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Abstract. High-quality rainfall data are crucial for various climatological and hydrological applications, especially in detailed

modelling at fine temporal and spatial resolutions. However, obtaining precipitation data with fine spatiotemporal resolution

is often challenging due to the limited availability of sub-daily point measurements and the sparse distribution of rainfall sta-

tions in many regions. This paper presents and demonstrates a method to generate the Commonwealth Scientific and Industrial

Research Organisation Hourly Rainfall (CHRain) dataset, which provides hourly and 1 km gridded rainfall surfaces for hydro-5

logical/hydrodynamic modelling. The method applies thin-plate spline interpolation to generate rainfall surfaces using hourly

input time series obtained from hourly rainfall stations, and from daily data disaggregated into hourly intervals based on pat-

terns observed in nearby hourly rainfall stations, and also guided by continuous radar images. The method is used to represent

rainfall patterns and amounts from 2007 to 2022 in the Richmond River catchment in New South Wales, Australia. Our analysis

shows that the performance of the spline interpolation improves with the inclusion of the elevation data. Larger rainfalls re-10

sponded more sensitively to changes in topography, with an optimum supporting DEM horizontal resolution of around 5 km, in

agreement with previous studies. Performance was also significantly enhanced by using a stable spatial occurrence analysis to

reliably remove false zeroes from the data. About 0.26% of the data were found to be false zeroes. The
::::::
During

:::
the

::::
2017

::::::
event,

:::::::
CHRain

:::::::
achieved

:::
the

:
correlation coefficient of 0.949 shows that the CHRain

:::::
against

::::::
hourly

:::::::
gauges,

:::::::
showing

::::
that

:::
the dataset

can adequately reproduce the patterns of hourly rainfall measurements. The spatial and temporal analyses indicate that the15

CHRain dataset outperforms other gridded datasets currently available in Australia in representing the sub-grid distributionas

well as
:
,
:
the daily and hourly variation of rainfall across the study area

:
,
:::
and

:::
the

::::
high

:::::::
rainfall

::::::
values. These are all essential

for capturing the spatiotemporal characteristics of flood inundation in the study area which is frequented by disastrous flood

events.
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1 Introduction

High resolution temporal and spatial representations of precipitation data are required in many hydrological applications,

such as modelling flood inundation (Jhong et al., 2017; Pappenberger et al., 2005), analysing catchment responses in rainfall-

runoff models (Xu et al., 2022; Acharya et al., 2019), and forecasting extreme events and natural hazards (Ficchi et al., 2016;

Mukherjee et al., 2018). Sub-daily and even sub-hourly precipitation data are required to accurately represent the variability of25

rainfall especially during extreme flood events or when a catchment receives excessive and intense amount of rainfall within a

few minutes to several hours (Davis, 2001; Ficchi et al., 2016; Westra et al., 2012). Several studies (Ficchi et al., 2016; Acharya

et al., 2022; Brighenti et al., 2019) indicated that improving the quality of rainfall data temporally can enhance the performance

of rainfall-runoff models in simulating flood peaks, flood frequency, and the timing of the peaks. Peleg et al. (2013) analysed

the subpixel rain distribution by comparing the data from radar with point measurements at high density gauges. The results30

showed that a density of 3 rain gauges per radar pixel (4 km × 4 km) will allow an adequate presentation of radar rainfall.

Peleg et al. (2017) indicated a valuable contribution of 26% of spatial distribution rainfall on the total variability of modelled

urban drainage network. However, high spatial and temporal resolution precipitation data are not always available for those

applications.

There are significant variations in the rainfall patterns in Australia at both regional and seasonal scales (Taschetto and35

England, 2009). The rainfall patterns can be observed from rainfall time series measured at stations and gridded data with

various resolutions. There are more rainfall stations that record at daily intervals than those that record at hourly or sub-hourly

intervals. Observations from daily stations are also available for longer periods than the hourly stations. There are 4765 active

daily rainfall stations with data from the 1960s in Australia. There are 759 sub-daily rainfall stations and only 442 stations

having records more than 20 years long (Morbidelli et al., 2020; Westra et al., 2012). Most rainfall stations are located in40

highly populated regions such as the southwest, east-coastal, and south-coastal areas (Morbidelli et al., 2020). The coarse

distribution of rainfall stations in some regions and the short records of available data limit the ability to generate sub-daily

rainfall data at a high spatial resolution for the whole of Australia.

Some efforts have been invested in disaggregating daily rainfall data to sub-daily (Acharya et al., 2022; Schreider and

Jakeman, 2001; Breinl and Di Baldassarre, 2019). Acharya et al. (2022) disaggregated daily rainfall data from the Australian45

Gridded Climate Data (AGCD) version 1 (previously known as Australian Water Availability Project (AWAP) (Jones et al.,

2009)) to hourly using the patterns from a coarser spatial resolution dataset of the Bureau of Meteorology Atmospheric high-

resolution Regional Reanalysis for Australia (BARRA) (Su et al., 2019). Westra et al. (2012); Breinl and Di Baldassarre (2019)

applied the method of fragments, which finds the relationship between hourly and daily data of the currently available records

and applies a moving window to disaggregate the daily data where the hourly data are not available. A comparison by Pui et al.50

(2012) showed that the method of fragments resulted in a better performance in keeping intensity-frequency relationships at the

hourly scale and disaggregating extreme values than other parameterized methods, such as the random multiplicative cascades

and the randomized Bartlett–Lewis model. These disaggregation methods open options to produce sub-daily time series at a

higher temporal resolution.
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Although daily rainfall measurements are reliable and available for a reasonably long period in Australia (although at lim-55

ited spatial locations), many hydrological applications require gridded rainfall data to present the rainfall variation over land

surfaces (e.g., detailed climate inputs for hydrological and hydrodynamic models). Several techniques have been applied to

generate spatial rainfall data in Australia. There are three common types of gridded rainfall data based on point measurements,

satellite data, and model reanalyses (Chua et al., 2022). The thin-plate spline interpolation method has been widely applied

to generate daily, monthly to mean annual rainfall surfaces (Hutchinson, 1995; Johnson et al., 2016; Hutchinson et al., 2009).60

Thin-plate spline interpolation allows the inclusion of topography patterns, which has been shown to have a significant impact

on the spatial distribution and quantity of rainfall (Johnson et al., 2016). This method was applied to generate the ANUCli-

mate dataset, which is the daily and 0.01°resolution (approximately 1 km) climate gridded data, including daily rainfall from

1900 for the whole of Australia (Hutchinson et al., 2021). Jeffrey et al. (2001) interpolated ground measurement data using

ordinary kriging to generate the climate surfaces of Scientific Information For Land Owners (SILO) including daily rainfall65

at 0.05°grid. The AWAP dataset also provides daily and monthly spatial rainfall at a resolution of 0.05°(Jones et al., 2009).

The AWAP dataset are generated using an anomaly-based method, including the application of Barnes successive correction

method (Jones and Trewin, 2000) to generate weighted-anomalies layers at daily time steps, and thin spline interpolation to

provide the relationship between point measurements and locations (longitude, latitude and elevation) (Jones et al., 2009). The

AWAP data was enhanced to produce the AGCD dataset, using statistical interpolation and satellite rainfall data (Chua et al.,70

2022). However, Chappell et al. (2013) indicated no clear benefit of blending satellite data with point measurements compared

with ordinary point kriging in estimating near real-time rainfall in Australia. The satellite data only appeared to improve rainfall

estimation where the distribution of rainfall stations is sparse (e.g., less than 4 gauges per 10,000 km2)(Chappell et al., 2013).

Instead of using observation such as point measurements or satellite data, the reanalysed rainfall data are usually generated

from models solving deep-atmosphere global non-hydrostatic equations (Wood et al., 2014). BARRA is the first gridded dataset75

providing hourly rainfall data for the Australasian region at approximately 12 km resolution, with a downscale sub-product of

1.5 km resolution in 4 areas. The evaluation by Acharya et al. (2019) showed that reanalysed rainfall data (i.e., from BARRA)

had poorer performance compared to interpolated rainfall data (i.e., from AWAP) in terms of representing the point measure-

ments. Lewis et al. (2018) applied a nearest neighbour interpolation scheme to disaggregate 1 km gridded estimates of daily

and monthly areal rainfall for the United Kingdom (CEH-GEAR) to produce an hourly dataset. However, the method is not80

applicable in Australia for several reasons. The distribution of hourly rainfall gauges in Australia is much coarser, especially

in the central and northern parts of Australia, compared with the distribution in the United Kingdom. The record of hourly

measurements is shorter than the daily data and only available from 2007; therefore, a method to disaggregate daily rainfalls to

hourly when there is no or very little hourly observations is needed before we can disaggregate gridded data for those periods.

Despite all the efforts, there are still gaps in generating high resolution temporal and spatial rainfall data, which are relevant to85

hydrological purposes, especially for detailed flood modelling using fully distributed hydrodynamic models.

