
Response to the Reviewers of “Deep learning based sub-seasonal precipitation and 

streamflow forecasting over the source region of the Yangtze River” [Paper 

#HESS-2024-212] 

 

In this response letter, comments by the Reviewers are in black, and our replies are in 

blue. The line references in our replies refer to the PDF clean version of the revised 

manuscript.  

We highlight the major changes as follows: 

1) In response to Reviewer #1, we have revised the introduction to include recent 

studies on the progress made in statistical downscaling methods, particularly 

when combined with deep learning techniques. 

2) In response to Reviewer #1 & #2, we have included spatial analyses and relevant 

plots of precipitation forecast errors in the revised manuscript to exhibit the 

effectiveness of the proposed DL-based framework in improving sub-seasonal 

precipitation forecasts in different parts of the study region. 

3) In response to Reviewer #1 & #2, we have included the detailed implementation 

procedure of QM for better clarity and a short discussion on the limitations of 

QM in the revised manuscript. 

4) In response to Reviewer #2, we have thoroughly revised the methodology 

section and provided more details on the implementation of the CNN model, 

including the resolution, downscaling procedure, and input and output structure, 

for better clarity. 

5) In response to Reviewer #2, we have added analysis on cumulative distribution 

function of different precipitation forecasts. 

6) In response to the suggestion of Reviewer #2 to include ensemble forecasts, we 

have employed 10 ensemble members of ECMWF raw forecasts to build 

ensemble downscaling models in the revised manuscript. CRPS are introduced 

to evaluate the skills of sub-seasonal ensemble precipitation and streamflow 

forecasts. 

We hope our revision well address the comments from the editor and reviewers.  



Response to Reviewer #1 

Thank you for your comments. Below are our replies to each of your comment. 

Major Comments: 

Comment: In introduction, L45-70 introduce the advantages and disadvantages of 

dynamic downscaling and statistical downscaling, which are well known to us, and just 

to illustrate a few deep learning methods. Failure to highlight the research focus of this 

paper, i.e., the progress of research on traditional statistical downscaling and statistical 

downscaling combined with deep learning. 

Reply: We have revised the introduction to include more recent studies on the progress 

made in statistical downscaling methods, particularly when combined with deep 

learning techniques.  

The following text in the Introduction has been modified: 

Line 59-78: On the other hand, forecasting weather and predicting climate using 

machine learning, especially deep learning (DL), has recently become a hot topic. A 

common approach for this purpose is to use preceding predictors from observational or 

reanalysis data to forecast subsequent predictands (Weyn et al., 2021; Xie et al., 2023; 

Ham et al., 2019). An alternative method involves postprocessing dynamical forecasts. 

For instance, Cho et al. (2020) applied machine learning techniques, including random 

forests and support vector machines, to develop statistical relationships for temperature 

adjustments. Similarly, Kim et al. (2021) utilized Long Short-Term Memory (LSTM) 

networks to correct bias in the amplitude and phase of the Madden–Julian Oscillation. 

More recently, deep learning models such as convolutional neural networks (CNN) 

have been reported able to more effectively reduce the total bias of meteorological 

forecasts due to their ability to learn multi-dimensional representations of data features 

(Vandal et al., 2019; Sachindra et al., 2018; Ning et al., 2024). For example, Lagerquist 

et al. (2019) used a CNN to identify fronts in gridded data for spatially explicit 

prediction of synoptic-scale fronts. 

Despite general improvements of forecasts, these DL-based models tend to smooth the 

extreme precipitation at sub-seasonal scales (Baño-Medina et al., 2021; Kim et al., 

2022), likely due to insufficient heavy precipitation samples (Chen et al., 2022). Many 

studies have since introduced more recent variants of CNNs including the U-shaped U-



Net (Han et al, 2021; Horat and Lerch, 2024; Ni et al., 2023) and SmaAt-UNet (Li et 

al., 2024), or coupled standard CNNs with different structures, such as Auto-Encoder 

(Ling et al., 2022) and Transformer (Ling et al., 2024). In particular, the residual 

network, ResNet, has been introduced in sub-seasonal forecast correction, which shows 

the potential of mitigating the vanishing gradient issue by introducing the residual paths 

(Jin et al 2022; Nie et al., 2024). Others have attempted to introduce specialized loss 

functions to balance heavy and light rains, such as the exponentially weighted mean 

squared error (Ebert-Uphoff et al., 2020) and Dice loss (You et al., 2022). However, 

these new developments have not been sufficiently examined for sub-seasonal forecasts. 

