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Reply on RC2: 

 

Thank you very much for dedicating your time and effort to reviewing our paper. All comments from 

Reviewer RC2 are addressed below with point-by-point responses. 

 

For better readability, replies will start with “R/”, following the original comments that start with “C/” 

and are shown in bold. The revisions to be added into the revised manuscript is highlighted in red. The 

important parts are highlighted in blue. The quoted content is displayed in italics. 

 

Point-to-point response: 

 

C/ The paper presents an interesting concept, and its organization and writing are well done. 

However, I have some differing views regarding the underlying assumptions and principles of the 

proposed method. My main comments are as follows: 

 

R/ First and foremost, we sincerely appreciate your interest in the concept shared in our paper, as well as 

your kind recognition of our writing and organization. We hold your constructive comments in high regard 

and believe it will be instrumental in enhancing the quality of our paper. These comments will be 

addressed point by point below, and revisions will be made in the manuscript to the best of our ability. 

 

 

Major Comments: 

 

C/ (1) I do not agree with the two underlying assumptions of the PHPM-MDCF method, nor with 

the significance of using Equation 4 to calculate omission errors. My main reasons are as follows: 

 

Firstly, the errors in hydrological models are non-negligible and represent the sum of both omission 

errors and data errors, rather than omission errors alone. The paper assumes that hydrological 

models have no data errors (inconsistency errors) and only omission errors, which is evidently 

unreasonable. This assumption is particularly problematic because hydrological models are 

typically validated against observed runoff, often neglecting the validation of ET 

(Evapotranspiration) and TWSC (Terrestrial Water Storage Change) simulation accuracy. As a 

result, using Equation 4 to calculate omission errors is not justified. Due to the complexity of 

hydrological models and the impact of errors in driving variables, the water imbalance caused by 

errors in the hydrological model may be substantial. Even if the inputs to the hydrological model 

are observational data and the model itself is developed based on the principle of water budget, the 

primary contributor to water imbalance errors between input and output might still be data errors. 



 

Secondly, the total residual is calculated using multiple sources of data, and omission errors are 

calculated using data that drive the hydrological model as per Equation 4. The difference between 

these is then used to calculate data inconsistency errors. However, this approach might introduce 

uncertainties due to data inconsistency. 

 

R/ Thank you for your comment. We acknowledge that employing hydrological models to constrain 

measurements and thereby enhance water budget closure among them is an ambitious idea, as it has not 

been previously presented in the literature. We also recognize that accepting this idea is challenging. 

However, this idea is not proposed arbitrarily; rather, it is developed progressively along a specific logical 

path. 

 

First, the errors in hydrological model that we describe as ignorable refer to inconsistencies occurring 

within the input, output, and state, rather than those between measurements. This distinction is important 

to emphasize. In other words, each variable in Eq. (4) originates from the model itself, and from this 

perspective, these variables are independent of measurements. Such consistency in hydrological model 

has been described in numerous studies. For example, DeChant and Moradkhani, (2014) provided reduced 

structural equations for general distributed hydrological models from a state-space view: 

𝑠𝑖,𝑡 = 𝑓(𝑥𝑖,𝑡, 𝑠𝑖,𝑡−1, 𝜃𝑖), (R1) 

where 𝑓()  represents the model structure, 𝑥𝑖,𝑡  is the forcing of the 𝑖 th grid at time 𝑡 . 𝜃𝑖  is the 

parameter of the 𝑖th grid. In this equation, a quantitative balance is maintained between the input/forcing 

and output/state variables. In the general hydrological models, whether distributed or lumped, water 

balance serves as a fundamental governing equation to constrain the model, which is a well-established 

practice (Beven., 2001). The above constitutes the logical basis for our assumption that the hydrological 

model satisfies water balance, ensuring physical consistency. This also aligns with our definition of 

inconsistency residuals, which refer to non-closure arising from physical inconsistency. 

 

However, given our current understanding of the water cycle, Eq. (4) may still be prone to omission 

residuals. It can be challenging to be aware of all water components, certain omissive components result 

in omission residuals. This portion of the residuals can be identified through variables derived from the 

hydrological model, as these variables are consistent with water balance. 

 

In extreme cases, if all components are considered in water budget equation, the omission residual can be 

reduced to zero. At this point, no water imbalance exists within the simulation system (i.e., Eq. (4)), and 

any remaining residuals in the measurement system would be the potential inconsistency residual. 

 

Return to your question, the “data errors” you refer to are more likely the differences between simulated 

and measured values (e.g., simulated versus gauged runoff). This pertains to model performance, 

specifically whether the model can accurately represent hydrological process. This does not conflict with 

the water balance feature of the model itself. It is important to emphasize once again that all variables 

used in Eq. (4) are derived from the model, not from measurements. 

 

I hope the above response provides some clarity on the issues related to water balance in the hydrological 

model and the potential neglect of inconsistency residuals in Eq. (4). In addition, we would like to further 

address the question of the relationship between measurements and simulations in this method. We believe 

that clarifying this point may help address your concerns. 



 

In the PHPM-MDCF method, measurements are used not only calculate the total residuals (i.e., Eq. (5)), 

but also to constrain the model through a multi-objective calibration process (i.e., tuning parameters). As 

you emphasized, using only observed runoff to validate the model is insufficient. In this work, we 

considered five different variables—streamflow, ET, SMS (soil moisture storage), GRS (groundwater 

reservoir storage), and SWE—to validate the performance of the model. After model performance 

evaluation, we selected 475 basins with reliable simulation for all variables for subsequent analysis. The 

first paragraph of Sect. 4.1 and Appendix C provide detailed information. We present the main information 

here: 

 

“To ensure the robustness of the results, as mentioned previously, it is essential that hydrological model 

reliably represent hydrological processes. With reference to previous studies (Clark et al., 2021), we have 

adopted KGE≥-0.41 and r statistically significant at the 5% level as criteria for guaranteeing reliable 

simulations. The multi-objective simulation performances of the HBV model are detailed in Appendix C. 

In general, the majority of basins (475, accounting for 72.24% of the total basins) achieved reliable 

simulations across all variables.” 

 

Figure C1. The multi-objective simulation performances of the HBV model across the CAMELS basins. Results are based on (a) runoff, (b) 

evaporation, (c) soil moisture storage and groundwater reservoir storage, and (d) snow water equivalent. Red dots represent unreliable 

simulation performance, and the size of points is proportional to the basin area. The unit of RMSE is “mm”. 

 

In general, this helps ensure simulation accuracy to some extent and reduces the uncertainty in the residual 

decomposition. Furthermore, the multi-objection calibration process is repeatedly applied during 

multisource datasets correction to ensure that, after each iteration of data correction, the model can 

produce reliable simulations corresponding to the dataset. 

 

Based on the response to this concern, we recognize the importance of further emphasizing the water 

balance assumption in hydrological model used in this method, particularly with respect to Eq. (4). 

Therefore, we will add the following statements to the manuscript (Sect. 3.1): 

 

“It is crucial to clarify that all variables in Eq. (4) are derived from the model itself, rather than from 

measurement, and can therefore be considered physically consistent.” 