An accurate high spatial and temporal resolution rainfall is a critical input for accurately representing flood volumes and

times of flood peaks. This paper presents a method to generate the Commonwealth Scientific and Industrial Research Organi-

zation Hourly Rainfall (CHRain) dataset, which consists of high temporal (hourly) and spatial resolution (1 km grids) rainfall
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surfaces that capture the sub-daily instantaneous variation of rainfall patterns, necessary for modelling heavy rainfall events.90

The method uses hourly point rainfall measurements and thin-plate spline interpolation to generate hourly rainfall surfaces

at 1 km resolution. In the areas with sparse distribution of hourly rainfall stations, daily measurements are disaggregated to

hourly data
::::
from

::::
9:00

:::
am

:::
the

::::::::
previous

:::
day

:::
to

::::
8:00

:::
am

:::
the

::::::
current

::::
day,

:
using patterns from nearby hourly rainfall stations

:
,

::
to

:::::
match

::::
with

:::
the

:::::
daily

::::
data

:::::::
provided

:::
by

:::
the

:::::::::
Australian

::::::
Bureau

:::
of

:::::::::::
Meteorology

::::::
(BoM). We applied the proposed method to

produce hourly rainfall surfaces for the Richmond River catchment (≈ 7025 km2) in New South Wales, Australia. The new95

rainfall surfaces are evaluated using point measurements and other common gridded datasets currently available in Australia.

The method proposed in this study opens an opportunity to produce high resolution spatiotemporal rainfall surfaces for other

regions where detailed modelling is to be undertaken.

2 Data and methods

The study area is the Richmond River catchment, located in the northern rivers region of New South Wales, Australia, near the100

border between New South Wales and Queensland (Fig.1). The catchment area is approximately 7025 km2. The north and west

sides of the catchment are mostly forested, while the central to the south-east areas are agricultural land (NSW Department of

Planning & Environment, 2024). The topography of the catchment changes significantly across the landscape. The elevation

ranges between 0 m and 934.6 m across the catchment. Most of the northern and western mountainous areas and the areas

upstream of Lismore are very steep, while the southern and the coastal areas around Casino are very flat. The Richmond River105

catchment is an important habitat for endangered fauna and flora. The national parks and reserves, e.g., the Border Ranges, are

protected under the Australia World Heritage (NSW Department of Planning & Environment, 2024).

The annual rainfall in the catchment can exceed 1800 mm per year, with particularly high rainfall intensities observed

in the north-east and coastal areas (Lerat et al., 2022). Due to the combination of the topographic and climate conditions,

the Richmond River catchment is prone to extreme and devastating floods. There were 17 major flood events from 1945 to110

2022, with a maximum daily rainfall of more than 60 mmd-1 (Lerat et al., 2022). The severe floods in 2017 (1 in 21 Annual

Exceedance Probability (AEP)) and 2022 (the largest observed flood event in the catchment on record) overtopped the levee

at Lismore, causing loss of lives and serious damages to businesses and properties. Having a more precise representation of

the rainfall data in the Richmond River catchment is essential for reliable flood modelling and mitigation in the region. The

analysis was done for an area (30,389 km2) as shown in Fig. 1, which is larger than the Richmond River catchment area, to115

adequately support the hourly rainfall interpolation along the catchment boundaries.

2.1 Thin-plate spline interpolation model

The thin-plate smoothing splines method, as described by Wahba (1990), fits a "smooth" function to a set of noisy data across a

multidimensional space. Hutchinson (1995) applied the method to generate surfaces of climate variables such as temperature,

rainfall, and evaporation, while considering the impacts of topographic conditions. The model for thin plate spline interpolation120
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Figure 1. Locations of the study area at Richmond catchment.

is:

zi = f(xi)+ bT yi + ei for i= 1, ...,N ; (1)

where xi is a d-dimensional vector of spline independent variables; yi is a p-dimensional vector of independent covariates; zi

is the value of a data point at location xi; f is an unknown smooth function of xi; b is an unknown p-dimensional vector of

coefficients; ei is the independent zero mean error with variance σ2 that is constant across all data points; and N is the total125

number of observed data. The smooth function f and coefficient b are found by minimising the function below:

N∑
i=1

[zi − f(xi)− bT yi]
2 + ρJm(f) (2)
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where ρJm(f) is a measure of the complexity of f , which is an integral of mth order partial derivatives of f , and ρ is a positive

smoothing parameter. The smoothing parameter is normally determined by minimising the generalised cross validation, a

measure of the mean square predictive error of the fitted spline function.130

In this analysis, we employed the software ANUSPLIN Version 4.4 to generate hourly rainfall trivariate spline functions of

longitude, latitude and appropriately scaled elevation. The elevations were obtained from DEMs with a range of underpinning

horizontal resolutions. The detailed description of the setup and input files is available in Hutchinson and Xu (2004).

2.2 Rainfall data

In our analysis, we used the daily and hourly point rainfall measurements to interpolate the rainfall surfaces and to generate135

the gridded datasets. In areas where the distribution of hourly gauges is coarse, the rainfall data at nearby daily gauges were

disaggregated to hourly (by using the hourly patterns from the neighbouring hourly stations and radar images to determine the

rain front movement) for the spline interpolation. Gridded rainfall datasets, including the radar, BARRA data for the eastern

New South Wales (BARRA-SY), ANUClimate, and AGCD datasets, were used in the evaluation and comparison with our

results from CHRain (Table 1).140
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Table 1. Gridded data descriptions

Dataset Description Method Domain Resolution Reference

BARRA-SY Bureau of Meteorology

Atmospheric

high-resolution Regional

Reanalysis for the Eastern

New South Wales, 1990 -

2019

Local

reanalysis

([-28°, -38°],

[147°, 155°])

hourly, 1.5

km

Su et al.

(2019)

Radar Radar-Derived Rainfall

Accumulations, 2013 -

present

Radar

blended

128 km radius

centred around

the radar location

at Grafton

(-29.62°,

152.97°)

hourly, 1 km Bureau of

Meteorology

(2023)

ANUClimate Australian National

University Climate, 1900 -

present

Gauge

interpolation

Australia land

area

daily, 1 km Hutchinson

et al. (2021)

AGCD/AWAP Australian Gridded Climate

Data / Australian Water

Availability Project, 1900 -

present

Gauge

interpolation

Australia land

area

daily, 5 km Jones et al.

(2009)

The daily and hourly data at rainfall gauges were sourced from the Australian Bureau of Meteorology (BoM )
::::
BoM

:
and

the Water New South Wales Corporation (WaterNSW). The rainfall data during the flood events in 2022 at Rocky Creek Dam

(RCD) and Emigrant Creek Dam (ECD) were provided by the Rous County Council. These two stations are critical as both

these stations are located in the higher rainfall areas where there are limited gauges. There are 330 daily stations with records

from 2007 to 2022. However, only 253 stations are active in 2022. There are 143 hourly rainfall stations. Most of the hourly145

records start from 30/01/2007. A detailed quality control was undertaken for all the rainfall data before being used in the

ANUSPLIN program to construct the CHRain hourly rainfall surfaces at 1 km resolution, from 30/01/2007 to 31/12/2022.

The radar data were provided by the BoM, showing the rain front movement and rainfall intensity over the catchment area

(image every 5 minutes). The radar intensity data were used to generate Radar-derived rainfall accumulation, showing the

amount of rainfall accumulating in 1 hour (Bureau of Meteorology, 2023). We acknowledge that the radar rainfall shows the150

rainfall in the atmosphere instead of the rainfall reaching the ground. There are errors in the radar-derived rainfall data, showing

unreasonable high rainfall values in some areas (Bureau of Meteorology, 2023). The radar data were employed to observe and
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understand the movement and distribution of rainfall front in the study area. The hourly rainfall accumulating from radar data

were not used in our analysis. The radar images in the Richmond River catchment were available from 2/12/2013.

The hourly 1.5 km resolution BARRA-SY dataset was compared with our hourly CHRain product. The BARRA-SY155

dataset is available from 01/01/1990 to 28/02/2019 and covers a domain with the latitude range [-28°, -38°] and the longi-

tude range [147°, 155°]. The ANUClimate version 2 dataset (Hutchinson et al., 2021) provides gridded daily rainfall data at

0.01°resolution (approximately 1 km) from 01/01/1900. These grids have been generated using the thin-plate spline method

to interpolate daily point measurements, considering the impacts of topography (Hutchinson, 1995; Johnson et al., 2016). The

AGCD dataset contains daily 0.05°resolution (approximately 5 km) rainfall surfaces from 01/01/1900. The AGCD dataset160

covers the whole of Australia and is regularly updated with real-time data. The BARRA-SY, ANUClimate, and AGCG data are

available from the National Computational Infrastructure Data Catalogue (https://geonetwork.nci.org.au/geonetwork/srv/eng/

catalog.search#/home).

2.3 Quality control for the hourly rainfall data

A commonly used quality control method described in (Westra et al., 2014) was applied to the hourly and daily point rainfall165

measurements. The first step checks the range of values and the changes overtime. We manually plotted rainfall time series

and compared them to all neighboring stations. Thresholds of 300 mmh-1 and 1500 mmd-1 were used to remove unreasonably

high hourly and daily rainfall data. The suspicious data were removed, including negative, unreasonable high values, linear

interpolated values, and the values that were significantly higher or lower compared with those at nearby stations (within 5

km) and are also inconsistent with the radar data. Some unusually high values of hourly rainfall, mostly occurring at midnight,170

were detected. If an hourly rainfall value exceeded the sum of the previous 23 hours by more than 30 mmh-1, it was removed.