Comment: I do not understand the role of L70-75, it seems to describe weather 

prediction models like Pangu and GraphCast which can achieve entirely through deep 

learning have demonstrated the potential to achieve forecast skills comparable to state-

of-the-art numerical weather prediction systems. Is this relevant to the research in this 

paper? 

Reply: The mention of Pangu and GraphCast was intended to introduce the state-of-

the-art fully DL-based models for weather prediction from a broader context. To bridge 

the gap between fully DL-based models and statistically post-processing DL models 

(which is the focus of our paper), we have revised the following text to make this 

paragraph directly relevant to our study. 

Line 79-85: Other state-of-the-art forms of deep learning for weather forecasts include 

fully DL-based models, such as Pangu (Bi et al., 2023) and GraphCast (Lam et al., 

2023), which are reported able to achieve forecast skills comparable to numerical 

weather prediction systems. While these models may appear quite different from 

statistical post-processing deep learning models, some argue that these models act more 

as post-processing tools rather than realistic simulators of the atmosphere due to the 

lack of physical fidelity and consistency (Bonavita et al., 2024). Although not the 

primary focus of this paper, this calls attention to the scientific community to critically 

evaluate and differentiate between the capabilities and applications of fully DL-based 

models and DL models designed for post-processing. 

 



Comment: About result, some of the conclusions seem too brief. L255-260 have no 

results about the relative error stands, the mean absolute error and relative error of 

simulated maximum daily flow. 

Reply: We have included more metrics in the paragraph. The following text has been 

added to the revised manuscript: 

Line 295-297: The relative error of streamflow is 1.0% and 2.6% during the calibration 

and validation period. The mean absolute error and relative error of simulated 

maximum daily flow are 844 m3/s and 17.0% during the calibration period, and are 379 

m3/s and 7.9% during the validation period, respectively. 

Comment: The author writes "while the RMSE of EC-QM forecasts sees a relatively 

steady reduction over all lead times"(L280-285), but from the Fig.4, we can clearly find 

that EC-QM showed more RMSE compared to EC for the lead times of 23-24 days, 27 

days. The author can explain the reason?  

Reply: We agree with the Reviewer that the QM method does not reduce the RMSE in 

an exactly steady manner with lead time. In particular, for several lead time ranges, 

QM-based forecasts show almost equal or even more RMSEs to those of raw EC 

forecasts. Such finding is also observed by some of the recent studies using QM for 

statistical downscaling precipitation. For example, Li et al. (2023), Huang et al. (2022), 

and Mao et al. (2015) show that, while QM is generally effective in adjusting model 

bias towards observations, it does not always lead to improvements of the forecast.  

One plausible reason could be the limited applicability of the relatively simple QM 

method. Specifically, QM primarily adjusts the distribution of forecasted values 

towards the distribution of historical observations, with no account of the atmospheric 

conditions associated with those forecasts. However, physics-based numerical weather 

predictions involve complex and nonlinear errors that QM may not be able to fully 

correct. Another reason could be that QM does not explicitly account for errors in the 

spatial dependencies of precipitation field, which can also contribute to the increased 

RMSE in specific lead times. 

The following text and figure have been added to the revised manuscript: 

Line 452-460: It is noted that, for several lead time ranges, EC-QM forecasts show no 

improvements of RMSEs compared to those of raw EC forecasts. This was also 



observed by some of the recent studies using QM for statistical downscaling 

precipitation. For example, Li et al. (2023), Huang et al. (2022), and Mao et al. (2015) 

show that, while QM is generally effective in adjusting model bias towards observations, 

it does not always lead to improvements of the forecast accuracy. One plausible reason 

could be the limited applicability of the relatively simple QM method. Specifically, QM 

primarily adjusts the distribution of forecasted values towards the distribution of 

historical observations, with no account of the atmospheric conditions associated with 

those forecasts. However, physics-based numerical weather predictions involve 

complex and nonlinear errors that QM may not be able to fully correct. 

