
Revision Note 1 
This report addresses the comments from the reviewer 1 on our submission HESS-2024-228, 
“Very high spatial and temporal resolution rainfall data for accurate flood inundation modelling” 

The manuscript presents an hourly rainfall product at 1 km resolution, derived by 
disaggregating daily station data (where needed) to an hourly scale and interpolating using 
a thin-spline method. The authors compare their dataset to existing rainfall products and 
demonstrate improvements. The manuscript is generally well-written and structured. 
However, I find the novelty of the study lacking. The thin-plate spline method has been 
previously used for spatial interpolation of climatic variables (by Hutchinson, one of the 
authors), and the authors do not propose any methodological advancements (unless I 
overlooked them) from what has been published in the past. Similarly, the disaggregation 
approach appears overly simplistic compared to more sophisticated state-of-the-art 
methods. Given the limited methodological innovation, I question the suitability of this 
paper for HESS. A more appropriate venue might be a journal focusing on dataset 
development. 

Thank you for your evaluation.  

Even though the study applied the thin-plate spline method, which has been previously used for 
spatial interpolation of climatic variables, this paper is the first to test the ability of the ANUSPLIN 
program to generate 1km hourly rainfall surfaces. Moreover, the revised version of the paper has 
incorporated two key methodological advancements.  Firstly, the paper now describes the joint 
optimisation of the supporting DEM resolution and elevation scaling, now assessed to be 5 km 
and 4,000 respectively. Secondly, the paper has now implemented a robust process to 
automatically detect false zero data values by analysing the hourly occurrence data. False zeroes 
are a very common problem with rainfall observations. They are hard to detect by applying simple 
thresholds. The automated occurrence analysis detected and removed 42,913 false zeroes from 
157,378,817 observations (around 0.26%). This led to a significant improvement in the accuracy 
of the analysis shown in Figure 6 in the old and revised manuscript.  

We addressed the comments from the reviewer in detail below. 

1. I suggest revising the title. A 1 km resolution is not necessarily "very high," and the 
precipitation dataset (why focus only on rainfall?) has applications beyond flood 
inundation modeling. 

We changed the title of the paper to: “Elevation dependent spatial interpolation of hourly 
rainfall for accurate flood inundation modelling”, reflecting the enhanced focus on the detailed 
analysis of the topographic dependence. 

 

2. Lines 9-10: The CHRain dataset is compared to other gridded datasets available in 
Australia, but does it outperform them? This should be clarified. 

We edited lines 9-10 in the old manuscript (lines 14-16 in the revised manuscript) as: “The spatial 
and temporal analyses indicate that the CHRain dataset outperforms other gridded datasets 



currently available in Australia in representing the sub-grid distribution as well as the daily and 
hourly variation of rainfall across the study area” 

3. Line 10: A correlation of 0.948 is quite high, but was it calculated using all the data 
involved in interpolation and merging? A "leave-one-out" validation approach would 
provide a more reliable assessment. 

In our study area, the hourly data gauges are sparse, so we have to disaggregate some daily data 
into hourly.  The average rain gauge density in the catchment is 143 gauges/30,389 km2 or 1 
gauge/212 km2. Therefore, we want to use all the available hourly data to improve the coverage of 
the rainfall splines. Instead, we evaluated the sum of 24-hour rainfall with daily measurements at 
169 gauges that were not used in the interpolation. The revised paper now reports “leave-one-
out” validation statistics in the ANUSPLIN program to supplement these comparisons.  

4. Line 20: The same citation is used for two different statements on lines 19 and 20. 
Please verify. 

We removed the citation in line 20 in the revised manuscript. 

5. Lines 21-23: This section discusses temporal variability, but what about spatial 
variability? Given its impact on flood modeling, I recommend considering the 
following references: https://doi.org/10.5194/hess-17-2195-2013 and 
https://doi.org/10.5194/hess-21-1559-2017 

There were not many studies that investigated the impacts of the spatial resolution of rainfall data 
on hydrological applications, more specifically on the performance of hydrodynamic models. 
Thank you for your reference suggestion.  We added these in the revised manuscript in lines 28-
33  as:  

“Peleg et al. (2013) analysed the subpixel rain distribution by comparing the data from radar with 
point measurements at high density gauges. The results shows that a density of 3 rain gauges per 
radar pixel (4 km x 4 km) will allow an adequate presentation of radar rainfall.” 

