
Revision Note 1 
This report addresses the comments from the reviewer on our submission HESS-2024-228, 
“Very high spatial and temporal resolution rainfall data for accurate flood inundation modelling” 

The manuscript presents an hourly rainfall product at 1 km resolution, derived by 
disaggregating daily station data (where needed) to an hourly scale and interpolating using 
a thin-spline method. The authors compare their dataset to existing rainfall products and 
demonstrate improvements. The manuscript is generally well-written and structured. 
However, I find the novelty of the study lacking. The thin-plate spline method has been 
previously used for spatial interpolation of climatic variables (by Hutchinson, one of the 
authors), and the authors do not propose any methodological advancements (unless I 
overlooked them) from what has been published in the past. Similarly, the disaggregation 
approach appears overly simplistic compared to more sophisticated state-of-the-art 
methods. Given the limited methodological innovation, I question the suitability of this 
paper for HESS. A more appropriate venue might be a journal focusing on dataset 
development. 

Thank you for your evaluation.  

Even though the study applied the thin-plate spline method, which has been previously used for 
spatial interpolation of climatic variables, this paper is the first to test the ability of the 
ANUSPLIN program to generate 1km hourly rainfall surfaces. Moreover, the revised version of 
the paper has incorporated two key methodological advancements.  Firstly, the paper now 
describes the joint optimisation of the supporting DEM resolution and elevation scaling, now 
assessed to be 5 km and 4,000 respectively. Secondly, the paper has now implemented a robust 
process to automatically detect false zero data values by analysing the hourly occurrence data. 
False zeroes are a very common problem with rainfall observations. They are hard to detect by 
applying simple thresholds. The automated occurrence analysis detected and removed 42,913 
false zeroes from 157,378,817 observations (around 0.26%). This led to a significant 
improvement in the accuracy of the analysis shown in Figure 6 in the old and revised 
manuscript.  

We addressed the comments from the reviewer in detail below. 

1. I suggest revising the title. A 1 km resolution is not necessarily "very high," and the 
precipitation dataset (why focus only on rainfall?) has applications beyond flood 
inundation modeling. 

We changed the title of the paper to: “Elevation dependent spatial interpolation of hourly rainfall 
for accurate flood inundation modelling”, reflecting the enhanced focus on the detailed analysis 
of the topographic dependence. 

 

2. Lines 9-10: The CHRain dataset is compared to other gridded datasets available in 
Australia, but does it outperform them? This should be clarified. 

We edited lines 9-10 in the revised manuscript as: “The spatial and temporal analyses indicate 
that the CHRain dataset outperforms other gridded datasets currently available in Australia in 



representing the sub-grid distribution as well as the daily and hourly variation of rainfall across 
the study area” 

3. Line 10: A correlation of 0.948 is quite high, but was it calculated using all the data 
involved in interpolation and merging? A "leave-one-out" validation approach 
would provide a more reliable assessment. 

In our study area, the hourly data gauges are sparse, so we have to disaggregate some daily data 
into hourly.  The average rain gauge density in the catchment is 143 gauges/30,389 km2 or 1 
gauge/212 km2. Therefore, we want to use all the available hourly data to improve the coverage 
of the rainfall splines. Instead, we evaluated the sum of 24-hour rainfall with daily 
measurements at 169 gauges that were not used in the interpolation. The revised paper now 
reports “leave-one-out” validation statistics to supplement these comparisons.  

4. Line 20: The same citation is used for two different statements on lines 19 and 20. 
Please verify. 

We removed the citation in line 20 in the revised manuscript. 

5. Lines 21-23: This section discusses temporal variability, but what about spatial 
variability? Given its impact on flood modeling, I recommend considering the 
following references: https://doi.org/10.5194/hess-17-2195-2013 and 
https://doi.org/10.5194/hess-21-1559-2017 

There were not many studies that investigated the impacts of the spatial resolution of rainfall 
data on hydrological applications, more specifically on the performance of hydrodynamic 
models. Thank you for your reference suggestion.  We added these in the revised manuscript in 
line 27 as:  

“Peleg et al. (2013) analysed the subpixel rain distribution by comparing the data from radar 
with point measurements at high density gauges. The results shows that a density of 3 rain 
gauges per radar pixel (4 km2) will allow an adequate presentation of radar rainfall.” 