References 

Li, X., Wu, H., Nanding, N., Chen, S., Hu, Y., & Li, L. (2023). Statistical Bias 

Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal 

to Seasonal Scale. Remote Sensing, 15(7), 1743. https://doi.org/10.3390/rs15071743 

Huang, Z., Zhao, T., Xu, W., Cai, H., Wang, J., Zhang, Y., Liu, Z., Tian, Y., Yan, D., & 

Chen, X. (2022). A Seven-Parameter Bernoulli-Gamma-Gaussian Model to Calibrate 

Subseasonal to Seasonal Precipitation Forecasts. Journal of Hydrology, 610, 127896. 

https://doi.org/10.1016/j.jhydrol.2022.127896 

Mao, G., Vogl, S., Laux, P., Wagner, S., & Kunstmann, H. (2015). Stochastic Bias 

Correction of Dynamically Downscaled Precipitation Fields for Germany Through 

Copula-Based Integration of Gridded Observation Data. Hydrology and Earth System 

Sciences, 19(4), 1787-1806. https://doi.org/10.5194/hess-19-1787-2015 

Comment: And please draw the spatial distribution of the bias of EC-CNN, EC-QM 

and EC because it mentioned in Line 310. 

Reply: Done. The following text and figure have been added to the revised manuscript: 

Line 343-352: To investigate the spatial characteristics of precipitation forecasts, Figure 

5 presents the spatial distribution on the RMSE of EC and EC-CNN forecast for lead 

times of 1-10, 11-20 and 21-30 days. It is clear that the EC-CNN improves the forecast 

skills of the raw ECMWF forecasts over the majority of the SR for all lead times. For 

example, the RMSE is reduced from 3-5 mm/day for EC forecasts to 1-2 mm/day for 

EC-CNN forecasts at the northern sub-basin for all lead times. Similar improvements 

can also be seen around the southern part of the basin, for example the southmost part 

https://doi.org/10.3390/rs15071743
https://doi.org/10.1016/j.jhydrol.2022.127896
https://doi.org/10.5194/hess-19-1787-2015


of SR sees RMSE over 10 mm/day for EC forecasts at lead times of 11-30 days but 

reduces to 6-7 mm/days for EC-CNN forecasts. In addition, by comparing Fig. R1b and 

Fig. R1c it can be seen that the EC-CNN shows larger improvements than EC-QM 

across the SR for all lead times. The above results indicate that EC-CNN not only 

improves the raw forecasts temporally, but also enhances their spatial accuracy across 

various regions of the SR. This basin-wise improvement allows for more reliable 

predictions across diverse hydrological zones within the SR, which could further 

benefit the hydrologic modelling. 

 

Figure 5. The spatial distribution of RMSE for the ensemble means of (a) EC forecasts, 

(b) EC-QM, and (c) EC-CNN forecasts averaged over lead times of 1-10 days, 11-20 

days, and 21-30 days during the test period. 

Comment: In Chapter 4.3, "the EC-QM (EC-CNN) forecasts reduce the relative error 

of the raw forecasts by 12% (20%), 16% (24%) and 9% (21%), respectively, and 

reduces the relative error of maximum daily flow by 27% (29%), 16% (32%) and 11% 

(18%)", whether EC-QM or EC-CNN showed the RMSE decreased more or the lead 

times of 11-20 days than 1-10 days, but we think that the smaller the lead time, the 

better the results. Can the author give a reasonable explanation? 



