆

d𝑡
 is change in terrestrial water storage, 𝑃  is precipitation, 𝐸𝑇  is evaporation, 𝑅  is runoff at the outlet. By 

incorporating data from different sources into Eq. (1), we can assess whether these data achieve closure of the water budget, 

thereby evaluating their reliability in depicting hydrological processes. If Eq. (1) is not satisfied, the residual term, known as 55 

water budget residuals, can quantify the extent of physical inconsistency among multiple datasets. A comprehensive review of 

the terrestrial water budget closure examination is given in Lv et al. (2017), interested readers are encouraged to refer to this 

work. The consensus in the recent scientific literature is that data inconsistency is widespread, attributed to different production 

processes among various datasets, and no single combination of datasets can fully close the water budget across all basins. 

Such inconsistency poses an obstacle to robust hydrological inferences (Beven, 2002). As an example of this, physically 60 

inconsistent forcing and evaluation data can mislead hydrological modelling and introduce significant uncertainty to model 
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inferences (Kauffeldt et al., 2013). To mitigate the impact of data inconsistency, it is essential to properly correct datasets and 

improve water budget closure. 

 

The pioneering work in enhancing water budget closure across different data sources through data correction was conducted 65 

by Pan and Wood (2006), who integrated a Constrained Ensemble Kalman Filter (CEnKF) to impose constrains on terrestrial 

water budget. This technique was subsequently developed and applied in several studies (Sahoo et al., 2011; Zhang et al., 

2016). Similar extension methods include Multiple Collocation (MCL) and Proportional Redistribution (PR) method 

(Abolafia-Rosenzweig et al., 2020; Abhishek et al., 2022; Luo et al., 2023). These methods are all grounded in the data fusion 

process, deriving uncertainties for each water budget component from multiple data sources. Estimated uncertainties facilitate 70 

the determination of weights for allocating closure residuals, ultimately achieving a zero residual. Overall, these methods can 

be collectively referred to as data fusion-based closure correction approaches. Another recently developed method to constrain 

water balance employs an optimization-based strategy, exhibiting improved performance in long-term consistency with 

GRACE terrestrial water storage change (Petch et al., 2023). Other approaches, such as post-Processing Filtering technique 

(PF) and bias correction method (Munier et al., 2014; Weligamage et al., 2023), can also be helpful in closing water budget. 75 

However, the closure constraints imposed by the above methods (hereafter referred to as traditional methods) have been 

questioned, with Abolafia-Rosenzweig et al. (2020) arguing about the potential incorrect assignment of residuals. If a 

component in the water budget exhibits a bias, closure correction algorithms may mistakenly apply the bias closure constraint 

to other components. The intrinsic attribution of this issue lies in the algorithms neglecting the physical correlations among 

components and imposing strict constraints on water budget closure by integrating uncertainties from multisource data. Or in 80 

other words, assigning closure residuals exclusively based on the magnitude of priori data uncertainty, without accounting for 

the distribution of components in hydrological processes, such as the partitioning of precipitation, may be unrealistic and could 

lead to erroneous allocation of closure residuals. In the context of applying such closure constraint, it becomes evident that the 

precision of certain individual components may notably deteriorate, particularly when uncertainties are challenging to quantify 

(Luo et al., 2023). 85 

 

As is well-known, hydrological models, whether data-driven or physics-based, aim primarily to characterize hydrological 

processes by accurately allocating water quantities among components such as precipitation, evaporation, runoff, and soil 

moisture. In abstract terms, hydrological models can be regarded as directed graphs of fluxes, with nodes representing state 

variables and edges symbolizing fluxes or transitions (Wang and Gupta, 2024). Such directed graph is computationally closed, 90 

indicating that hydrological models inherently exhibit the essential characteristic of water budget closure. A clear piece of 

evidence comes from the data consistency evaluation conducted by Penning De Vries et al. (2021), who found that the dataset 

from the same model (i.e., precipitation and evaporation from ERA5 coupled model) manifested a well-closed system. In this 

sense, hydrological models appear capable of guiding the allocation of closure residuals to enhance water budget closure. 

Another distinctive feature of hydrological models, known as error adaptability or calibration compensation capability, 95 
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underscores their pivotal role as innovative solutions for addressing challenges in achieving water budget closure. The feature 

emphasizes that hydrological models can, to some extent, compensate for biases in model inputs, outputs and structure, 

allowing satisfactory performance even when the utilized datasets exhibit certain inaccuracies (Wang et al., 2023). This 

provides hydrological models with the potential to integrate forcing and evaluation datasets into a unified water balance system 

under the soft constraint paradigm. 100 

 

Here we propose another critical question regarding achieving water budget closure: Is the terrestrial water budget described 

by Eq. (1) fully comprehensive? This issue came to our attention through a recent study by Gordon et al. (2022), who examined 

the widespread validity of the Closed Water Budget (CWB) hypothesis (i.e., formulated by Eq. (1)) across 114 highland 

catchments using multiple data sources. Surprisingly, their results revealed that the CWB hypothesis failed to hold in 75% to 105 

100% of the catchments. They highlighted that such failure of the CWB hypothesis could propagate widely in hydrological 

inferences relying on it, potentially leading to erroneous conclusions. To provide a physical explanation for the invalidity of 

the CWB, they extended Eq. (1) by introducing an error term 𝑒 and additional term 𝐺, as depicted in Eq. (2). 

𝑒 + 𝐺 = 𝑃 − 𝐸𝑇 − 𝑅 −
d𝑇𝑊𝑆

d𝑡
, (2) 

The term 𝐺 accounts for the inter-basin groundwater fluxes that were not considered in the original formulation, while the term 110 

𝑒 addresses inconsistencies among the original datasets. Clearly, when applying the CWB hypothesis for data evaluation or 

correction, there is a tendency to prematurely assume the completeness of the applied formulas, potentially leading to 

significant biases in the final results. Furthermore, in practical application, besides groundwater, the Eq. (1) may inadvertently 

omit other water fluxes and storages. For instance, utilizing gravity changes observed by GRACE to estimate TWS may 

encompass inter-basin water transfers or irrigation, which can have substantial influence in studies conducted at relatively 115 

small scales (Lv et al., 2017). Partial observations of precipitation, evaporation and runoff can also introduce biases into this 

equation. To distinguish the omission from total water budget residuals among the original datasets, we further extend Eq. (2) 

to obtain the generalized form as follows: 

𝑅𝑒𝑠 = 𝑅𝑒𝑠𝑖 + 𝑅𝑒𝑠𝑜 = 𝑃 − 𝐸𝑇 − 𝑅 −
d𝑇𝑊𝑆

d𝑡
, (3) 

where 𝑅𝑒𝑠 is the total water budget residuals; 𝑅𝑒𝑠𝑖  is the inconsistency residuals, accounting for the fraction of water non-120 

closure due to physical inconsistencies among the original datasets; 𝑅𝑒𝑠𝑜 is the omission residuals, explaining the fraction 

resulting from omitted fluxes and storages in the original equation. We assume that Eq. (3) offers a comprehensive description 

of the terrestrial water budget and can be examined using multisource datasets. This advancement, compared to previous 

studies, breaks down the sources of water budget residuals, offering guidance for data evaluation and correction. 

 125 

Given the current increase in data availability but concerns over reliability, this study aims to address the following scientific 

questions through physical hydrological processes modelling: (a) How can the total water budget residuals be quantitatively 
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decomposed into inconsistency and omission residuals based on Eq. (3)? (b) From a large-sample perspective, what are the 

distribution patterns of these residuals? (c) What strategies can be employed to achieve water budget closure through physical 

hydrological processes modelling while strengthening the physical coherence among datasets from different sources? By 130 

addressing these questions, we highlight the necessity for a comprehensive description of the water budget equation to 

effectively evaluate and correct water non-closure. Furthermore, we developed a multisource datasets correction framework 

based on decomposition of water budget residuals and multi-objective calibration within hydrological modeling. The presented 

framework, providing the capability to enhance the water budget closure and hydrological connections among multisource 

datasets, was applied to a large-sample basins dataset across CONUS. 135 

 

The remainder of this paper is organized as follows. Sect. 2 describes the main datasets used in this research. Sect. 3 then 

details the methods for decomposing water budget residuals and the multisource data correction framework with a hydrological 

model. The results are presented and discussed in Sect. 4 and Sect. 5. Sect. 6 provides the main conclusions and outlook of 

this study. 140 

2 Data 

2.1 The CAMELS dataset 

Motivated by Gupta’s call for large sample hydrological studies to strike a balance between depth and breadth (Gupta et al., 

2014), in this study, we attempt to carry out analysis on a widely used large sample dataset, i.e., the Catchment Attributes and 

Meteorology for Large-sample Studies (CAMELS) community dataset. This dataset, developed by Newman et al. (2015) and 145 

Addor et al. (2017), encompasses daily forcing, hydrologic response, and basin attributes for 671 basins across the contiguous 

United States (CONUS), characterized by minimal human disturbance. Drawing upon this dataset, a substantial body of 

experimental studies have been conducted, covering model intercomparison, analyses of hydrological scale effects, evaluations 

of model performance metrics, parameter estimation and exploration of machine learning models (Knoben et al., 2020; Beven, 

2023). Grounded in large sample inquiries, these studies systematically explore the prevalent heterogeneity from different 150 

perspectives, yielding more robust and widely applicable conclusions. 

 

In the original work proposed CAMELS dataset by Newman et al. (2015), a widespread physical inconsistency behaviors were 

observed, characterized by an imbalance between precipitation and runoff. In the spatial depiction within the Budyko 

framework, certain basins exhibited plotting points exceeding the water limit line, indicating a surplus of runoff relative to 155 

precipitation. They emphasized the necessity for corrections to be applied to datasets. For the aforementioned reasons, 

investigation of the decomposition and reconciliation of water budget residuals on the CAMELS dataset is both necessary and 

feasible. In practice, the in-situ runoff data observed by USGS National Water Information System server was used. 