“Peleg et al (2017) indicated a valuable contribution of spatial distribution of rainfall (26% 
contribution) on the total variability of modelled urban drainage network.” 

6. Lines 26-27: This sentence seems disconnected from the surrounding discussion. 

We removed lines 26-27 in the revised manuscript. 

7. Lines 29-30: The phrase "1 km to 12 km" is unclear. Since stations provide point-scale 
data and radar typically operates at 1 km resolution (but may not cover all of 
Australia), this should be clarified. 

Details of the gridded datasets available in Australia and used in the analysis were mentioned in 
Table 1 in the old and revised manuscripts. To avoid confusion, we removed the text “1 km to 12 
km” in the Introduction of the revised manuscript. 

8. Lines 72-75: GCMs are not designed to simulate observed rainfall. The current 
wording is misleading, and I suggest removing references to GCMs in this context. 

We removed line 72-75 in the revised manuscript. 

https://doi.org/10.5194/hess-17-2195-2013
https://doi.org/10.5194/hess-21-1559-2017


9. Line 99: "Changes significantly" should be quantified. What is the elevation 
difference? 

We added the text in the revised manuscript lines 101-102 as: “The elevation ranges between 0 m 
and 934.6 m across the catchment.” 

10. Sections 2.1 and 2.5. Do you simply apply the thin-plate spline as suggested by 
Hutchinson? If so, what is the novelty of your approach? 

As described above, the revised version of the paper has incorporated two key methodological 
advancements.  It now describes the joint optimisation of the supporting DEM resolution and 
elevation scaling, now assessed to be around 5 km and 4,000 respectively. It has also 
implemented a new robust process to automatically detect false zero data values by analysing 
the hourly occurrence data.  

We edited Sub-section 2.3 Quality control for the hourly rainfall data in the revised manuscript 
lines 174-188 as:  

Close inspection of initial analyses of the hourly rainfall data indicated that there were 
significant numbers of false zeroes in the data leading to underestimation of rainfall 
during periods of high rainfall. This is a common problem with rainfall data, particularly 
when they are recorded automatically. These values are hard to detect by applying simple 
thresholds. As noted by Hutchinson et al. (2009), rainfall occurrence is more spatially 
coherent than rainfall amounts. An initial trivariate spline analysis of the hourly 
occurrence data was therefore conducted to detect and automatically remove false 
zeroes. 

Positive rainfalls were set to an occurrence value of 1 and zero rainfalls were set to an 
occurrence value of 0. The spline analysis used the same underpinning DEM resolution 
and elevation scaling as optimised for the rainfall amount analysis. Zero hourly rainfall 
values were deemed to be false, and removed from the data set, when the interpolated 
occurrence value exceeded 0.5. The limited spatial coverage of the data set led to 
instabilities when the data values were almost all positive or almost all zero. This was 
overcome by setting a constant error standard deviation of 0.25, consistent with the 
automatically derived error standard deviations when there were significant numbers of 
zeroes and ones. This ensured that sufficient smoothing was applied to the data to 
interpolate spatially stable occurrence patterns with a robust dependence on the data 
values. A total of 42,193 false zeroes were removed from a total number of 15,737,817 
data values, amounting to 0.26% of the data. Close inspection of the analyses indicated 
that the false zero detections were reliable. The results for the occurrence analysis for a 
high rainfall day are described in Appendix B. 

 

We added Sub-section 2.5 in the revised manuscript lines 205-225 as:  

2.5 Calibrate the DEM smoothing scale and the elevation transformation parameter 

The 5 m resampled to 1 km averaged LiDAR Digital Elevation Model (DEM) from 
Geosciences Australia was used to define the boundary of the rainfall surfaces in the 
ANUSPLIN package 
(https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/89644). A set of 1 



km resolution smoothed DEMs was prepared by calculating the focal mean with 
distances from 2 to 10 km to investigate the impacts of topographic scale on the rainfall 
surfaces using ArcGIS program. The focal mean at each 1 km pixel is calculated as the 
mean of a square window with a specified distance around that pixel.  