 



 

C/ (2) The validation of results should include a comparison between the PHPM-MDCF method 

and existing methods. The paper repeatedly emphasizes the inadequacy of current methods in 

distributing residuals, yet no comparison with existing methods is provided in the results to verify 

the accuracy of the PHPM-MDCF method. The goal of closing the water budget is to reduce 

residuals while improving the accuracy of water cycle variables. Therefore, the credibility of the 

model should not be judged solely by the reduction of residuals (Figure 6). A comparison with 

existing methods would be more convincing. I strongly recommend supplementing the results with 

a comparison against existing correction methods, particularly CKF, PR, and MCL methods. For 

instance, the accuracy of the datasets after calibration using these methods, including P 

(Precipitation), ET (Evapotranspiration), Q (Runoff), and TWSC (Terrestrial Water Storage 

Change). 

 

R/ Your point is very logical and intuitive. The introduction of any new method inevitably involves 

comparison with existing methods, which was also one of our initial objectives. However, after a thorough 

process of reflection and analysis, we have found that a direct comparison with existing methods is either 

infeasible or not meaningful for the following reasons: 

(a) Difference in underlying logic.  

The PHPM-MDCF exhibits a fundamental difference from existing methods, particularly in its 

interpretation of the realism. In existing methods, such as CKF, PR, or MCL, data correction relies on 

an assumed “true value” as reference. This true value might be the ensemble mean of multiple 

products or a set of gauged observations considered more credible. In other words, they assume that 

this true value can represent reality. However, this assumption is often challenged by issues such as 

scale mismatches and systematic biases in products. Although this approach is a common practice, 

but in our opinion, this notion of realism maybe untenable. 

 

As an alternative, the realism of the PHPM-MDCF is reflected in our understanding of physical 

processes. Throughout the data correction process, the physical hydrological processes represented 

by the hydrological model play a central role. They act as constraints, iteratively correcting 

measurements into a physically consistent system. Although the reality represented by the 

hydrological model remains an abstraction, the iterative coupling of information in measurement 

through parameter calibration enhances the confidence in this representation. This approach embodies 

the underlying Bayesian philosophy. In addition, the pre-selection of basins with reliable simulation 

reduces the uncertainty associated with this method. 

 

Due to the differences in these notions of realism, comparing these methods appears to be of limited 

value. The former typically aims to correct to an assumed “true value”, while the PHPM-MDCF 

focuses on correcting measurements to the physically hydrological processes represented by the 

model. 

(b) Lack of real true values for reference. 

As noted, the differences in realism among the methods make direct comparison challenging. Thus, 

the question arises whether an objective true value can be obtained as a benchmark for comparing the 

accuracy of different correction method, as mentioned in the comment. The answer is no. As we 

discussed in the induction: 

 

“the fact remains that the ‘true value’ is perpetually unattainable, rendering any form of reference 



data uncertain” 

 

Since water budget non-closure study typically focus on datasets from different sources that estimate 

across varying scales, even when using field observations as the reference, there are challenges with 

scale mismatches. Additionally, even without scale mismatch issues, acquiring such data across 

extensive spatial and temporal scales remains a significant challenge. 

(c) Different understanding of the relationships between measurements of different variables. 

Another reason we cannot directly compare existing methods with PHPM-MDCF is the difference in 

their understanding of the relationships between observations of different variables.  

 

In the data fusion based correction methods (e.g. CKF, PR, MCL), the physical connections between 

different variables seem to be overlooked. Or more cautiously, these relationships are not explicitly 

utilized as constraints for data correction. In such cases, although residuals can be constrained to zero, 

the correction process might disrupt the physical connections between variables, leading to 

unreasonable adjustments. In contrast, the PHPM-MDCF leverages these relationships, as represented 

by hydrological model, to constrain the measurements. 

 

This difference ultimately reflects in the correction results. As noted by Luo et al. (2023), correction 

may lead to a decrease in the accuracy of individual variables: 

 

“therefore, the results confirm that increasing the water budget closure accuracy of budget-

component data sets reduces the accuracy of individual budget-component products.” 

 

For the above reason, we think the direct comparison between our method and existing methods is not 

meaningful, as their correction direction are fundamentally different. 

 

Although we cannot conduct a direct comparison, but a theoretical indirect analysis is possible. The noise 

experiment in Sect. 4.3.2 can provide such an indirect analysis. 

 

When extreme single-point noise is present in streamflow measurement (NS1 and NS2), it is expected 

that, to ensure water balance closure, existing correction methods will impose constraints across all 

variable by referencing “true values”. Typically, streamflow measurements are considered to have the 

least uncertainty, leading to the smallest correction. As a result, extreme bias in streamflow can propagate 

to other variables by correction process, such as ET and TWSC. This is also the reason why the correction 

process, as previously discussed, can lead to a reduction in the accuracy of individual variables. 

 

Figures 9 and S9 indicate that the PHPM-MDCF can effectively reduce residuals without causing such 

bias to propagate across different variables, thereby avoiding the aforementioned issues. This indirect 

analysis also provides some explanation for the differences between PHPM-MDCF and existing methods, 

and, to some extent, supports its reliability. 

 

Responding to your comment has stimulated further reflection on our part. This is highly valuable, and 

we will make the following revisions according these reflection:  

 

(a) We will further emphasize the issues of scale mismatch and the availability of site data in the induction: 

“The issue of scale mismatches and the availability of site data in certain regions also pose challenges 



for data evaluation.” 

(b) We will include the reference by Luo et al. (2023) to strengthen the expression of our viewpoints: 

“In the context of applying such closure constraint, it becomes evident that the precision of certain 

individual components may notably deteriorate, particularly when uncertainties are challenging to 

quantify (Luo et al., 2023).” 

 

 

C/ (3) The description of the reference datasets is unclear. It is necessary to specify which 

observational system datasets were used for P (Precipitation), ET (Evapotranspiration), Q (Runoff), 

and TWSC (Terrestrial Water Storage Change), and why these datasets can be considered 

observational data. I recommend clarifying this in the text. 

 

R/ Thank you for your suggestion. We will revise Table 1 in accordance with your suggestions and provide 

the explanation for the selection of these datasets for each variable. Here is the revised version: 

 

“Specifically, daily precipitation estimation derived from the Tropical Rainfall Measuring Mission 

(TRMM 3B42V7) is used in this study. The well-known international NASA project aims to 

comprehensively estimate all forms of precipitation, including rain, drizzle, snow, graupel, and hail, 

through the integration of satellite data and ground-based rain gauge measurements (Huffman et al., 2016). 

The accuracy of TRMM dataset has validated by many studies through comparisons with observation 

data and other reanalysis datasets (Kittel et al., 2018; Villarini et al., 2009). For evaporation, we utilized 

the third version of Global Land Evaporation Amsterdam Model (GLEAM v3) product 

(https://www.gleam.eu/), which employs a set of algorithms to separately estimate the different 

components of land evaporation (Miralles et al., 2011). Several studies have demonstrated that this 

product aligns well with flux measurements and multisource product ensemble (Munier et al., 2014; 

Robinson and Clark, 2020). And, as mentioned above, the runoff measurements on a basin scale are 

provided by the CAMELS dataset, which is derived from site observations.” 