Considering the availability of data products, our analysis is conducted over a common overlapping period spanning from 
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1998 to 2010. During this period, eighteen basins with missing runoff observations were excluded in advance. Figure 1 presents 160 

a regional profile and the detailed information on the excluded basins is provided in supplemental Table S1. 

 

Figure 1. Geographic representation of the CAMELS Basins Dataset (Newman et al., 2015 and Addor et al., 2017). Eighteen basins excluded 

from the analysis are denoted by red dots, whereas the study incorporates the remaining 653 basins, emphasized with yellow shading. The 

copyright of the background map belongs to Esri (Gray Canvas Basemap). 165 

2.2 Datasets for constructing water budget equation 

One of the main aims of this study is to investigate the decomposition of water budget residuals and correction to datasets, 

rather than comparing the differences and rankings of closure residuals across different dataset combinations. In line with this 

objective, referring to the work of Petch et al. (2023), we strategically selected single product for each water component to 

construct water budget equation, thereby laying the foundation for further research. In making this selection, we considered 170 

not only the resolution and spatiotemporal coverage of the products but also took into account recommendations from previous 

data evaluation studies regarding data accuracy (Kittel et al., 2018; Lehmann et al., 2022). All datasets used are summarized 

in Table 1. Notably, the term “measurements” referred in this work are derived from multisource datasets and do not 

specifically refer to in-situ measurements. 

 175 

Specifically, daily precipitation estimation derived from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) is used 

in this study. The well-known international NASA project aims to comprehensively estimate all forms of precipitation, 

including rain, drizzle, snow, graupel, and hail, through the integration of satellite data and ground-based rain gauge 

measurements (Huffman et al., 2016). The accuracy of TRMM dataset has validated by many studies through comparisons 

with observation data and other reanalysis datasets (Kittel et al., 2018; Villarini et al., 2009). For evaporation, we utilized the 180 

third version of Global Land Evaporation Amsterdam Model (GLEAM v3) product (https://www.gleam.eu/), which employs 
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a set of algorithms to separately estimate the different components of land evaporation (Miralles et al., 2011). Several studies 

have demonstrated that this product aligns well with flux measurements and multisource product ensemble (Munier et al., 

2014; Robinson and Clark, 2020). And, as mentioned above, the runoff measurements on a basin scale are provided by the 

CAMELS dataset, which is derived from site observations. 185 

 

Finally, the most challenging component to estimate in the water budget equation is the Terrestrial Water Storage Change 

(TWSC) as it includes water both on and below the Earth’s surface. In the previous studies, the measurement of gravity field 

changes, as provided by the Gravity Recovery And Climate Experiment (GRACE) product, has been frequently employed for 

the estimation of the TWSC (Luo et al., 2020; Kabir et al., 2022). This approximation is based on the assumption that, for a 190 

given large-scale basin, variations in mass are primarily attributed to changes in TWSC. However, the assumption is fragile 

when applied to small basin, leading to significant uncertainty in estimating TWSC for basins with areas less than 63,000 km2 

(Lehmann et al., 2022). This study focuses on the basins dataset from the CAMELS, with most basin areas being smaller than 

this threshold. To avoid introducing additional uncertainty into the analysis, we need alternative methods to estimate TWSC. 

 195 

Assuming that TWSC can be retrieved through a combination of different water storages, we obtained the four-layer soil 

moisture from ERA5 Land and Snow Water Equivalent (SWE) from GlobSnow to estimate overall TWSC. This approach has 

been implemented in the investigation of Hoeltgebaum and Dias (2023), yield a high consistency between estimated TWSC 

and GRACE observation (i.e., correlation coefficient exceeding 0.71). Another consideration in this method is that the 

decomposed TWSC products (i.e., soil moisture and SWE) can correspond to the results simulated by hydrological model, 200 

thereby allowing us to correct water budget residuals, as discussed later. 

 

Overall, all datasets were resampled to a daily time step, and then aggregated over basins through simple averaging to perform 

analysis of water budget closure on a basin scale from 1998 to 2010. Including the observed runoff from CAMELS, all data 

were converted to water depth (mm) to construct a unified water budget equation. It is noteworthy that there are certain missing 205 

data in GlobSnow SWE varying across basins. To fill these data gaps, we set a window of length 5 centred on missing data. 

We applied linear interpolation within the window for gap filling. If linear interpolation was not feasible due to, for instance, 

the absence of valid values within the window, mean climatology was employed to fill the missing data. To illustrate this, we 

randomly selected nine basins and visually depicted the gap filling process in supplemental Fig. S1. 

210 
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Table 1. Overview of the products for constructing water balance equation used in this study. 

Variable Product 

Original Resolution 

Original Period Reference 

Spatial Temporal 

Precipitation TRMM 3B42V7 0.25°×0.25° Daily 1998-2019 Huffman et al. (2016) 

Evaporation GLEAM v3.8a 0.25°×0.25° Daily 1980-2022 Martens et al. (2017) 

Soil moisture layer 

1/2/3/4 
EAR5 Land 0.1°×0.1° Hourly 1950-present 

Muñoz Sabater et al. 

(2021) 

Snow water 

equivalent 
GlobSnow v3.0 25km×25km Daily 1979-2018 Luojus et al. (2021) 

Runoff CAMELS USGS Basin scale Daily 1980-2010 Newman et al. (2015) 

3 Methods 

To leverage physical hydrological processes modelling for the decomposition and correction of water budget residuals, the 

following assumptions are necessary: (1) the hydrological model provides a reliable representation of hydrological processes, 

ensuring an accurate partitioning of input precipitation; (2) the uncertainties associated with the model forcing and structure 215 

can be considered negligible during the modelling process. These two hypotheses form the foundation of this work. To ensure 

the validity of Hypothesis 1, we employed multiple evaluation variables and corresponding metrics to guarantee the overall 

reliability of the model, which will be detailed in the model setup section. Additionally, it is pertinent to acknowledge the 

Hypothesis 2 represents a strong assumption, carrying inherent uncertainties. Despite this, it is necessary for the feasibility of 

the overall work, and we will further explore the influence of this hypothesis on the results in the discussion section. 220 

3.1 Decomposition of water budget residuals: inconsistency and omission residuals 

Our strategy for decomposing water budget residuals is grounded in the computational closure of the hydrological model. As 

previously discussed, conceptualized as a closed directed graph, the difference between the inputs and outputs of the model 

must necessarily equal the change in state variables. Stated differently, there is a water balance between the forcing and 

simulated variables of the model, with no physical inconsistency residuals present. Therefore, setting the inconsistency 225 

residuals in Eq. (3) to zero allows us to derive the water budget equation of the hydrological model as follows: 

𝑅𝑒𝑠𝑜 = 𝑃𝑓𝑜𝑟𝑐𝑖𝑛𝑔 − 𝐸𝑇𝑠𝑖𝑚 − 𝑅𝑠𝑖𝑚 −
d𝑇𝑊𝑆𝑠𝑖𝑚

d𝑡
, (4) 

where the subscripts “forcing” and “sim” denote the forcing and simulation values, respectively. It is crucial to clarify that all 

variables in Eq. (4) are derived from the model itself, rather than from measurement, and can therefore be considered physically 

consistent. On the other hand, integrating the multisource datasets described in Sect. 2.2 into Eq. (3) yields the total water 230 

budget residuals (i.e., 𝑅𝑒𝑠). For convenience, we refer to the water budget characterized by the hydrological model as the 

simulation system and the one constructed by multisource datasets as the measurement system. When the hydrological model 
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calibrated against multiple variables measured by the multisource datasets and achieves reliable performance, we consider the 

water budget represented by the simulation and measurement systems to be comparable. At this point, the difference between 

Eq. (3) and (4) represents the omission residuals (i.e., 𝑅𝑒𝑠𝑖 = 𝑅𝑒𝑠 − 𝑅𝑒𝑠𝑜), indicating the water fluxes or storages omitted by 235 

the original equation. Thus, the total water budget residuals can be decomposed into inconsistency and omission residuals. It 

is noteworthy that while the inconsistency residuals are absent in the simulation system—a physical consistent system—

omission residuals may still exist due to inherent omissions in the original equation. Hence, the left-hand side of the Eq. (4) 

may not be zero. 

 240 

Considering the comparability of available datasets and model simulations, we have developed more specific expressions for 

Eq. (3) and (4), as depicted below. 

𝑅𝑒𝑠 = 𝑅𝑒𝑠𝑖 + 𝑅𝑒𝑠𝑜 = 𝑃𝑇𝑅𝑀𝑀 − 𝐸𝑇𝐺𝐿𝐸𝐴𝑀 − 𝑅𝑈𝑆𝐺𝑆 −
d𝑆𝑊𝐸𝐺𝑙𝑜𝑏𝑆𝑛𝑜𝑤+d𝑆𝑀𝐸𝑅𝐴5

0~50𝑐𝑚+d𝑆𝑀𝐸𝑅𝐴5
50~289𝑐𝑚

d𝑡
, (5) 

𝑅𝑒𝑠 = 𝑅𝑒𝑠𝑜 = 𝑃𝑇𝑅𝑀𝑀 − 𝐸𝑇𝑠𝑖𝑚 − 𝑅𝑠𝑖𝑚 −
d𝑆𝑊𝐸𝑠𝑖𝑚+d𝑆𝑀𝑆𝑠𝑖𝑚+d𝐺𝑅𝑆𝑠𝑖𝑚

d𝑡
, (6) 

where the subscripts indicate variable sources, such as measurements and simulated values, and superscripts for 𝑆𝑀 denote 245 

the depth of soil layers to be aggregated. The above water budget equations are discretized employing a simple central 

difference scheme with a two-day time step at the daily scale (Petch et al., 2023). Then, the residuals are calculated at daily 

scale and subsequently aggregated to the monthly and annual scales for further analysis. 