Reply: Thank you for your comment. To clarify, Section 4.3 discusses the relationship 

between the improvements due to statistical downscaling techniques like QM or CNN 

and the lead time. While it is true that the forecast accuracy generally decreases with 

longer lead times (as shown in Figures 4 and 8 in the revised manuscript), this 

relationship may not be the case when examining the improvements brought about by 

QM or CNN for different lead times. For example, many studies have shown that, in 

specific cases, the improvement from statistical downscaling could be larger for longer 

lead times and smaller for shorter lead times (Zhang et al., 2023; Lyu et al., 2023; Li et 

al. 2024). 

The following text has been added in the revised manuscript: 

Line 391-392: It is noted that the improvements brought by EC-QM and EC-CNN are 

larger in lead times of 11-20 days than in 1-10 days, which was also observed by Zhang 

et al. (2023), Lyu et al. (2023), and Li et al. (2024) in specific cases. 

References 

Zhang, T., Liang, Z., Li, W., Wang, J., Hu, Y., & Li, B. (2023). Statistical Post-

Processing of Precipitation Forecasts Using Circulation Classifications and 
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Lyu, Y., Zhu, S., Zhi, X., Ji, Y., Fan, Y., & Dong, F. (2023). Improving Subseasonal-To-

Seasonal Prediction of Summer Extreme Precipitation Over Southern China Based on 

a Deep Learning Method. Geophysical Research Letters, 50(24), e2023GL106245. 

https://doi.org/10.1029/2023GL106245 

Li, L., Yun, Z., Liu, Y., Wang, Y., Zhao, W., Kang, Y., & Gao, R. (2024). Improving 

Categorical and Continuous Accuracy of Precipitation Forecasts by Integrating 

Empirical Quantile Mapping and Bernoulli-Gamma-Gaussian Distribution. 

Atmospheric Research, 298, 107133. https://doi.org/10.1016/j.atmosres.2024.107133 

Comment: Since the article analyses individual cases, in conjunction with Figure 8, 

please give quantitative indicators to analyse the description. 

Reply: Done. We have added the relative error metric in each subplot of streamflow 

forecasts for straightforward evaluation. Relative error is selected because it is a 

https://doi.org/10.5194/hess-27-1945-2023
https://doi.org/10.1029/2023GL106245
https://doi.org/10.1016/j.atmosres.2024.107133


straightforward metric to reflect the amount of water resources in the future, which 

plays an important role in water management downstream. The relevant description has 

also been modified to include quantitative metrics of different streamflow forecasts. 

The following text has been modified in the revised manuscript: 

Line 416-428: Figure 9 presents examples of XAJ-LSTM streamflow ensemble 

forecasts issued on different dates, with the RE of total forecast flow presented in each 

subplot. In most cases, the EC-CNN forecasts can reduce the streamflow bias in a more 

flexible manner than the EC-QM forecasts, resulting in more accurate overall 

streamflow predictions across different dates. For example, the CNN model decreases 

(increases) the EC precipitation and hence the forecast streamflow issued on June 06, 

2017 (August 08, 2019), which improves the forecast skills in both cases. The EC-CNN 

reduces the relative error from 22.1% of raw EC forecasts to -2.5% for the 30-day 

streamflow forecast issued on June 06, 2017, and reduces the relative error from -21.5% 

of raw EC forecasts to -9.2% for the 30-day streamflow forecast issued on August 08, 

2019. On the other hand, the QM reduces the precipitation and hence the streamflow 

forecasts for both dates, which reduces the relative error to 11.0% on June 2017 but 

increases the relative error to -27.3% on August 2019. Similarly, for the forecast issued 

on Aug 11, 2017, EC-CNN decreases the EC precipitation for lead times of 1-20 days 

and increases it for lead times of 21-30 days, which alleviates the streamflow 

overestimation on late August and underestimation on early September. However, EC-

QM consistently predicts lower precipitation and hence streamflow compared to EC 

forecasts at all lead times, worsening the underestimation in early September.  



 

Figure 9. Examples of sub-seasonal XAJ-LSTM streamflow forecasts for a lead time 

of 30 days driven by EC, EC-QM, and ensemble EC-CNN precipitation forecasts. The 

relative error of total forecast flow is shown in each subplot. 