“Peleg et al (2017) indicated a valuable contribution of spatial distribution of rainfall (26% 
contribution) on the total variability of modelled urban drainage network.” 

6. Lines 26-27: This sentence seems disconnected from the surrounding discussion. 

We removed lines 26-27 in the revised manuscript. 

7. Lines 29-30: The phrase "1 km to 12 km" is unclear. Since stations provide point-
scale data and radar typically operates at 1 km resolution (but may not cover all of 
Australia), this should be clarified. 

Details of the gridded datasets available in Australia and used in the analysis were mentioned in 
Table 1 in the old and revised manuscripts. To avoid confusion, we removed the text “1 km to 12 
km” in the Introduction of the revised manuscript. 

8. Lines 72-75: GCMs are not designed to simulate observed rainfall. The current 
wording is misleading, and I suggest removing references to GCMs in this context. 

We removed line 72-75 in the revised manuscript. 

https://doi.org/10.5194/hess-17-2195-2013
https://doi.org/10.5194/hess-21-1559-2017


9. Line 99: "Changes significantly" should be quantified. What is the elevation 
difference? 

We added the text in the revised manuscript:  “The elevation ranges between -6.065 m and 
934.6 m across the catchment.” 

10. Sections 2.1 and 2.5. Do you simply apply the thin-plate spline as suggested by 
Hutchinson? If so, what is the novelty of your approach? 

As described above, the revised version of the paper has incorporated two key methodological 
advancements.  It now describes the joint optimisation of the supporting DEM resolution and 
elevation scaling, now assessed to be 5 km and 4,000 respectively. It has also implemented a 
new robust process to automatically detect false zero data values by analysing the hourly 
occurrence data.  

We edited sub-section 2.6 Generate hourly splines using ANUSPLIN in the revised 
manuscript as:  

The hourly rainfall splines were generated using ANUSPLIN version 4.4 (Hutchinson and 
Xu, 2004). There are four main steps to generate daily and hourly splines, including 
preparing the input data (.dat) files and preparing the command (.cmt) files, running the 
spline program to generate interpolating parameters and flagging bad zero values, 
rerunning the spline program with the flag file results from the first fit using spline 
program, and running the lapgrd program to generate rainfall surfaces. For the hourly 
rainfall surfaces, we ran the ANUSPLIN program daily (24 splines per day) from 
30/01/2007 to 31/12/2022. 

The details of the setup are: 

1. The independent variables include the longitudes, latitudes, and DEM values of the 
hourly stations. The dependent variables are the measured rainfall values at the hourly 
stations. 

2. For the spline commands, the numbers of knots were set as 90% of the total number 
of stations, as read from the input data files. The dependent variable transformation was 
set as the square root of the data surface to comply with the positive skew of the rainfall 
values, often including many zeroes, and to ensure that the fitted values are always non-
negative Hutchinson et al. (2009). 

3. Since the hourly data contain a significantly higher number of zeros and some of the 
zeros values are artifacts (bad zeros), the flag file resulted from the first fit using the 
spline program was fed into a second spline fit, where the flagged bad zeros could be 
removed automatically. There were 42,193 bad zeroes out of 15,737,817 data values in 
our hourly dataset, amounting to 0.26% of the data values. 

4. The optimised parameters from the spline program and the 1 km smoothed DEM were 
input into the lapgrd program to generate the rainfall grids. 

 

 

We added sub-section 2.5 in the section 2 Data and methods in the revised manuscript as:  



2.5 Calibrate the DEM smoothing scale and the elevation transformation parameter 

 The 5 m resampled to 1 km averaged LiDAR Digital Elevation Model (DEM) from 
Geosciences Australia was used to define the boundary of the rainfall surfaces in the 
ANUSPLIN package 
(https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/89644). A set of 
1 km resolution smoothed DEMs was prepared by calculating the focal mean with 
distances from 2 to 10 km to investigate the impacts of topographic scale on the rainfall 
surfaces. The focal mean at each 1 km pixel is calculated as the mean of a square 
window with a specified distance around that pixel. 

In the ANUSPLIN program, the independent variable transformation for the DEM is h/a, 
where h [m] is the elevation value and a is the transformation parameter. The usual 
recommended a value for interpolating monthly and daily data is 1000 (Hutchinson, 
1995; Hutchinson et al., 2009). In this study for hourly splines, a was calibrated in the 
range from 1000 to 10,000. We also tested the performance of the interpolation model 
using bivariate (without the elevation variable) and trivariate (with the elevation variable) 
analyses. 