Table 1. Overview of the products for constructing water balance equation used in this study. 

Variable Product 

Original Resolution 

Original Period Reference 

Spatial Temporal 

Precipitation TRMM 3B42V7 0.25°×0.25° Daily 1998-2019 Huffman et al. (2016) 

Evaporation GLEAM v3.8a 0.25°×0.25° Daily 1980-2022 Martens et al. (2017) 

Soil moisture layer 

1/2/3/4 
EAR5 Land 0.1°×0.1° Hourly 1950-present 

Muñoz Sabater et al. 

(2021) 

Snow water 

equivalent 
GlobSnow v3.0 25km×25km Daily 1979-2018 Luojus et al. (2021) 

Streamflow CAMELS-USGS Basin scale Daily 1980-2010 Newman et al. (2015) 

 

 

C/ (4) Only a single product was selected for each water cycle variable. I believe that selecting 

multiple products is crucial for validating the proposed PHPM-MDCF method. This is because 

different datasets have different sources of error, leading to varying inconsistency residuals 

depending on the data combination. If the proposed method can be used to identify inconsistency 

residual error, using multiple data combinations would better verify the reliability of the proposed 



method in this study. 

 

R/ Thank you for your comment. We acknowledge that a common practice in previous water budget 

assessments is to use a range of products for each water components, evaluating the availability of 

different product combinations to closure the water budget. For example, Lorenz et al. (2014) compared 

180 combinations of datasets for P, ET, TWS, and Q to access the degree of atmospheric-land water 

balance achieved. Lehmann et al. (2022) investigated the budget closure at catchment scales using 11 P, 

14 ET, and 11 Q datasets together with GRACE. 

 

However, almost all similar studies have reached the same conclusion that no single combination can 

close the water budget well across all regions (Lv et al., 2017). This implies that while introducing 

multiple products for ranking may be meaningful for specific regions, it holds limited significance for the 

correction framework of this study, which focuses on broader spatial scales (large sample basins). As 

Petch et al. (2023) handled in their optimization-based correction method, a single product was used for 

each water budget component, and they emphasize: 

 

“In this study, we use only a single data product for each component, which we account for in our 

uncertainty calculations. We aimed to use Earth observation data where possible and sought global 

gridded products to ensure the uniformity of the uncertainties across all basins.” 

 

“Overall, the specific datasets chosen were not critical, as our primary goal was to evaluate our new 

optimisation methodology and its ability to bring independent products into consistency.” 

 

In addition, different products process varying spatiotemporal scales and have regional applicability, 

incorporating additional product may introduce further uncertainty. 

 

A possible realization in the current study is to use different precipitation datasets (i.e., TRMM and 

Daymet datasets) to force the hydrological model and conduct correction, which has been implemented 

in Sect. 5.2.1. The results indicated that the correction is not sensitive to the choice of precipitation data. 

 

“In summary, the above results suggest that the correction is minimally sensitive to the choice of forcing, 

demonstrating the robustness of the correction results.” 

 

For the reasons mentioned above, we think that introducing additional products in the current study may 

not be necessary. However, we look forward to applying more models and datasets in future research to 

further extend the framework. 

 

 

C/ (5) In Step 2 at line 250, please explain why is it reasonable to allocate residuals based on the 

difference between simulated values and reference values? It is worth noting that the simulated ET 

(Evapotranspiration) and TWSC (Terrestrial Water Storage Change) by the hydrological model 

may not have been validated for accuracy and may contain significant uncertainties. If their errors 

are used to allocate residuals, substantial uncertainties could lead to unreasonable allocation of 

residuals to ET and TWSC. The formula for residual allocation needs to be supplemented. 

Additionally, if Step 3 determines that the residual allocation is unreasonable, can simply halving 

the residual solve the issue? The underlying principles need to be clarified, or an example should 

be provided. 



 

R/ Thank you for your careful review. For clarity, we have reorganized the questions in this comment and 

will analyze them individually. 

 

(a) Why allocate residuals based on the distance between measurements and simulations? 

As we discussed earlier, in this study, the simulations from the hydrological model are considered a 

physically consistent system that satisfies the water balance (See the reply to major concern (1)). 

Therefore, the Eq. (4) based on the simulations inevitably leads to 𝑅𝑒𝑠𝑖 being 0. In other words, when 

all measurements are corrected to equal the simulations, the 𝑅𝑒𝑠𝑖 in the measurements are corrected to 

0. This determines the correction direction for measurements of each variable. 

 

However, directly correcting the measurements to equal the simulation at once can also introduce 

uncertainty, as the simulation system is not precise (i.e., model parameters). Therefore, we considered an 

iterative approach for correction. 

 

From the perspective of hydrological processes, the simulations reflect an ideal system that is physically 

consistent and strongly physically interrelated. On the contrary, the measurements reflect a system that 

variables are relatively loosely connected and physically inconsistent. To facilitate the convergence of the 

measurement system towards the ideal simulation system, it is important to determine the relative 

magnitude of the corrections for each water component. 

 

The different water components cannot be corrected to the same extent, as their physical connections 

must be taken into account. For example, consider a region with high evaporation and low streamflow. 

Typically, it is reasonable to apply more correction to evaporation. However, if measurement of 

streamflow exhibits extreme high values, it would be more reasonable to apply more correction to 

streamflow. This is because our understanding of hydrological process suggests that the likelihood of such 

extreme high streamflow in this region is very low. Such understanding is reflected in the hydrological 

process, that is, in the simulations. Given this, we allocate the correction of 𝑅𝑒𝑠𝑖 based on the distance 

between measurements and simulations. In other words, the greater the distance between the measurement 

and the expected values, the more correction we will apply. This idea is illustrated in Fig. 3. 

 

 
Figure 3. Illustration of the correction process advancing convergence between the simulation and measurement systems. 

To better assist readers in understanding this idea, we will revise the statement in Step2 to: 



“Step 2: Correction for the inconsistency residuals. Allocate inconsistency residuals based on the 

magnitude of differences (i.e., the distance between simulation and measurement systems) between 

simulated and measured values for each variable in Eq. (5) and (6). This is because this difference 

indicates the correction direction and magnitude for each variable, thereby facilitating the convergence of 

the measurement system towards the simulation system. Here, an initial correction rate of 0.5 is set to 

gradually correct the multisource datasets, thereby avoiding potential uncertainties that arise from 

excessive correction. Formally, the allocation of inconsistency residuals can be described by the following 

equation. 

𝑀𝑐
𝑣 = 𝑀𝑜

𝑣 − 𝑅𝑒𝑠𝑖 ×
𝑑𝑣

𝑑𝑎𝑙𝑙
, (7) 

where 𝑀𝑐
𝑣 is the measurements after correction of variable 𝑣, and 𝑀𝑜

𝑣 is the original measurements; 𝑑𝑣 

is the difference between simulation and measurement of variable 𝑣, and 𝑑𝑎𝑙𝑙 represents the aggregate 

of differences for all variables.” 

