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Abstract. Hydrological drought is one of the main hydroclimatic hazards worldwide, affecting water availability, ecosystems 

and socioeconomic activities. This phenomenon is commonly characterized by the Standardized Streamflow Index (SSI), 

which is widely used because of its straightforward formulation and calculation. Nevertheless, there is limited understanding 15 

of what the SSI actually reveals about how climate anomalies propagate through the terrestrial water cycle. To find possible 

explanations, we implemented the Structure for Unifying Multiple Modeling Alternatives (SUMMA) coupled with the 

mizuRoute routing model in six hydroclimatically different case study basins located on the western slopes of the extratropical 

Andes, and examined correlations between the SSI (computed from the models for 1, 3 and 6-month time scales) and potential 

explanatory variables – including precipitation and simulated catchment-scale storages – aggregated at different time scales. 20 

Additionally, we analyzed the impacts of adopting commonly used time scales on propagation analyses of specific drought 

events – from meteorological to soil moisture and hydrological drought – with focus on their duration and intensity. The results 

reveal that the choice of time scale for the SSI has larger effects on correlations with explanatory variables in rainfall-dominated 

regimes compared to snowmelt-driven basins, especially when simulated fluxes and storages are aggregated to time scales 

longer than 9 months. In all the basins analyzed, the strongest relationships (Spearman rank correlation values over 0.7) were 25 

obtained when using 6-month time scales to compute the SSI and 9-12 months to compute the explanatory variables, excepting 

aquifer storage in snowmelt-driven basins. Finally, the results show that the trajectories of drought propagation obtained with 

the Standardized Precipitation Index (SPI), the Standardized Soil Moisture Index (SSMI) and the SSI may change drastically 

with the selection of time scale. Overall, this study highlights the need for caution when selecting standardized drought indices 

and associated time scales, since their choice impacts event characterizations, monitoring and propagation analyses. 30 

 

Formatted: English (UK)

Deleted:  hydrological model

Formatted: normaltextrun, Font color: Black, Pattern: Clear
(White)

Deleted: aggregations



 

2 
 

1 Introduction 

Droughts are natural hazards that can cover vast areas over a period of months to several years (Samaniego et al., 2013; Brunner 35 

and Tallaksen, 2019), with large effects on environmental systems (Vicente-Serrano et al., 2020) and socioeconomic activities 

(Wilhite and Pulwarty, 2017). These events are primarily triggered by precipitation deficits (McKee et al., 1993), which may 

be associated with internal climate variability modes – such as El Niño Southern Oscillation (Okumura et al., 2017; Steiger et 

al., 2021) – and exacerbated by land-atmosphere interactions (Schumacher et al., 2022). Given the warming trends projected 

for the next decades (e.g., Brunner et al., 2020; Tokarska et al., 2020) and the contribution of higher temperature to drying 40 

(Trenberth et al., 2014), anthropogenic climate change is also expected to affect drought characteristics, increasing their 

frequency, severity, and duration in many regions of the world (Cook et al., 2014; Pokhrel et al., 2021). 

Despite the drought concept referring to the notion of below-average water fluxes and/or storages (Tallaksen and Van Lanen, 

2004), there are several drought definitions and classifications, with meteorological, agricultural (also referred to as soil 

moisture drought; e.g., Thober et al., 2015; Cook et al., 2018), hydrological, and socioeconomic being the most used drought 45 

types (Wilhite and Glantz, 1985). Among these, hydrological droughts – associated with abnormally low levels in surface 

water bodies, groundwater and/or streamflow in rivers (Van Loon, 2015) – are especially relevant due to their direct impacts 

on natural ecosystems and human society. Hence, understanding how climate anomalies propagate through the terrestrial water 

cycle to trigger hydrological droughts of different characteristics (e.g., duration, severity) is an outstanding challenge for the 

scientific community, and a crucial task for water resources planning and management (Zhang et al., 2022). 50 

Hydrological droughts are typically quantified through indices derived from observed or modeled time series of streamflow 

(e.g., Zhu et al., 2016; Stahl et al., 2020), runoff (Shukla and Wood, 2008), and groundwater levels (e.g., Bachmair et al., 

2015). Among the existing indices, the Standardized Streamflow Index (SSI; Modarres, 2007; Vicente-Serrano et al., 2012) 

has become increasingly popular because of its straightforward formulation, calculation, and interpretability for the 

characterization of discharge anomalies. The numerous SSI application span various areas, including drought monitoring 55 

(Núñez et al., 2014; Nkiaka et al., 2017) and forecasting (Sutanto and Van Lanen, 2021, 2022; Hameed et al., 2023), as well 

as drought propagation under historically observed (e.g., Barker et al., 2016; Bhardwaj et al., 2020) and projected (Wan et al., 

2018; Adeyeri et al., 2023) climatic conditions. 

The applicability of the SSI is challenged by its sensitivity to the quantity and quality of the data (Wu et al., 2018) and the 

calculation method, which entails the choice of a reference period for standardization, the selection of probability distribution 60 

(e.g., Laimighofer and Laaha, 2022; Teutschbein et al., 2022), the parameter estimation approach (e.g., Tijdeman et al., 2020) 

and, in particular, the time scale or accumulation (e.g., Barker et al., 2016; Baez-Villanueva et al., 2024). The latter refers to 

the backward-looking period (commonly a number of months) over which streamflow values are averaged before computing 

the index. Most drought propagation analyses seek possible relationships between meteorological drought indices such as the 

Standardized Precipitation Index (SPI; McKee et al., 1993) and the Standardized Precipitation Evapotranspiration Index (SPEI; 65 

Vicente-Serrano et al., 2010) – computed for various time scales – and the SSI for some time scale, being one month (SSI-1) 
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method, which entails the choice of a reference period for 
standardization, the selection of probability distribution (e.g., 
Laimighofer and Laaha, 2022; Teutschbein et al., 2022), the 
parameter estimation approach (e.g., Tijdeman et al., 2020) and, in 195 
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Baez-Villanueva et al., 2024). The latter refers to the backward-
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meteorological drought indices (e.g., McKee et al., 1993; Vicente-
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the common choice (e.g., Huang et al., 2017; Peña-Gallardo et al., 2019; Stahl et al., 2020; Wang et al., 2020; Wu et al., 2022; 

Zhang et al., 2022; Odongo et al., 2023; Baez-Villanueva et al., 2024). Such decision commonly relies on the assumption that 

streamflow already includes hydro-meteorological processes of the previous months (e.g., Stahl et al., 2020; Tijdeman et al., 205 

2020; Sutanto and Van Lanen, 2021), enabling direct comparisons with them (e.g., Baez-Villanueva et al., 2024). Because the 

SSI-1 may be susceptible to short-term fluctuations, other authors have preferred smoothed (e.g., 3-month averages) time series 

of SSI-1 (e.g., Bhardwaj et al., 2020), 3-month (e.g., Núñez et al., 2014; Wu et al., 2017; Rivera et al., 2021; Adeyeri et al., 

2023; Yun et al., 2023), 6-month (e.g., Seibert et al., 2017; Oertel et al., 2020), or even longer (e.g., Teutschbein et al., 2022; 

Fowé et al., 2023) time scales. 210 

Nowadays, there is no consensus regarding the most appropriate time scale for both SSI and possible explanatory variables 

(e.g., precipitation and catchment-scale simulated storages), which may stem from the limited understanding of what the SSI 

truly reveals about the underlying physical mechanisms driving hydrological droughts. For example, Buitink et al. (2021) 

examined five components of the water cycle – precipitation, soil moisture, vegetation greenness, groundwater and surface 

water – in the Dutch province of Gelderland, finding that percentile-based thresholds commonly used for hydrological drought 215 

detection mask out more frequent drought conditions that other variables in the system may be experiencing. 