In the ANUSPLIN program, the independent variable transformation for the DEM is h/a, 
where h [m] is the elevation value and a is the transformation parameter. The usual 
recommended a value for interpolating monthly and daily data is 1000 (Hutchinson, 1995; 
Hutchinson et al., 2009). This corresponds to a 100-fold exaggeration of the impact of 
elevation on precipitation patterns compared to the impact of horizontal position. In this 
study for hourly splines, a was calibrated in the range from 1000 to 10,000, corresponding 
to vertical exaggerations ranging from 100-fold to 10-fold. We also tested the 
performance of the interpolation model using bivariate (without the elevation variable) 
and trivariate (with the elevation variable) analyses. 

The days of hourly rainfall data were categorised into two groups to analyse the impact of 
topography on spatial rainfall patterns. Days with average hourly rainfall between 0 and 1 
mmh-1 were considered as light rain days, and days with average hourly rainfall exceeding 
1 mmh-1 were considered medium to high rainfall days. There were 3379 light rainfall days 
and 111 medium to high rainfall days. There were 246 days with zero rainfall across the 
whole data network. These days were omitted from the calibration. The focal mean 
distance and the elevation scaling parameter a were jointly optimised to minimise the 
average of the generalised cross validation of the fitted splines over all medium to high 
rainfall days. 

The performances of the different spline models were compared using the Mean Absolute 
Predictive Error (MAPE) and the Mean Absolute Residual (MAR) provided by the spline 
interpolation model. The MAPE is calculated from the individual cross validation 
residuals as afforded by the “leaving out one lemma” described in Wahba (1990).  

 

We added Sub-section 3.2 in Section 3 Results in the revised manuscript lines 294-310 as: 

3.2 Impacts of topography on the spatial interpolation of hourly rainfall splines 
Table 3 and Table 4 show the Square RooT of the average Generalised Cross Validation 
(RTGCV) of the trivariate spline model for light rainfall days and medium to high rainfall 
days as a function of DEM focal distance and elevation scaling, as derived in the initial 
analyses with no removal of false zeroes. The light rainfall days indicate a very broad 
dependence on the topographic parameters with an optimum DEM focal distance around 
10 km or possibly larger. On the other hand, the medium to high rainfall days indicate an 
optimum DEM focal distance of around 5 km and an optimum elevation scaling of around 
4000. This suggests that topography plays an important role in interpolating larger 
rainfalls while the response of smaller rainfalls to topography is fairly flat. The daily 
average 1 mmh−1 threshold appears to be an effective discriminator of light and medium 
to high rainfall days. Setting a lower threshold gave rise to multiple local minima in the 
RTGCV patterns for days with average hourly rainfall greater than 0.5 mmh−1. These tables 
were recalculated after false zeroes were removed by the spline occurrence analysis 
described above, with DEM focal distance set to 5 km and elevation scaling set to 4000. 
The resulting patterns were similar to those shown in Table 3 and Table 4, with an optimum 



DEM focal distance of around 5 km and a slightly larger elevation scaling of around 5000. 
There was little difference between the performance with these two elevation scales. All 
the remaining analyses were completed on the data with false zeroes removed, using the 
initially determined 5 km DEM focal distance and elevation scaling of 4000. 

The impact of including the DEM as an independent variable was further quantified in 
Table 5. It shows that, compared to the bivariate analysis, the optimal trivariate analysis 
reduced the MAPE by about 4% for light rainfall days and by about 2% for medium to heavy 
rainfall days. The trivariate analysis reduced the MAR by about 16% across all days. 

 

Table 3. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for light rain days (0-1 mmh-1). The minimum values of the RTGCV are shown in bold. 

a 1 km  2 km 3 km 4 km 5 km 6 km 7 km  8 km 9 km 10 km 
1000 0.2003 0.2005 0.1993 0.1984 0.1981 0.1980 0.1978 0.1978 0.1976 0.1978 
2000 0.1983 0.1978 0.1981 0.1976 0.1976 0.1973 0.1970 0.1969 0.1969 0.1968 
3000 0.1975 0.1978 0.1976 0.1974 0.1973 0.1973 0.1973 0.1972 0.1971 0.1967 
4000 0.1975 0.1976 0.1975 0.1973 0.1972 0.1974 0.1973 0.1970 0.1971 0.1971 
5000 0.1976 0.1974 0.1973 0.1972 0.1972 0.1972 0.1971 0.1970 0.1971 0.1969 
6000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1972 0.1970 0.1970 0.1969 0.1969 
7000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1969 
8000 0.1974 0.1973 0.1972 0.1973 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 
9000 0.1975 0.1972 0.1974 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 
10,000 0.1974 0.1972 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 

