
Dear Editor, 

We appreciate the effort of Sivarajah Mylevaganam to read and review our submission HESS-
2024-228, “Very high spatial and temporal resolution rainfall data for accurate flood inundation 
modelling”. 

However, while some comments from Sivarajah Mylevaganam are helpful, others are out of the 
scope of our study or show a lack of knowledge in the field. For example, improving the 
resolution of Landsat images is not related to generating higher-resolution rainfall surfaces.  

We decided to provide brief explanations for these comments to avoid confusion for SM and 
other future readers.  

Regarding comments 1, 2, and 3 on the academic writing and presentation style: 

We are research scientists from the Commonwealth Scientific and Industrial Research 
Organisation (Australia’s national science agency) and The Australian National University with 
solid knowledge of hydrology. We have published many journal papers in Q1 journals, so we are 
confident in our academic writing style to provide a clear and good-quality manuscript without 
flaws. All the maps, figures, and tables in the manuscript are created by the authors. We 
confirmed that Figure 1 was created using ArcMap, with the shapefile showing locations of 
hourly and daily gauge stations and the catchment domain, and the base map showing the 
topography of the study area.  

Regarding comments 5 and 6 on the quality of the hourly and daily datasets: 

The hourly and daily rainfall datasets were provided by the Bureau of Meteorology. Because of 
the artifact of measuring devices, the data can contain unreasonably high or low (including 
negative) values. Therefore, quality control was applied to the datasets before using them in the 
interpolation model. The hourly and daily thresholds of rainfall values were set after considering 
the weather conditions of the catchment, observing plots of hourly time series, and comparing 
data from hourly gauges with other nearby gauges. These thresholds can vary for different areas 
and different catchments so they should not be referred anywhere else. Moreover, the revised 
version of the paper has now implemented a robust process to automatically detect false zero 
data values by analysing the hourly occurrence data. False zeroes are a very common problem 
with rainfall observations. They are hard to detect by applying simple thresholds. The 
automated occurrence analysis detected and removed 42,913 false zeroes from 157,378,817 
observations (around 0.26%). This led to a significant improvement in the accuracy of the 
analysis shown in Figure 6. 

Regarding comments 9 and 10 on the scope of the study: 

The scope of our study is not to focus on disaggregating the daily grid (e.g., ANUClimate) to an 
hourly grid nor applying AI/ML to improve the interpolation of gridded rainfall surfaces. To clarify 
this further, we cited other work on the disaggregation of gridded datasets in the introduction of 
the manuscript: 

Acharya, S. C., Nathan, R., Wang, Q. J., and Su, C.-H.: Temporal disaggregation of daily 
rainfall measurements using regional reanalysis for hydrological applications, Journal of 
Hydrology, 610, 127 867, https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127867, 
2022. 



Westra, S., Mehrotra, R., Sharma, A., and Srikanthan, R.: Continuous rainfall simulation: 
1. A regionalized subdaily disaggregation approach, Water Resources Research, 48, 
https://doi.org/https://doi.org/10.1029/2011WR010489, 2012. 

Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of precipitation and 
temperature across different climates and spatial scales, Journal of Hydrology: Regional 
Studies, 21, 126–146, https://doi.org/https://doi.org/10.1016/j.ejrh.2018.12.002, 2019. 

Moreover, the radar data in the study area have some artifacts as shown in the comparison with 
other gridded datasets, it is not feasible to develop an AI/ML algorithm to relate the radar data 
and the existing hourly and daily gauged data to predict the correct values of hourly radar 
values.  

Regarding other comments including comment 12: 

The revised version of the paper has incorporated two key methodological advancements.  
Firstly, the paper now describes the joint optimisation of the supporting DEM resolution and 
elevation scaling, now assessed to be 5km and 4,000 respectively. Secondly, the paper has now 
implemented a robust process to automatically detect false zero data values by analysing the 
hourly occurrence data. False zeroes are a very common problem with rainfall observations. 
They are hard to detect by applying simple thresholds. The automated occurrence analysis 
detected and removed 42,913 false zeroes from 157,378,817 observations (around 0.26%). This 
led to a significant improvement in the accuracy of the analysis shown in Figure 6.  

Accordingly, we have revised the title in the revised manuscript to: “Elevation dependent 
spatial interpolation of hourly rainfall for accurate flood inundation modelling”. 