 

It is important to further clarify that the hydrological model used in this study (see below) divides total soil moisture into soil 250 

water storage (𝑆𝑀𝑆𝑠𝑖𝑚 , hereafter SMS) and groundwater reservoir storage (𝐺𝑅𝑆𝑠𝑖𝑚 , hereafter GRS). The soil moisture 

measurements, ERA5, on the other hand, employs the H-TESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges 

over Land) land surface scheme to characterize land surface hydrological processes (Balsamo et al., 2009), dividing soil into 

four layers (i.e., 0~7 cm, 7~28 cm, 28~100 cm and 100~289 cm). In the H-TESSEL model, the upper 50 cm of soil column is 

defined as the effective depth for generating surface runoff. To ensure consistency between the simulation and measurement 255 

systems, we match the top 50 cm of ERA5 soil moisture with the soil water storage in the hydrological model used, while the 

depth range of 50 cm to 289 cm corresponds to the groundwater reservoir storage in the same model. 

3.2 Multisource datasets correction framework for achieving water budget closure 

Here, we introduce an innovative Multisource Datasets Correction Framework grounded in Physical Hydrological Processes 

Modelling to enhance water budget closure, termed PHPM-MDCF. Unlike traditional correction methods that use uncertainty 260 

(typically derived from the variance of multisource datasets for the same variable or priori estimation) as a weight for allocating 

water budget residuals, this framework leverages the hydrological model—a physical consistent system—as a constraint to 



10 

 

correct the measurement system. Figure 2 indicates the flowchart for the correction framework and the procedure is described 

as follows: 

 Step 1: Initialization of the basic computing unit. Calibrate hydrological model, calculate the total water budget residuals 265 

from the original datasets, and then decompose them into inconsistency and omission residuals following the method 

outlined in Sect. 3.1. This step is denoted as iteration 0. 

 Step 2: Correction for the inconsistency residuals. Allocate inconsistency residuals based on the magnitude of differences 

(i.e., the distance between simulation and measurement systems) between simulated and measured values for each 

variable in Eq. (5) and (6). This difference indicates the correction direction and magnitude for each variable, which 270 

facilitates the convergence of the measurement system toward the simulation system. Here, an initial correction rate of 

0.5 is set to gradually correct the multisource datasets, thereby avoiding potential uncertainties that arise from excessive 

correction. Formally, the allocation of inconsistency residuals can be described by the following equation: 

 𝑀𝑐
𝑣 = 𝑀𝑜

𝑣 − 𝑅𝑒𝑠𝑖 ×
𝑑𝑣

𝑑𝑎𝑙𝑙
× 𝛼, (7) 

 where 𝑀𝑐
𝑣 is the corrected measurements of variable 𝑣, and 𝑀𝑜

𝑣 is the original measurements; 𝑑𝑣 is the difference between 275 

simulation and measurement of variable 𝑣, and 𝑑𝑎𝑙𝑙  represents the aggregate of differences for all variables; 𝛼 is the 

correction rate, with an initial value of 0.5. 

 Step 3: Calibration and evaluation of the model. Recalibrate and evaluate the hydrological model using the datasets 

corrected in the previous step to assess the reliability of this correction. If the recalibrated model yields unreliable 

simulations, consider this correction excessive, halve the correction rate, and repeat Step 2. Otherwise, maintain the 280 

correction rate and proceed with the next iteration of correction. The consideration behind this step is that excessive 

correction may lead to the measurement system going out of bounds, preventing further convergence of the two systems. 

This is to say, the iterative process involves continual trial and error, with each error prompting us to approach the next 

correction more cautiously. 

 Step 4: Iteration and termination of correction. Iterate through Steps 2-3 to gradually correct the datasets until the 285 

inconsistency residuals decreases to 10% of its initial value or the correction rate falls below 4%. 

 

The design goal of the PHPM-MDCF is to impose soft constraint on multisource datasets through the calibration compensation 

capability and the physical consistency feature of the hydrological model. Such a constraint is referred to as “soft” because, 

unlike traditional methods that import “hard” constraints, the correction process does not strictly require residuals to be zero 290 

immediately. Instead, it aims to advance the convergence between the simulation and measurement systems, as illustrated in 

Fig. 3. In extreme case, when the measurement system is corrected to be identical to the simulation system, all measurements 

would become physically consistent. This process can be seen as a collapse from Eq. 5 to Eq. 6. The efficiency of ultimately 
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closing residuals depends on the ability of model to accurately characterize real world, and this can vary across different 

locations. 295 

 

Notably, the correction is performed at the daily scale, aligning with the model step. In the subsequent application of the 

PHPM-MDCF, the measurements are derived from the data provided in Sect. 2.2. In addition, through experimentation, the 

parameter settings in the PHPM-MDCF (i.e., initial correction rate, decay rate of the correction rate, and correction termination 

threshold) have been tailored to suit the current study area (Table S2). When applying this framework to other regions, 300 

additional adjustments and testing may be required. 

 

Figure 2. Flowchart of the multisource datasets correction framework grounded in physical hydrological processes modelling, PHPM-

MDCF. 



12 

 

 305 

Figure 3. Illustration of the correction process advancing convergence between the simulation and measurement systems. The measurement 

system is corrected to approach the simulation system, while the simulation system is refined via parameter calibration to better approximate 

the measurement system. As a result, the distance between the two systems is reduced, leading to better physical consistency in the corrected 

measurement system. 

3.3 Model setup and calibration 310 

In the present investigation, we employed the Hydrologiska Byråns Vattenbalansavdelning (HBV) model, to implement our 

correction framework. The conceptual HBV model was developed by the Swedish Meteorological and Hydrological Institute 

(SMHI) in the 1970s (Bergström, 1976). Given its straightforward yet effective design and minimal input requirements, this 

model has attained broad recognition and application within the global hydrological modelling scientific community, which 

has also been tested in the CAMELS basins (Feng et al., 2022). Here we provide brief details and refer the reader to the above 315 

references for a fuller description. 

 

The basic structure of the HBV model comprises three main modules: the snow routine, soil moisture routine, and runoff 

routine, as illustrated in Fig. A1. Starting with precipitation forcing, water flux traverses through the three modules, 

accumulating in various state variables such as snow and soil water. Ultimately, water is released through three reservoirs—320 

soil moisture, upper zone, and lower zone reservoirs—as quick runoff, interflow, and base flow. Thus, the overall soil moisture 

can be divided into soil water storage (i.e., the first reservoir) and groundwater reservoir storage (i.e., the combination of the 

latter two reservoirs). In the current study, the HBV model is configured to run of a daily basis, aligning with both the forcing 

and evaluation datasets, ensuring the feasibility of subsequent correction. Table A1 lists the free parameters slated for 

calibration in the HBV model, providing their descriptions and respective ranges. 325 
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Here, a multi-objective global optimization algorithm, the Non-dominated Sorting Genetic Algorithm II (NSGA-II), is applied 

for parameter calibration of the HBV model. Owing to its optimization efficiency, this algorithm has been extensively used in 

hydrological modelling practices around the world (Mostafaie et al., 2018). For more details about the algorithm, see Deb et 

al. (2002). We implemented the calibration framework using the NSGA-II algorithm in a Python environment with the DEAP 330 

package (Fortin et al., 2012). Five calibration objectives are considered, including R (runoff), ET (evaporation), SMS (soil 

moisture storage), GRS (groundwater reservoir storage) and SWE (snow water equivalent). Meanwhile, the Kling-Gupta 

Efficiency (KGE) metric (Gupta et al., 2009) is utilized to evaluate the simulation performance of R and ET, while the Pearson 

correlation coefficients (r) is employed to evaluate the performance of SMS and GRS, considering potential discrepancies in 

their magnitudes arising from differences in soil layer depth. Finally, the Root Mean Square Error (RMSE) is applied to 335 

evaluate the simulation performance of SWE. Ideally, the optimal simulation is characterized by values of 1 for the first two 

metrics and 0 for the last one. The detailed description of the evaluation metrics is provided in Appendix B. 

4 Result 

4.1 Distribution of water budget residuals and its components across the CAMELS basins 

In this section, we investigate the spatiotemporal distribution of water budget residuals for each component decomposed using 340 

the method proposed in Sect. 3.1 across the large sample of the CAMELS basins. This result provides insights into the two 

primary sources of non-closure issue in water budget equation—physical inconsistencies among the original datasets and water 

fluxes or storage omitted in the original equation. To ensure the robustness of the results, as mentioned previously, it is essential 

that hydrological model reliably represent hydrological processes. With reference to previous studies (Knoben et al. 2019; 

Clark et al., 2021; Aerts et al., 2022), we have adopted KGE ≥ −0.41 and r statistically significant at the 5% level as criteria 345 

for guaranteeing reliable simulations. The multi-objective simulation performances of the HBV model are detailed in Appendix 

C. In general, the majority of basins (475, accounting for 72.24% of the total basins) achieved reliable simulations across all 

variables. Among them, we have observed that the central and western CONUS present relatively greater challenges for 

modelling. This pattern and its potential causes will be further explored in the ensuing discussion. 