The days of hourly rainfall data were categorised into two groups to analyse the impact 
of topography on spatial rainfall patterns. Days with average hourly rainfall between 0 
and 1 mmh-1 were considered as light rain days, and days with average hourly rainfall 
exceeding 1 mmh-1 were considered medium to high rainfall days. There were 3379 light 
rainfall days and 111 medium to high rainfall days. There were 246 days with zero rainfall 
across the whole data network. These days were omitted from the calibration. The focal 
mean distance and the elevation scaling parameter a were jointly optimised to minimise 
the average of the generalised cross validation of the fitted splines over all medium to 
high rainfall days. 

The performances of the different spline models were compared using the Mean 
Absolute Predictive Error (MAPE) and the Mean Absolute Residual (MAR) provided by the 
spline interpolation model. The MAPE is calculated from the individual cross validation 
residuals as afforded by the “leaving out one lemma” described in Wahba (1990). 

We added sub-section 3.2 in the section 3 Results in the revised manuscript as: 

3.2 Impacts of topography on the spatial interpolation of hourly rainfall splines 
Table 3 and Table 4 show the Square Root of the average Generalised Cross Validation 
(RTGCV) of the trivariate spline model for light rainfall days and medium to high rainfall 
days as a function of DEM focal distance and elevation scaling. The light rainfall days 
indicate a very broad dependence on the topographic parameters with an optimum DEM 
focal distance around 10 km or possibly larger. On the other hand, the medium to high 
rainfall days indicate a clear optimum DEM focal distance of 5 km and an optimum 
elevation scaling of 4000. This suggests that topography plays an important role in 
interpolating larger rainfalls while the response of smaller rainfalls to topography is fairly 
flat. The daily average 1 mmh-1 threshold appears to be an effective discriminator of 
light and medium to high rainfall days. Setting a lower threshold gave rise to multiple 
local minima in the RTGCV patterns for days with average hourly rainfall greater than 0.5 
mmh-1. The optimal DEM focal distance is in agreement with the analysis of Sharples et 



al. (2005), who showed that similarly averaged DEMs with focal distances 
from 5 to 10 km performed best in interpolating monthly rainfall across Australia. 

 

Table 3. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for light rain days (0-1 mmh-1). The minimum values of the RTGCV are shown in bold. 

a 1 km  2 km 3 km 4 km 5 km 6 km 7 km  8 km 9 km 10 km 
1000 0.2003 0.2005 0.1993 0.1984 0.1981 0.1980 0.1978 0.1978 0.1976 0.1978 
2000 0.1983 0.1978 0.1981 0.1976 0.1976 0.1973 0.1970 0.1969 0.1969 0.1968 
3000 0.1975 0.1978 0.1976 0.1974 0.1973 0.1973 0.1973 0.1972 0.1971 0.1967 
4000 0.1975 0.1976 0.1975 0.1973 0.1972 0.1974 0.1973 0.1970 0.1971 0.1971 
5000 0.1976 0.1974 0.1973 0.1972 0.1972 0.1972 0.1971 0.1970 0.1971 0.1969 
6000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1972 0.1970 0.1970 0.1969 0.1969 
7000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1969 
8000 0.1974 0.1973 0.1972 0.1973 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 
9000 0.1975 0.1972 0.1974 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 

10,000 0.1974 0.1972 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970 
 

Table 4. Performance of the interpolation model with different elevation transformation parameters and elevation 
smoothing scales for medium to high rain days (> 1 mmh-1). The minimum value of the RTGCV is shown in bold. 

a 1 km  2 km  3 km  4 km  5 km  6 km  7 km  8 km  9 km  10 km  
1000 0.5536 0.5518 0.5485 0.5449 0.5427 0.5438 0.5431 0.5436 0.5423 0.5442 
2000 0.5429 0.5408 0.5411 0.5385 0.5372 0.5362 0.5374 0.5374 0.5366 0.5403 
3000 0.5387 0.5393 0.5377 0.5364 0.5359 0.5352 0.5370 0.5370 0.5376 0.5366 
4000 0.5387 0.5372 0.5366 0.5357 0.5348 0.5359 0.5363 0.5361 0.5369 0.5362 
5000 0.5369 0.5366 0.5362 0.5351 0.5356 0.5357 0.5362 0.5464 0.5367 0.5359 
6000 0.5368 0.5356 0.5351 0.5349 0.5359 0.5364 0.5363 0.5465 0.5363 0.5361 
7000 0.5358 0.5355 0.5351 0.5350 0.5359 0.5364 0.5363 0.5366 0.5362 0.5360 
8000 0.5356 0.5354 0.5352 0.5354 0.5362 0.5363 0.5363 0.5366 0.5363 0.5360 
9000 0.5354 0.5354 0.5356 0.5364 0.5367 0.5464 0.5363 0.5365 0.5358 0.5359 
10,000 0.5354 0.5353 0.5361 0.5364 0.5365 0.5461 0.5366 0.5366 0.5359 0.5359 