Additionally, if there were two or more stations within 2 km of each other, they were compared, and only the more reliable one

was retained (based on the quality code). This step is required to avoid instability in thin-plate spline interpolation, which occurs

when the close data points have very different rainfall values. The data from nearby stations were compared and combined if

the rainfall records overlapped. The station with a longer record was retained to be used in the ANUSPLIN package.175

Close inspection of initial analyses of the hourly rainfall data indicated that there were significant numbers of false zeroes

in the data leading to underestimation of rainfall during periods of high rainfall. This is a common problem with rainfall data,

particularly when they are recorded automatically. These values are hard to detect by applying simple thresholds. As noted

by Hutchinson et al. (2009), rainfall occurrence is more spatially coherent than rainfall amounts. An initial trivariate spline

analysis of the hourly occurrence data was therefore conducted to detect and automatically remove false zeroes.180

Positive rainfalls were set to an occurrence value of 1 and zero rainfalls were set to an occurrence value of 0. The spline

analysis used the same underpinning DEM resolution and elevation scaling as optimised for the rainfall amount analysis. Zero

hourly rainfall values were deemed to be false, and removed from the data set, when the interpolated occurrence value exceeded

0.5. The limited spatial coverage of the data set led to instabilities when the data values were almost all positive or almost all

zero. This was overcome by setting a constant error standard deviation of 0.25, consistent with the automatically derived error185

standard deviations when there were significant numbers of zeroes and ones. This ensured that sufficient smoothing was applied
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to the data to interpolate spatially stable occurrence patterns with a robust dependence on the data values. A total of 42,193

false zeroes were removed from a total number of 15,737,817 data values, amounting to 0.26% of the data.

:::
The

::::::::
reliability

:::
of

:::
the

:::::::::
occurrence

:::::
based

::::::::::
corrections

:::
was

::::::::
assessed

::
by

:::::::::
comparing

:::
the

::::::::
analyses

::::
with

::::::
hourly

::::
radar

:::::::
rainfall

::::
data

:::
over

:::::
eight

:::::::::
successive

::::
days

::::::
during

:::
the

:::
two

:::::
flood

::::::
events

::
in

::::
2022

:::::
(with

:::
the

::::
peak

::::::
around

::::::::::
28/02/2022

::::
and

::::::::::
29/03/2022).

:::::::::
Summary190

:::::::
statistics

:::
are

::::::::
presented

::
in

:::::
Table

::
2.

::
As

:::::
noted

::::::
above,

:::
the

::::
radar

::::::
rainfall

::
is

:::
not

::::::
always

:::::::
reliable.

:::
The

:::::::
percent

:::::::::
occurrence

:::::::::
agreement

::
of

::
the

::::
raw

::::::
hourly

::::::
rainfall

::::
data

::::
with

:::
the

::::
radar

::::
data

::::::
ranged

:::::::
between

::::
56%

::::
and

::::
72%

::
for

:::
six

::
of

:::
the

:::::
eight

::::
days,

:::::
while

:::::
there

::::
were

::::::
strong

:::::::::
occurrence

::::::::::
agreements

::
of

::::
92%

::::
and

::::
81%

:::
on

:::
the

::::
two

::::
high

::::::
rainfall

:::::
days

::
on

::::::::::
27/02/2022

::::
and

::::::::::
28/03/2022.

::::
This

::::::::
indicates

:::::
there

::::
were

:::::
major

::::::::::
deficiencies

::
in

:::
the

:::::
radar

::::
data,

::::::
except

:::
on

:::
the

:::::
heavy

::::::
rainfall

::::
days

:::::
when

:::::::::
significant

::::::
rainfall

::::
was

::::::::::
widespread

::::
over

:::
the

:::
data

::::::::
network.

:::::::::
Comparing

:::
the

:::::::::
occurrence

::::::::::
corrections

::::
with

:::
the

::::
radar

::::::::::
occurrence

:::
data

:::::::
showed

:::::
strong

:::::::::
agreement

::::
with

:::
the

:::::::
original195

:::
data

::::::::::
occurrence

::::::::::
agreements,

:::::::
ranging

::::
from

::::
43%

::
to

:::::
92%

::
on

:::
six

::
of

:::
the

::::
days

::::
and

::::
98%

::::
and

::::
83%

::
on

::::::::::
27/02/2022

::::
and

::::::::::
28/03/2022.

:
If
:::

the
::::::::::

corrections
:::::
were

::
all

:::::::
correct,

::::::::::
comparison

::::
with

:::
the

:::::
radar

::::
data

:::::
could

:::
be

::::::::
expected

::
to

:::::
assess

:::::
them

::
as

::::::
having

:::
an

::::::::
accuracy

::::::
similar

::
to

:::
the

:::::
initial

::::::
overall

::::::::::
agreements

:::::::
between

:::
the

::::::
rainfall

::::
data

:::
and

:::
the

:::::
radar

::::
data.

::::
The

::::::
strong

::::::::
agreement

::::::::
between

::::::
column

::
3

:::
and

::::::
column

::
5
::
in

:::::
Table

:
2
::
is
:::::::::
consistent

::::
with

:::
the

:::::::::
corrections

:::::
being

::
in

::::
fact

:::::
highly

:::::::
reliable,

::::
with

::
a

:::
true

:::::::
accuracy

::
up

::
to
:::::::
around

::::
98%

::
on

:::
all

::::
eight

:::::
days.

:::
The

::::
true

::::::::
reliability

::::::
maybe

:::::::::
somewhat

:::::
lower

::
on

:::::
days

::::
with

:::
less

::::::::::
widespread

::::::
rainfall

:::
and

::::
less

:::::::
spatially

::::::::
coherent200

::::::
rainfall

:::::::::
occurrence

:::::::
patterns.

::::
The

:::::::::
occurrence

::::::::::
corrections

::::
were

::::::::
sufficient

::
to

:::::::
improve

:::
the

::::::
overall

::::::::::
occurrence

:::::::::
agreement

::::
with

:::
the

::::
radar

::::
data

::
on

:::
the

::::::
fourth

:::
day

::
in
:::
the

::::
first

:::::
event

:::
and

:::
on

::
all

:::::
three

::::
days

::
in

:::
the

::::::
second

:::::
event.

::::
The

::::::
overall

:::::::::
agreement

::::
was

:::::::::
unchanged

::
for

:::
the

:::::
other

:::::
days.

:
A
:::::
range

:::
of

:::::::::
occurrence

:::::::::
thresholds

:::
was

:::::
tested

:::
by

::::::::
assessing

:::
the

::::::
overall

:::::::::
occurrence

:::::::::
agreement

::
of

:::
the

::::::::
corrected

:::
data

::::
with

:::::::
respect

::
to

:::
the

:::::::::
occurrence

::::::::
threshold.

::
A
:::::
range

::
of

:::::::::
thresholds

:::::
from

:::
0.4

::
to

:::
0.8

::::
gave

::::::
similar

::::::
results

::
to

:::
the

::::::
chosen

:::::
value

::
of

:::
0.5.

::::::
Further

::::::::::
refinements

:::
are

::::::
limited

:::
by

:::
the

::::::
overall

::::::::::
unreliability

::
of

:::
the

:::::
radar

::::::
rainfall

::::
data.

:
205

Close inspection of the analyses
:::
and

:
a
:::::::
detailed

::::::::::
comparison

::::
with

:::::
radar

::::
data

::::
over

::::
high

::::::
rainfall

::::::
periods

:
indicated that the false

zero detections were
:::
are reliable. The results for the occurrence analysis

:::::::::
occurrence

:::::::
analysis

::
is

::::
also

:::::::::
illustrated

::
by

:::::::::
tabulating

::
the

::::::::::
occurrence

:::::::::
corrections

:
for a high rainfall day are described in Appendix B.
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Table 2.
:::::::
Summary

:::::::
statistics

::
of

::::::::
occurrence

:::::::::
corrections

:::
with

::::::
respect

::
to

:::::
hourly

::::
radar

:::
data

::::
over

:::
five

::::::::
successive

::::
days,

:::::
during

:::
the

:::
two

::::
flood

:::::
events

:
in
:::::

2022.
:::::::::
Occurrence

::::::::
agreement

::
is

::::::::
calculated

::
as

:::
the

::::::::
percentage

::
of
:::

the
::::::

number
:::

of
::::::::
agreements

::
in
:::::::::

occurrence
::::
(both

::::
zero

::
or

::::
both

::::::::
non-zero)

:::::
divided

:::
by

::
the

::::
total

::::::
number

::
of

:::::
hourly

:::
data

::::::
values.