 

Table 4. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for medium to high rain days (> 1 mmh-1). The minimum value of the RTGCV is shown in bold. 

a 1 km  2 km  3 km  4 km  5 km  6 km  7 km  8 km  9 km  10 km  
1000 0.5536 0.5518 0.5485 0.5449 0.5427 0.5438 0.5431 0.5436 0.5423 0.5442 
2000 0.5429 0.5408 0.5411 0.5385 0.5372 0.5362 0.5374 0.5374 0.5366 0.5403 
3000 0.5387 0.5393 0.5377 0.5364 0.5359 0.5352 0.5370 0.5370 0.5376 0.5366 
4000 0.5387 0.5372 0.5366 0.5357 0.5348 0.5359 0.5363 0.5361 0.5369 0.5362 
5000 0.5369 0.5366 0.5362 0.5351 0.5356 0.5357 0.5362 0.5464 0.5367 0.5359 
6000 0.5368 0.5356 0.5351 0.5349 0.5359 0.5364 0.5363 0.5465 0.5363 0.5361 
7000 0.5358 0.5355 0.5351 0.5350 0.5359 0.5364 0.5363 0.5366 0.5362 0.5360 
8000 0.5356 0.5354 0.5352 0.5354 0.5362 0.5363 0.5363 0.5366 0.5363 0.5360 
9000 0.5354 0.5354 0.5356 0.5364 0.5367 0.5464 0.5363 0.5365 0.5358 0.5359 
10,000 0.5354 0.5353 0.5361 0.5364 0.5365 0.5461 0.5366 0.5366 0.5359 0.5359 

 

Table 5. Comparison between bivariate and optimal trivariate analyses on light (0-1 mmh-1) and medium to high rainfalls 
(>1 mmh-1). 

 

 

 

 

 Bivariate Trivariate 

 MAPE MAR MAPE MAR 
0-1 mmh-1 0.0884 0.0505 0.0851 0.0420 
> 1 mmh-1 0.9007 0.4378 0.8816 0.3681 



We also added in lines 413-434 in the Discussion in the revised manuscript as: 

Compared to daily or monthly data, the hourly data contains significantly more zeros, 
which can increase the instability of the interpolation model. This paper is the first to test 
the ability of the ANUSPLIN program to generate hourly rainfall surfaces. It has also 
incorporated a robust automated process to remove false zeros from the data. False zeros 
are a very common problem with rainfall observations. They are hard to detect by applying 
simple thresholds. The method proposed in this study has been successfully applied to 
generate a 1 km hourly gridded rainfall dataset for a larger area. Hourly rainfall data are 
essential for many hydrological, ecological, and meteorological applications (Lewis et al., 
2018; Hatono et al., 2022).  

Including elevation data enhances the performance of the thin-spline interpolation 
model in generating hourly rainfall surfaces, more significantly during larger rainfalls. 
While the response of the splines to the topography during light rain days is quite broad, 
the elevation data has greater impacts during larger rain days and results in the clear 
optimal values for the DEM transformation parameter and the smoothing distance. There 
are higher resolution DEMs than the 1 km used in the analysis in this paper. However, the 
result suggests including finer topographic data does not result in better rainfall surfaces 
at higher spatial resolution. For our study area, the optimal values for the transformation 
parameter a and the DEM focal distance are around 4000 to 5000 and 5 km, respectively. 
The optimal DEM focal distance of 5 km is in agreement with the analysis of Sharples et 
al. (2005), who showed that similarly averaged DEMs with focal distances from 5 to 10 km 
performed best in interpolating monthly rainfall across Australia. On the other hand, the 
optimal elevation scaling of around 4000 to 5000 corresponds to a vertical exaggeration 
of around 20. This is somewhat less than the vertical exaggeration of around 100 found 
with spatial analyses of rainfall at broader time scales by Hutchinson (1995) and Johnson 
et al. (2016). This suggests that hourly rainfall, though significantly influenced by 
elevation, has a less consistent dependence on elevation than rainfall values recorded at 
broader time scales. 