 350 

Within the 475 basins demonstrating reliable simulations, in Fig. 4 we plotted the spatial distribution of the long-term monthly 

mean water budget residuals (𝑅𝑒𝑠), inconsistency residuals (𝑅𝑒𝑠𝑖), and omission residuals (𝑅𝑒𝑠𝑜). An important observation 

from comparing different rows of Fig.4 is that 𝑅𝑒𝑠 shares a similar spatial pattern with 𝑅𝑒𝑠𝑖 , whereas 𝑅𝑒𝑠𝑜 exhibits some 

differences. This pattern exists across different quantile ranges of the residuals. For instance, 𝑅𝑒𝑠 and 𝑅𝑒𝑠𝑖  both present an 

east-west gradient for three statistical measures (i.e., min, median, max), with low values occur along the western coastline 355 

and high values primarily concentrated in eastern inland basins. The exception is a cluster of low median values located in the 

central CONUS. Interestingly, the minimum values of 𝑅𝑒𝑠𝑜 display a contrasting spatial pattern, with higher values in the west 

and lower values in the east. The spatial difference in median and maximum values of 𝑅𝑒𝑠𝑜 are not pronounced. These patterns 
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lend support to the underlying assumption that the drivers of inconsistency residuals and omission residuals are fundamentally 

different, and thus can be decomposed from the total water budget residuals. 360 

 

Figure 5 further illustrates the temporal distribution patterns of the three residuals in terms of seasonality. It is readily 

discernible in the figure that the similarity between 𝑅𝑒𝑠 and 𝑅𝑒𝑠𝑖  reappears, manifesting distinct seasonal patterns with more 

pronounced negative trends during the cold seasons (i.e., October to the following April) and positive trends during warm 

seasons (i.e., May to September). On the contrary, 𝑅𝑒𝑠𝑜 tends to be mainly positive except from September to November; its 365 

extent of variability is also significantly smaller than that of the other two residuals. In regard to magnitude, 𝑅𝑒𝑠𝑖  is much 

greater than 𝑅𝑒𝑠𝑜 , whether considering positive or negative bias. From the above results, we can conclude that 𝑅𝑒𝑠𝑖  

predominates within 𝑅𝑒𝑠, exhibiting significant spatiotemporal difference from 𝑅𝑒𝑠𝑜. These two residuals may combine or 

offset each other to collectively form the total water budget residuals. The potential factors affecting the spatiotemporal 

distribution and proportion of 𝑅𝑒𝑠 will be further investigated in Sect. 4.4. 370 

 

Figure 4. Spatial distribution of long-term monthly mean water budget residuals (𝑅𝑒𝑠), inconsistency residuals (𝑅𝑒𝑠𝑖 ), and omission 

residuals (𝑅𝑒𝑠𝑜) across 475 CAMELS basins with reliable simulations. The unit of residuals is “mm”. 
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Figure 5. Temporal distribution of monthly water budget residuals (𝑅𝑒𝑠), inconsistency residuals (𝑅𝑒𝑠𝑖), and omission residuals (𝑅𝑒𝑠𝑜) 375 

across 475 CAMELS basins with reliable simulations. Boxplot-like diagrams describe variability across catchments, and outliers represent 

the 10th and 90th percentiles. The unit of residuals is “mm”. 

4.2 Efficiency of the PHPM-MDCF 

We are now tackling the third question through the proposed multisource datasets correction framework (PHPM-MDCF) 

across the 475 CAMELS basins with reliable simulations. For illustration, several case basins have been selected to 380 

demonstrate the correction process and its efficiency. 

 

Figure 6 shows the correction results at the case basin numbered 1013500 (for more details about the basin number, see 

Newman et al., 2015). As expected, the time series of 𝑅𝑒𝑠 and 𝑅𝑒𝑠𝑖  after correction (red lines) tend to be flatter and closer to 

zero compared to their uncorrected counterparts (blue lines). This becomes more apparent as the timescale increases. However, 385 

despite recalibrating the model with corrected datasets, 𝑅𝑒𝑠𝑜 driven by the omission in water budget equation exhibited no 

substantial changes before and after correction (e.g., the monthly mean absolute values maintain around 6.5 mm, see Fig 6f). 

This phenomenon occurs because we only corrected the inconsistency residuals with reference to the simulation system, while 

the omission accounting for addition water terms should not be corrected in the existing datasets. 

 390 

To get an impression of the PHPM-MDCF correcting water budget residuals, the bottom row of Fig. 6 shows the variation of 

mean absolute values of three residuals with increasing correction iterations at the monthly scale. The results indicated that the 

correction process led to a significantly reduction in 𝑅𝑒𝑠 and 𝑅𝑒𝑠𝑖 , decreasing from 42.8 mm and 44.3 mm to 6.9 and 8.6 mm 
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(approximately 83.9% and 80.7% reduction). Although water budget residuals cannot be fully corrected to zero in this 

framework (as they do in traditional methods), we argue that this correction efficiency is satisfactory enough. It is rooted in 395 

physical hydrological process modelling, thus potentially strengthening the physical relationships among the components of 

the water balance. The final corrected result for this case basin are presented in Fig. S2, depicting the time series of multisource 

datasets before and after correction. In the following sections, we will provide further evidence of the credibility of this 

correction framework. 

 400 

The correction results for several other case basins (i.e., numbered as 1137500, 2177000, 6311000 and 14092750) are presented 

in Fig. S3-6. Their absolute mean monthly residuals decreased by 70.4%, 58.1%, 40.3%, and 54.0%, respectively, providing 

evidence for the effectiveness of the PHPM-MDCF. To have a clearer idea of the ability of the correction framework to reduce 

water budget residuals across all the CAMELS basins, Fig. 7 shows the map of the percentage reduction in monthly total water 

budget residuals after corrections. In general, the PHPM-MDCF demonstrated robust performance across most basins, with an 405 

averaged reduction percentage of 49% across all basins. The correction efficiency exhibits a latitudinal-dependent decline 

pattern, which primarily due to the small initial residuals in low latitude regions (Fig. 4). In high-latitude regions, such as the 

western coastline and eastern inland basins, the potential correction space is much larger, leading to higher correction efficiency 

(in terms of absolute value). 

 410 

Figure 6. Correction results of water budget residuals for multisource datasets at basin 1013500. (a-c) Time series of water budget residuals 

(𝑅𝑒𝑠), inconsistency residuals (𝑅𝑒𝑠𝑖), and omission residuals (𝑅𝑒𝑠𝑜) at daily, monthly and yearly scales, grey line represents residuals during 

the correction process. (d-f) Variation of long-term mean absolute values of three residuals with correction iterations at the monthly scale. 

The unit of residuals is “mm”. 
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 415 
Figure 7. The percentage reduction of monthly total water budget residuals after correction through the PHPM-MDCF. Zonal means (right 

panel) include mean (black scatters), median (black line) and range (gray shading). The vertical line indicates the mean value of -0.49 for all 

basins. 

4.3 Credibility of multisource datasets correction 

4.3.1 Convergence between simulation and measurement system 420 

As we stated before, the core objective of the PHPM-MDCF is to promote the convergence between the simulation and 

measurement systems (Fig. 3). In fact, this process can be divided into two parts. The first part, namely the measurement 

system approaching the simulation system, which is implemented by correction procedures, has gained confidence from the 

significant reduction in the inconsistency residuals (Fig. 6). On the other hand, to illustrate the convergence of the simulation 

system towards the measurement system, we present the changes in model simulation performance before and after correction 425 

of case basin 1013500, as depicted in Fig. 8. From the figure, we can clearly see that both the population solution sets (ranging 

from light to darker grey scatters) and the Pareto fronts (ranging from blue to red scatters) tend to the optimal point at the upper 

right corner after correction. More intuitively, Fig. S7 presents a comparison of measurements and simulations for each variable 

before and after correction. It is evident that the relationship between measurements and simulation is significantly 

strengthened after correction. These results suggest that the PHPM-MDCF has the ability to enhance the convergence between 430 

the simulation and measurement systems, supporting the credibility of the correction results to some extent. 
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Figure 8. Comparison of multivariable simulation performance before and after correction at basin 1013500. Light grey and dark grey 

indicate population solution sets before and after correction, and blue and red indicate Pareto fronts before and after correction. Metrics 

evaluating SWE simulation performance have been normalized for consistency. The subplot in the second row, second column shows that 435 

the evaporation simulation maintains highly accurate at this basin, due to the alignment between the HBV algorithm and measurements. 

4.3.2 Noise experiments 

To further demonstrate the credibility of multisource datasets correction, we designed a series of noise experiments and applied 

them to the case basin 1013500, therefore examining whether the PHPM-MDCF can effectively handle the manual noises and 

produce robust correction results. These experiments are summarized in Table 2, where the first three experiments set different 440 

types of single-point noise at different positions of the same original datasets, and the last experiment adds an equal-length 

Gaussian white noise sequence to the runoff sequence. Eventually, two new noisy datasets were generated, as illustrated in 

Fig. S8 and S9. For clarity, we refer to them as NS1 (i.e., noise sequence) and NS2, and designate the noise-free datasets as 

OS (i.e., original sequence). The noise points are ordered from 1 to 4. 

 445 

First, we examined the adaptation capability of the PHPM-MDCF to single-point extreme errors. The top row of Fig. 9 

compares the differential form of the OS and NS1, highlighting the impact of the three noises. The first two noises introduce 

extremely unreasonable values in the runoff measurements, while the third noise significantly affects water balance by altering 
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all water budget variables, as evidenced in Fig. 9c-d. Through the application of the PHPM-MDCF for NS1 correction, we 

derived a new corrected sequence and compared it with the previous OS-based corrected sequence. In terms of runoff 450 

correction, as shown in Fig. 9c, whether extreme large or small noises (i.e., noise 1 and 2 with differences of three standard 

deviations), the correction process constrains them to reasonable runoff processes. This is achieved by the representation of 

physical hydrological processes underlying the correction strategy, which constrains the corrected values to avoid producing 

extreme outliers. Furthermore, water imbalance caused by combination of multivariable single-point noises can also be 

constrained to minimal levels through correction (Fig. 9d). 455 

 

Another concern here is whether the correction of extreme noises in runoff will propagate to other variables, potentially leading 

to a series of unreasonable correction results, as questioned by Abolafia-Rosenzweig et al. (2020) regarding traditional methods. 

In Fig. S10, we specifically focus on the correction results around three single-point noises to address this question. The fact 

that simultaneous corrections of other variables during extreme runoff noises correction did not significantly differ from OS-460 

based corrections further enhances our confidence in PHPM-MDCF. It suggests that the soft constraints based on physical 

hydrological processes will not lead to compensatory errors, as seen in traditional methods due to the rigid allocation of water 

budget residuals. From a theoretical perspective, the PHPM-MDCF assigns the weights of residual correction based on the 

distance between measurements and simulation for each variable. In the presence of a single extreme bias, the large distance 

between the measurement and simulation of the corresponding variable leads to a larger correction being applied to that 465 

variable, while the weights for other variables remain unaffected. However, in traditional methods, the correction weight for 

each variable remain constant over time, and the final residuals are constrained to zero. This leads to the propagation of extreme 

biases across different variables. 