To tackle this issue, process-based hydrological modeling arises as a useful approach (Peters-Lidard et al., 2021), and the 

literature is rich in studies using models with varying degrees of complexity to examine the propagation from meteorological 

to soil moisture or hydrological droughts (e.g., Andreadis et al., 2005; Sheffield and Wood, 2007; Van Loon and Van Lanen, 

2012; Samaniego et al., 2013; Van Loon et al., 2014; Zink et al., 2016; Apurv et al., 2017; Bhardwaj et al., 2020; Lee et al., 220 

2022; Rakovec et al., 2022). This paper contributes to this field by combining observed data and a state-of-the-art physics-

based modeling framework to analyze fluctuations in the widely used SSI across hydrological regimes. Here, we depart from 

previous hydrological drought assessments that used a unique time scale for the SSI (e.g., Stahl et al., 2020; Tijdeman et al., 

2020; Wu et al., 2022; Baez-Villanueva et al., 2024) by first conducting exploratory correlation analyses between modeled 

catchment-scale water storages and the SSI, to subsequently inform the choice of time scales for the calculation of standardized 225 

indices (e.g., Samaniego et al., 2013) to perform drought propagation analyses. Specifically, we address the following research 

questions: 

1. How do different time scales affect the number and duration of hydrological droughts? 

2. How does the SSI relate to catchment-scale water storages and fluxes across different hydrological regimes? 

3. How do different time scales affect the propagation of historically observed meteorological droughts toward soil 230 

moisture and hydrological droughts? 

To seek answers, we configure the Structure for Unifying Multiple Modeling Alternatives (SUMMA; Clark et al., 2015a, 

2015b, 2021) hydrological model and the vector-based routing model mizuRoute (Mizukami et al., 2016, 2021) in six basins 

located along the western slopes of the extratropical Chilean Andes. Catchment-scale precipitation and model simulations are 

temporally aggregated to monthly time steps to compute snow water equivalent (SWE), soil moisture, aquifer storage, total 235 

storage (i.e., the sum of SWE, soil moisture, aquifer storage, and canopy storage) and the SSI for different time scales. We use 
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these time series to explore the physical processes explaining variations in the SSI during the period April/1983-March/2020, 

as well as the drought event of 1998/99 and the recent central Chile megadrought (Garreaud et al., 2017, 2019). Finally, we 365 

examine the implications of time scale selection on the portrayal of drought propagation across the duration-intensity space, 

using standardized indices during historically observed events. We stress that it is not our intention to select or establish the 

most suitable time scale to be applied in each particular case; instead, we seek to improve the current understanding of the 

information content of the SSI across different hydrological regimes and raise awareness on the impact that the subjective 

choice of the time scale and the analysis periods may have on the interpretation and application of the SSI for drought 370 

monitoring and propagation analyses.  

2 Study Area and data 

2.1 Case study basins 

We conduct our analyses in six Chilean basins located on the western slopes of the extratropical Andes Cordillera (Figure 1): 

(i) Cochiguaz River at El Peñón, (ii) Choapa River at Cuncumén, (iii) Claro River at El Valle, (iv) Palos River at Colorado, 375 

(v) Ñuble River at La Punilla, and (vi) Cautín River at Rari-Ruca. Hereafter, refer to each basin using the name of the river. 

The catchment boundaries and the identification number (ID) are obtained from the CAMELS-CL database (Alvarez-Garreton 

et al., 2018). All the basins receive most of the precipitation during the Fall (MAM) and Winter (JJA) seasons (Figure 1). 

Additionally, the basins span a wide range of physiographic characteristics and climatic conditions, with annual precipitation 

amounts ranging from 260 to 2900 mm/year, mean annual temperatures between 9 and 16 °C, annual runoff spanning 114-380 

2090 mm/year, and aridity indices between 0.4 and 3 (Table 1). Such climatic diversity translates into different hydrological 

regimes: the Cochiguaz and Choapa River basins are snowmelt-driven, Palos and Ñuble have a mixed regime, while Claro and 

Cautín are mostly rainfall-driven.  

2.2 Datasets 

Meteorological daily data are obtained from the CR2MET v.2.0 observational product (DGA, 2017; Boisier et al., 2018), 385 

which provides precipitation and extreme temperature estimates for the period 1979-2020 at a 0.05° x 0.05° horizontal 

resolution. CR2MET precipitation estimations are obtained through multiple linear regression models that consider 

physiographic attributes and large-scale climate variables from the fifth generation of the European Reanalysis (ERA5; 

Hersbach et al., 2020) as predictors, and observed daily precipitation from gauge stations as predictands. For extreme daily 

temperatures, CR2MET includes land surface temperature from the Moderate Resolution Imaging Spectroradiometer 390 

(MODIS) as a potential explanatory variable. Wind, incoming shortwave radiation, atmospheric pressure, and relative humidity 

are obtained from ERA5-Land (Muñoz-Sabater et al., 2021). Land cover data and vegetation types for the study area are also 

obtained from MODIS. Daily streamflow records are collected by the Chilean Water Directorate (DGA), and were retrieved 
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from the website of the Climate and Resilience Research Centre (CR2,  https://www.cr2.cl/datos-de-caudales/). Table 2 

provides a summary of the datasets used in this study, including their horizontal and temporal resolutions. 395 

3 Approach 

Our approach considers the configuration of the SUMMA hydrological model (SUMMA; Clark et al., 2015a, 2015b, 2021) 

and the mizuRoute routing model (Mizukami et al., 2016, 2021, Figure 2a); the calibration and evaluation of the SUMMA 

model parameters (Figure 2b); the computation of standardized drought indices (SDIs) for precipitation, simulated soil 

moisture and simulated streamflow, and the examination of time scale effects on hydrological drought frequency and duration 400 

(Figure 2c, section 3.3);  and correlation analysis between the SSI and other simulated hydrological variables (Figure 2d). 

Finally, we examine how time scales typically adopted for the calculation of standardized indices affect the portrayal of 

historically observed drought events (Figure 2e); specifically, we analyze the transitions from meteorological to soil moisture 

and hydrological droughts in the duration-intensity space (Section 3.5). In this paper, we use the terms “time scale” or 

“temporal scale” when referring to the temporal window used to aggregate (or average) monthly values. For example, the 3-405 

month time scale for September 2015 precipitation is the aggregation of monthly amounts (in mm/month) for July to September 

2015. For the case of state variables (e.g., SWE, soil moisture) or fluxes (e.g., streamflow) the 3-month time scale is obtained 

by averaging monthly means.   