The initial hourly rainfall occurrence analysis appears to have been effective in detecting 
and removing the many false zeroes that can arise with automatically recorded hourly 
rainfall data. This was aided by the limited spatial extent of this rainfall analysis. The 
detections would likely to be less reliable when applied to sites with no relatively near 
neighbours. 

 

11. Section 2.4: If the closest station is 10 km away (just giving an example), the 
correlation may be too low for reliable disaggregation... A sensitivity analysis using 
stations at varying distances could provide insights into the method’s limitations. 

We agree that the density of hourly gauges is coarse in some areas in our catchment. We have no 
better option than to use the rainfall pattern from the nearest hourly station to a daily station to 
disaggregate the daily data at that station. To reduce the uncertainty of choosing the 
disaggregation, we also used the observed movement of rainfall from the radar data to select 
suitable nearby hourly gauges to disaggregate data from daily to hourly (mentioned in Section 2.4 
in the old and revised manuscripts). Since we don’t have many stations to choose from in the 
areas and the 2nd nearest hourly station can be much further away from the nearest one, it will 



not be beneficial to do a sensitivity analysis using stations at varying distances to improve the 
disaggregated data. 

12. Line 203: Why is alpha not treated as a calibration parameter? 

The revised paper now optimises the alpha parameter, as well as the elevation scaling. This is 
described in point 10. 

13. Lines 231-232: The manuscript reports too many goodness-of-fit measures. Why 
include both NSE and KGE, for instance? I suggest focusing on two distinct indices 
that provide complementary information. 

The NSE metric is popularly used in other studies to compare modelled and observed rainfall data 
(i.e., Hatono et al., 2022). We removed the KGE metric in the revised manuscript to reduce the 
complication. 

  



Revision Note 2 
This report addresses the comments from the reviewer 2 on our submission HESS-2024-228, 
“Very high spatial and temporal resolution rainfall data for accurate flood inundation modelling” 

This is a well-structured and straightforward paper. I have no doubt that the authors’ results 
are likely to be very useful to flood-risk and flood-disaster managers. If I understand 
correctly, the authors derive a new 15-year high-res spatiotemporal precip. dataset from 
existing rain gauge and reanalysis data in an Australian location which is prone to short 
timescale flooding and hence where good hydrological precipitation/flood modelling is 
highly desirable. The authors compare the resulting product with existing alternatives and 
find that it is superior when their specific metrics are used. I do not disagree in principle with 
the authors conclusions, nor do I find fault with the methodology used to produce the 
CHRain dataset or used to compare the CHRain dataset with BARRA-SY, ANUClimate, and 
AGCD.   

My sole reservation is with this study’s contribution to the current state-of-the-art.  The 
datasets used are all well-established. The interpolation is done via an off-the-shelf 
software tool. The temporal downscaling is done “using the hourly distribution pattern from 
the nearest hourly station” and applying some reasonable quality control which is not an 
innovation. 

The authors are correct in that: “The proposed method opens an opportunity to develop high 
resolution spatiotemporal rainfall datasets for other regions” which are essential for 
developing “detailed flood modelling”. However, I find this paper to be more a successful, 
and very useful, application of an established methodology that a progression beyond the 
state of the art.   

Thank you for your evaluation. 

This paper aims to develop a methodology to generate a 1km hourly rainfall dataset for the 
Richmond River catchment in Australia, which can be applied to other areas. Since the 
catchment has a coarse distribution of hourly rain gauges, we have to disaggregate daily data at 
some daily stations to hourly. Unfortunately, improving the disaggregation method or the quality 
control process is not within the scope of this paper, but we suggest including better approaches 
where they are doable. 