 

Subsequently, we assessed the robustness of correction results after incorporating Gaussian white noise into the original 470 

sequence. From the comparison between OS-based and NS2-based correction results (Fig. 10), it can be seen that the addition 

of Gaussian white noise slightly changed the correction in runoff, namely a minor decrease in the high-value range (with a 

slope less than 1). However, the overall evolution trend of runoff remains unchanged, as it is still constrained by the same 

hydrological physical processes. In such a basis, as excepted, the correction of other variables is minimally affected by 

Gaussian white noise in runoff. 475 

 

In summary, the results yield from the above experiments indicate that both single-point noise and Gaussian white noise have 

minimal impact on the corrections. The final correction results are constrained by the hydrological model, with random errors 

in measurements not significantly altering the allocation of water budget residuals. The physical relationships among various 

water budget variables, as representation by the model, are also imposed onto the measurements through the correction process.480 
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Table 2. Description of the noise experiments to examine the credibility of multisource datasets correction. 

ID Description Position of the noises Noise sequence 

Exp. 1 A single positive-biased noise is added to R, with a magnitude of three 

standard deviations 

Noise1: 1998-09-18 

NS1 
Exp. 2 A single negative-biased noise is added to R, with a magnitude of three 

standard deviations 

Noise2: 1999-04-26 

Exp. 3 A set of positive-biased noise at the same position are added to R, ET, SMS, 

GRS, and SWE, with a magnitudes of one standard deviation 

Noise3: 2001-12-16 

Exp. 4 A series of zero-mean random Gaussian white noise is added to R, with a 

standard deviation of 20% relative to the original sequence 

Noise4: the entire sequence NS2 

 

Figure 9. Correction results for multisource datasets corresponding to noise experiments 1-3. (a-b) Time series of OS and NS1 in form of 

differences. (c) Comparison among the runoff noise sequence (NS1), OS-based runoff corrected sequence (Corr OS), and NS1-based runoff 

corrected sequence (Corr NS1). (d) Comparison of water budget residuals generated by the three sequences at daily scale.  485 
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Figure 10. Correction results for multisource datasets corresponding to noise experiments 4. (a) Comparison among the runoff noise 

sequence (NS2), OS-based runoff corrected sequence (Corr OS), and NS2-based runoff corrected sequence (Corr NS2). (b) Comparison of 

multivariable between OS-based correction and NS2-based correction in terms of standardized values. 490 

4.3.3 Comparison with existing correction methods 

Previous analysis and experiments clarify the unique characteristics of the PHPM-MDCF, which impose closure constraints 

based on physical hydrological processes. This differs significantly from existing correction methods, such as PR and CEnKF 

(Luo et al., 2023). In this section, we conducted a comparison analysis with them to further evaluate the reliability of the 

PHPM-MDCF. To implement existing correction methods, support from multisource measurements for each water component 495 

is essential for calculating the residual allocation weights. Here, we obtained monthly datasets from Lehmann et al. (2022), 

which include 11 precipitation, 14 evaporation (ET), 11 runoff (R) and 2 terrestrial water storage (TWS) datasets (Table S3). 

The datasets previously utilized in this study were also included for data fusion and correction (Table 1). In general, these 

datasets were processed to a uniform monthly scale and a common period (2003-2010), and subsequently aggregated to the 

basin scale. Several representative basins (numbered 1539000, 1557500, and 3070500) were selected to illustrate the 500 

differences between the PHPM-MDCF and existing methods, based on the spatial coverage of multisource datasets. 

 

Figure 11 presents a comparison of the monthly correction results from three methods (i.e., PR, CEnKF, and PHPM-MDCF) 

for three main water budget components at basin 1539000. Note that the measurements of precipitation are not compared here, 

as the PHPM-MDCF does not perform correction for this variable. It is clear from the figure that both the PHPM-MDCF and 505 

CEnKF method exhibit minimal correction of ET, whereas the PR method significantly expands the range of ET, particularly 

increasing seasonal peaks. This arises from the assumption of the PR method that relative errors are proportional to the relative 

magnitudes of each variable (Abhishek et al., 2022). However, in many cases, this assumption may not hold true. 
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In terms of the R and terrestrial water storage change (TWSC), the overall trends of the correction results from the three 510 

methods are generally consistent. However, the CEnKF appears to produce greater fluctuations in R and shows limited 

correction of TWSC (Fig. 11). This is linked to the computational mechanism underlying CEnKF, where the Kalman gain—

or the error covariance between measurements and the ensemble mean of multisource datasets—determines the magnitude of 

the residuals corrected for each variable. Specifically, the measurements of R to be corrected is based on in-situ obervations, 

while the multisource dataset includes model simulations and remote sensing values. Potential mismatches between the grids 515 

and basins may lead to significant discrepancies, resulting in an greater allocation of correction for R. On the contrary, 

measurements of TWSC are limited and primarily derived from GRACE, which results in relatively small error covariance 

and, consequently, smaller corrections. Furthermore, as previously noted, such method may generate unreasonable corrections 

due to propogation of extreme errors, such as the negative R values in Fig. 11b, which are more likely to occur in small basins. 

PHPM-MDCF avoids these issues by considering physical process constraints, leading to more reasonable corrections. 520 

Additionally, it does not rely on multisource datasets and can perform correction on any model time step and for any model 

output variable. The TWSC derived from SWE and SM is consistent with GRACE TWSC, which also demonstrates the 

reliability of this framework in retrieving TWSC. The comparison results for the other two representative basins are shown in 

Fig. S11-12, leading to similar conclusions. 
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 525 

Figure 11. Comparison of monthly correction results between the PHPM-MDCF and existing methods (PR and CEnKF) at basin 1539000. 

(a-c) Time series of the original and corrected measurements of evaporation, runoff, and terrestrial water storage change. (d-f) Scatter plots 

and regression lines of the original and corrected measurements. 

4.4 Potential influencing factors of water budget residuals 

4.4.1 Factors influencing spatial distribution 530 

In this section, we conducted a preliminary exploration of the potential factors influencing the formation and distribution of 

water budget residuals. As shown in Fig. 4, all three water budget residuals are subject to strong spatial organization, and these 

patterns are in agreement with previous studies. For example, Kauffeldt et al. (2013) found negative residuals (i.e., runoff 

coefficient > 1) along the western coastline of CONUS, while the eastern region showed notable positive residuals (i.e., P-R > 

ET). Other studies investigating water budget residuals with diverse dataset combinations have revealed similar spatial patterns 535 

(Zhang et al., 2016; Gordon et al., 2022). Therefore, we speculate that the spatial distribution of water budget closure is 

predominantly influenced by the characteristics of the basin. 

 

Here we focus on the total water budget residuals (i.e., 𝑅𝑒𝑠) and attempt to relate it with the hydro-meteorological conditions 

and the basin area. To bring out these relationships, from Fig. 12, three regression curves are obtained by correlating mean 540 

absolute residuals at different timescale with basin areas over 475 CAMELS basins. The negative gradients of the curves imply 



24 

 

a scale effect in the water budget non-closure phenomenon that as basin area increases, the water balance constructed from 

multisource datasets can be enhanced. Moreover, as expected, hydro-meteorological conditions within the basin play a crucial 

role in controlling the distribution of water budget residuals. The clear delineation between different levels of daily 

precipitation and runoff coefficient revealed in Fig. 12 strongly supports this reasoning, where multisource datasets yield larger 545 

water budget residuals in basins with high precipitation and runoff coefficients—large red spots are located in the upper portion 

of the figure. These results highlight the risks of using multisource datasets for hydrological inference in humid and small-

scale basins—specifically, potential physical inconsistencies—and underscore the need to carefully test the water balance 

assumption. 

 550 

Figure 12. Relationship between the mean absolute of water budget residuals, basin area, long-term average daily precipitation, and runoff 

coefficient (RC) over 475 CAMELS basins with reliable simulations. The respective red lines represent the linear regression of residuals 

with basin area for each timescale. 

4.4.2 Factors influencing temporal distribution 

The pronounced seasonal pattern of non-closure residuals depicted in Fig. 5 is quite interesting. To gain more insight into the 555 

observed pattern, we compare it with the temporal factors reported in the literature. The first and foremost reported factor 

associated with the observed negative biases in 𝑅𝑒𝑠 during the cold season is the underestimation of precipitation (Newman 

et al., 2015). This systematic bias is related to phenomena such as snowfall, freezing rain, and non-convective precipitation 

that occur during the cold season, where measurements and simulations are prone to significant errors, including the well-
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know undercatch phenomenon (Kauffeldt et al., 2013; Robinson and Clark, 2020). Another key factor influencing water budget 560 

non-closure is connected to the temperature and evaporation dynamics. Abolafia-Rosenzweig et al. (2020) evaluated the water 

budget residuals over 24 global basins and found that the likelihood of positive biases in the water balance increases with rising 

temperatures, which likely induced by the potential uncertainties in evaporation estimates. The research by Lv et al. (2017) 

also support this perspective, indicating that the underestimation of evaporation is a primary contributor to the water budget 

non-closure. In summary, according to the literature, cold-season precipitation and warm-season evaporation seem to be the 565 

primary drivers of the temporal distribution of 𝑅𝑒𝑠. To examine this reasoning, while obtaining the true values is impossible, 

we can provide evidence by comparing evaporation and precipitation, along with the corresponding residuals, between the 

cold and warm seasons. 