 

(b) Were the simulations of ET and TWSC validated? 

Yes, we validated the simulation results across five variables (i.e., streamflow, ET, SMS, GRS, and SWE) 

to ensure reliable simulations, where the SMS and GRS are used to represent TWS. We have provided a 

detailed explanation in our response to Concern (1) above. Through model performance evaluation, we 

have ensured that all basins undergoing multisource dataset correction exhibit reliable simulation. 

Additionally, the simulation performance has significantly improved after correction, as evidenced by the 

changes in the Pareto front shown in Fig. 8. 

 

Figure 8. Comparison of multivariable simulation performance before and after correction at basin 1013500. Light grey and dark grey 

indicate population solution sets before and after correction, and blue and red indicate Pareto fronts before and after correction. Metrics 

evaluating SWE simulation performance have been normalized for consistency. The subplot in the second row, second column shows that 

the evaporation simulation maintains highly accurate at this basin, due to the alignment between the HBV algorithm and measurements. 

(c) Supplement the residual allocation formula. 



Thank you for pointing out this. According tor your suggestion, we will add the corresponding formula 

as shown blow. 

 

“Formally, the allocation of inconsistency residuals can be described by the following equation. 

𝑀𝑐
𝑣 = 𝑀𝑜

𝑣 − 𝑅𝑒𝑠𝑖 ×
𝑑𝑣

𝑑𝑎𝑙𝑙
, (7) 

where 𝑀𝑐
𝑣 is the measurements after correction of variable 𝑣, and 𝑀𝑜

𝑣 is the original measurements; 𝑑𝑣 

is the difference between simulation and measurement of variable 𝑣, and 𝑑𝑎𝑙𝑙 represents the aggregate 

of differences for all variables.” 

 

(d) If Step 3 determines that the residual allocation is unreasonable, can simply halving the residual 

solve the issue? What is the principle behind this? 

In Step 3, a judgment will be made to determine whether the previous correction was reasonable based 

on whether the model can provide a reliable simulation. A misunderstanding that needs to be clarified 

here is that if the simulation proves unreliable, we will discard the previous correction, return to Step 2, 

halve the correction rate rather than directly halving 𝑅𝑒𝑠, and then proceed with the correction again. 

Naturally, after this correction, the judgment in Step 3 will be re-evaluated until the correction or 

inconsistency residual falls below a pre-set threshold. 

 

In other words, this iterative process involves continual trial and error, with each error prompting us to 

approach the next correction more cautiously. The underlying consideration is that the convergence of the 

measurement system and the simulation system is a mutual process. Measurements approach the 

simulated system through correction, while the simulation system, through re-calibration after each 

correction, aligns more closely with the measurement system. As described in the process shown in Fig. 

3 above. Excessive correction may lead to the measurement system going out of bounds, preventing 

further convergence of the two systems. Specifically, this manifests as producing unreliable simulations, 

and further model calibration will not enable the two system to converge. 

 

We have noted that our expression might lead to misunderstandings; therefore, we will revise the phrasing 

in Step 3 to: 

 

“Step 3: Calibration and evaluation of the model. Recalibrate and evaluate the hydrological model using 

the datasets corrected in the previous step to assess the reliability of this correction. If the recalibrated 

model yields unreliable simulations, consider this correction excessive, halve the correction rate, and 

repeat Step 2. Otherwise, maintain the correction rate and proceed with the next iteration of correction. 

The consideration behind this step is that excessive correction may lead to the measurement system going 

out of bounds, preventing further convergence of the two systems. In other words, the iterative process 

involves continual trial and error, with each error prompting us to approach the next correction more 

cautiously.” 

 

 

C/ (6) Please clearly state the scope and spatiotemporal scale of this study. Most studies investigate 

water budget closure at the monthly scale rather than the daily scale. Aside from data availability, 

I believe this is mainly due to larger data errors and the lag effect of hydrological processes at the 

daily scale. If this study focuses on water budget closure at the daily scale, how were these issues 

addressed? 



 

R/ Your perspective is very insightful. As you commented, the scale of the water budget study is crucial. 

The water budget non-closure phenomenon exhibits different behaviors at varying spatial and temporal 

scales. It is widely recognized that achieving water budget closure is much easier at relatively larger 

spatial and temporal scales. 

 

On the one hand, at lager temporal scales, the TWSC exert a smaller influence on water budget closure. 

In relatively long time periods, TWSC can be assumed to negligible, making precipitation approximately 

equal to the sum of streamflow and evaporation. This is a common assumption in water budget assessment 

studies when TWSC measurements are unavailable. For example, Weligamage et al. (2023) suggested a 

10-year period during which changes in water storage were considered negligible. Other several studies 

suggested that TWSC can be disregarded at the annual scale (Cooper et al., 2011; Kauffeldt et al., 2013; 

Hoeltgebaum et al., 2023). On the other hand, at larger spatial scales, inter-basin water exchanges can be 

considered negligible (Lv et al., 2017). Therefore, in most previous studies, it has been more feasible to 

conduct water budget studies at larger spatial and temporal scales. Additionally, another important reason 

for the choice of a monthly scale in much of the prior research is the reliance on GRACE TWSC 

measurements, which are only available at this temporal resolution. 

 

In this study, TWSC is represented by a combination of observed soil moisture storage (SMS), 

groundwater reservoir storage (SMS), and snow water equivalent (SWE), avoiding the resolution 

constraints of GRACE TWSC, thus can be conducted at a daily scale. This is detailed in Sect. 2.2, where 

the main information is as follows: 

 

“Assuming that TWSC can be retrieved through a combination of different water storages, we obtained 

the four-layer soil moisture from ERA5 Land and Snow Water Equivalent (SWE) from GlobSnow to 

estimate overall TWSC. This approach has been implemented in the investigation of Hoeltgebaum and 

Dias (2023), yield a high consistency between estimated TWSC and GRACE observation (i.e., correlation 

coefficient exceeding 0.71). Another consideration in this method is that the decomposed TWSC products 

(i.e., soil moisture and SWE) can correspond to the results simulated by hydrological model, thereby 

allowing us to correct water budget residuals, as discussed later.” 

 

“Overall, all datasets were resampled to a daily time step, and then aggregated over basins through 

simple averaging to perform analysis of water budget closure on a basin scale.” 

 

Although the primary temporal scale of this study is daily, we also performed statistical analyses at 

monthly and annual scales. For example, Figure 4-5 aggregate the residuals to the monthly scale to 

illustrate their spatiotemporal distribution. Figure 6 displays the correction results at daily, monthly and 

annual scales. This was done for both of visualization purposes and facilitating potential comparisons 

with previous studies. 