Even though the study applied the thin-plate spline method, which has been previously used for 
spatial interpolation of climatic variables, this paper is the first to test the ability of the ANUSPLIN 
program to generate 1km hourly rainfall surfaces. Moreover, the revised version of the paper has 
incorporated two key methodological advancements.  Firstly, the paper now describes the joint 
optimisation of the supporting DEM resolution and elevation scaling, now assessed to be 5 km 
and 4,000 respectively. Secondly, the paper has now implemented a robust process to 
automatically detect false zero data values by analysing the hourly occurrence data. False zeroes 
are a very common problem with rainfall observations. They are hard to detect by applying simple 
thresholds. The automated occurrence analysis detected and removed 42,913 false zeroes from 
157,378,817 observations (around 0.26%). This led to a significant improvement in the accuracy 
of the analysis shown in Figure 6.   

We edited Sub-section 2.3 Quality control for the hourly rainfall data in the revised manuscript 
lines 174-188 as:  



Close inspection of initial analyses of the hourly rainfall data indicated that there were 
significant numbers of false zeroes in the data leading to underestimation of rainfall 
during periods of high rainfall. This is a common problem with rainfall data, particularly 
when they are recorded automatically. These values are hard to detect by applying simple 
thresholds. As noted by Hutchinson et al. (2009), rainfall occurrence is more spatially 
coherent than rainfall amounts. An initial trivariate spline analysis of the hourly 
occurrence data was therefore conducted to detect and automatically remove false 
zeroes. 

Positive rainfalls were set to an occurrence value of 1 and zero rainfalls were set to an 
occurrence value of 0. The spline analysis used the same underpinning DEM resolution 
and elevation scaling as optimised for the rainfall amount analysis. Zero hourly rainfall 
values were deemed to be false, and removed from the data set, when the interpolated 
occurrence value exceeded 0.5. The limited spatial coverage of the data set led to 
instabilities when the data values were almost all positive or almost all zero. This was 
overcome by setting a constant error standard deviation of 0.25, consistent with the 
automatically derived error standard deviations when there were significant numbers of 
zeroes and ones. This ensured that sufficient smoothing was applied to the data to 
interpolate spatially stable occurrence patterns with a robust dependence on the data 
values. A total of 42,193 false zeroes were removed from a total number of 15,737,817 
data values, amounting to 0.26% of the data. Close inspection of the analyses indicated 
that the false zero detections were reliable. The results for the occurrence analysis for a 
high rainfall day are described in Appendix B. 

 

We added Sub-section 2.5 in the revised manuscript lines 205-225 as:  

2.5 Calibrate the DEM smoothing scale and the elevation transformation parameter 

The 5 m resampled to 1 km averaged LiDAR Digital Elevation Model (DEM) from 
Geosciences Australia was used to define the boundary of the rainfall surfaces in the 
ANUSPLIN package 
(https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/89644). A set of 1 
km resolution smoothed DEMs was prepared by calculating the focal mean with 
distances from 2 to 10 km to investigate the impacts of topographic scale on the rainfall 
surfaces using ArcGIS program. The focal mean at each 1 km pixel is calculated as the 
mean of a square window with a specified distance around that pixel.  

In the ANUSPLIN program, the independent variable transformation for the DEM is h/a, 
where h [m] is the elevation value and a is the transformation parameter. The usual 
recommended a value for interpolating monthly and daily data is 1000 (Hutchinson, 1995; 
Hutchinson et al., 2009). This corresponds to a 100-fold exaggeration of the impact of 
elevation on precipitation patterns compared to the impact of horizontal position. In this 
study for hourly splines, a was calibrated in the range from 1000 to 10,000, corresponding 
to vertical exaggerations ranging from 100-fold to 10-fold. We also tested the 
performance of the interpolation model using bivariate (without the elevation variable) 
and trivariate (with the elevation variable) analyses. 

The days of hourly rainfall data were categorised into two groups to analyse the impact of 
topography on spatial rainfall patterns. Days with average hourly rainfall between 0 and 1 



mmh-1 were considered as light rain days, and days with average hourly rainfall exceeding 
1 mmh-1 were considered medium to high rainfall days. There were 3379 light rainfall days 
and 111 medium to high rainfall days. There were 246 days with zero rainfall across the 
whole data network. These days were omitted from the calibration. The focal mean 
distance and the elevation scaling parameter a were jointly optimised to minimise the 
average of the generalised cross validation of the fitted splines over all medium to high 
rainfall days. 