A key aspect of our methodology is the identification of hydrological variables and time scales driving fluctuations in the SSI, 

obtaining all the data from a calibrated, state-of-the-art process-based hydrological model. This approach departs from previous 410 

efforts searching for statistical relationships between the SSI – computed with streamflow observations – and standardized 

indices such as the Standardized Precipitation Index (SPI; e.g., Barker et al., 2016; Huang et al., 2017; Wu et al., 2022), the 

Standardized Precipitation Evapotranspiration Index (SPEI; e.g., Peña-Gallardo et al., 2019; Wang et al., 2020; Bevacqua et 

al., 2021), the Standardized Soil Moisture Index (SSMI; Carrão et al., 2013) or other indices and state variables (e.g., soil 

moisture, aquifer storage, SWE, total water storage) derived from reanalysis datasets that do not necessarily correspond to 415 

observed streamflow anomalies (e.g., Hoffmann et al., 2020; Baez-Villanueva et al., 2024). 

3.1 Hydrological modeling 

We use the SUMMA hydrologic modeling system, which offers different implementations for a wide range of modeling 

decisions. In order to force numerical simulations at 3-hourly time steps, daily precipitation and temperature data from 

CR2MET are temporally disaggregated using the sub-daily distribution provided by ERA5-Land (Muñoz-Sabater et al., 2021).  420 

longwave radiation is computed using the formulation proposed by Iziomon et al. (2003), and the remaining variables are 

directly obtained from ERA5-Land. 

SUMMA has several options for model configuration, process representations, and flux parameterizations for mass and energy 

balance equations. Here, we used the Jarvis (1976) function for simulating stomatal resistance, one of the main physiological 

factors controlling transpiration, similar to the Noah-MP land surface model (Niu et al., 2011). We also considered a 425 
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logarithmic wind profile below the vegetation canopy – described in Mahat et al. (2013) –, and implemented the Raupach 

(1994) parameterization for vegetation roughness length and displacement height. We use Beer’s law (Mahat and Tarboton, 

2012) – as implemented in the Variable Infiltration Capacity (VIC) model (Liang et al., 1994) – to represent the radiation 

transmission through vegetation. For the vertical redistribution of water along the soil column, we considered the mixed form 470 

of the Richards equation (Celia et al., 1990), a vertically constant hydraulic conductivity and a lumped aquifer model. For 

snow, we consider a constant albedo decay rate, and the thermal conductivity was parameterized using the Jordan (1991) 

approach. 

In this study, each basin is spatially discretized into grid cells that are delineated to match the meteorological forcing data 

resolution (0.05° x 0.05°). Each grid cell has specific physiographic characteristics (e.g., slope, elevation, layer thickness, 475 

vegetation, and soil type), a maximum of five snow layers, and three soil layers with different thicknesses – top: 0.5 m, middle: 

2 m, bottom: 2.5 m –. Further, each grid cell incorporates an unconfined aquifer at the bottom of the soil column, which 

contributes to baseflow generation (Figure 2a). We stress that no lateral water fluxes are allowed between grid cells. 

We use the vector-based routing model mizuRoute (Mizukami et al., 2016, 2021)  to convert the instantaneous runoff obtained 

with the SUMMA model at each grid cell into streamflow at the basin outlet. The application of mizuRoute requires delineating 480 

a digital river network, with individual subcatchments contributing runoff to each river reach. First, the model converts the 

total runoff from each grid cell into subcatchment-scale runoff using area-weighted averages. Then, the model performs a 

hillslope routing to delay instantaneous total runoff from the subcatchment to the corresponding outlet using a gamma-

distribution-based unit hydrograph, and then routes the delayed runoff for each river reach in the order defined by the river 

network topology. Full descriptions of the hillslope routing, general routing procedures, and routing schemes are provided by 485 

Mizukami et al. (2016). Here, we use the Diffusive Wave routing scheme described and implemented by Cortés-Salazar et al. 

(2023).  

3.2 Model calibration and evaluation  

We calibrated 14 parameters (Table S1 in the Supplement) of the SUMMA model using the Dynamically Dimension Search 

algorithm (DDS; Tolson and Shoemaker, 2007), implemented in the OSTRICH software (Matott, 2017), to maximize the 490 

objective function (OF) proposed by Garcia et al. (2017), which provides a good compromise to achieve good high flow and 

low flow simulations: 

𝑂𝐹 = 0.5 ⋅ 𝐾𝐺𝐸(𝑄) + 0.5 ⋅ 𝐾𝐺𝐸(1/𝑄)                                                                                  (3.1) 

where KGE is the Kling-Gupta efficiency (Gupta et al., 2009) computed with simulated and observed daily time series of Q 

and 1/Q. We set a number of 2000 iterations, which is similar to the number of evaluations used in previous studies (e.g., 495 

Rakovec et al., 2016; Shen et al., 2022), and only one optimization trial. The observed daily streamflow data is split into a 

warm-up period (April/2004 – March/2006), a calibration period (April/2010 – March/2017), and two non-consecutive 
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evaluation periods (April/2006 – March/2010 and April/2017 – March/2020). For model evaluation, we use the OF, KGE, the 

Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), the coefficient of determination (R2), and the root mean square 530 

error (RMSE, Figure 2b). 

3.3 Drought indices  

For meteorological drought characterization, we use the well-known SPI (McKee et al., 1993), which compares the cumulative 

precipitation for a specific reference period with its long-term (usually 30 years or more) distribution at a given location. The 

SPI calculation involves (i) selecting a probability density function (PDF) and its parameters to obtain the reference long-term 535 

distribution for cumulative precipitation; (ii) obtaining the cumulative distribution function (CDF) from the fitted distribution; 

and (iii) transforming the CDF into a standardized normal distribution (i.e. with mean equal to zero and standard deviations of 

one), using an equi-percentile inverse transformation to derive the SPI values. Here, we use the parametric Gamma distribution 

(McKee et al., 1993; Stagge et al., 2015) and the probability-weighted moments method (Hosking, 1986) to estimate its 

parameters in SPI calculations. We also use the SPEI (Vicente-Serrano et al., 2010), which requires monthly precipitation and 540 

temperature data and involves a mass balance given by the difference between precipitation and potential evapotranspiration 

(PET) estimated with the Thornthwaite (1948) equation.   

For soil moisture drought analysis, we use the SSMI (Carrão et al., 2013) which quantifies deficits in the soil water content in 

the root zone relative to its seasonal climatology at a specific location. The SSMI uses an empirical distribution based on 

monthly soil moisture series. Since the SUMMA model provides other storages besides soil moisture, we also use a modified 545 

version – the Standardized Water Storage Index (SWSI) – to assess total water storage (i.e., the sum of SWE, canopy storage, 

soil moisture, and aquifer storage). Finally, we use the Standardized Streamflow Index (SSI; Vicente-Serrano et al., 2012) for 

hydrological drought characterization. Here, we use the generalized logistic distribution to compute the SSI, following 

recommendations from past studies (e.g., Vicente-Serrano et al., 2012; Tijdeman et al., 2020). 