 

Figure 13 depicts the relationship by separately comparing the ratios of evaporation and precipitation for the cold and warm 570 

seasons, with the corresponding water budget residuals. For the cold season, the scatter points can be split into two distinct 

regions along the vertical line where the ratio is 1. The scatter points in the left region indicate basins where cold-season 

precipitation is lower than in the warm season, leading to relatively smaller absolute residuals (clustered around zero residuals). 

In contrast, scatter points for basins with dominant cold-season precipitation are dispersed below the zero residual line, with 

larger negative residuals becoming more prevalent as the proportion of cold-season precipitation increases. In other words, 575 

regions where cold-precipitation constitutes a larger proportion of the water budget residuals are more sensitive to the 

underestimates of precipitation, resulting in larger negative residuals. Furthermore, we observed similar trends in the warm 

season, where a higher proportion of warm-season evaporation is associated with larger positive residuals (the red dots exhibit 

an upward trend to the right). These results confirm the perspective of previous research, highlighting the potential uncertainties 

in measurements of cold-season precipitation and warm-season evaporation. 580 
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Figure 13. Relationship between the ratios of evaporation and precipitation for the cold and warm seasons separately and the corresponding 

water budget residuals. Note that blue represents residuals for the cold season, and red represents those for warm season. The seasonal 

division are consistent with Fig. 5. The unit of residuals is “mm”. 

4.4.3 Factors influencing the proportions of residuals components 585 

Another interesting finding in Sect. 4.1 is that the magnitude of 𝑅𝑒𝑠𝑜 is significantly smaller than that of 𝑅𝑒𝑠𝑖 . As a result, 𝑅𝑒𝑠 

is dominated by 𝑅𝑒𝑠𝑖 , leading to a highly consistent spatiotemporal distribution between them. However, the underlying 

question is what this implies and which factors drive the proportions of the residuals components. 

 

𝑅𝑒𝑠  reflects the degree to which the measurements achieve water budget closure. In this study, we argue that two key 590 

conditions are necessary for using measurements to describe theoretical water balance. The first one is that measurements of 

different water components must be physically consistent. In practice, however, this condition is often challenging to meet due 

to inconsistencies and uncertainties in data production processes from different sources, which can result in non-zero 𝑅𝑒𝑠𝑖  

(Luo et al., 2020). The second crucial, yet frequently overlooked, condition is the completeness of the water budget equation. 

Building on the work of Gordon et al. (2022), we developed a more generalized water budget equation (Eq. (3)) and use 𝑅𝑒𝑠𝑜 595 

to account for the water imbalances caused by omitted water. From this perspective, 𝑅𝑒𝑠 results from the interplay between 

𝑅𝑒𝑠𝑖  and 𝑅𝑒𝑠𝑜, either through their accumulation or mutual cancellation. Therefore, the low proportion of 𝑅𝑒𝑠𝑜 essentially 

suggests that our description of the water budget equation is comparatively comprehensive.  

 

Consider that if our description of the water budget equation is incomplete and omits a significant water component, 𝑅𝑒𝑠𝑜 600 

would likely exert a greater influence on 𝑅𝑒𝑠, resulting in a more pronounced discrepancy between 𝑅𝑒𝑠 and 𝑅𝑒𝑠𝑖 . To examine 

this, we intentionally exclude the SWE component from the water budget equation to evaluate its impact on the decomposition 

of 𝑅𝑒𝑠. This is a plausible scenario in practice, as it is likely that this component was not considered when reconstructing the 

TWSC. Figure 14 illustrates the comparison between 𝑅𝑒𝑠𝑜 derived from the decomposition method excluding SWE (hereafter 

𝑅𝑒𝑠𝑜
𝑁𝑆𝑊𝐸), and its original values. It is evident that 𝑅𝑒𝑠𝑜

𝑁𝑆𝑊𝐸 exhibits greater variability compare to the original values (i.e., 605 

with smaller minimum values and larger maximum values). The median differences indicate that the likelihood of increased 

omission residuals is higher after excluding SWE (Fig. 14b). Such differences reveal that omitting crucial SWE storage 

component results in a greater degree of water imbalance, and, as expected, this effect is more pronounce in high-latitude and 

high-elevation regions (Fig. 14d-f). Moreover, the spatiotemporal distribution of 𝑅𝑒𝑠𝑜 has changed (Fig. S13-14). Notably, 

during the cold season (December to February), the proportion of 𝑅𝑒𝑠𝑜 is much higher and exhibits a significant positive trend. 610 

These findings align with our definition of 𝑅𝑒𝑠𝑜, which refers to the water imbalance caused by omitted water. It also supports 

the validity of our decomposition method to some extent, and highlights the importance of a comprehensive water budget 

equation in evaluating water balance. 
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Figure 14. Comparison of 𝑅𝑒𝑠𝑜 obtained from residual decomposition excluding SWE with the original values. (a-c) Spatial distribution of 615 

monthly mean 𝑅𝑒𝑠𝑜  excluding SWE minus its original values. (d-f) Time series of 𝑅𝑒𝑠𝑜  excluding SWE and its original values at the 

southern basin (02198100, 32.96°N), northern basin (12358500, 48.33°N), and high-elevation basin (07083000, elevation of 3.56 km) at 

monthly scale. The unit of residuals is “mm”. 

5 Discussion 

5.1 What Lies Within the Realm of Belief 620 

The foundation of modern experimental science is based on empiricism, emphasizing the repeatability of experiments, i.e., 

whether the results can perfectly reproduce observations. This idea has far-reaching implications across various fields, with a 

classic example being hydrologists always aiming for their model predictions to closely match observations. Importantly, the 

underlying assumption of this approach is that our observations are perfectly approximate reality and can be seen as true value. 

In most of small scale studies, such as those conducted in laboratory or field settings, this might hold true. However, as we 625 

shift our focus to larger spatial scales, obtaining observations directly often becomes challenging, thus necessitating reliance 

on indirect observations, which could potentially undermine this assumption. As a consequence, our confidence in the 

observations, or better referred to as measurements, may diminish, which is precisely the new challenge we face in the era of 

big data. 

 630 

When we lack sufficient confidence in any single measurement, the utilization of multisource data fusion becomes a method 

to mitigate errors from all sources of measurements, thereby reducing uncertainty. Within the process of data fusion, the basic 
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step is to determinate the weights of all components. The ensemble mean method assumes an equal weight for all components, 

while the simple weighted method estimates weights based on the priori uncertainties, which are typically the differences 

between each component and the average of all measurements (Sahoo et al., 2011). In the widely used triple collocation (TC) 635 

method, weights can be determined by calculating errors (uncertainties) based on the similarity of the triplet inputs, without 

the need for “ground truth” (Stoffelen, 1998). Some other methods also determine uncertainty through manually assigned 

constants or error propagation calculations (Munier et al., 2014; Ansari et al., 2022). However, all of these methods face the 

same issue, the true value may be unattainable, and the determined error or uncertainty involves subjective factors. This 

presents a logical paradox: we resort to data fusion due to the absence of a true value, yet during the fusion process, we 640 

paradoxically assume the existence of this true value to estimate uncertainty. Essentially, we need to answer a fundamental 

question: what do we truly believe in? 

 

The answer is what we have truly learned. A better approach is to leverage our existing knowledge about the physical world 

to enhance our confidence in measurements. In fact, this concept embodies to some extent a Bayesian philosophy and is 645 

reflected in many fields. Here, we present two modern examples to illustrate this idea. The first one is the atmospheric 

reanalysis, which has been one of the most significant topics in atmospheric science since the 19th century. This technique 

employs numerical models and assimilation techniques to integrate multiple types of historical measurements a unified 

modelling framework and assimilation scheme, thereby generating continuous and consistent estimates of climate states. In 

essence, its aim is to unify our knowledge system (i.e., numerical models) with the measurement system, thereby enhancing 650 

the credibility of the model output. 

 

Another example is a research in the field of hydrology, where Liao and Barros (2022) proposed an Inverse Rainfall Correction 

(IRC) framework to improve Quantitative Precipitation Estimates (QPE) in headwater basins. Their fundamental concept is 

that errors propagate from precipitation to runoff, enabling the reversal of precipitation errors by calculating runoff simulation 655 

errors from distributed hydrological models and applying the travel time distribution for correction. In this example, existing 

knowledge is represented by the hydrological model, which is assumed to reflect the true physical processes and is then used 

to enhance the confidence in precipitation measurements. 

 

The proposed correction framework (PHPM-MDCF) capitalizes on this concept by iteratively advancing the convergence 660 

between the knowledge system (i.e., hydrological model and water balance equation) and the measurement system, thus 

enhancing the credibility of the measurements. Although our current knowledge may not be entirely precise—for example, the 

depiction of hydrological processes in models may lack accuracy—it remains foundation upon which we can rely and strive 

to refine in the future. Furthermore, several underlying concepts in this framework, such as residuals decomposition and 

advancing water budget closure through correction, aligns with a recent study (Wang and Gupta, 2024). They introduced a 665 

novel hybrid model (i.e., Mass-Conserving-Perceptron) and discussed its potential application, including the bias correction 
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(lacking confidence for the measurements) and examination of non-observed interactions with the environment (corresponding 

to the omission errors). Coupling the PHPM-MDCF with hydrological models that provide stronger interpretability is a 

valuable and promising research effort, as it can offer insights into the physical attribution of water budget non-closure and 

enable more reasonable correction. 670 

5.2 Limitations and Paths Forward 

It is our opinion that some traditional hydrological inferences are based on a philosophy that involves some long-standing and 

problematic assumption arise from the unwarranted confidence in measurements. However, the fact that truth is almost 

impossible to be measured due to the complexity of real-world physical processes hampers the foundation of inferences, 

especially in large scale studies that employing multisource non-field data. The presented framework has advantages by 675 

integrating widely applicable water budget equation and reliable representation of hydrological process using a hydrological 

model, which significantly mitigates this issue and enhance our confidence to the corrected datasets. Although the efficiency 

and credibility of the PHPM-MDCF have been examined in the previous sections, there are several limitations and uncertainties 

worthy of further discussion. 