::::
Date

:::::::
Average

::::::
rainfall

[
::::::
mmh−1]

::::::
Percent

:::::::::
occurrence

::::::::
agreement

::
of
::::
raw

:::
data

::::
with

:::::
radar

::::
data

:::::::
Number

::
of

::::::::
estimated

::::
false

::::
zeros

:

::::::
Percent

::::::::
agreement

::
of

:::::::::
corrections

::::
with

::::
radar

::::
data

::::::
Percent

:::::::::
occurrence

::::::::
agreement

::
of

:::::::
corrected

::::
data

::::
with

::::
radar

::::
data

:::::::::
24/02/2022

: :::
3.3

::
57

: ::
75

: ::
57

: ::
57

:

:::::::::
25/02/2022

: :::
0.8

::
57

: ::
36

: ::
53

: ::
57

:

:::::::::
26/02/2022

: :::
2.3

::
72

: ::
54

: ::
87

: ::
72

:

:::::::::
27/02/2022

: :::
8.6

::
92

: :::
102

: ::
98

: ::
96

:

:::::::::
28/02/2022

: ::::
10.5

::
56

: ::
85

: ::
46

: ::
56

:

:::::::::
28/03/2022

: :::
4.2

::
81

: ::
90

: ::
83

: ::
83

:

:::::::::
29/03/2022

: :::
4.2

::
65

: ::
94

: ::
92

: ::
67

:

:::::::::
30/03/2022

: :::
3.0

::
57

: ::
83

: ::
43

: ::
58

:

2.4 Disaggregation of daily rainfall data to hourly rainfall data

The distribution of hourly stations in the Richmond River catchment is sparse in some areas, especially at the west boundary210

of the catchment. We chose 23 daily rainfall stations (shown as red dots in Fig. 1) to disaggregate the rainfall data from daily

to hourly, using the patterns from the nearest hourly stations. We also used the observed movement of rainfall from the radar

data to select suitable nearby hourly gauges to disaggregate data from daily to hourly.

Some criteria were set up to disaggregate daily data into hourly:

1. The daily rainfall data were disaggregated using the hourly distribution pattern from the nearest hourly station. The215

summed 24-hour hourly data from 9:00 am the previous day to 8:00 am of the current day was scaled to match the daily

recorded total for that day.

2. If a daily record at a certain time step was missing (no data), the associated 24-hour data were set as missing values in

the disaggregated dataset.

3. If a daily record at a certain time step was positive but the hourly data on the same day at the nearby station were missing220

or 0, the daily rainfall value was distributed equally over 24 hours.

After cleaning, disaggregating, and completing a detailed quality control of the data, there were 139 hourly stations (includ-

ing 23 disaggregated stations) for generating hourly rainfall surfaces (shown in Fig. 1).
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2.5 Calibration of the DEM smoothing scale and the elevation transformation parameter

The 5 m resampled to 1 km averaged LiDAR Digital Elevation Model (DEM) from Geosciences Australia was used to define225

the boundary of the rainfall surfaces in the ANUSPLIN package (https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#

/metadata/89644). A set of 1 km resolution smoothed DEMs was prepared by calculating the focal mean with distances from

2 to 10 km to investigate the impacts of topographic scale on the rainfall surfaces using ArcGIS program. The focal mean at

each 1 km pixel is calculated as the mean of a square window with a specified distance around that pixel.

In the ANUSPLIN program, the independent variable transformation for the DEM is h/a, where h [m] is the elevation230

value and a is the transformation parameter. The usual recommended a value for interpolating monthly and daily data is

1000 (Hutchinson, 1995; Hutchinson et al., 2009). This corresponds to a 100-fold exaggeration of the impact of elevation

on precipitation patterns compared to the impact of horizontal position. In this study for hourly splines, a was calibrated

in the range from 1000 to 10,000, corresponding to vertical exaggerations ranging from 100-fold to 10-fold. We also tested

the performance of the interpolation model using bivariate (without the elevation variable) and trivariate (with the elevation235

variable) analyses.

The days of hourly rainfall data were categorised into two groups to analyse the impact of topography on spatial rainfall

patterns. Days with average hourly rainfall between 0 and 1 mmh-1 were considered as light rain days, and days with average

hourly rainfall exceeding 1 mmh-1 were considered medium to high rainfall days. There were 3379 light rainfall days and 111

medium to high rainfall days. There were 246 days with zero rainfall across the whole data network. These days were omitted240

from the calibration. The focal mean distance and the elevation scaling parameter a were jointly optimised to minimise the

average of the generalised cross validation of the fitted splines over all medium to high rainfall days.

The performances of the different spline models were compared using the Mean Absolute Predictive Error (MAPE) and the

Mean Absolute Residual (MAR) provided by the spline interpolation model. The MAPE is calculated from the individual cross

validation residuals as afforded by the “leaving out one lemma” described in Wahba (1990).245

2.6 Generate hourly splines using ANUSPLIN

The hourly rainfall splines were generated using ANUSPLIN version 4.4 (Hutchinson and Xu, 2004). There are four main

steps to generate daily and hourly splines, including preparing the input data (.dat) files, preparing the command (.cmt) files,

running the spline program to generate interpolating parameters, and running the lapgrd program to generate rainfall surfaces.

For the hourly rainfall surfaces, we ran the ANUSPLIN program daily (24 splines per day) from 30/01/2007 to 31/12/2022.250

The details of the setup are:

1. The independent variables include the longitudes, latitudes, and DEM values of the hourly stations. The dependent

variables are the measured rainfall values at the hourly stations.

2. For the spline commands, the numbers of knots were set as 90% of the total number of stations, as read from the

input data files. The dependent variable transformation was set as the square root of the data surface to comply with255
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the positive skew of the rainfall values, often including many zeroes, and to ensure that the fitted values are always

non-negative Hutchinson et al. (2009).

3. The optimised parameters from the spline program and the 1 km smoothed DEM were input into the lapgrd program to

generate the rainfall grids.

2.7 Temporal and spatial analyses260

2.7.1 Temporal analysis

We calculated the statistics for the hourly rainfall record during the simulation period from 2007 to 2022, including the mean,

maximum, standard deviation, and the ratios of the maximum values at different accumulated time intervals (i.e., 3, 6, 12, and

24 hours) to the maximum values in the hourly time series (Pk[%]):

Pk =

N
max
i=1

(
1

k

i+ k−1
2∑

i− k−1
2

xi)

N
max
i=1

(xi)
× 100, (3)

where xi is the hourly rainfall value at time step i, k is the rolling sum time interval (3, 6, 12, and 24 hours), and N is the total265

number of observed data.

Since hourly rainfall data usually contains numerous zero values, the evaluation metrics calculated for a long period are

biased toward underestimation of extreme values (Gires et al., 2012). Therefore, the flood event in 2017 (1 in 21 AEP) and in

2022 (the biggest flood event observed in the catchment) were selected for further evaluation. The flood event in 2017 started

from 01/03/2017 to 05/04/2017, with the peak rainfall period occurring on 30-31/03/2017. The flood event in 2022 occurred270

from 25/01/2022 to 05/05/2022, including two peak events on 28/02 - 01/03/2022 and 29-30/03/2022. The thresholds of 0.1

mmh-1 and 1 mmd-1 were used to eliminate the numerical noise in the interpolated splines and to classify dry and wet pixels.

In the temporal evaluation, we compared the time series extracted from gridded rainfall data, including CHRain, BARRA-

SY, radar, ANUClimate, and AGCD datasets to the point measurements. Because all of the hourly gauges were included in the

generation of the CHRain dataset, we evaluated the CHRain with the daily measurements at 169 gauges, that were not used in275

the interpolation. We selected 8 hourly stations to undertake further analysis, shown as blue triangles in Fig. 1. The 8 gauges are

located in the important cities and towns within the Richmond Rivers catchment, including Lismore, Casino, Ballina, Kyogle,

Channon, and Nimbin. These areas were affected significantly during the flood events in 2017 and 2022. The ANUClimate and

AGCD daily values were disaggregated evenly from 9:00 am the previous day to 8:00 am the current day to generate the hourly

time series. A similar comparison was conducted for the daily time series, extracted from 8 daily stations (shown as purple280

triangles in Fig. 1). These daily stations were not used in generating the CHRain splines. The hourly CHRain, BARRA-SY, and

radar data were aggregated from 9:00 am the previous day to 8:00 am the current day to produce the daily datasets to compare

with ANUClimate and AGCD data.
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The Bias, Mean Absolute Error (MAE), correlation coefficient (r), Nash–Sutcliffe Efficiency (NSE) metrics were calculated

in the evaluation (Appendix A). Positive and negative bias values show overestimation and underestimation, respectively. The285

MAE shows the absolute errors of the predicted values compared to the measurement data. The range of the NSE is from −∞
to 1, where 1 is the optimal value.

2.7.2 Spatial analysis

In the spatial analyses, we compared the hourly CHRain with the ANUClimate and AGCD datasets. The hourly CHRain data

were summed to generate 24-hour total surfaces, from 9:00 am the previous day to 8:00 am the current day.290

The daily rainfall data were classified as heavy and extremely heavy if the recorded values were higher than 95th and 99th

percentiles of the daily measurement data from 2007 to 2022, as suggested by Bureau of Meteorology (2024). In the Richmond

River catchment, rainfall values from 21 mmd-1 to 58 mmd-1 are considered heavy rain, and rainfall values higher than 58

mmd-1 are classified as extremely heavy rainfall.