This reflects the enhanced focus on the detailed analysis of topographic dependence 
conducted by the revised paper. We have also included a detailed analysis of the impacts of 
elevation transformation on the performance of the interpolation model in the revised 
manuscript, including calibration of the supporting DEM resolution and calibration of the 
elevation transformation parameter a. 

We added sub-section 2.5 in the section 2 Data and methods in the revised manuscript as:  

2.5 Calibrate the DEM smoothing scale and the elevation transformation parameter 

The 5 m resampled to 1 km averaged LiDAR Digital Elevation Model (DEM) from 
Geosciences Australia was used to define the boundary of the rainfall surfaces in the 
ANUSPLIN package 
(https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/89644). A set of 
1 km resolution smoothed DEMs was prepared by calculating the focal mean with 
distances from 2 to 10 km to investigate the impacts of topographic scale on the rainfall 
surfaces. The focal mean at each 1 km pixel is calculated as the mean of a square 
window with a specified distance around that pixel. 

In the ANUSPLIN program, the independent variable transformation for the DEM is h/a, 
where h [m] is the elevation value and a is the transformation parameter. The usual 
recommended a value for interpolating monthly and daily data is 1000 (Hutchinson, 
1995; Hutchinson et al., 2009). In this study for hourly splines, a was calibrated in the 
range from 1000 to 10,000. We also tested the performance of the interpolation model 



using bivariate (without the elevation variable) and trivariate (with the elevation variable) 
analyses. 

The days of hourly rainfall data were categorised into two groups to analyse the impact 
of topography on spatial rainfall patterns. Days with average hourly rainfall between 0 
and 1 mmh-1 were considered as light rain days, and days with average hourly rainfall 
exceeding 1 mmh-1 were considered medium to high rainfall days. There were 3379 light 
rainfall days and 111 medium to high rainfall days. There were 246 days with zero rainfall 
across the whole data network. These days were omitted from the calibration. The focal 
mean distance and the elevation scaling parameter a were jointly optimised to minimise 
the average of the generalised cross validation of the fitted splines over all medium to 
high rainfall days. 

The performances of the different spline models were compared using the Mean 
Absolute Predictive Error (MAPE) and the Mean Absolute Residual (MAR) provided by the 
spline interpolation model. The MAPE is calculated from the individual cross validation 
residuals as afforded by the “leaving out one lemma” described in Wahba (1990). 

We added sub-section 3.2 in the section 3 Results in the revised manuscript as: 

3.2 Impacts of topography on the spatial interpolation of hourly rainfall splines 
Table 3 and Table 4 show the Square Root of the average Generalised Cross Validation 
(RTGCV) of the trivariate spline model for light rainfall days and medium to high rainfall 
days as a function of DEM focal distance and elevation scaling. The light rainfall days 
indicate a very broad dependence on the topographic parameters with an optimum DEM 
focal distance around 10 km or possibly larger. On the other hand, the medium to high 
rainfall days indicate a clear optimum DEM focal distance of 5 km and an optimum 
elevation scaling of 4000. This suggests that topography plays an important role in 
interpolating larger rainfalls while the response of smaller rainfalls to topography is fairly 
flat. The daily average 1 mmh-1 threshold appears to be an effective discriminator of 
light and medium to high rainfall days. Setting a lower threshold gave rise to multiple 
local minima in the RTGCV patterns for days with average hourly rainfall greater than 0.5 
mmh-1. The optimal DEM focal distance is in agreement with the analysis of Sharples et 
al. (2005), who showed that similarly averaged DEMs with focal distances 
from 5 to 10 km performed best in interpolating monthly rainfall across Australia. 

 

Table 3. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for light rain days (0-1 mmh-1). The minimum values of the RTGCV are shown in bold. 

a 1 km  2 km 3 km 4 km 5 km 6 km 7 km  8 km 9 km 10 km 
1000 0.2003 0.2005 0.1993 0.1984 0.1981 0.1980 0.1978 0.1978 0.1976 0.1978 
2000 0.1983 0.1978 0.1981 0.1976 0.1976 0.1973 0.1970 0.1969 0.1969 0.1968 
3000 0.1975 0.1978 0.1976 0.1974 0.1973 0.1973 0.1973 0.1972 0.1971 0.1967 
4000 0.1975 0.1976 0.1975 0.1973 0.1972 0.1974 0.1973 0.1970 0.1971 0.1971 
5000 0.1976 0.1974 0.1973 0.1972 0.1972 0.1972 0.1971 0.1970 0.1971 0.1969 
6000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1972 0.1970 0.1970 0.1969 0.1969 
7000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1969 
8000 0.1974 0.1973 0.1972 0.1973 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 
9000 0.1975 0.1972 0.1974 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 