 

The analysis on the impact of including the DEM as an independent variable also 
supports the previous conclusion. Table 5 shows that the optimal trivariate analysis 
reduced the MAPE by about 2%, during both light, medium, and heavy hourly rainfalls. 
When the elevation was included in the interpolation, the MAR decreased by 15% and 
18% during the light and medium to heavy rainfalls, respectively. The transformation 
parameter of 4000 and the optimal DEM focal distance of 5 km were used in the 
ANUSPLIN program to generate the CHRain surfaces for further analysis. 

Table 5. Comparison between bivariate and optimal trivariate analyses on light (0-1 mmh-1) and medium to high 
rainfalls (>1 mmh-1). 

 

 

 

 Bivariate Trivariate 

 MAPE MAR MAPE MAR 
0-1 mmh-1 0.2008 0.0548 0.1972 0.047 
> 1 mmh-1 0.5441 0.5394 0.5348 0.4432 



We also added in lines 393-404 in the Discussion in the revised manuscript as: 

“Compared to daily or monthly data, the hourly data contains significantly more zero 
values, which can increase the instability of the interpolation model. This paper is the 
first to test the ability of the ANUSPLIN program to generate hourly rainfall surfaces. It 
has also incorporated a robust automated process to remove false zeroes from the data. 
False zeroes are a very common problem with rainfall observations. They are hard to 
detect by applying simple thresholds. The method proposed in this study has been 
successfully applied to generate a 1 km hourly gridded rainfall dataset for a larger area. 
Hourly rainfall data are essential for many hydrological, ecological, and meteorological 
applications (Lewis et al., 2018; Hatono et al., 2022). 

Including elevation data enhances the performance of the thin-spline interpolation 
model in generating hourly rainfall surfaces, more significantly during larger rainfalls. 
While the response of the splines to the topography during light rain days is quite broad, 
the elevation data has greater impacts during larger rain days and results in the clear 
optimal values for the DEM transformation parameter and the smoothing distance. 
There are higher resolution DEMs than the 1 km used in the analysis in this paper. 
However, the result suggests including finer topographic data does not result in better 
rainfall surfaces at higher spatial resolution. For our study area, the optimal values for 
the elevation transformation parameter and the DEM focal distance are 4000 and 5 km, 
respectively.” 

 

11. Section 2.4: If the closest station is 10 km away (just giving an example), the 
correlation may be too low for reliable disaggregation... A sensitivity analysis using 
stations at varying distances could provide insights into the method’s limitations. 

We agree that the density of hourly gauges is coarse in some areas in our catchment. We have 
no better option than to use the rainfall pattern from the nearest hourly station to a daily station 
to disaggregate the daily data at that station. To reduce the uncertainty of choosing the 
disaggregation, we also used the observed movement of rainfall from the radar data to select 
suitable nearby hourly gauges to disaggregate data from daily to hourly (mentioned in Section 
2.4 in the old and revised manuscripts). Since we don’t have many stations to choose from in 
the areas and the 2nd nearest hourly station can be much further away from the nearest one, it 
will not be beneficial to do a sensitivity analysis using stations at varying distances to improve 
the disaggregated data. 

12. Line 203: Why is alpha not treated as a calibration parameter? 

The revised paper now optimises the alpha parameter, as well as the elevation scaling. This is 
described in point 10. 

13. Lines 231-232: The manuscript reports too many goodness-of-fit measures. Why 
include both NSE and KGE, for instance? I suggest focusing on two distinct indices 
that provide complementary information. 

The NSE metric is popularly used in other studies to compare modelled and observed rainfall 
data (i.e., Hatono et al., 2022). We removed the KGE metric in the revised manuscript to reduce 
the complication. 
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