The performances of the different spline models were compared using the Mean Absolute 
Predictive Error (MAPE) and the Mean Absolute Residual (MAR) provided by the spline 
interpolation model. The MAPE is calculated from the individual cross validation 
residuals as afforded by the “leaving out one lemma” described in Wahba (1990).  

 

We added Sub-section 3.2 in Section 3 Results in the revised manuscript lines 294-310 as: 

3.2 Impacts of topography on the spatial interpolation of hourly rainfall splines 
Table 3 and Table 4 show the Square RooT of the average Generalised Cross Validation 
(RTGCV) of the trivariate spline model for light rainfall days and medium to high rainfall 
days as a function of DEM focal distance and elevation scaling, as derived in the initial 
analyses with no removal of false zeroes. The light rainfall days indicate a very broad 
dependence on the topographic parameters with an optimum DEM focal distance around 
10 km or possibly larger. On the other hand, the medium to high rainfall days indicate an 
optimum DEM focal distance of around 5 km and an optimum elevation scaling of around 
4000. This suggests that topography plays an important role in interpolating larger 
rainfalls while the response of smaller rainfalls to topography is fairly flat. The daily 
average 1 mmh−1 threshold appears to be an effective discriminator of light and medium 
to high rainfall days. Setting a lower threshold gave rise to multiple local minima in the 
RTGCV patterns for days with average hourly rainfall greater than 0.5 mmh−1. These tables 
were recalculated after false zeroes were removed by the spline occurrence analysis 
described above, with DEM focal distance set to 5 km and elevation scaling set to 4000. 
The resulting patterns were similar to those shown in Table 3 and Table 4, with an optimum 
DEM focal distance of around 5 km and a slightly larger elevation scaling of around 5000. 
There was little difference between the performance with these two elevation scales. All 
the remaining analyses were completed on the data with false zeroes removed, using the 
initially determined 5 km DEM focal distance and elevation scaling of 4000. 

The impact of including the DEM as an independent variable was further quantified in 
Table 5. It shows that, compared to the bivariate analysis, the optimal trivariate analysis 
reduced the MAPE by about 4% for light rainfall days and by about 2% for medium to heavy 
rainfall days. The trivariate analysis reduced the MAR by about 16% across all days. 

 

 

 

 



Table 3. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for light rain days (0-1 mmh-1). The minimum values of the RTGCV are shown in bold. 

a 1 km  2 km 3 km 4 km 5 km 6 km 7 km  8 km 9 km 10 km 
1000 0.2003 0.2005 0.1993 0.1984 0.1981 0.1980 0.1978 0.1978 0.1976 0.1978 
2000 0.1983 0.1978 0.1981 0.1976 0.1976 0.1973 0.1970 0.1969 0.1969 0.1968 
3000 0.1975 0.1978 0.1976 0.1974 0.1973 0.1973 0.1973 0.1972 0.1971 0.1967 
4000 0.1975 0.1976 0.1975 0.1973 0.1972 0.1974 0.1973 0.1970 0.1971 0.1971 
5000 0.1976 0.1974 0.1973 0.1972 0.1972 0.1972 0.1971 0.1970 0.1971 0.1969 
6000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1972 0.1970 0.1970 0.1969 0.1969 
7000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1969 
8000 0.1974 0.1973 0.1972 0.1973 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 
9000 0.1975 0.1972 0.1974 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 
10,000 0.1974 0.1972 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 

 

Table 4. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for medium to high rain days (> 1 mmh-1). The minimum value of the RTGCV is shown in bold. 

a 1 km  2 km  3 km  4 km  5 km  6 km  7 km  8 km  9 km  10 km  
1000 0.5536 0.5518 0.5485 0.5449 0.5427 0.5438 0.5431 0.5436 0.5423 0.5442 
2000 0.5429 0.5408 0.5411 0.5385 0.5372 0.5362 0.5374 0.5374 0.5366 0.5403 
3000 0.5387 0.5393 0.5377 0.5364 0.5359 0.5352 0.5370 0.5370 0.5376 0.5366 
4000 0.5387 0.5372 0.5366 0.5357 0.5348 0.5359 0.5363 0.5361 0.5369 0.5362 
5000 0.5369 0.5366 0.5362 0.5351 0.5356 0.5357 0.5362 0.5464 0.5367 0.5359 
6000 0.5368 0.5356 0.5351 0.5349 0.5359 0.5364 0.5363 0.5465 0.5363 0.5361 
7000 0.5358 0.5355 0.5351 0.5350 0.5359 0.5364 0.5363 0.5366 0.5362 0.5360 
8000 0.5356 0.5354 0.5352 0.5354 0.5362 0.5363 0.5363 0.5366 0.5363 0.5360 
9000 0.5354 0.5354 0.5356 0.5364 0.5367 0.5464 0.5363 0.5365 0.5358 0.5359 
10,000 0.5354 0.5353 0.5361 0.5364 0.5365 0.5461 0.5366 0.5366 0.5359 0.5359 