The Bias, Hit Rate, and the Critical Success Index (CSI) (Ebert, 2008) were used to compare the 24-hour total CHRain with295

the ANUClimate. The optimal value for the Hit Rate and CSI is 1, showing a perfect match between the two datasets. The Bias

value describes the difference between the generated grid and the observed data. The Hit Rate shows the proportion of wet

pixels in the generated dataset that are correctly predicted. The CSI considers both the underestimation and overestimation of

the generated dataset.

3 Results300

3.1 Rainfall statistics

The statistics of the hourly rainfall time series from 30/01/2007 to 31/05/2022 are shown in Table 2
:
3. The maximum values

during the 2017 flood event in the Richmond River catchment vary from 57.2 to 93.4 mmh−1 in 8 hourly validated gauges. By

averaging the hourly data from 3 to 24 hours, the dynamic extreme variation of the hourly rainfall is diminished. The averaged

maximum rainfall values reduce from 62.6% to 26.2% if the averaging time interval increases from 3 hours to 24 hours (Table305

2
:
3). Especially at station 203030, the peak of 24-hour averaged data can only capture 14.8% of the hourly peak value. Many

hydrological applications, such as detailed hydrodynamic models, require hourly or even sub-hourly data to generate flows

and water movement correctly, while the input rainfall is only usually available at a daily time step. If the daily rainfall totals

are available and provided as input, the model disaggregates it evenly and distributes it over the day. This process leads to the

underestimation of the hourly flood peaks. During flood events, intensive rainfall periods only occur over a few hours. Hence,310

generating hourly rainfall data is essential to preserve the sub-daily variations in rainfall intensity and dynamic patterns of

rainfall observations (Westra et al., 2014).
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Table 3. Statistics for the observed hourly rainfall from 2007 to 2022.

Station ID Mean [mmh−1] Max [mmh−1] Std [mmh−1] P3 [%] P6 [%] P12 [%] P24 [%]

58214 1.6 57.2 3.3 72.0 50.0 35.3 32.3

203900 1.5 78.0 2.8 67.0 54.0 44.7 33.8

58198 2.1 93.4 4.0 46.4 28.2 21.5 14.7

H058147 1.8 83.6 3.6 67.4 44.5 39.6 35.0

58208 1.7 61.6 3.3 94.0 65.9 40.8 40.8

H058180 1.6 58.6 3.1 50.9 32.8 28.9 15.8

H058162 1.8 70.9 3.4 46.5 42.1 30.1 22.6

203030 1.8 84.4 3.6 56.2 39.3 22.0 14.8

Average 1.7 73.5 3.4 62.6 44.6 32.9 26.2

3.2 Impacts of topography on the spatial interpolation of hourly rainfall splines

Table ?? and Table ??
:
4
::::
and

:::::
Table

:
5
:

show the Square RooT of the average Generalised Cross Validation (RTGCV) of the

trivariate spline model for light rainfall days and medium to high rainfall days as a function of DEM focal distance and315

elevation scaling, as derived in the initial analyses with no removal of false zeroes. The light rainfall days indicate a very

broad dependence on the topographic parameters with an optimum DEM focal distance around 10 km or possibly larger. On

the other hand, the medium to high rainfall days indicate an optimum DEM focal distance of around 5 km and an optimum

elevation scaling of around 4000. This suggests that topography plays an important role in interpolating larger rainfalls while

the response of smaller rainfalls to topography is fairly flat. The daily average 1 mmh−1 threshold appears to be an effective320

discriminator of light and medium to high rainfall days. Setting a lower threshold gave rise to multiple local minima in the

RTGCV patterns for days with average hourly rainfall greater than 0.5 mmh−1. These tables were recalculated after false zeroes

were removed by the spline occurrence analysis described above, with DEM focal distance set to 5 km and elevation scaling

set to 4000. The resulting patterns were similar to those shown in Table ?? and Table ??
:
4
::::
and

:::::
Table

:
5, with an optimum DEM

focal distance of around 5 km and a slightly larger elevation scaling of around 5000. There was little difference between the325

performance with these two elevation scales. All the remaining analyses were completed on the data with false zeroes removed,

using the initially determined 5 km DEM focal distance and elevation scaling of 4000.

The impact of including the DEM as an independent variable was further quantified in Table ??
:
6. It shows that, compared

to the bivariate analysis, the optimal trivariate analysis reduced the MAPE by about 4% for light rainfall days and by about 2%

for medium to heavy rainfall days. The trivariate analysis reduced the MAR by about 16% across all days.330
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Table 4. Performance of the interpolation model with different elevation transformation parameters and elevation smoothing scales for light

rain days (0-1 mmh−1). The minimum values of the RTGCV are shown in bold.

a 1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10 km

1000 0.2003 0.2005 0.1993 0.1984 0.1981 0.1980 0.1978 0.1978 0.1976 0.1978

2000 0.1983 0.1978 0.1981 0.1976 0.1976 0.1973 0.1970 0.1969 0.1969 0.1968

3000 0.1975 0.1978 0.1976 0.1974 0.1973 0.1973 0.1973 0.1972 0.1971 0.1967

4000 0.1975 0.1976 0.1975 0.1973 0.1972 0.1974 0.1973 0.1970 0.1971 0.1971

5000 0.1976 0.1974 0.1973 0.1972 0.1972 0.1972 0.1971 0.1970 0.1971 0.1969

6000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1972 0.1970 0.1970 0.1969 0.1969

7000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1969

8000 0.1974 0.1973 0.1972 0.1973 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970

9000 0.1975 0.1972 0.1974 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970

10,000 0.1974 0.1972 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970

Table 5. Performance of the interpolation model with different elevation transformation parameters and elevation smoothing scales for

medium to high rain days (> 1 mmh−1). The minimum value of the RTGCV is shown in bold.

a 1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10 km

1000 0.5536 0.5518 0.5485 0.5449 0.5427 0.5438 0.5431 0.5436 0.5423 0.5442

2000 0.5429 0.5408 0.5411 0.5385 0.5372 0.5362 0.5374 0.5374 0.5366 0.5403

3000 0.5387 0.5393 0.5377 0.5364 0.5359 0.5352 0.5370 0.5370 0.5376 0.5366

4000 0.5387 0.5372 0.5366 0.5357 0.5348 0.5359 0.5363 0.5361 0.5369 0.5362

5000 0.5369 0.5366 0.5362 0.5351 0.5356 0.5357 0.5362 0.5464 0.5367 0.5359

6000 0.5368 0.5356 0.5351 0.5349 0.5359 0.5364 0.5363 0.5465 0.5363 0.5361

7000 0.5358 0.5355 0.5351 0.5350 0.5359 0.5364 0.5363 0.5366 0.5362 0.5360

8000 0.5356 0.5354 0.5352 0.5354 0.5362 0.5363 0.5363 0.5366 0.5363 0.5360

9000 0.5354 0.5354 0.5356 0.5364 0.5367 0.5464 0.5363 0.5365 0.5358 0.5359

10,000 0.5354 0.5353 0.5361 0.5364 0.5365 0.5461 0.5366 0.5366 0.5359 0.5359

Table 6. Comparison between bivariate and optimal trivariate analyses on light (0-1 mmh−1) and medium to high rainfalls (>1 mmh−1).

Bivariate Trivariate

Average rainfall MAPE MAR MAPE MAR

0-1 mmh−1 0.0884 0.0505 0.0851 0.0420

>1 mmh−1 0.9007 0.4378 0.8816 0.3681
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3.3 Temporal evaluation

The hourly time series at 8 hourly stations were extracted from the gridded datasets and compared with the point measurements

for the 2017 (Table 3
:
7) and 2022 flood events (Appendix D). The CHRain dataset outperforms the hourly BARRA-SY and

radar datasets in representing the measured rainfall data, as indicated by the high correlation coefficient of 0.949, compared to

0.234 and 0.154 for BARRA-SY and radar datasets, respectively (Table 3
:
7). Note that as the hourly data from the 8 stations335

were used to generate the CHRain dataset, it is expected that the CHRain can adequately match the hourly rainfall patterns

from the measurements. However, it is not necessary for the thin-plate spline interpolation model to generate exact values of

rainfall at the gauges. The rainfall value of a grid cell is calculated and smoothed in relation to the rainfall values measured at

surrounding gauges.