 

Through a comparison of water budget at different timescales, we observed distinct behaviors of residuals 

across these scales. Specifically, at smaller scale (daily), residuals show greater variability but smaller 

magnitudes. As aggregation occurs at lager scales (monthly and annual), the magnitude increase while 

the variability decreases, demonstrating a filtering behavior. The primary mechanism behind such 

behavior is the positive and negative offset and accumulation of residuals and biases in different water 

components. Figure 6 provides an example to illustrate this: 

 



 

Figure 6. Correction results of water budget residuals for multisource datasets at basin 1013500. (a-c) Time series of water budget residuals 

(𝑅𝑒𝑠), inconsistency residuals (𝑅𝑒𝑠𝑖), and omission residuals (𝑅𝑒𝑠𝑜) at daily, monthly and yearly scales, grey line represents residuals during 

the correction process. (d-f) Variation of long-term mean absolute values of three residuals with correction iterations at the monthly scale. 

The unit of residuals is “mm”. 

According tor your comment, we will further emphasize the temporal scale used in this study by adding 

the following statements in Sect. 3.1 and 3.2: 

 

“Therefore, residuals are calculated at daily scale and subsequently aggregated to the monthly and annual 

scales for further analysis.” 

 

“Notably, the correction is performed at the daily scale, aligning with the model step.” 

 

 

C/ (7) At line 320, it is necessary to explain the reasons behind the spatial distribution of Res. How 

does the difference in spatial patterns indicate that inconsistency residuals and omission residuals 

are driven by different factors? Please provide a detailed explanation. The most likely reason for 

Resi and Res having the same spatial pattern is that the former was calculated based on the latter. 

Their difference from Reso is due to the different error sources used in calculating Reso and Res, 

which does not necessarily demonstrate the reliability of the method for separating inconsistency 

residuals from omission residuals. Additionally, the residual values in Figure 4 differ significantly 

from those reported in previous studies. What is the reason for this discrepancy? 

 

R/ Thank you for your comment. For clarity, we reorganized the questions in the comment into two 

separate points and address each one individually. 

 

(a) What are the reasons behind the spatial distribution of Res? Does its distribution show 

significant differences compared to previous studies? If so, what are the reasons for these 

differences? 

This is a good question. Indeed, as we discussed in our manuscript, the spatial distribution of 𝑅𝑒𝑠 in Fig. 

4 exhibits very pronounced clustering characteristics. 

 



“𝑅𝑒𝑠 and 𝑅𝑒𝑠𝑖 both present an east-west gradient for three statistical measures (i.e., min, median, max), with low values 

occur along the western coastline and high values primarily concentrated in eastern inland basins. The exception is a 

cluster of low median values located in the central CONUS” 

 

From a geo-statistical perspective, the spatial heterogeneity of 𝑅𝑒𝑠 likely involves multiple direct and 

indirect influences from basin characteristics. Clarifying these potential influencing factors is crucial for 

understanding the formation of 𝑅𝑒𝑠. Therefore, we conducted an exploratory analysis in Sect. 4.4 and 

found that 𝑅𝑒𝑠 is closely related to basin area and hydro-meteorological conditions. Specifically, we 

found that achieving water budget closure with multisource datasets is more challenging in larger and 

humid basins (characterized by high precipitation and runoff coefficient). Figure 11 provide the 

corresponding evidence. 

 

 

Figure 11. Relationship between the mean absolute of water budget residuals, basin area, long-term average daily precipitation, and runoff 

coefficient (RC) over 475 CAMELS basins with reliable simulations. The respective red lines represent the linear regression of residuals 

with basin area for each timescale. 

Additionally, the comparison of the spatial distribution of 𝑅𝑒𝑠 with previous studies is also presented in 

Sect. 4.4. The results indicate that the pattern of 𝑅𝑒𝑠 identified in this study is consistent with previous 

research: 

 

“As shown in Fig. 4, all three water budget residuals are subject to strong spatial organization, and these 

patterns are in agreement with previous studies. For example, Kauffeldt et al. (2013) found negative 

residuals (i.e., runoff coefficient > 1) along the western coastline of CONUS, while the eastern region 

showed notable positive residuals (i.e., P-R > ET). Other studies investigating water budget residuals 

with diverse dataset combinations have similarly revealed similar spatial patterns (Zhang et al., 2016; 

Gordon et al., 2022).” 

 

We noticed a loose connection between Sect 4.1 and Sect 4.4; thus we will add the following statement 

in the former section to strengthen the linkage between the two sections: 

 

“The potential factors affecting the spatiotemporal distribution of 𝑅𝑒𝑠 will be further investigated in 



Sect. 4.4.” 

 

Furthermore, we will divide Sect. 4.4 into three subsections to ensure a clear structure. The titles of the 

three subsections are: 

 

“4.4.1 Factors influencing spatial distribution” 

“4.4.2 Factors influencing temporal distribution” 

“4.4.3 Factors influencing the proportions of residuals components” 

 

 

(b) Why are the differences between the spatial patterns of Resi and Reso driven by different factors? 

What is the theoretical basis for residual decomposition? How can the reliability of this 

decomposition be demonstrated? 

In previous studies, 𝑅𝑒𝑠 (water budget residuals) have typically been used as a whole to measure the 

degree to which the measurements achieve water budget closure. The cause of 𝑅𝑒𝑠  is often simply 

attributed to inconsistencies in the processing of different products (refer to the review provided by Lv et 

al., 2017). Few studies have thoroughly discussed the causes of 𝑅𝑒𝑠 formulation. 

 

An exception is the study by Gordon et al., (2022), where they qualitatively decomposed 𝑅𝑒𝑠 into data 

inconsistency error (𝑒) and groundwater exchange (𝐺) not accounted for in the water budget equation (see 

Eq. (2)). We extended Eq. (2) to incorporate additional source of potential water omission, and further 

attempted a quantitative decomposition of 𝑅𝑒𝑠  into 𝑅𝑒𝑠𝑖  and 𝑅𝑒𝑠𝑜  to elucidate the distinct factors 

contributing to the observed water budget non-closure. 

 

In our opinion, using measurements to describe the theoretical water balance requires two key conditions: 

(1) physically consistent measurements, and (2) comprehensive description of the water budget equation. 

Correspondingly, the causes of water budget non-closure (|𝑅𝑒𝑠| > 0) can be attributed to two factors: (1) 

physical inconsistency in the measurements (𝑅𝑒𝑠𝑖 ), potentially arising from discrepancies in data 

production process mentioned in previous studies; and the incomplete description of the water budget 

equation (𝑅𝑒𝑠𝑜). 

 

Indeed, as you noted, the decomposition of 𝑅𝑒𝑠  is fundamentally based on the following sample 

equation, which capture the essence of our decomposition method: 

 𝑅𝑒𝑠𝑖 = 𝑅𝑒𝑠 − 𝑅𝑒𝑠𝑜 (R2) 

However, the similar spatiotemporal distribution of 𝑅𝑒𝑠𝑖  and 𝑅𝑒𝑠  cannot be simply attributed the 

calculation. Essentially, this similar pattern is attributed to the relative small proportion of 𝑅𝑒𝑠𝑜 , 

suggesting that our description of the water budget equation is comparatively comprehensive. 

 

Consider that if our description of the water budget equation were incomplete and omitted a significant 

water component, 𝑅𝑒𝑠𝑜 would likely exert a greater influence on 𝑅𝑒𝑠, resulting in a more pronounced 

discrepancy between 𝑅𝑒𝑠 and 𝑅𝑒𝑠𝑖. 