10,000 0.1974 0.1972 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 



 

Table 4. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for medium to high rain days (> 1 mmh-1). The minimum value of the RTGCV is shown in bold. 

a 1 km  2 km  3 km  4 km  5 km  6 km  7 km  8 km  9 km  10 km  
1000 0.5536 0.5518 0.5485 0.5449 0.5427 0.5438 0.5431 0.5436 0.5423 0.5442 
2000 0.5429 0.5408 0.5411 0.5385 0.5372 0.5362 0.5374 0.5374 0.5366 0.5403 
3000 0.5387 0.5393 0.5377 0.5364 0.5359 0.5352 0.5370 0.5370 0.5376 0.5366 
4000 0.5387 0.5372 0.5366 0.5357 0.5348 0.5359 0.5363 0.5361 0.5369 0.5362 
5000 0.5369 0.5366 0.5362 0.5351 0.5356 0.5357 0.5362 0.5464 0.5367 0.5359 
6000 0.5368 0.5356 0.5351 0.5349 0.5359 0.5364 0.5363 0.5465 0.5363 0.5361 
7000 0.5358 0.5355 0.5351 0.5350 0.5359 0.5364 0.5363 0.5366 0.5362 0.5360 
8000 0.5356 0.5354 0.5352 0.5354 0.5362 0.5363 0.5363 0.5366 0.5363 0.5360 
9000 0.5354 0.5354 0.5356 0.5364 0.5367 0.5464 0.5363 0.5365 0.5358 0.5359 
10,000 0.5354 0.5353 0.5361 0.5364 0.5365 0.5461 0.5366 0.5366 0.5359 0.5359 

 

The analysis on the impact of including the DEM as an independent variable also 
supports the previous conclusion. Table 5 shows that the optimal trivariate analysis 
reduced the MAPE by about 2%, during both light, medium, and heavy hourly rainfalls. 
When the elevation was included in the interpolation, the MAR decreased by 15% and 
18% during the light and medium to heavy rainfalls, respectively. The transformation 
parameter of 4000 and the optimal DEM focal distance of 5 km were used in the 
ANUSPLIN program to generate the CHRain surfaces for further analysis. 

Table 5. Comparison between bivariate and optimal trivariate analyses on light (0-1 mmh-1) and medium to high 
rainfalls (>1 mmh-1). 

 

 

 

We also added in lines 393-404 in the Discussion in the revised manuscript as: 

“Compared to daily or monthly data, the hourly data contains significantly more zero 
values, which can increase the instability of the interpolation model. This paper is the 
first to test the ability of the ANUSPLIN program to generate hourly rainfall surfaces. It 
has also incorporated a robust automated process to remove false zeroes from the data. 
False zeroes are a very common problem with rainfall observations. They are hard to 
detect by applying simple thresholds. The method proposed in this study has been 
successfully applied to generate a 1 km hourly gridded rainfall dataset for a larger area. 
Hourly rainfall data are essential for many hydrological, ecological, and meteorological 
applications (Lewis et al., 2018; Hatono et al., 2022). 

Including elevation data enhances the performance of the thin-spline interpolation 
model in generating hourly rainfall surfaces, more significantly during larger rainfalls. 
While the response of the splines to the topography during light rain days is quite broad, 
the elevation data has greater impacts during larger rain days and results in the clear 
optimal values for the DEM transformation parameter and the smoothing distance. 
There are higher resolution DEMs than the 1 km used in the analysis in this paper. 

 Bivariate Trivariate 

 MAPE MAR MAPE MAR 
0-1 mmh-1 0.2008 0.0548 0.1972 0.047 
> 1 mmh-1 0.5441 0.5394 0.5348 0.4432 



However, the result suggests including finer topographic data does not result in better 
rainfall surfaces at higher spatial resolution. For our study area, the optimal values for 
the elevation transformation parameter and the DEM focal distance are 4000 and 5 km, 
respectively.” 

 

 

 

 

 

 

 