All the gridded datasets underestimate the hourly measurements, shown by the negative Bias values. The hourly rainfall340

patterns of the BARRA-SY did not closely reproduce the point data, as suggested by a low correlation coefficient of 0.234

and a negative NSE of -0.493 (Table 3
:
7). The discrepancies between the peaks of BARRA-SY and the measured rainfall are

also observed in Fig. 2. In all 8 hourly stations, the peaks of the BARRA-SY data are earlier than the peaks in the point

measurements. However, the differences in the peak arrival time between the two datasets are not consistent across the 8

hourly gauges, varying from 5 hours at station H058180 to 9 hours at station H058162. The BARRA-SY data also shows an345

unreasonably high value of rainfall at station H058162 shown in (Fig. 2), compared to other gridded datasets. The performance

of the BARRA-SY dataset is even poorer than the hourly disaggregated ANUClimate and AGCD data. Although Acharya

et al. (2019) indicated that the average annual rainfall from the BARRA dataset agreed well with the AGCD dataset, our results

demonstrate that at the hourly scale the reanalysed data do not reproduce well the variation of rainfall patterns in the Richmond

catchment, during high flood events like in 2017.350

Compared with other gridded datasets, the hourly radar-derived rainfall data are the least adequate in reproducing the point

measurements, observed in both the 2017 and 2022 flood events. The mismatches between radar rainfall data and point mea-

surements were mentioned in previous studies (McMillan et al., 2011; Seo and Krajewski, 2011; Mandapaka et al., 2009;

Schleiss et al., 2020). From our analysis, the hourly peak rainfall values from the radar data are 3-20 hours earlier than the

peaks measured at the hourly gauges, observed in all 8 validated stations (Fig. 2). The radar dataset has the biggest MAE values355

in both 2017 and 2022 events compared with other gridded datasets. It is noted that the radar rainfall captures the rainfall in the

atmosphere instead of the point measurements on the ground. Therefore, the arrival times of the peaks measured by radar are

expected to be earlier than at the rainfall stations. Moreover, the rainfall amounts that reach the ground are affected by winds

and vertical variability of rainfall (Schleiss et al., 2020). More analyses need to be done on the pre-processing of the radar

dataset before using it for detailed hydrological applications.360

A similar analysis on the 24-hour total CHRain data was undertaken. The daily data at 8 different daily gauges, which were

not used to generate the CHRain dataset, were extracted for all the gridded datasets. Since the data at the 8 daily gauges were

included in constructing the ANUClimate and AGCD datasets, these datasets show better matches to the measurements than

the CHRain dataset (Table 4
:
8). The 24-hour total rainfall from the CHRain is strongly associated with the daily measurements,
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Table 7. Evaluation metrics for hourly rainfall extracted from the gridded datasets during the flood event in 2017 at 8 hourly gauges.

Bias MAE r NSE

CHRain -0.600 0.861 0.949 0.866

BARRA-SY -2.224 3.171 0.234 -0.493

Radar -2.155 3.186 0.154 -0.268

ANUClimate -1.519 2.396 0.503 0.186

AGCD -1.486 2.412 0.500 0.181

Figure 2. Comparison of hourly rainfall data extracted from the gridded datasets at 8 hourly stations during the flood event in 2017.
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as indicated by the correlation coefficients of 0.935 in the 2017 flood event and 0.938 in the 2022 flood event. Fig. 3 also365

demonstrates a good agreement in the peak times between the CHRain, ANUClimate, and AGCD datasets with the daily

measurement. The evaluation for the 2022 flood event also resulted in the same conclusion (Appendix D). These results

indicate that the CHRain dataset can reproduce the rainfall patterns reasonably well, both at hourly or daily time scales, even

at locations without input hourly measurements.

Table 8. Evaluation metrics for daily rainfall during the flood event in 2017 at 8 daily gauges.

Bias MAE r NSE

CHRain -5.769 8.09 0.935 0.747

BARRA -5.482 17.340 0.555 -0.873

Radar -6.323 16.743 0.297 -0.234

ANUClimate -1.360 4.426 0.975 0.927

AGCD -0.632 5.484 0.957 0.878

We also conducted a comparison of the 24 hour total CHRain performance with the daily measurements for the whole period370

from 2007 to 2022 at 169 daily gauges, which were not included in the generation of CHRain splines. Overall, the CHRain

dataset is highly correlated with the daily measurement, indicated by an averaged correlation coefficient of 0.86. Fig. ??
:
4

compares the relationship between the 24-hour total CHRain and the daily measurements at 8 selected daily gauges, during

days with light rainfall, and medium to extremely heavy rainfall. The CHRain dataset performs better during periods of medium

to very heavy rain compared to days with light rain, except at station 58015. For the Richmond River catchment, the light rain375

events usually occur at a small scale. A slight difference in the locations where rainfall values are extracted from the 24-hour

total CHRain splines and the exact locations of daily rainfall gauges can lead to significant variations between the two datasets

during light rain periods.

The performance of the CHRain dataset at 169 evaluated daily gauges depends on the distances to the nearest input hourly

stations and the density of input gauges around them. The relationship between the correlation coefficients of the 24-hour380

CHRain and the distance to the nearest input hourly gauge is weak (Fig. ??
:
5A). However, the CHRain dataset’s performance

decreases as the distance from the nearest input gauge increases. Fig. ??
:
5B illustrates that the 24-hour total CHRain has a better

agreement with the point measurements where the distribution of the input hourly stations is denser. The performance scores

spread in a larger range if the gauge density is less than 5 stations per 25 km radius. This is to be expected as the splines are

dependent on the available input gauges to fit the rainfall surfaces and as the distance from a input gauge increases the spline385

is purely the fitted surface without any actual measurement constraint.

3.4 Spatial evaluation

From the temporal analysis in Section 3.3, the ANUClimate dataset gives the best match to the daily measurements. In this

spatial analysis, we compared the splines from 1 km CHRain dataset to the 1 km ANUClimate and 5 km AGCD datasets. Table
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Figure 3. Comparison of daily rainfall data extracted from the gridded datasets at 8 daily stations during the flood event in 2017.

5
:
9
:
shows the comparison between the 24-hour total CHRain dataset and the ANUClimate dataset during the 2017 flood event,390

for the days with heavy rainfall (i.e., the maximum rainfall value in a grid is higher than the 95th percentile).

The averaged Bias score of 0.916 indicates that the 24-hour total CHRain slightly overestimates the wet areas compared with

the ANUClimate grids (Table 8
:
9). However, the Hit Rate and CSI scores close to 1 demonstrate the high similarity between

the two datasets, especially during the extremely high rainfall days on 30-31/03/2017. The evaluation scores increase when

the mean rainfall values across the catchment increase. In the days with lighter rain (i.e., lower mean rainfall values), the rains395
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Figure 4. Comparison between 24 hour total CHRain and daily point measurements at 8 daily rainfall stations for the whole period from

2007-2022 (Fig. A). Fig. B shows the relationship between the two datasets in light rain days, and Fig. C show the relationship in medium to

heavy rain days. r is the correlation coefficient between the two datasets.

usually occur locally and are spread across smaller areas. A small mismatch between the two datasets results in a bigger penalty

in the evaluation indices and vice versa.

Even though the spatial resolution of CHRain and ANUClimate datasets is both 1 km (i.e., the 1 km resolution smoothed

DEM with focal distance of 5 km), there are bigger variations in the rainfall values in the 24-hour total CHRain splines than

in the ANUClimate splines. The difference between the average mean rainfall and the average maximum value of the CHRain400

spreads wider from 22.3 mmd-1 to 118.8 mmd-1, while this range for the ANUClimate is from 26.6 mmd-1 to 102.6 mmd-1

(Table 5
:
9). Fig. 4

:
6
:
compares the rainfall surfaces from the 24-hour total CHRain, the ANUClimate, and the AGCD datasets at

the peak of the 2017 flood event on 31/03/2017. There is an agreement in the distribution of the rainfall represented in the three

datasets. The variation in the rainfall values within a 5 km window clearly shows that the CHRain can capture the sub-grid

variability better than the other 2 datasets with the range of 55 mmd-1, 7.4 mmd-1, and 0 mmd-1 for CHRain, ANUClimate and405

AGCD datasets respectively. Interpolating rainfall surfaces using hourly data helps to maintain the details of rainfall distribution

in generating the splines compared with using daily data. The local analysis of a specific study area in the CHRain dataset also
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Figure 5. A) Relationships between the correlation coefficients (r) of the 24 hour total CHRain and the distance to the nearest input hourly

gauge, and B) the correlation coefficients (r) of the 24 hour total CHRain as a function of the hourly gauges density (number of hourly gauges

within 25 km radius from a daily station).

increases the influence of topography on the rainfall surface, compared with the analysis for the whole of Australia as the

ANUClimate dataset.

In the hourly measurements, the magnitude of the rainfall at each station and the differences between stations are smaller410

than in the daily data. If the rainfall at one gauge is lower than at other gauges around it, the difference in the magnitude

of hourly data is not significant so the spline can "bend" and match the rainfall input at the gauges. In the daily dataset, the

differences in rainfall values between stations are bigger since the hourly values are accumulated over 24 hours to daily data.

In this case, the smoothing spline interpolation method tries to compensate and balance the rainfall values between stations.

Therefore, the smoothing effects are more pronounced in the daily splines compared to the 24-hour total CHRain grid (Fig.415

4
:
6). This finding also explains the larger variation in the rainfall values in the 24-hour total CHRain dataset compared with

the ANUClimate dataset, as shown in Table 5
:
9. The rainfall surfaces generated using hourly data can reproduce more details

about the rainfall variation and capture the high rainfall values better than the daily splines. On the other hand, it is noted

that the hourly splines are more sensitive to the bad zeros in the hourly input dataset. The analysis to generate hourly splines

without flagging bad zeros showed some local dipping points in the rainfall surfaces. Including the rainfall occurrence analysis420

to remove those bad zeros effectively helps to remove those low rainfall areas in the splines.

The rainfall variability at hourly time step during the peak of the 2017 flood event (30-31/03/2017) is presented in Fig. 5
:
7.