 

To examine this, we intentionally exclude the SWE component from the water budget equation to access 

its impact on the decomposition of 𝑅𝑒𝑠. This is a plausible scenario in practice, as it is likely that this 

component was not considered when reconstructing the TWSC. The results indicate that the proportion 



of 𝑅𝑒𝑠𝑜 obtained from residuals decomposition after excluding SWE increases significantly, with this 

effect being more pronounced in high-latitude regions, high elevations, and during the cold season (see 

the revisions and figure below). This is consistent with physical principles, as the impact of omitting SWE 

on water balance is greater under these situations. These findings align with our definition of 𝑅𝑒𝑠𝑜 which 

refers to the water imbalance caused by omitted water. It also, to some extent, supports the validity of our 

decomposition method, and highlights the importance of a comprehensive water budget equation. 

 

Based on the response to this issue, in order to further demonstrate the reliability of the residual 

decomposition, we will add a new subsection in Sect. 4.4 to explain the potential factors for the proportion 

of 𝑅𝑒𝑠 components. 

 

“4.4.3 Factors influencing the proportions of residuals components 

Another interesting finding in Sect. 4.1 is that the magnitude of 𝑅𝑒𝑠𝑜 is significantly smaller than that 

of 𝑅𝑒𝑠𝑖 . As a result, 𝑅𝑒𝑠  is dominated by 𝑅𝑒𝑠𝑖 , leading to a highly consistent spatiotemporal 

distribution between them. However, the underlying question is what this implies and what factors drive 

the proportions of residuals components. 

 

𝑅𝑒𝑠 reflects the degree to which the measurements achieve water budget closure. In this study, we argue 

that two key conditions are necessary for using measurements to describe theoretical water balance. The 

first one is that measurements of different water components must be physically consistent. In practice, 

however, this condition is often challenging to meet due to inconsistencies and uncertainties in data 

production processes from different sources, which can result in non-zero 𝑅𝑒𝑠𝑖 (Luo et al., 2020). The 

second crucial, yet frequently overlooked, condition is the completeness of the water budget equation. 

Building on the work of Gordon et al. (2022), we developed a more generalized water budget equation 

(Eq. (3)) and use 𝑅𝑒𝑠𝑜  to account for the water imbalances caused by omitted water. From this 

perspective, 𝑅𝑒𝑠 results from the interplay between 𝑅𝑒𝑠𝑖 and 𝑅𝑒𝑠𝑜, either through their accumulation 

or mutual cancellation. Therefore, the low proportion of 𝑅𝑒𝑠𝑜 essentially suggests that our description 

of the water budget equation is comparatively comprehensive.  

 

Consider that if our description of the water budget equation were incomplete and omitted a significant 

water component, 𝑅𝑒𝑠𝑜 would likely exert a greater influence on 𝑅𝑒𝑠, resulting in a more pronounced 

discrepancy between 𝑅𝑒𝑠  and 𝑅𝑒𝑠𝑖 . To examine this, we intentionally exclude the SWE component 

from the water budget equation to evaluate its impact on the decomposition of 𝑅𝑒𝑠. This is a plausible 

scenario in practice, as it is likely that this component was not considered when reconstructing the TWSC. 

Figure 13 illustrates the comparison between 𝑅𝑒𝑠𝑜 derived from the decomposition method excluding 

SWE (hereafter 𝑅𝑒𝑠𝑜
𝑁𝑆𝑊𝐸), and its original values. It is evident that 𝑅𝑒𝑠𝑜

𝑁𝑆𝑊𝐸 exhibits greater variability 

compare to the original values (i.e., with smaller minimum values and larger maximum values). The 

median differences indicate that the likelihood of increased omission residuals is higher after excluding 

SWE (Fig. 13b). Such differences indicate that omitting crucial SWE storage component results in a 

greater degree of water imbalance, and, as expected, this effect is more pronounce in high-latitude and 

high-elevation regions (Fig. 13d-f). Moreover, the spatiotemporal distribution of 𝑅𝑒𝑠𝑜 has changed (Fig. 

S11-12). Notably, during the cold season (December to February), the proportion of 𝑅𝑒𝑠𝑜 is much higher 

and exhibits s significant positive trend. These findings align with our definition of 𝑅𝑒𝑠𝑜 which refers 

to the water imbalance caused by omitted water. It also, to some extent, supports the validity of our 

decomposition method, and highlights the importance of a comprehensive water budget equation.” 



 

Figure 13. Comparison of 𝑅𝑒𝑠𝑜 obtained from residuals decomposition excluding SWE with the original values. (a-c) Spatial distribution 

of monthly mean 𝑅𝑒𝑠𝑜 excluding SWE minus its original values. (d-f) Time series of 𝑅𝑒𝑠𝑜 excluding SWE and its original values at the 

southern basin (02198100, 32.96°N), northern basin (12358500, 48.33°N), and high-elevation basin (07083000, elevation of 3.56 km) at 

monthly scale. The unit of residuals is “mm” 

 

Figure S11. Same as Fig. 4, but for residuals decomposition excluding SWE 



 

Figure S12. Same as Fig. 5, but for residuals decomposition excluding SWE 

 

 

C/ (8) In the multi-source dataset correction framework for achieving water budget closure, what 

is the rationale for setting the initial correction rate to 0.5? Why is the correction rate halved when 

the model produces unreliable simulations? Is there a potential proportional relationship between 

the adjustment of the correction rate and the magnitude of bias in unreliable simulations that could 

allow for more efficient correction rate adjustments? Additionally, what is the basis for setting the 

conditions for iteration and termination of the correction process as “the inconsistency residuals 

decreases to 10% of its initial value or the correction rate falls below 4%”? 

 

R/ This is a very insightful comment. What you mentioned are precisely three key issues we encountered 

during the implementation process. Just in our response to the fourth question in Major Concern (5), the 

iterative process involves continuous trial and error to prevent over-correction and ensure that 

measurement remain within the appropriate range. 

 

The first issue is determining the initial correction rate (𝑟0). At the beginning, to ensure a high correction 

speed, we set the initial correction rate to 1 and 0.7. However, for most basins, this often resulted in 

measurements exceeding a reasonable range after the first iteration of the correction, leading to unreliable 

simulations and unreasonable corrected measurements. Through experimentation, we found that 0.5 is a 

suitable initial correction rate, as it ensures that the first iteration of the correction is effective in most 

cases. 

 

The second key issue is determining the decay rate of correction rate (∆𝑟) following the occurrence of 

unreliable simulations. The generation of unreliable simulations suggests that the current correction is 

excessive. Effectively reducing the correction magnitude and re-correcting may further facilitate the 

convergence of measurement system with the simulation system. Linear decay is a conventional approach, 

which aligns with our perception. For example, reducing the correction rate by 0.1 or 0.2 each time. 