To evaluate how the subjective choice of time scales may affect the characterization of different types of droughts and inter-550 

relationships, we compute SDI-n with n = 1, 3, 6, 9, 12, 18, and 24 months (Figure 2c) excepting the SSI, for which we consider 

temporal scales that have been commonly adopted under different assumptions and considerations  (e.g., Núñez et al., 2014; 

Oertel et al., 2020; Tijdeman et al., 2020; Baez-Villanueva et al., 2024; see section 3.4).  We use the calibrated parameters (see 

section 3.2) to perform hydrologic simulations for the historical period April/1981 – March/2020. All SDI computations consider a 

spin-up period of two years (April/1981 – March/1983) and the same reference period of 30 years (April/1983 – March/2013). We 555 

further examine how different drought detection criteria may alter the frequency and intensity of hydrological drought events 

during the historical period. To this end, we apply a fixed threshold criterion (Van Loon, 2015) – set here as -1 – in two 

different ways: (i) a drought event starts when SDI-n drops below -1 and ends when it reaches or exceeds -1 – i.e., it is possible 

to detect one-month events (“free” criteria) –; and (ii) a drought event begins when SDI-n remains below -1 for at least three 

consecutive months and concludes when it reaches or exceeds -1 (“constrained” criteria). 560 
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3.4 Correlation analysis  

To understand temporal fluctuations in the SSI, we compute the Spearman’s rank correlation coefficient between SSI-n with 615 

n = 1, 3, and 6 months, which are the most commonly used temporal scales in drought propagation analyses (e.g., Núñez et 

al., 2014; Oertel et al., 2020) and the main catchment-scale water fluxes and storages as explanatory variables (Figure 2d), 

including precipitation, SWE, soil moisture, aquifer storage and the total water storage in the basin (i.e., the sum of SWE, 

canopy storage, soil moisture and aquifer storage). To assess what time scales of the hydrological variables are important for 

drought occurrence, we use temporal averages or accumulations over the preceding months of 1, 3, 6, 9. 12, 18, and 24 620 

(including the target month). In this analysis, we assume that the factors not simulated by the hydrological and routing models 

(e.g., land cover change, water abstractions, glaciers) have negligible influence on hydrological drought occurrence in the 

selected basins. 

The correlation analyses were conducted independently at each study basin over different temporal windows that include 

exceptionally dry water years. The goal here is to identify the strongest relationships between the SSI and explanatory 625 

variables, the associated temporal scales, and whether these vary substantially with hydrological regimes and/or drought 

events. 

3.5 Drought propagation analysis  

Using the time scales that maximize correlations identified in section 3.4, we compute the SPI, SSMI, and SSI indices to 

examine the transition from meteorological to hydrological droughts in the duration–intensity space, passing through soil 630 

moisture drought (SPI à  SSMI à SSI; Figure 2e). In other words, we analyze the duration (in months) and the intensity, 

quantified as the temporally-averaged index value during its respective drought duration, with a focus on the 1998/99 and 

2012-2016 droughts (a subperiod of the Chilean megadrought), which simultaneously affected our case study basins. We also 

compare the drought propagation portrayals derived from the time scales identified here, against other criteria adopted in recent 

studies (Table 3). These include propagation analyses using one (Wan et al., 2018) and three-month (e.g., Gautam et al., 2024) 635 

time scales for SPI, SSMI, and SSI calculations, as well as varying time scales for these indices depending on the hydrological 

regime of the target basin (e.g., Baez-Villanueva et al., 2024). 

4 Results 

4.1 Hydrological model performance 

Figure 3 displays hydrological model calibration and evaluation results for the six study basins, showing an overall good 640 

agreement between observed and simulated streamflows. The value of the objective function (Eq 1) during the evaluation 

period is higher than 0.73 in all basins (Figure 3a). The minimum KGE during the calibration period is 0.74 (Choapa), whereas 

the highest KGE values are 0.83 (Palos) and 0.82 (Cautín). Negative biases (i.e., underestimation of runoff volumes) are 
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obtained for Cochiguaz (-15.4%) and Ñuble (-5.8%), while small (< 8%) positive biases are obtained in the remaining basins. 

In general, the observed daily flow duration curves are well simulated by the SUMMA model in all catchments (Figure 3b), 

including its midsegment slope (20% - 70% flow exceedance probabilities); nevertheless, there is an overestimation of low 

flow volumes with exceedance probabilities larger than 90% in the Choapa and Claro catchments (< 2 m3/s), which could be 665 

explained by the inadequate model physics representation including, but not limited to, the lack of a common aquifer enabling 

water exchange among grid cells in our SUMMA configuration, and/or biases in the forcing dataset that impact the 

accumulation and melting of snow. The streamflow seasonality is well reproduced by the SUMMA model in all basins (Figure 

3c), though there is an overestimation (< 10%) of mean monthly flows during September-November (i.e., when snowmelt 

occurs) at the Choapa and Claro River basins, and during March-October (i.e., when rainfall events occur) at the Ñuble and 670 

Cautin River basins. 

4.2 Effects of time scale on drought characteristics 

Figure 4 illustrates the time series for different simulated hydrological variables, as well as the SPI and SSI indices computed 

at different time scales for the Choapa and Cautín River basins. We focus on a three-year period (1998-2000) that includes the 

year 1998, a remarkably dry year spanning a 6-month period (July-December) with abnormally low precipitation amounts 675 

(Kreibich et al., 2022). Such precipitation deficit had a noticeable impact on snow accumulation, especially in the Choapa 

River basin (snowmelt-driven), and affected other variables to a lesser degree, including soil moisture (agricultural drought) 

and aquifer storage, whose levels were even lower than those recorded in subsequent years. Ultimately, the meteorological 

drought translated into lower streamflow values over the course of 1998 and even 1999. 

Figures 4b and 4g show the impacts of time scale selection on the SSI and the SPI, with substantial differences between 1-680 

month indices and time scales larger than 12 months (18 and 24 months). This is especially noticeable in the SSI time series 

of the Choapa River basin, where a similar behavior over time is observed for SSI-1, SSI-3, SSI-6, and SSI-9, with index 

values smaller than –1 between October/1998 and September/1999. Nevertheless, the onset of hydrological drought is detected 

in May/1999 (end of 1999) if an 18-month (24-month) time scale is used to compute the SSI. Notably, Figure 4g shows that 

even a 1-month time scale in SSI calculations can distort the actual variability of streamflow considerably. 685 

The choice of time scales used to compute the SSI can also affect the estimated frequency and duration of hydrological drought 

events. This is illustrated in Figure 5, which compares the number of hydrological droughts detected with SSI-1, SSI-3, and 

SSI-6, as well as the probabilistic distribution of their duration over the entire simulation period (April/1983 – March/2020). 

Figure 5a shows substantial differences in the number of events depending on the criteria and time scale used, with the only 

exception being the Cochiguaz River basin. In general, the number of events detected with the free criterion decreases for 690 

longer time scales, as opposed to the constrained criterion, for which such number tends to remain constant or even increase 

(see, for example, the Choapa River basin). The largest discrepancies are found in the rainfall-dominated catchments; for 

example, in the Cautín River basin 28 and 13 events were detected with the SSI-1 and SSI-6, respectively, using the free 

criterion. Figures 5b and 5c display the empirical probability density functions of drought durations obtained with the free and 
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constrained criteria, for all basins and time scales, and Table 4 includes the average durations considering all the events during 

the analysis period. As for the frequency, we found no changes in the Cochiguaz River basin; however, the choice of time 710 

scale has considerable effects on drought durations in rainfall-driven catchments – especially with the free criterion –, with a 

transition from positively skewed probability density functions with averages between 1-3 months when using SSI-1, to more 

homogeneous distributions – centered around 8 months – when using SSI-6.  