The maximum 24-hour total rainfalls are 225.3 and 487.3 mmd-1 on 30 and 31/03/2017, respectively, which were classified as

an extremely high rainfall event. The hourly pattern was unevenly distributed, with significant changes occurring both over time

and across different locations. The rain started from 1:00 am on 30/03/2017 and reached the peak of 88.5 mmh-1 at 11:00 pm on425

31/03/2017. The rain stopped 4 hours after reaching the peak. The hourly spatial pattern also shows the movement of the rain

front, which moved from the north to the south coast but mostly concentrated towards the northeast boundary of the Richmond

River catchment. The spatial distribution and the movement of the rainfall in the CHRain splines contribute to explaining

the creation of the high flood event in the Richmond River catchment in 2017. For many hydrological applications such as
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Table 9. Comparison between 24-hour total CHRain and ANUClimate data during the 2017 flood event.

Time Bias Hit Rate CSI MAE [mmd-1]
CHRain ANUClimate

Max [mmd-1] Mean [mmd-1] Max [mmd-1] Mean [mmd-1]

1/03/2017 0.911 0.901 0.893 4.2 43.3 4.1 28.6 7.4

2/03/2017 0.728 0.721 0.715 4.5 35.9 3.7 37.0 8.0

3/03/2017 0.554 0.498 0.472 2.6 82.9 3.1 35.2 2.3

5/03/2017 0.805 0.800 0.797 4.0 58.1 8.8 51.5 10.4

6/03/2017 0.667 0.657 0.650 2.9 27.7 2.1 29.3 4.7

13/03/2017 1.154 0.972 0.823 2.1 44.0 9.4 45.4 9.2

14/03/2017 1.005 0.998 0.992 7.1 43.0 12.3 51.6 18.9

15/03/2017 0.998 0.992 0.986 5.4 176.5 19.4 102.0 22.0

16/03/2017 0.959 0.954 0.949 9.8 131.6 27.2 146.2 36.1

18/03/2017 0.948 0.940 0.933 8.1 160.9 24.1 146.4 29.3

19/03/2017 1.050 0.993 0.939 11.6 196.3 26.0 141.7 35.0

20/03/2017 1.010 0.995 0.981 8.9 131.7 16.6 81.1 23.1

21/03/2017 0.980 0.975 0.969 7.0 103.6 23.5 91.7 26.9

24/03/2017 0.923 0.909 0.896 4.4 53.8 8.6 37.6 10.2

30/03/2017 1.006 1.000 0.994 10.1 225.3 50.7 266.2 47.3

31/03/2017 1.005 1.000 0.994 22.8 487.3 135.1 428.1 155.3

6/04/2017 0.864 0.855 0.847 2.0 17.6 4.1 23.7 5.9

Average 0.916 0.892 0.872 6.9 118.8 22.3 102.6 26.6

simulating the flow in small river channels, the variation of rainfall patterns is essential to correctly estimate the accumulated430

volumes and arrival times of floods in rapid responding catchments (Acharya et al., 2022; Lewis et al., 2018; Lerat et al., 2022).

4 Discussion

Compared to daily or monthly data, the hourly data contains significantly more zeros, which can increase the instability of the

interpolation model. This paper is the first to test the ability of the ANUSPLIN program to generate hourly rainfall surfaces. It

has also incorporated a robust automated process to remove false zeros from the data. False zeros are a very common problem435

with rainfall observations. They are hard to detect by applying simple thresholds.
::::::::::
Comparison

::::
with

::::::
hourly

:::::
radar

::::::
rainfall

::::
data

:::::::
indicates

::::
that

:::
the

:::::
spatial

::::::::::
occurrence

:::::
based

:::::::::
corrections

:::
are

::::::
highly

:::::::
reliable

::::
with

::
an

::::::::
accuracy

::
of

:::
up

::
to

::::::
around

::::
98%.

:
The method

proposed in this study has been successfully applied to generate a 1 km hourly gridded rainfall dataset for a larger area. Hourly

rainfall data are essential for many hydrological, ecological, and meteorological applications (Lewis et al., 2018; Hatono et al.,

2022).440
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Figure 6. Comparison between CHRain, ANUClimate and AGCD datasets on 31/03/2017. A, B, and C show the rainfall surfaces from three

datasets for the whole study area. D, E, and F show the 5-km areas at the hourly gauge 58214.

Including elevation data enhances the performance of the thin-spline interpolation model in generating hourly rainfall sur-

faces, more significantly during larger rainfalls. While the response of the splines to the topography during light rain days is

quite broad, the elevation data has greater impacts during larger rain days and results in the clear optimal values for the DEM

transformation parameter and the smoothing distance. There are higher resolution DEMs than the 1 km used in the analysis

in this paper. However, the result suggests including finer topographic data does not result in better rainfall surfaces at higher445

spatial resolution. For our study area, the optimal values for the transformation parameter a and the DEM focal distance are

around 4000 to 5000 and 5 km, respectively. The optimal DEM focal distance of 5 km is in agreement with the analysis of

Sharples et al. (2005), who showed that similarly averaged DEMs with focal distances from 5 to 10 km performed best in

interpolating monthly rainfall across Australia. On the other hand, the optimal elevation scaling of around 4000 to 5000 cor-

responds to a vertical exaggeration of around 20. This is somewhat less than the vertical exaggeration of around 100 found450

with spatial analyses of rainfall at broader time scales by Hutchinson (1995) and Johnson et al. (2016). This suggests that
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Figure 7. Hourly rainfall splines from the CHRain dataset during the peak of the 2017 flood event on 30-31/03/2017.

hourly rainfall, though significantly influenced by elevation, has a less consistent dependence on elevation than rainfall values

recorded at broader time scales.

The initial hourly rainfall occurrence analysis appears to have been effective in detecting and removing the many false

zeroes that can arise with automatically recorded hourly rainfall data. This was aided by the limited spatial extent of this455

rainfall analysis. The detections would likely to be less reliable when applied to sites with no relatively near neighbours.

The CHRain dataset most closely aligns with the hourly measurements compared to other datasets, including BARRA-SY

and radar data. From our analysis, the reanalysed BARRA-SY data does not reproduce the hourly patterns of the recorded

rainfall in the Richmond River catchment, and it performs worse than the daily averaged to hourly datasets (e.g., from ANU-
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Climate and AGCD data). The results from our analysis disagrees with the conclusion by Acharya et al. (2022), showing that460

using the hourly patterns from the BARRA dataset is useful to disaggregate the daily AGCD data to hourly for rainfall-runoff

modelling. Rhodes et al. (2015) also concluded that the reanalysed products can only capture 40-65% wet areas during extreme

rainfall events in the UK and Wales. The objective of generating the reanalysed datasets (e.g., BARRA) is to provide consistent

information of historical climate variations including precipitation at a higher temporal scale (hourly), especially when and

where the measurement data are not available. The datasets are valuable for climatological studies across a much larger area465

and longer periods. Currently, the reanalysed data did not consider the point measurements in the generation process (Su et al.,

2019). Therefore, the reanalysed rainfall data are not yet suitable for using in detailed hydrological/hydrodynamic modelling.

Further research need to be conducted to address the uncertainties in reanalysis data and enhance its precision for using in

modelling applications.

The method to generate 1-km resolution hourly rainfall data presented in this study opens an opportunity to produce high470

spatiotemporal accurate rainfall datasets for areas where detailed modelling is required in Australia, and where hourly mea-

surements are available. The ANUSPLIN program has options to incorporate spatially dependent variables, such as rainfall

observations from satellites or radars. However, because of the artifacts, there are limitations in using hourly rainfall extracted

from radar datasets (McMillan et al., 2011; Schleiss et al., 2020). We also expect the radar estimates of rainfall to improve

over time as it is still a developing technology and there will be major advances in this field with time. As for now, for future475

studies, we suggest investigating the relationships between the radar observations and the ground measurements. Then, we can

utilize the distribution of rainfall intensity in radar datasets for interpolating rainfall splines.

The reliability of the CHRain dataset depends on the intensity of an event, the quality of the input hourly data at rainfall

stations, the distribution of the hourly gauges in the area of interest, and the distances of the point/area of interest to the nearest

input gauge. Despite the removal of suspicious point measurements through automated quality control and manual checks,480

errors that fall outside the checking criteria may still exist. Disaggregating daily data into hourly intervals helps to represent

hourly rainfall patterns in areas where hourly gauges are scarce. However, this method cannot accurately capture changes in

the pattern caused by the movement of the rain front (unless short interval radar images are used to provide this information).

The performance of the CHRain is better during the medium to heavy events, and when the rain is spread over a larger area. In

general, Ebert (2008) stated that it is more challenging to simulate the light intensity rainfall over a small area. During these485

events, the model is highly sensitive to the input from rainfall gauges. Small errors in the rainfall record or slight variations

in the location of the gauges can lead to significant differences between the generated data and the actual measurements.