However, testing has shown that such linear decay results in excessively long correction times, making 

the application of the PHPM-MDCF across a wide range of basins (i.e., 475 basins) difficult. On the other 

hand, exponential decay can cause the correction rate to quickly fall into a small value range, thereby 



reducing the correction efficiency. Given the above, we chose a multiplicative decay approach, where the 

correction rate is halved each time for re-correction. The results indicate that this approach is effective, 

as shown in the iterative process depicted in Figures 6 and S3-6. For illustration, we provide a case here: 

 

Figure R1. The decline of 𝑅𝑒𝑠 with the number of correction iterations for basin 1013500. The unit of residuals is “mm”. 

 

The final issue is determining when to terminate the correction, as this criterion significantly affects the 

final correction efficiency. Here we consider two points.  

(a) The first is that the correction has achieved satisfactory results, with the final 𝑅𝑒𝑠 being relatively 

small (𝑅𝑒𝑠𝑡). This threshold must be appropriately set; it cannot be too large, as this would indicate 

insufficient correction, nor too small, since the PHPM-MDCF, as a soft constraint, has limited 

correction capacity. An excessively small final 𝑅𝑒𝑠 threshold could result in an infinite number of 

correction iteration. Based on comparative experiments, we believe that reducing it to 10% of the 

initial value is appropriate. As shown in Fig. R1, 𝑅𝑒𝑠  stabilizes and no longer changes once it 

decreases to around 10% of the initial value (from 40 to 4 mm). 

(b) The second point is that the correction rate should not be too small, as this would imply excessively 

low calibration efficiency. This is closely related to the initial correction rate and decay rate (here, 0.5 

and halving, respectively). A threshold of 4% means that the correction will cease once the correction 

rate, decayed four times from 0.5 to 0.03125, is reached. This threshold setting is relatively subjective, 

but it has proven to be reasonable based on testing results. 

Notably, although the parameters for the three issues mentioned above are set subjectively, the choice 

follow a certain logic and have passed a series of tests. At least, cautiously speaking, they are suitable for 

the current study area, as shown in Fig. 7. Further adjustments are possible, but they have minimal impact 

on the current results (based on some testing). 

 

We will add the following statement in Sect. 3.2 to further emphasize the issues mentioned above. 

 

“In addition, the parameters settings in the PHPM-MDCF (i.e., initial correction rate, decay rate of the 

correction rate, correction termination threshold) are appropriate for the current study area (Table S2). 

When applying this framework to different regions, additional adjustments and testing may be required.” 

 

 



Table S2. Summary of the parameters settings in the PHPM-MDCF. 

Parameters Reference value Reference range Description 

𝑟0 0.5 0.3~0.6 Initial correction rate. 

Decay approach Multiplicative Linear, exponential, and multiplicative decay 
The method of reduction in correction rate 

following an unreliable simulation. 

∆𝑟 50% 30%~70% Decay rate of the correction rate. 

𝑅𝑒𝑠𝑡 10% 5%~20% 
Correction termination threshold for 

inconsistency residuals. 

𝑟𝑡 4% 1%~10% 
Correction termination threshold for correction 

rate. 

 

 

Minor Comments: 

 

C/ (1) Please provide additional explanation on how Section 4.3.1 demonstrates the reliability of the 

PHPM-MDCF method. 

 

R/ Thank you for your suggestion. We will add scatter plots comparing measurements and simulation 

before and after correction to further illustrate the convergence of the measurement and simulation 

systems, thereby demonstrating the reliability of the PMPH-MDCF method. The following revisions will 

be added to Section 4.3.1. 

 

“More intuitively, Fig. S7 presents a comparison of measurements and simulations for each variable 

before and after correction. It is evident that the relationship between measurements and simulation is 

significantly strengthened after correction. This suggests that the PHPM-MDCF has the ability to enhance 

the convergence between the simulation and measurement systems, supporting the credibility of the 

correction results to some extent.” 

 

 

Figure S7. Scatter plots comparing measurements and simulation before and after correction at basin 1013500. 

 



 

C/ (2) The paper does not validate the accuracy of the Reso, Resi, and Res separation method in the 

results. 

 

R/ Thank you for your comment. We have addressed this issue in detail in our response to the second 

question of Major Concern (7) and will include a new subsection to demonstrate the reliability of the 

residuals decomposition method. Please review the response above. 

 

 

C/ (3) At line 310, can KGE ≥ −0.41 really indicate that the hydrological model accurately represents 

the observed hydrological system? 

 

R/ Thanks for your comment. The Kling-Gupta Efficiency (KGE) metric, introduced by Gupta et al. 

(2009), provides a method for achieving a balanced improvement of simulated mean, variability, and 

correlation (see Eq. B1). Many studies have demonstrated the effectiveness of KGE, which is currently a 

popular metric in hydrological modelling (Knoben et al., 2020; Clark et al., 2021). The KGE is bound by 

(−∞, 1] with 1 being the ideal value. For such a metric, it is challenging to give a benchmark value to 

determine whether the simulation is reliable. Thus, to ensure caution, we opt to reference previous 

literature for guidance. For instance, Aerts et al. (2022) use the -0.41 of KGE as the benchmark to evaluate 

the performance of wflow_sbm in simulating streamflow: 

 

“Ideal model performance has a KGE score of 1 and a KGE score of −0.41 is equal to taking the mean 

flow as a benchmark.” 

 

Bruno et al. (2002) noted that a KGE of -0.41 serves as the threshold for no skill: 

“(KGE ∈ (-∞, 1], optimal value = 1, no-skill threshold over mean flow as predictor = -0.41).” 

 

The notable example is Knoben et al. (2019), who, by comparing the NSE and KGE metrics, established 

a KGE value of -0.41 as the threshold for evaluating whether model simulations outperform the mean 

flow: 

 

“Here we show that using the mean flow as a predictor does not result in KGE = 0, but instead KGE 

=1-√2≈-0.41. Thus, KGE values greater than −0.41 indicate that a model improves upon the mean flow 

benchmark – even if the model's KGE value is negative.” 

 

Based on the aforementioned literature, we used a KGE value greater than -0.41 as the threshold for 

reliable simulations. Although this threshold may still be somewhat subjective, evaluating simulation 

reliability across five variables (i.e., streamflow, ET, SMS, GRS, SWE) simultaneously can help mitigate 

this uncertainty. 

 

For better address the question, we will include the above references in the manuscript. 

 

“With reference to previous studies (Knoben et al. 2019; Clark et al., 2021; Aerts et al., 2022), we have 

adopted KGE ≥ −0.41 and r statistically significant at the 5% level as criteria for guaranteeing reliable 

simulations.” 

 

 



C/ (4) In Figure 5, Reso is closer to 0. Can we attribute this to the principle of water budget in the 

development of the hydrological model, rather than merely to omission errors? Since Resi = Res - 

Reso, and Reso is relatively small, it is evident that the values and spatial patterns of Resi and Res 

are more similar. What does this imply? 

 

R/ Thank you for your comment. Our response to the second question of Major Concern (7) provides 

some clarification on this issue. Specifically, 𝑅𝑒𝑠𝑜 approaching zero indicates that our description of the 

water budget equation is relatively comprehensive and cannot be simply attributed to the water balance 

features of the hydrological model. 