4.3 Correlation between the SSI and hydrological variables 

Figure 6 illustrates how the choice of time scale used for the SSI affects the Spearman rank correlation between this index and 715 

the main hydrological variables (precipitation and catchment storages). One can note that the differences are minimal between 

the SSI-1, SSI-3, and SSI-6 for the two snowmelt-driven basins (i.e., Cochiguaz and Choapa). Further, the shape of the curves 

is similar in most cases, achieving the highest correlations with precipitation and SWE on a 12-month scale, and the highest 

correlations with soil moisture and total storage using time scales between 6 and 12 months. Notably, the strength of the 

relationship between the SSI and aquifer storage varies depending on the hydrological regime: in snowmelt driven basins, the 720 

correlations are higher for time scales of 3-6 months of aquifer storage, whereas correlation is maximized with 9-12-month 

time scales in rainfall-dominated catchments. 

In most cases, the highest (lowest) correlations are obtained using SSI-6 (SSI-1), although there are some exceptions for time 

scales shorter than 9 months at the Palos and Ñuble River basins (mixed regime), where higher correlations are achieved when 

using SSI-1. The impacts of the time scale on correlation results are considerably larger in basins with mixed or rainfall-725 

dominated regimes, where there is larger dispersion in the correlation achieved by the indices, reaching differences up to 0.5 

in the Ñuble and Cautín River basins for a 12-month scale. Similarly, a progressive increase in the dispersion of correlations 

is observed when evaluating indices at larger time scales (> 9 months) for all storages in mixed and rainfall-driven catchments. 

Overall, the results in Figure 6 suggest that – if the aim is to investigate the relationship between the main hydrological variables 

and fluctuations in the SSI – the choice of the time scale used to compute this index becomes less relevant in snowmelt driven 730 

basins with large baseflow contributions, compared to rainfall-dominated catchments. 

Figure 7 explores the potential effects of hydrological regimes on the Spearman rank correlations between the SSI-6 and 

hydrological variables aggregated at different time scales, for three periods: the 1998/1999 drought event, the central Chile 

megadrought (2010-2019), and April/1983 - March/2020 (the results for SSI-1 and SSI-3 are presented in Figures S1 and S2 

of the Supplement). The examination of different storages over the entire period (April/1983 - March/2020) reveals that, in 735 

general, higher Spearman rank correlations are obtained in arid and snowmelt-driven basins compared to humid and rainfall-

driven basins, regardless of the time scale analyzed. In other words, there are stronger relationships with SSI-6 in the northern 

regions (aridity index > 2 and mean annual P < 400 mm/yr), which gradually become weaker towards the south (aridity index 

< 0.5 and mean annual P > 2000 mm/yr), following the central Chile’s hydroclimatic gradient. Such pattern is more evident 

when all catchment storages are aggregated (last row in Figure 7) and to a smaller degree in individual storages (SWE, soil 740 
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moisture, and aquifer storage). Such relationship between the strength of the correlations and the hydroclimatic regime are 

also obtained for the SSI-3 (Figure S2) and, to a greater extent, for the SSI-1 (Figure S1). 

Figure 7 also shows that the magnitude of correlations between hydrological variables and SSI-6 varies with the analysis 

period, especially during exceptionally dry and short periods. For example, the relationships between SSI-6 and precipitation 750 

in rainfall-dominated and mixed regime catchments (Claro, Palos, Ñuble and Cautín) are stronger during the 1998/99 drought, 

with Spearman rank correlations near 1 for a 9-month scale, whereas the remaining periods yield correlations that do not 

exceed 0.7 at the same temporal scale. Considerable differences are also obtained for SWE, with high correlations (>0.7) in 

all basins for the 9 and 12-month time scales during the 1998/99 event, and lower correlations during the central Chile 

megadrought. The selection of analysis period also yields differences in the correlation with soil moisture and aquifer storage. 755 

Notably, higher correlations with £9-month aquifer storage are obtained during the 1998/99 event in Choapa and Palos, where 

the snowmelt contribution to runoff is substantial. 

4.4 Effects of temporal scale on drought propagation 

To what extent can the choice of temporal scale affect the portrayal of drought propagation across different hydrological 

regimes? Figure 8 displays the transition of meteorological towards soil moisture and hydrological droughts in the duration–760 

intensity space for the Choapa (snowmelt driven), Palos (mixed regime) and Cautín (rainfall driven) River basins (results for 

the remaining basins are included in Figure S3 of the Supplement). The results show that different time scales affect drought 

duration and intensity, as well as the progression of such characteristics in a specific hydrological system. For example, the 

results for the 1998/99 event in the Choapa River basin show that using 1-month (purple; Wan et al., 2018), 3-month (green; 

Gautam et al., 2024) and the time scales derived here yield a transition toward a relatively longer and more intense hydrological 765 

drought, compared to the meteorological drought, whereas the time scales recommended by Baez-Villanueva et al. (2024, 

blue) provide a progression toward a more intense and slightly shorter hydrological drought. In the Palos River basin we obtain 

that, for the same event and the time scales derived from this study (red), the soil column buffers the intensity of the 

meteorological drought, which transitions toward a shorter and more intense hydrological drought during the 1998/99 event. 

Using 1-month and 3-month time scales for SPI, SSMI and SSI yields a transition from a very intense and short meteorological 770 

drought towards a longer and smoother hydrological drought; nevertheless, the time scales recommended by Baez-Villanueva 

et al. (2024, blue) yield a decline in intensity and a slightly shorter duration from meteorological to hydrological drought. In 

the Cautín River basin, all propagation trajectories obtained for the same event are very different. Other discrepancies in 

drought trajectories are obtained in all combinations of basin/event (Figures 8 and S3). 

Note that the relative location of soil moisture drought within the trajectories can be very different depending on the time scale 775 

selected. An interesting example is the 2012-2016 event at the Choapa River basin, for which the four trajectories differ 

considerably; in particular, the time scales found here yield very similar durations for meteorological and hydrological 

droughts, and a more intense and prolonged soil moisture drought. For the same event, 1-month (purple), 3-month (green) and 

the temporal scales from Baez-Villanueva et al. (2024) yield trajectories with decreasing intensity and longer durations as 
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moving from meteorological to soil moisture and hydrological droughts in the Cautín River basin; however, the time scales 

derived from our analyses (red) indicate a longer soil moisture drought in comparison with the resulting hydrological drought. 

Notably, Figure 8 also shows that our trajectories (red symbols and arrows) for the two events analyzed are similar at the Palos 

and Cautín River basins, suggesting a similar propagation pattern between mixed and rainfall-driven regimes. The same pattern 815 

is also obtained for the Ñuble River basin (Figure S3 in the Supplement). 