Considering the computational efficiency of the ANUSPLIN program and the distribution of the hourly rainfall stations, with

applications that do not require the observation of rainfall across an extensive area (i.e., for the whole of Australia), we suggest

generating splines locally to increase the accuracy and reliability of the rainfall surfaces.490

The spatial analysis proves that the 1 km 24-hour total CHRain dataset can show more detail in the rainfall variation than

in the 1 km daily ANUClimate dataset. The hourly CHRain splines also demonstrate the movement and distribution of the

rainfall across the Richmond River catchment. This information is essential for understanding and accurately modelling large

flood events (Davis, 2001; Westra et al., 2014). As always with coastal storm fronts, these are fast moving storm fronts and the
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total daily rainfall may only fall within a couple of hours of the day with hardly any or no rainfall after the front has passed495

over the area of interest. This creates a major limitation in floodplain inundation modelling as this lumped daily representation

of rainfall does not provide the model with the necessary inputs and this could lead to major differences in peak heights and

timing. However, the hourly splines are more sensitive to the accuracy of input data, including the DEM and the measured

rainfall inputs. To apply the thin-plate spline interpolation method on larger areas (e.g., for the whole of Australia), thorough

investigations need to be undertaken on the quality control of the hourly measurements to minimise spatial-temporal errors of500

gauged data (Lewis et al., 2018; Tang et al., 2018).

5 Conclusions

This paper has examined the topographic dependence of hourly rainfall patterns. It has found that higher rainfalls have a

consistent dependence on DEM parameters, with an optimal spatial resolution of around 5 km, consistent with previous studies,

and a reduced exaggeration of elevation dependence compared to previous studies of daily and monthly rainfall.505

This paper introduced a method to generate hourly 1 km resolution gridded rainfall data, that are suitable for hydrologi-

cal/hydrodynamic modelling applications. The temporal analysis demonstrated that the CHRain dataset is highly correlated

with the rainfall measurements at both hourly and daily time steps (with correlation coefficients of 0.949 and 0.935, rela-

tively). The spatial evaluation indicated that the CHRain outperforms the ANUClimate and AGCD datasets, which are the

most commonly used reliable rainfall datasets in Australia, in representing the 5 km sub-grid rainfall distribution at the Rich-510

mond River catchment. The
:::::::
24-hour

::::
total

:::::::
CHRain

::::::
dataset

::::
can

:::
also

:::::::
capture

::::
high

::::::
rainfall

::::::
values

:::::
better

::::
than

:::
the

::::::::::::
ANUClimate

::::::
dataset

::::
(e.g.,

::::
Bias

::
=
::::::
0.916).

::::
The

:
hourly CHRain surfaces can capture the movement of rain fronts and the dynamic temporal

variations of the rainfall during heavy rainfall events. Those rainfall characteristics are required to achieve more accurate flood

simulation/modelling.

The reliability of the proposed method depends on various factors, such as the event rainfall intensity, quality of input hourly515

data, distribution and proximity of rainfall stations, and the process of disaggregating daily data into hourly intervals. For

future studies, we suggest investigating the inclusion of rainfall intensity from radar patterns into the thin-spline interpolation,

applying a thorough quality control, and utilising a more advanced disaggregation method to increase the reliability of the

CHRain dataset.

Appendix A: Evaluation metrics and indices520

The bias, Mean Absolute Error (MAE), correlation coefficient (r), and Nash–Sutcliffe Efficiency (NSE) metrics are calculated

in the temporal evaluation.

Bias =

N∑
i=1

(Ŷi −Yi)

N
, (A1)
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MAE =

N∑
i=1

(|Ŷi −Yi|

N
, (A2)

r =

N∑
i=1

(Yi −µYi
)(Ŷi −µŶi

)√√√√ N∑
i=1

(Yi −µYi)
2

N∑
i=1

(Ŷi −µŶi
)2

, (A3)

525

NSE = 1−

N∑
i=1

(Ŷi −Yi)
2

N∑
i=1

(Yi −µYi
)2

, (A4)

where Ŷi is the predicted rainfall, Yi is the measured rainfall, µŶi
is the mean of predicted rainfall, µYi is the mean of measured

rainfall, r is the correlation coefficient between modeled and predicted rainfall, σŶi
is the standard deviation of predicted

rainfall, σYi
is the standard deviation of measured rainfall and N is the total number of observations.

For the spatial analysis, we used Bias, Hit Rate, and CSI scores to compares between gridded datasets (Ebert, 2008).

Bias =
hits+ false alarms

hits+misses
, (A5)

530

Hit Rate =
hits

hits+misses
, (A6)

CSI =
hits

hits+misses+ false alarms
. (A7)

Appendix B: The spline occurrence analysis for the high rainfall day on 30/03/2017

The 1’s in Table B
:::
B1 denote the false zeroes, as determined by the spline occurrence analysis, over the 24 hours for the

high rainfall day 2017 03 30.
::
on

:::::::::
30/3/2017.

:
On this day almost all sites recorded all positive rainfall data values after the first

three hours. Sites H057005, H057123, H058068, H058231 recorded zero values for all 24 hours. Sites H558071, H558076,535

H558090, 204900 recorded zero values for the first 8 or 9 hours followed by missing data. Site H558082 had 4 zero values over
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the first 9 hours followed by missing data. All of these false zero detections appear to be correct. The few remaining isolated

detections are at sites with positive rainfall values on preceding or succeeding days.

Table B1. The spline occurrence analysis for 30/03
:
3/2017

Site

H056199 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

H057005 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

H057123 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

H058068 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1

H058231 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

H558071 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H558076 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

H558082 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H558090 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

041525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

204403 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

145020A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

145027A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

145003B 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

204007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

204900 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

204033 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

058097 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

058061 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

057003 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix C: Statistics of the hourly measurement data for the flood events in 2017 and 2022

Table C1. Statistics for the observed hourly rainfall during the flood event in 2017.

Station ID Mean [mmh−1] Max [mmh−1] Std [mmh−1] P3 [%] P6 [%] P12 [%] P24 [%]

58214 9.3 41.0 11.9 92.7 82.6 67.5 50.1

203900 5.7 30.2 6.8 71.3 54.6 49.8 31.0

58198 4.5 32.2 6.8 71.6 37.3 28.8 25.5

H058147 13.1 83.6 17.5 67.4 44.5 39.6 35.0

58208 5.6 26.0 6.3 86.9 69.5 50.4 39.7

H058180 12.4 50.7 13.2 62.9 56.9 55.6 54.1

H058162 7.8 33.4 8.9 81.3 47.3 38.2 37.2

203030 7.5 35.8 8.2 83.6 72.6 47.9 39.7

Average 8.2 41.6 9.95 77.2 58.2 41.0 39.0

Table C2. Statistics for the observed hourly rainfall during the flood event in 2022.

Station ID Mean [mmh−1] Max [mmh−1] Std [mmh−1] P3 [%] P6 [%] P12 [%] P24 [%]

58214 5.3 41.0 8.7 92.7 82.6 67.5 50.1

203900 2.3 30.2 4.2 71.3 54.6 49.8 31.0

58198 3.5 93.4 7.4 46.4 28.2 21.5 14.7

H058147 3.7 83.6 8.3 67.4 44.5 39.6 35.0

58208 2.4 26.0 4.1 86.9 69.5 50.4 39.7

H058180 3.0 50.7 6.4 62.9 56.9 55.6 54.1

H058162 3.2 33.4 5.5 81.3 47.3 38.2 37.2

203030 2.8 40.8 5.2 50.5 35.0 27.7 15.3

Average 3.3 49.9 6.2 69.9 52.3 43.8 34.6
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Appendix D: Temporal analysis of the flood event in 2022540

Table D1. Evaluation metrics for the flood event in 2022, observed at 8 validated hourly gauges.

Bias MAE r NSE

CSIROGrid -0.608 1.681 0.928 0.839

Radar -4.000 6.051 0.223 -0.352

ANUClimate -2.575 4.555 0.502 0.129

AGCD -2.623 4.576 0.496 0.113

Table D2. Evaluation metrics for the daily rainfall during the flood event in 2022 at 8 daily gauges.

Bias MAE r NSE

CSIROGrid -4.713 6.908 0.938 0.800

Radar -3.790 14.950 0.690 0.134

ANUClimate -1.825 3.724 0.988 0.964

AGCD -1.330 5.295 0.966 0.911
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Figure D1. Comparison of hourly rainfall data at 8 hourly stations during the flood event in 2022.
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Figure D2. Comparison of hourly rainfall data at 8 daily stations during the flood event in 2022.
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::::
Code

::::
and

::::
data

::::::::::
availability

:::
We

:::::::
provided

:::::::
Python

:::::
scripts

::::
and

:
a
:::::::

sample
::
to

::::::
prepare

::::::
inputs

:::
and

::::::::
generate

::::::
hourly

::::::
rainfall

::::::
splines

::
at
::
1
:::
km

:::::::::
resolution

:::::
using

:::
the

::::::::::
ANUSPLIN

:::::::
program

::
at https://doi.org/10.5281/zenodo.17686121

:
.
:::::
Users

:::
will

::::
need

::
to
:::::::
contact

::
the

::::::
Fenner

::::::
School

::
of

:::::::::::
Environment

::
&

::::::
Society

:
(https://fennerschool.anu.edu.au/research/products/anusplin-version-4-4

:
)
::
to

:::
get

:::
the

::::::::::
ANUSPLIN

::::::::
program

::::::
license.

:
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