 

Table 5. Comparison between bivariate and optimal trivariate analyses on light (0-1 mmh-1) and medium to high rainfalls 
(>1 mmh-1). 

 

 

 

 

We also added in lines 413-434 in the Discussion in the revised manuscript as: 

Compared to daily or monthly data, the hourly data contains significantly more zeros, 
which can increase the instability of the interpolation model. This paper is the first to test 
the ability of the ANUSPLIN program to generate hourly rainfall surfaces. It has also 
incorporated a robust automated process to remove false zeros from the data. False zeros 
are a very common problem with rainfall observations. They are hard to detect by applying 
simple thresholds. The method proposed in this study has been successfully applied to 
generate a 1 km hourly gridded rainfall dataset for a larger area. Hourly rainfall data are 
essential for many hydrological, ecological, and meteorological applications (Lewis et al., 
2018; Hatono et al., 2022).  

 Bivariate Trivariate 

 MAPE MAR MAPE MAR 
0-1 mmh-1 0.0884 0.0505 0.0851 0.0420 
> 1 mmh-1 0.9007 0.4378 0.8816 0.3681 



Including elevation data enhances the performance of the thin-spline interpolation 
model in generating hourly rainfall surfaces, more significantly during larger rainfalls. 
While the response of the splines to the topography during light rain days is quite broad, 
the elevation data has greater impacts during larger rain days and results in the clear 
optimal values for the DEM transformation parameter and the smoothing distance. There 
are higher resolution DEMs than the 1 km used in the analysis in this paper. However, the 
result suggests including finer topographic data does not result in better rainfall surfaces 
at higher spatial resolution. For our study area, the optimal values for the transformation 
parameter a and the DEM focal distance are around 4000 to 5000 and 5 km, respectively. 
The optimal DEM focal distance of 5 km is in agreement with the analysis of Sharples et 
al. (2005), who showed that similarly averaged DEMs with focal distances from 5 to 10 km 
performed best in interpolating monthly rainfall across Australia. On the other hand, the 
optimal elevation scaling of around 4000 to 5000 corresponds to a vertical exaggeration 
of around 20. This is somewhat less than the vertical exaggeration of around 100 found 
with spatial analyses of rainfall at broader time scales by Hutchinson (1995) and Johnson 
et al. (2016). This suggests that hourly rainfall, though significantly influenced by 
elevation, has a less consistent dependence on elevation than rainfall values recorded at 
broader time scales. 

The initial hourly rainfall occurrence analysis appears to have been effective in detecting 
and removing the many false zeroes that can arise with automatically recorded hourly 
rainfall data. This was aided by the limited spatial extent of this rainfall analysis. The 
detections would likely to be less reliable when applied to sites with no relatively near 
neighbours. 

 

Minor comments and typos: 

Line       31) “Observation” should be “observations” 

33) “… more than 20 years” should be “… more than 20 years long” 

65) “showed to improve” should be “appeared to improve” 

84) “An accurate high resolution spatial and temporal resolution rainfall” should be “An 
accurate high spatial and temporal resolution rainfall” 

104) spurious comma after “especially”. 

132) in “an” area… 

176) “Disaggregate daily rainfall data to hourly” should be “Disaggregation of daily rainfall to 
hourly” or something similar… 

189) “After cleaning, disaggregating, and detailed quality control of the data” should be 
“After cleaning, disaggregating, and completing a detailed quality control of the data” I 
think… 

 Figure 7) The first and last row could be removed without loss of clarity… 

 

We adapted all the minor comments in the revised manuscript.  
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