It should be noted that the time scales selected based on maximum correlation with the SSI-6 (or any other time scale) do not 

necessarily yield similarities between the onset, duration and end obtained with different indices for an individual event. Figure 

9 illustrates this point for two events at the Cautin River basin. The results show that SSMI-12 and SWSI-12 correlate well 

with the temporal evolution of the SSI-6 for the 1998/99 drought; nevertheless, the temporal variability of SSMI-12 during the 820 

2016/17 event shows a closer agreement with the SSI-1 compared to SSI-6 which, in turn, does not match with the SSMI and 

SWSI at any time scale, but yields a similar onset, duration and end detected with the SPI-12 and SPEI-12. Even more, the 

SSMI and SWSI reflect soil moisture and total storage deficits, respectively, before the precipitation deficits detected with the 

SPI-12 using a -1 threshold. 

5 Discussion 825 

5.1 Drought detection and characteristics 

This study reveals additional insights for hydrological drought analysis based on SSI estimates. Despite the results confirm 

well-known effects of the temporal scale selected for aggregating streamflow on the frequency and duration of hydrological 

droughts detected with the SSI (e.g., Barker et al., 2016; Teutschbein et al., 2022), such impacts are minor in slow-reacting 

catchments (e.g., Cochiguaz River basin, with average drought durations ranging from 12.3-12.9 months), which can be 830 

explained by the buffering effect of snowpack, as well as soil moisture and aquifer storage. Conversely, the impacts of the 

temporal scale and duration constraints are more noticeable in rainfall-driven basins, where considerable rainfall contributions 

to runoff occur during winter. Note that the relatively longer average drought durations found in semi-arid, snowmelt-driven 

catchments (which also hold the largest baseflow contributions) align well with previous studies linking drought duration with 

catchment storage properties (Van Loon and Laaha, 2015; Barker et al., 2016).  835 

Although the model' s overestimation of low flow volumes in Choapa and Claro (Figure 3) affects the accuracy (i.e., closeness 

to reality) of the number and duration of detected events (Figure 5), this artifact does not alter our conclusions, as all analyses 

focus on the impact of methodological choices related to index calculations using simulated variables, regardless of the fidelity 

of model representations. Even more, all the correlation and drought propagation analyses were performed in the model’s 

world and, therefore, streamflow biases should not impact the extent to which variables or drought indices computed with 840 

different time scales relate to each other. 
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5.2 Interpretability of the SSI across hydrological regimes 

In rainfall-driven basins, we found a strong connection between SSI-6 and precipitation deficits (i.e., a strong link between 860 

hydrological and meteorological drought), whereas soil and aquifer storages become more important in basins with increased 

aridity, in agreement with previous studies (e.g., Haslinger et al., 2014). Specifically, in semi-arid basins the SSI reflects the 

variability of >12-month aggregated precipitation and SWE, and fluctuations in aquifer storage at <9-month timescales. Our 

results also show that dependencies between correlations and hydroclimatic regimes change with the analysis period (Figure 

7), highlighting the uniqueness of each drought event.  865 

We show that aggregating streamflow into seasonal periods (i.e., 3 and 6 months) for SSI calculations does not necessarily 

attenuate potential relationships with other variables of the water cycle (e.g., see results for the Cochiguaz River basin, Figure 

4). Even more, shifting from SSI-1 to SSI-3 and SSI-6 yields a stronger influence of soil moisture and aquifer storage for 

nearly all temporal scales in mixed and rainfall-driven regime basins. On the other hand, shifting from the SSI-6 to SSI-3 and 

SSI-1 exacerbates the connections found between the strength of the correlations and the hydroclimatic regime of the basin 870 

analyzed. These results suggest that the time scale used for the SSI should be selected based on the specific purposes and the 

hydroclimatic regime if the aim is to enhance the interpretability of physical mechanisms. 

Although previous studies have shown that meteorological droughts may propagate differently depending on hydroclimatic 

characteristics and system properties (e.g., Van Loon et al., 2014; Van Loon and Laaha, 2015; Barker et al., 2016; Apurv et 

al., 2017), we show that such portrayal may be very sensitive – for a given combination of event and catchment – to the 875 

subjective choice of the time scale used to compute standardized indices (Figure 8). Further, the results presented here reveal 

pitfalls in drought propagation analyses when selecting time scales for standardized indices based on correlation analyses and 

fixed thresholds. Specifically, the results in Figure 9 for the 2016/17 event suggest that, given a drought event affecting a 

unique hydrological system, the thresholds for standardized meteorological and soil moisture indices that enable interpreting 

causality in time (including onset, duration and end) may differ, and variable threshold approaches (e.g., Van Loon and Laaha, 880 

2015; Odongo et al., 2023) may be more appropriate to this end. 

Our results also show that, given a well-defined criterion to compute standardized indices (in this study, SPI-12, SSMI-12, and 

SSI-6), the trajectories of the same drought event may differ considerably among catchments. Likewise, propagation 

trajectories can differ substantially among drought events within a particular catchment (Figure S4 of the Supplements). 

Overall, this work suggests that any results derived from standardized indices should be interpreted cautiously, checking 885 

carefully the reasoning behind the selection of the selected drought indices and their temporal scales. 

5.3 Implications for operational practice 

In Chile, the current legislation states that hydrological droughts between the Atacama and Araucanía Regions – a large area 

that encloses the six basins examined here – are officially declared based on the SSI-6 – regardless of the hydroclimatic regime 

- or the SPI (DGA, 2022). Even more, DGA (2022) considered spatial differences in that area regarding the SPI, using a 12-890 
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month time scale between the Atacama and Maule Regions (which encloses our snowmelt-driven and mixed regime basins), 

and a 6-month time scale between the Ñuble and Araucania Regions (which encloses the two rainfall-driven basins analyzed 

here). 

In other international agencies, it is common practice to use multiple indicators for drought monitoring and early warning 

systems (e.g. Bachmair et al., 2015), rather than relying only on standardized indices such as the SPI and SSI. These indicators 920 

often include satellite products and variables simulated by hydrological models, which aligns with the recommendations 

outlined in the WMO's Handbook of Drought Indicators and Indices (Svoboda and Fuchs, 2016). In particular, the European 

Drought Observatory (EDO) uses the Combined Drought Index (CDI; Sepulcre-Canto et al., 2012), which simultaneously 

considers three types of indicators: the SPI, the anomalies of simulated soil moisture in the LISFLOOD hydrological model 

(van der Knijff et al., 2010), and anomalies of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR; Gobron 925 

et al., 2010). The former is derived from the MOD15A2H satellite product, and is related with vegetation growth and crop 

productivity. Similarly, the United States Drought Monitor (USDM; Svoboda et al., 2002) combines the Palmer Drought 

Severity Index (PDSI; Palmer, 1965), the SPI, and soil moisture and streamflow percentile-based indicators in their 

evaluations. 

The results presented here suggest that the choice of time scales for the SSI should be made depending on the hydroclimatic 930 

features of the basin of interest and the target application(s). In this regard, we obtained that the temporal scale selected for the 

SSI is less relevant in snowmelt-driven basins than in mixed regimes and rainfall-dominated catchments. For real-time 

hydrological drought monitoring or to characterize short and intense events, 1 to 6-month time scales may be convenient, 

whereas ≥12 months would be more suitable for multi-year drought detection, since long time scales help to smooth the original 

temporal variability and capture the long-term effects of precipitation deficits (Figure 4). If surface water is used for irrigation, 935 

the choice of time scale should also consider the specific crop characteristics and, in particular, the capability (i.e., period 

length) to survive under water scarcity conditions. 