 

When the SWE component is omitted without changing the model, 𝑅𝑒𝑠𝑜 increases significantly, with 

this effect being more pronounced at high elevations, high latitudes, and during the cold season (Fig. 13).  

 

The equation (𝑅𝑒𝑠𝑖 = 𝑅𝑒𝑠 − 𝑅𝑒𝑠𝑜) is indeed the essence of our decomposition method, but it is not the 

sole reason for the similarity between 𝑅𝑒𝑠𝑖 and 𝑅𝑒𝑠. The fundamental reason lies in the completeness 

of the water budget equation description, which results in a smaller contribution of 𝑅𝑒𝑠𝑜 to the formation 

of 𝑅𝑒𝑠. 

 

 

C/ (5) Please explain from a theoretical standpoint why the PHPM-MDCF method has such 

advantages over previous methods: “It suggests that the soft constraints based on physical 

hydrological processes will not lead to compensatory errors, as seen in traditional methods due to 

the rigid allocation of water budget residuals.”. 

 

R/ Thank you for your suggestion. We will add the following statement to theoretically demonstrate the 

advantages of the PHPM-MDCF. 

 

“From a theoretical perspective, the PHPM-MDCF assigns the weights of residual correction based on 

the distance between measurements and simulation for each variable. In the presence of a single extreme 

bias, the large distance between the measurement and simulation of the corresponding variable leads to a 

larger correction being applied to that variable, while the weights for other variables remain unaffected. 

However, in traditional methods, the correction weight for each variable remain constant over time, and 

the final residuals are constrained to zero. This leads to the propagation of extreme biases across different 

variables.” 

 

 

C/ (6) I do not find this statement reasonable: “When the hydrological model calibrated against 

multiple variables measured by the multisource datasets and achieves reliable performance, we 

consider the simulation system approaching the measurement system.”. 

 

R/ Thank you for your comment. We will revise this inappropriate statement to: 

 

“When the hydrological model calibrated against multiple variables measured by the multisource datasets 

and achieves reliable performance, we consider the water budget represented by the simulation and 

measurement systems to be comparable.” 

 

 



C/ (7) At line 255, please clarify the data sources for the observed values of P, ET, Q, and TWSC 

used in this study. Without this information, it is difficult to judge whether the deviation between 

the simulation system and the measurement system is calculated reasonably. 

 

R/ Thank you for pointing out the unclear aspects of our manuscript. According to your suggestion, we 

reiterated the data sources (see our response to Major Concern (3)) and will further emphasize them in 

this section as follows: 

 

“In the subsequent application of the PHPM-MDCF, the measurements are derived from the data provided 

in Sect. 2.2.” 

 

 

C/ (8) I personally feel that the discussion in Section 5.1 would be more effective if it were more 

closely aligned with the scope of this study. 

 

R/ Thank you for your suggestion. According to your suggestion, we will enhance Sect. 5.1 with more 

arguments relevant to this study and reduce unnecessary statements. The revisions will be made are as 

follows: 

 

Remove this sentence from the penultimate paragraph: “Although our current knowledge may not be 

entirely precise—for example, the depiction of hydrological processes in hydrological models may lack 

accuracy—it remains foundation upon which we can rely and strive to refine in the future.” 

 

The last paragraph will be revised to: “The proposed correction framework (PHPM-MDCF) capitalizes 

on this concept by iteratively advancing the convergence between the knowledge system (i.e., 

hydrological model and water balance equation) and the measurement system, thus enhancing the 

credibility of the measurements. Although our current knowledge may not be entirely precise—for 

example, the depiction of hydrological processes in hydrological models may lack accuracy—it remains 

foundation upon which we can rely and strive to refine in the future. Furthermore, several underlying 

concepts in this framework, such as residuals decomposition and advancing water budget closure through 

correction, aligns with a recent study (Wang and Gupta, 2024). They introduced a novel hybrid model 

(i.e., Mass-Conserving-Perceptron) and discussed its potential application, including the bias correction 

(lacking confidence for the measurements) and examination of non-observed interactions with the 

environment (corresponding to the omission errors). Therefore, coupling the PHPM-MDCF with 

hydrological models that provide stronger interpretability is a valuable and promising research effort, as 

it can offer insights into the physical attribution of water budget non-closure and enable more reasonable 

correction.” 

 

 

C/ (9) The limitations discussed in Section 5.2 are not explained from a theoretical perspective. I 

hope that some convincing explanations can be supplemented from this standpoint. 

 

R/ Thanks for your suggestion. We will add the following statement to Sect. 5.2 to further explain the 

theoretical basis of the adaptability to forcing datasets of the framework. 

 

“Theoretically, the consistency of correction stems from two aspects. Firstly, it is attributed to the 

adaptability of hydrological model to the input data, specifically the calibration compensation capability 



we described in the introduction (Wang et al., 2023). This enables the hydrological model to generate 

reasonable representation of hydrological process even with imprecise forcing. Secondly, as discussed in 

Sect. 4.3.2, the PHPM-MDCF serves as a soft constraint and utilizes the distance between measurements 

and simulations to allocate residuals correction, thereby mitigating the propagation of bias between 

variables. These two features ensure that stability of the correction, rendering it less susceptible to 

interference from uncertainties in the forcing datasets.” 

 

 

C/ (10) The structure of the article lacks a keywords section. Please add keywords. 

 

R/ Thank you for your careful review. According to the current HESS official template and guidelines, 

the keywords section is not a required option. Please the following URLs: 

 

https://www.hydrology-and-earth-system-sciences.net/submission.html#templates 

https://www.hydrology-and-earth-system-sciences.net/submission.html#manuscriptcomposition 

 

 

C/ (11) Please add references related to the water budget equation. 

 

R/ Thank you for pointing out the omissions in our manuscript. We will add the relevant reference 

(Lehmann et al., 2022) for Eq. 1 as: 

 

“For a closed basin, the water budget can be mathematically expressed as (Lehmann et al., 2022), 

dTWS

dt
= P − ET − R, (1) 

where 
dTWS

dt
 is change in terrestrial water storage, P is precipitation, ET is evaporation, R is streamflow 

at the outlet.” 

 

 

C/ (12) The text states “as illustrated in Fig. 3” but the caption provided is “Figure 3”. The authors 

should ensure that all figure captions are consistent with the text descriptions. Please carefully 

check the rest of the article for similar errors and make the necessary corrections. 

 

R/ Thank you for your careful review. For the abbreviation format, we referred to the official guidelines 

provided by HESS. Please see the following URL and explanation: 

 

https://www.hydrology-and-earth-system-sciences.net/submission.html#figurestables 

 

“Figure composition: … 

… 

The abbreviation ‘Fig.’ should be used when it appears in running text and should be followed by a 

number unless it comes at the beginning of a sentence, e.g.: “The results are depicted in Fig. 5. Figure 9 

reveals that.” 

 

  

https://www.hydrology-and-earth-system-sciences.net/submission.html#templates
https://www.hydrology-and-earth-system-sciences.net/submission.html#manuscriptcomposition
https://www.hydrology-and-earth-system-sciences.net/submission.html#figurestables
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