5.2.1 Uncertainty of forcing data 680 

Here, we return to the Hypothesis 2 posed at the beginning of the method section. As we acknowledge, the uncertainties arising 

from the forcing and model structure undeniably exist and were a limitation in this study. First, the uncertainty in the forcing 

may arise from two aspects, one is the inaccuracy of the datasets themselves, and the other is the uncertainty introduced by the 

scaling process (i.e., the conversion from grid scale to basin scale). To investigate the sensitivity of correction results to forcing 

data, we re-conducted multisource datasets correction using Daymet precipitation data at the same case basin (1013500) and 685 

compared it with the original correction (forcing by TRMM). The comparison of the two precipitation products is presented 

in Fig. S15, where Daymet precipitation is significantly lower. The top panels of Fig. 15 display slight differences between the 

two corrections; for instance, the Daymet correction shows larger SWE (with a slope greater than 1), while other variables are 

smaller. These differences can be entirely explained by variations in precipitation forcing. Nevertheless, the temporal patterns 

of all variables under the two corrections remain broadly consistent, with determination coefficients of all regression curves 690 

exceeding 0.70 (Fig. 15b). Theoretically, the consistency of correction stems from three aspects. Firstly, it is attributed to the 

adaptability of hydrological model to the input data, specifically the calibration compensation capability we described in the 

introduction (Wang et al., 2023). This enables the hydrological model to generate reasonable representation of hydrological 

process even with imprecise forcing. Secondly, as discussed in Sect. 4.3.2, the PHPM-MDCF serves as a soft constraint and 

utilizes the distance between measurements and simulations to allocate residuals correction, thereby mitigating the propagation 695 

of bias between variables. Thirdly, the uncertainty caused by the mismatch between the grids and basin boundaries is 

effectively alleviated through the unit conversion (i.e., from volume to depth units). These three features ensure that stability 

of the correction, rendering it less susceptible to interference from uncertainties in the forcing datasets. 
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Another evidence of the robustness of the PHPM-MDCF is provided by Fig. 15c-d, where corrected residuals tend to converge 700 

after several iterations, despite being forced by different precipitation datasets. The main influence of forcing data is manifested 

in the omission residuals. As expected, the omission residuals term is simply an approximation of the missing water fluxes or 

storages in the water budget equation, which can vary depending on the datasets chosen to characterize the equation. In Fig. 

15e, the omission residuals driven by Daymet stabilize around 12.5mm, whereas those driven by TRMM stabilize around 

6.5mm. Such discrepancy can be further highlighted in the comparison of the residuals time series (Fig. S16). Further 705 

investigation would be required to better understand the omission residuals from a physical perspective. For example, a 

distributed hydrological model with representation of subsurface later flow process will allow us to identify the magnitude of 

inter-basin interactions; a more detailed description of water budget equation in data-rich environments can help us examine 

the sources of omission errors. This is undoubtedly important, but not the focus here. In summary, the above results suggest 

that the correction is minimally sensitive to the choice of forcing, demonstrating the robustness of the correction results. This 710 

is achieved by maintaining similar inconsistency residuals—corresponding to a similar correction amount—as long as 

differences in precipitation do not result in substantial variations in the hydrological processes. 

 

It is noted that the PHPM-MDCF has limitations in addressing inconsistency residuals in forcing. The reasons are twofold. On 

the one hand, this is due to our neglect of uncertainties in the forcing, which, as indicated by the above analysis, appears to 715 

have limited impact on the correction for other variables. On the other hand, this is because the PHPM-MDCF allocates 

residuals based on the distance between simulations and measurement, while the forcing cannot be simulated within the 

hydrological model. In this case, is there a potential to correct the inconsistency residuals in the forcing? Clues to this 

possibility are hidden in the above analysis. Systematic biases in precipitation products are directly reflected in the water 

budget equation, leading to different total input water volumes. Consequently, with the inconsistency residuals of other 720 

variables unchanged, maintaining the water balance would require an increase in omission residuals (Fig. 15e). Therefore, it 

can be inferred that, with other variables unchanged, TRMM demonstrates superior water budget closure compared to Daymet, 

which contains smaller inconsistency residuals. In other words, the difference in the two omission residuals reflects the 

discrepancy in inconsistency residuals contained within the two precipitation products. This portion of the omission residuals 

difference can be directly corrected in the precipitation. However, it is worth noting that not all omission residuals can be 725 

corrected in the precipitation, as it still contains residuals from some unknown omitted water content. Such correction must be 

relative and based on comparisons between different precipitation products, as true values and perfect water balance equation 

are unattainable. Another strategy is to couple an atmospheric model with this framework to generate simulated precipitation, 

allowing for the correction of precipitation products. In subsequent work, we will explore these approaches and try to extend 

the PHPM-MDCF based on these ideas. 730 
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Figure 15. Comparison of correction results based on different forcing datasets (TRMM and Daymet) at basin 1013500. (a-b) Corrected 

time series of five water budget variables. (c-e) Variation of long-term mean absolute values of three residuals with correction iterations at 

the monthly scale. The unit of residuals is “mm”. 735 

5.2.2 Uncertainty of model structure 

The characterization of physical hydrological processes through modelling constitutes the foundation of the correction 

framework. The internal model structure is the primary constraint for achieving water budget closure, and thus it is crucial for 

the final correction results. The selection of the lumped model (i.e., the HBV model) is intended to facilitate the application in 

large sample basins to derive more general conclusions, as has also been done in many previous large sample hydrology studies 740 

(Gupta et al., 2014). The reliability of model simulations has been confirmed by multi-objective evaluation. However, whether 

the spatial distribution of model performance is intrinsically related to the model structure is crucial to the robustness of the 

current work. 
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To address the question, we first compared the model performance with other studies that employed different models. As 745 

illustrated in Fig. C1, the model behaviour exhibits strong spatial organization, with unreliable simulations primarily 

concentrated in the central and western regions of CONUS. This spatial distribution of prediction skill broadly agrees with 

many previous studies. Brunner et al. (2021) classified this region as an intermittent regime and attribute the unsatisfactory 

simulation to the complex day-to-day variation of runoff. In their work, all four lumped models with different structures (i.e., 

SAC, HBV, VIC, mHM) supported the inference. In Yan et al. (2023), a more complex land surface model (i.e., CLM5) were 750 

utilized for evaluating the uncertainty of runoff prediction, they reported that the Southwest and Central U.S. showed the 

poorest prediction skill. A notable pioneering research is by Knoben et al. (2020), who evaluated runoff predictability in 

CAMELS basins using 36 hydrological models with different structures. After conducting a comprehensive analysis, they 

generated a multi-model runoff prediction performance map, which aligns closely with the results of this study. Therefore, we 

deduce that the spatial disparities in model performance, or predictability, predominantly depend on basin and climatic 755 

conditions rather than model structure. The consistency of the model performance with prior studies demonstrates that the 

HBV model is reliable in the context of this study. 

 

To further substantiate the above inference, we categorized basins into four groups based on model performance in runoff and 

compared the inter-group differences in six types of basin and climatic characteristics (i.e., climate, hydrology, geology, 760 

topography, soil and vegetation). The four groups consist of: unreliable performance, reliable performance, below-average 

performance, and above-average performance. First, the two sample t-test at the 5% level was conducted to examine whether 

there are significant differences in each characteristics indicator between the unreliable and reliable groups. The indicators 

exhibit a statistically significant difference were then presented and compared in Fig. S17 and S18. For clarity, here we list 

indicators whose inter-group difference greater than 30% in terms of median cumulative probability: mean precipitation, mean 765 

potential evapotranspiration, aridity index (climate); proportion of silt (geology-soil); mean runoff, runoff coefficient, 

frequency of high-flow days (hydrology); and all vegetation indicators (vegetation). The significant inter-group differences in 

these indicators highlight critical basin and climatic characteristics pivotal to the successful modelling of the hydrology system, 

providing convincing evidence for our inference. In summary, basins with the following characteristics typically pose 

challenges to simulate: arid regions with low precipitation and high potential evaporation, resulting in a low runoff ratio and 770 

frequent alternation between zero flow and high flow. Vegetation in these basins tends to consist of lower vegetation types 

and lack forests. It is worth noting that, while we have validated the reliability of the HBV model in the current study, its 

simplistic physics and lumped design structure lead to significant limitations in simulating several processes such as snow and 

groundwater (Brunner et al., 2021). In other words, the HBV model may not be suitable for accurately representing the reality 

of these specific processes. 775 

 

The distinctive perspective of this work lies in utilizing the physical processes described by hydrological model to constrain 

multisource datasets, thereby enhancing water budget closure among them. In particular, our next priority is to incorporating 
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more complex models to examine the PHPM-MDCF in different basins with specific hydro-meteorological conditions. For 

instance, distributed hydrological models and hybrid models (ML-HM) are valuable tools that can improve our understanding 780 

of water budget closure through more detailed physical processes representation (Liao and Barros, 2022; Wang and Gupta, 

2024). By employing models that generate additional output variables, we can more comprehensively represent the water 

budget equation and extend the application of the PHPM-MDCF to more complex water budget systems. Additionally, multiple 

models can be utilized for “ensemble correction”, which aids in quantifying uncertainty and providing more robust correction 

results. 785 

6 Conclusions 

Advanced measurement techniques open new opportunities for modern hydrological research. However, due to the lack of 

consistent data production protocols and evaluation standards, physical inconsistencies are prevalent in multisource datasets 

in the form of water budget residuals. Such inconsistencies undermine our confidence in data reliability and compromise the 

robustness of hydrological inferences rely on these datasets. In this study, we proposed a multisource datasets correction 790 

framework, the PHPM-MDCF, to achieve water budget closure through physical hydrological processes modelling. Build 

upon the decomposition of total water residuals and the iterative multi-objective calibration, the framework has the ability to 

reduce the inconsistency residuals among multisource datasets and promote convergence between the simulation and 

measurement systems. We demonstrated the spatiotemporal distribution of water budget residuals and the efficiency of the 

PHPM-MDCF across 475 COUNS basins selected by hydrological simulation reliability. Several experiments were conducted 795 

to verify the credibility of the framework, including the addition of manual noises and comparisons with existing correction 

methods. Furthermore, we explored potential factors influencing the spatiotemporal distribution and proportions of residuals. 