5.4 Limitations and future work 

In this study, we did not consider in-situ or remotely-sensed observations of SWE, soil moisture, and aquifer storage in the 

calibration process, relying on the capability of the SUMMA model to replicate streamflow signatures. We did not explore the 940 

effects of using alternative model parameterizations (e.g., stomatal resistance, lateral fluxes) or spatial configurations (e.g., 

spatially varying soil layer depths) on the results and conclusions obtained. Moreover, we did not explore variable threshold 

methods (e.g., Van Loon and Laaha, 2015; Odongo et al., 2023) for drought detection and propagation analyses. 

Future work could expand the analyses presented in this study by exploring tradeoffs between the time scales used to compute 

the SSI and the choice of statistical distributions (e.g., Svensson et al., 2017; Teutschbein et al., 2022), the parameter estimation 945 

method (e.g., Tijdeman et al., 2020) the choice of reference period (set here as April/1983 - March/2013), or the threshold 

selection criteria (e.g., Wanders et al., 2015; Odongo et al., 2023). Finally, the analyses presented here could be expanded to a 

larger number of basins that consider a greater diversity of features (e.g., Vásquez et al., 2021; Muñoz-Castro et al., 2023), in 
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order to examine whether the time scales of hydrological variables (e.g., precipitation, soil moisture, SWE) that maximize the 

correlation (or ‘optimal’ time scales) with the SSI are related to physiographic attributes such as contributing area, slope, 

elevation, geology, land cover and soil type, among others. A simple stratification of attribute values by optimal time scale, or 970 

any other hydrological descriptor of interest (e.g., Sawicz et al., 2011; Almagro et al., 2024) could provide valuable insights, 

complementing previous drought investigations using large samples of catchments. For example, Van Loon and Laaha (2015) 

found that geology and land use were relevant controls for hydrological drought duration. Peña-Gallardo et al. (2019) 

concluded that elevation and vegetation coverage are the main factors controlling the diverse response of SSI to SPEI time 

scales. More recently, Brunner and Stahl (2023) confirmed that land surface processes are required to explain the temporal 975 

clustering of hydrological droughts. More generally, additional large-sample hydrology analyses could help to improve our 

understanding of the main drivers affecting drought occurrence and propagation across different hydroclimates. 

6 Conclusions 

The standardized streamflow index (SSI) has been widely used for hydrological drought monitoring, forecasting, and 

propagation analyses. Nevertheless, there is limited understanding of how the subjective choice of time scales affect the 980 

characterization of these events and, more importantly, which hydrological variables are related to SSI fluctuations. In this 

study, we intend to fill these gaps by applying the SUMMA hydrological model coupled with the mizuRoute routing model, 

in six hydroclimatically different basins located on the western slopes of the extratropical Andes. We also illustrate how 

sensitive the portrayal of drought propagation is to the time scales used to compute popular standardized indices such as the 

SPI and the SSMI. Our main findings are as follows: 985 

1. The time scale used to compute the SSI and the minimum duration to define hydrological drought occurrence can 

largely affect the estimated duration and frequency of these events, especially in rainfall-driven catchments. 

2. The strength of the relationship between the SSI and hydrological storages/fluxes is less affected by the choice of 

time scale of the SSI in snow-driven regimes compared to mixed and rainfall-dominated basins, where the dispersion 

of correlations progressively increases when using explanatory variables temporally aggregated for more than nine 990 

months. 

3. Higher correlations are achieved when SSI-6 is contrasted against hydrological variables aggregated at 9 and 12 

months, except for aquifer storage at the Cochiguaz basin (snowmelt-driven), and lower correlations are obtained for 

time scales longer than 12 months. When the SSI-1 and SSI-3 are used, the correlations are maximized at shorter 

temporal scales (compared to the SSI-6) for some combinations of hydrological variables and basins (e.g., aquifer 995 

storage at Palos and Ñuble). 

4. When analyzing the entire period (April/1983 - March/2020), higher correlations between the SSI-6 and hydrological 

variables are achieved for snowmelt-driven basins, and these progressively decrease towards rainfall-driven regimes. 
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This pattern becomes stronger when the total water storage within a basin is considered. Nevertheless, such a pattern 1000 

becomes less clear and dependent on the temporal scale of explanatory variables during drought periods. 

5. The portrayal of drought propagation may change drastically depending on the choice of time scales used to compute 

standardized indices. In this regard, different criteria may reveal opposite trajectories of drought propagation for the 

same event in a basin. 

7 Data availability 1005 

The CR2METv2.0 dataset is available at https://www.cr2.cl/datos-productos-grillados (Boisier et al., 2018). Daily streamflow 
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Table 1. Physiographic and climatic attributes of the six basins considered in this study. All data came from the 

CAMELS-CL database, except for the baseflow index, which was estimated from hydrological simulations in the 

SUMMA model. The aridity index was calculated as PET/P. 

 
Catchment 

 
ID 

Lat. 
(°) 

Long. 
(°) 

Elevation 
range 
 (m) 

Area 
(km2) 

Mean 
annual P 
 (mm/yr) 

Mean 
anual Q 
(mm/yr) 

Runoff 
ratio  

(-) 

Aridity 
index  

(-) 

Baseflow 
index 

(-) 
Cochiguaz 4313001 -30.30 -70.28 1341-5275 675 259 114 0.44 3.8 0.99 

Choapa 4703002 -32.10 -70.45 1153-5038 1132 392 231 0.59 2.3 0.98 

Claro 6027001 -34.85 -70.73 542-3046 349 1414 891 0.63 0.7 0.42 

Palos 7115001 -35.44 -70.74 590-3282 490 1960 1686 0.86 0.5 0.81 

Ñuble 8105001 -36.68 -71.19 645-3189 1254 2108 1792 0.82 0.5 0.71 

Cautín 9123001 -38.47 -71.75 413-3090 1306 2906 2092 0.72 0.4 0.72 
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Table 2. Datasets used in this study. 

Variable Dataset Horizontal 
 resolution 

Temporal 
resolution Authors 

Precipitation and extreme 
daily  temperatures 

CR2MET v.2.0 0.05° x 0.05° Daily 
DGA, 2017;  

Boisier et al. (2018) 
Wind speed, incoming 
shortwave radiation, 

atmospheric pressure, and 
relative humidity 

ERA 5-Land 
0.1° x 0.1° 

 
3-hours Muñoz-Sabater et al. (2021) 

Land cover  MODIS MCD12C1 0.05° x 0.05° Yearly 
National Aeronautics and 

Space Administration (NASA) 
Catchment attributes CAMELS-CL - - Alvarez-Garreton et al. (2018) 

)Streamflow records 
Chilean Water 

Directorate (DGA) 
records 

- Daily Chilean Water Directorate 
(DGA) 
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Table 3. List of recent drought propagation studies, including time scales used or recommended for computing 
standardized drought indices. 

Drought propagation study 
Time scales used (months) 

SPI SSMI SSI 

(Barker et al., 2016)  1, 6 and 18 - 1, 6 and 18 

(Huang et al., 2017) 1 and 6 - 1 

(Wu et al., 2017) 3 - 3 

(Wan et al., 2018) 1 1 1 

(Peña-Gallardo et al., 2019) 1-48 (SPI/SPEI) - 1 
  

(Bhardwaj et al., 2020) 
1  

(3-month 
 smoothed) 

1  
(3-month 

 smoothed) 

1  
(3-month 

 smoothed) 
(Fuentes et al., 2022) 3 (SPI/SPEI) 3 (SVI*) 3 (SRI*) 

(Odongo et al., 2023) 1-9 1 1 

(Adeyeri et al., 2023) 3 - 3 (SRI*) 

(Gautam et al., 2024) 3 3 3 
  

(Baez-Villanueva et al., 
2024) 

12-24 (nival) 
3-12 (nivo-pluvial) 

3-6 (pluvial) 

6-12 (nival) 
1-3 (nivo-pluvial) 

1-3 (pluvial) 

  
1 
  

This study 12 12 6 

Note: SVI refers to Standardized Vegetation Index, calculated based on the MODIS NDVI index and described in Peters et al. 
(2002). SRI refers to the Standardized Runoff Index (Shukla and Wood, 2008). 1480 
 

Table 4. Mean duration (in months) of drought events for each case and temporal scale of SSI. 

 

Basin 

Case 1: free  Case 2: constrained 

SSI-1 SSI-3 SSI-6  SSI-1 SSI-3 SSI-6 

Cochiguaz 12.25 12.50 12.88  12.25 12.50 12.88 

Choapa 4.58 6.60 8.67  8.27 7.39 9.36 

Claro 2.58 4.50 6.20  5.80 6.15 7.39 

Palos 3.50 6.46 7.77  6.33 8.00 9.00 

Ñuble 3.04 4.50 5.28  5.90 7.27 7.91 

Cautín 2.64 3.81 6.31  6.13 6.50 8.67 
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Figure 1. Location, delimitation (orange area in map) and seasonality of precipitation (P), runoff (Q) and temperature 
for the six case study basins: (a) Cochiguaz River at El Peñón, (b) Choapa River at Cuncumén, (c) Claro River at El 
Valle, (d) Palos River at Colorado, (e) Ñuble River at La Punilla, and (f) Cautín River at Rari-Ruca.  Overlines 
represent annual averages for the period April/1985-March/2015. 1510 
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1525 
Figure 2. Flowchart describing the approach used in this study, including: (a) meteorological forcings, hydrological 
model structure and river routing configuration (section 3.1); (b) calibration and evaluation of hydrological models 
(section 3.2); (c) calculation of drought indices at different time scales, and implications for hydrological drought 
characteristics (section 3.3); (d) correlation analysis between standardized drought indices and aggregated 
fluxes/storages (section 3.4); and (e) drought propagation analysis (section 3.5). The abbreviations/acronyms used in 1530 
the figure are as follows: P – precipitation; T – air temperature; Kin – incoming shortwave radiation; ap – atmospheric 
pressure; rh – relative humidity; w – wind speed; SPI – Standardized Precipitation Index; SPEI – Standardized 
Precipitation and Evapotranspiration Index; SSMI – Standardized Soil Moisture Index;  SWSI – Standardized Water 
Storage Index; SSI – Standardized Streamflow Index. 
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Figure 3. Comparison between simulated and observed streamflow for all basins in terms of (a) daily time series 1555 
(April/2014 to March/2020), (b) daily flow duration curves (vertical logarithmic scale), and (c) mean monthly runoff. 
In (a) the shaded area represents part of the calibration (yellow) and evaluation (white) periods, and OF, R2, KGE and 
BIAS indicate the values for the objective function (Eq 3.1), coefficient of determination, Kling-Gupta Efficiency and 
percent bias over the evaluation period, respectively. The results in (b) and (c) correspond to the evaluation periods 
(April/2006 – March/2010 and April/2017 – March/2020) combined.  1560 
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Figure 4. Monthly time series of (a) precipitation, (b) SPI-n, (c) SWE, (d) total soil moisture, (e) aquifer storage, (f) 
streamflow, and (g) SSI-n for the Choapa (snowmelt-driven, left) and Cautín (rainfall-driven, right) River basins. 
Monthly precipitation and SPI are obtained from the CR2MET meteorological product, whereas the remaining 
variables are obtained from SUMMA model simulations during January/1998-December/2000. SPI-n and SSI -n are 1570 
displayed for time scales n = 1, 3, 6, 9, 12, 18, and 24 months. Time scales of 1, 3 and 6 months for the SSI are highlighted 
with circles, squares and triangles, respectively, due to their widespread use. 
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Figure 5. Effects of the choice of temporal scale (1, 3, and 6 months) in SSI calculations and duration restrictions on (a) 
the frequency and (b,c) duration of hydrological droughts detected between the water years 1983/84-2019/20. 
Probability distributions of drought durations are displayed for the cases (b) no restrictions regarding the duration of 1590 
droughts – i.e., it is possible to detect one-month events (“free”) –, and (c) minimum drought duration of three months 
(i.e., “constrained”) for event detection – i.e., SSI-n < -1 during at least three consecutive months. 
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 1605 
Figure 6. Spearman rank correlation coefficients between the SSI computed at different time scales (1, 3, and 6 months), 
and temporally aggregated (i.e., averaged) hydrological variables (columns) over the period Jan/1998-Dec/2000. The 
results for each case study basin are displayed in different rows. 
 

Deleted: /1610 



 

34 
 

 
 

Figure 7. Spearman rank correlation coefficients between SSI-6 and temporally aggregated/averaged catchment-scale 
hydrological variables (rows) for three different periods: the October/1998-September/1999 drought event, (b) the 
central Chile megadrought (April/2010-March/2019), and (c) the entire analysis period (April/1983 - March/2020). 1615 Deleted: ¶
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Figure 8. Propagation from meteorological (circles) to soil moisture (diamonds) and hydrological (triangles) droughts 
for two selected drought events (1998/99 and 2012/-2016, displayed in different rows) and three basins with different 
hydrological regimes: (a) Choapa (snowmelt-driven, left), (b) Palos (mixed regime, center) and Cautín (rainfall-driven, 1620 
right). The x-axis shows the duration in months, and the y-axis displays the intensity. The colors indicate trajectories 
obtained with the temporal scales recommended by different studies.  
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Figure 9. Monthly time series of standardized indices at the Cautín River basin, computed with the time scales selected 
from the correlation analyses. The orange areas illustrate the onset, end, and duration of the 1998/99 drought (left), 1635 
and the 2016/17 drought (right), according to the different indices. For the SSMI and the SWSI, two time scales (6-
month and 12-month values) are displayed for comparison. 
 
 
 1640 
 
 

Deleted:  (see text for details).



Page 2: [1] Deleted   Pablo A. Mendoza   1/27/25 7:54:00 PM 
 

Page 3: [2] Deleted   Pablo A. Mendoza   1/27/25 7:54:00 PM 
 

Page 17: [3] Deleted   Pablo A. Mendoza   1/27/25 7:54:00 PM 
 

 

... [1]

... [2]

... [3]