The major study findings are summarized as follows: 

 

1. The results from water budget residuals decomposition indicate that inconsistency residuals dominate the total water 800 

budget residuals, showing highly consistent spatiotemporal distributions. In spatial terms, both demonstrate an east-west 

gradient and concentration of low values along the western coastline and eastern inland basins within CONUS. Temporally, 

they exhibit negative trends in the cold seasons and positive trends in the warm seasons. On the contrary, the omission 

residuals, which account for the water quantities omitted in the original water budget equation, have different drivers and 

thus exhibit distinct distributions compared to the former. This component constitutes a relatively small proportion of the 805 

total budget residuals. 

2. The PHPM-MDCF demonstrates satisfactory correction efficiency, with an average reduction percentage of 49% in total 

water budget residuals across all 475 basins after correction. In certain basins, this reduction can exceed 80% (i.e., 84% 

in basin 1013500). The correction efficiency shows a latitudinal-dependent pattern, with greater absolute values in high 

latitude regions. The results from noise experiments validated the credibility of the correction framework. Both single-810 
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point extreme noise and Gaussian white noise sequences exert a limited impact on final correction results. Corrections 

applied to extreme noises in one variable do not propagate to others, thereby avoiding the generation of unreasonable 

values. Its credibility was further substantiated through comparisons with existing methods. 

3. The water budget non-closure phenomenon exhibits noticeable scale effects and is closely related to hydro-meteorological 

conditions. This highlights the need for careful consideration of the water balance assumption when applying multisource 815 

datasets for hydrological inference in small and humid basins. Moreover, the underestimation of cold-season precipitation 

and warm-season evaporation could be directly associated with the negative and positive biases in water budget residuals 

for the corresponding seasons. As a foundation for evaluating water balance, a comprehensive water budget equation is 

undoubtedly crucial, as underscored by the analysis of residual proportions. 

 820 

For the first time, this study presents a correction approach to achieve water budget closure based on the physical hydrological 

modelling. However, the Bayesian philosophy underlying the approach have been implicit in many previous methods, such as 

atmospheric reanalysis. The only thing we can rely on is our prior knowledge; therefore, continuously promoting convergence 

between knowledge and measurement systems is crucial for enhancing our confidence. An obvious extension of this research 

is the inclusion of more disciplines, both within the atmospheric science and broader earth sciences. This contributes to a better 825 

understanding in the era of big data of the distinctions and correlations between simulations, measurements, and reality. 

Appendix A: Implementation details of the HBV model 

Figure A1 illustrates the basic structure of the HBV model, encompassing three modules (i.e., snow routine, soil moisture 

routine and runoff routine) and three runoff components: quick runoff, interflow and baseflow. The cumulative sum of these 

components constitutes total runoff, which is routed through a triangular unit hydrograph (UH). At each model run step, the 830 

runoff at the outlet of the basin is determined. The HBV model is driven by daily precipitation (from TRMM), average 

temperature (from CAMELS) and potential evaporation (from GLEAM), enabling the simulation of various hydrological 

fluxes and state variables, including runoff, soil moisture storage, groundwater reservoir storage, evaporation and SWE. Table 

A1 lists the free parameters slated for calibration in the HBV model, providing their descriptions and respective ranges.  

 835 

The period from 1998 to 2000 is looped five times for model spin-up and the subsequent 10-year period is used for model 

calibration. After each calibration, the optimal parameters set is selected from the Pareto fronts. Finally, these optimal 

parameters are applied to the entire 12-year period to yield the best simulation, thus facilitating the multisource datasets 

correction. 
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 840 

Figure A1. Schematic structure of the HBV model. The variables marked with asterisk (*) denote water storage, whereas those annotated 

with positive (+) and negative (-) signs represent the inputs and outputs of the storage. 

Table A1. The description and ranges of free parameters in the HBV model for calibration. 

Parameter Unit Description Min Max 

DD [mm ℃-1 d-1] Degree-day factor 1.0 10.0 

TT [℃] Threshold temperature for snowmelt initiation -2.5 2.5 

Beta [-] Shape coefficient 1.0 8.0 

FC [mm] Filed capacity 10.0 600.0 

K0 [d-1] Recession coefficient of the quick runoff 0.1 0.8 

K1 [d-1] Recession coefficient of the interflow 0.01 0.5 

K2 [d-1] Recession coefficient of the baseflow 0.001 0.15 

Kp [d-1] Recession coefficient of the percolation 0.001 5.0 

PWP [-] Soil permanent wilting point as a fraction of FC 0.2 1.0 

HL [mm] Threshold water level for near-surface flow 10.0 200.0 

maxbas [d] Weighting parameter of triangular unit hydrograph 1 10 
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Appendix B: Evaluation metrics used for model calibration 

The Kling-Gupta Efficiency (KGE) metric provides a comprehensive measure of the similarity between simulations and 845 

measurements by incorporating three components: correlation, the ratio of standard deviations, and the ratio of means. It has 

been demonstrated to exhibit superior performance in calibrating hydrological models (Knoben et al., 2020; Aerts et al., 2022). 

The Pearson correlation coefficient (r) quantifies the extent of shared information between simulations and measurements, 

characterized by its insensitivity to amplitude and mean values (Lorenz et al., 2014). Thus, it is suitable for evaluating variables 

that may exhibit mean differences between simulations and measurements, such as SMS and GRS. The Root Mean Square 850 

Error (RMSE) is a widely used evaluation metric in hydrological modelling. Despite it is not a normalized metric, its 

calculation does not involve division, making it particularly suitable for evaluating variables like SWE, which may be a 

sequence entirely consisting of zeros. Based on the simulated and measured values of the target variables, the three metrics 

can be calculated using the following formulas: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)2 + (

𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)2, (B1) 855 

𝑟 =
∑ (𝑉𝑜𝑏𝑠

𝑖 −𝑉𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)(𝑉𝑠𝑖𝑚
𝑖 −𝑉𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1

√∑ (𝑉𝑜𝑏𝑠
𝑖 −𝑉𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1
√∑ (𝑉𝑠𝑖𝑚

𝑖 −𝑉𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

, (B2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑉𝑠𝑖𝑚

𝑖 − 𝑉𝑜𝑏𝑠
𝑖 )2𝑛

𝑖=1 , (B3) 

where 𝜎 is the standard deviation and 𝜇 is the mean; 𝑉𝑖 is the target variable at time step 𝑖 and 𝑛 is the length of the sequence. 

The subscripts “sim” and “obs” denotes the simulation and measurements of the variable, respectively. The range and optimal 

values of the evaluation metrics are detained in Table B1. 860 

Table B1. Description of evaluation metrics, including ranges and optimal values. 

Metrics Full name Variables to be evaluated Range Optimal value 

KGE Kling-Gupta Efficiency Runoff, evaporation (−∞, 1] 1.0 

r Pearson correlation coefficient Soil moisture storage, groundwater reservoir storage [−1,1] 1.0 

RMSE Root Mean Square Error Snow water equivalent [0, +∞) 0.0 

Appendix C: Simulation performance of the HBV model across CAMELS basins 

In this Appendix we present the simulation performance of the HBV model on 653 CAMELS basins. As shown in Fig. C1, 

the performance of five target variables including runoff, evaporation, soil moisture storage, groundwater reservoir storage, 

and snow water equivalent, is described by three metrics (i.e., KGE, r, and RMSE). The gradient from white to deep blue 865 

indicates progressively better simulation performance. In contrast, red highlights basins of unreliable simulation, determined 
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by a KGE of less than -0.41 and r value failing the significance test at the 5% level. Table C1 summarizes the multivariable 

simulation performance of the HBV model across all basins. 

 

Figure C1. The multi-objective simulation performances of the HBV model across the CAMELS basins. Results are based on (a) runoff, (b) 870 

evaporation, (c) soil moisture storage and groundwater reservoir storage, and (d) snow water equivalent. Red dots represent unreliable 

simulation performance, and the size of points is proportional to the basin area. The unit of RMSE is “mm”. 

Table C1. Performances of the HBV model in terms of five target variables across the CAMELS basins. The last row presents the number 

and proportion of basins where all target variables are reliably simulated. The unit of RMSE in the table is “mm”. 

Variables 
Median performance 

(KGE, r, RMSE) 

Range 

(KGE, r, RMSE) 

Reliable Simulations Count 

(Basins) 

Reliable Proportion 

(%) 

Runoff 0.50 -0.40~0.88 499 76.42% 

ET 0.94 -0.40~0.99 548 83.92% 

SMS 0.80 0.07~0.95 645 98.77% 

GRS 0.72 0.02~0.95 653 100.00% 

SWE 5.97 0.00~353.34 - - 

All variables - - 475 72.74% 

  875 
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Data availability 

All data used in this study is freely available through public open-source platforms. The TRMM 3B42V7 precipitation 

production is available at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) website 

(https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary, Huffman et al., 2016); the GLEAM evaporation and 

potential evaporation data from Martens et al. (2017), are available at https://www.gleam.eu/; the EAR5 Land data are available 880 

at https://cds.climate.copernicus.eu (Muñoz Sabater et al., 2021); the GlobSnow v3.0 SWE data can be downloaded from the 

official website: https://www.globsnow.info/swe/ (Luojus et al., 2021). 

 

The basin characteristics and daily runoff records come from the Catchment Attributes and Meteorology for Large-sample 

Studies (CAMELS) dataset, which can be obtained from https://ncar.github.io/hydrology/datasets/CAMELS_attributes (Addor 885 

et al., 2017). 
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