Minor Comments: 

Comment: L38: "S. Zhu et al., 2020" should be modified. 

Reply: Done. 

Comment: L60: "Wilby, R. L., et al., 2004; Vrac, M., & Friederichs, P., 2015" should 

be modified. 

Reply: Done. 

Comment: L87-88: "For example, Humphrey et al. (2016) achieved improved 

streamflow forecast skills by combining Bayesian artificial neural networks with 

traditional models of GR4J." What's the conclusion? 

Reply: We have added the conclusion as follows. 



Line 97-98: Humphrey et al. (2016) combined a Bayesian neural network (BNN) with 

the traditional GR4J model and achieved improved forecast accuracy compared to using 

either the BNN or GR4J alone. 

Comment: L142-143: "streamflow and flood peak forecasts of XAJ-LSTM and 

standalone XAJ driven by EC-CNN forecasts are then quantitatively evaluated against 

those driven by raw and QM-based forecasts using a series of metrics. " Please write 

the full name for the first occurrence. 

Reply: Done.  

Line 151-155: We first employ all 10 ensemble members from the ECMWF S2S 

gridded sub-seasonal precipitation reforecast dataset for the next 30 days as raw 

forecasts, denoted as EC. An ensemble of enhanced CNN models with ResNet blocks 

and a specialized loss function is established to statistically downscale and bias correct 

each ensemble member of the 1.5° EC raw precipitation forecasts to 0.25° grid 

resolution, with its post-processed forecast denoted EC-CNN (Section 3.2.1). The 

quantile mapping (QM) serves as a benchmark for comparison, with its post-processed 

forecast denoted EC-QM (Section 3.2.2). 

Line 159-163: The first hydrologic model is a standalone XAJ model (Section 3.4.1), 

and the second model is a hybrid model that integrates the conceptual XAJ model and 

the LSTM (hereinafter XAJ-LSTM) (Sections 3.4.2 and 3.4.3). The streamflow and 

flood forecasts of XAJ-LSTM and standalone XAJ driven by EC-CNN forecasts are 

then quantitatively evaluated against those driven by EC and EC-QM forecasts. 

Comment: L262-263: "The results indicate that the daily Nash-Sutcliffe Efficiency 

(NSE)", abbreviations have already been mentioned. 

Reply: This has been corrected. 

 

  



Response to Reviewer #2 

Thank you for your comments. Below are our replies to each of your comment. 

 

Comment: Although QM is a widely applied technique and should be familiar to the 

general audience of HESS, the reviewer believes that some key information or 

references may need to be incorporated. Precipitation data is known to be highly 

skewed, making the selection of the distribution function critically important for the 

effectiveness of QM. However, such details appear to be missing in the current 

manuscript.  

Reply: In the current implementation of QM, a specific distribution function is not 

required as we use a non-parametric approach. This method directly adjusts the 

quantiles of the forecasted and observed data without assuming a specific distribution. 

We have added detailed information on the non-parametric implementation of QM in 

the revised manuscript, and the following text has been added in the revised manuscript: 

Line 227-234: We implement QM using a non-parametric approach that adjusts the 

quantiles of the forecasted and observed data without assuming a specific distribution. 

Specifically, the empirical cumulative distribution functions (CDFs) of observed and 

forecasted daily precipitation are built respectively, and each percentile of the 

forecasted data is adjusted to match the corresponding percentile in the observed data. 

Dry days with a precipitation amount less than 0.1 mm are excluded from the derivation 

of CDFs (Gudmundsson et al., 2012). To match the 1.5° forecast resolution with the 

0.25° reference dataset resolution, the empirical CDFs are established separately for 

each 0.25° grid from the corresponding 1.5° forecast grid cell. Manzanas et al (2018), 

Cannon et al. (2015) and other studies have indicated the effectiveness of this 

implementation in improving the overall precipitation forecasts. 

References 

Manzanas, R., Lucero, A., Weisheimer, A., & Gutiérrez, J. M. (2018). Can bias 
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Comment: Additionally, the reviewer is curious about the specific implementation of 

QM. Was seasonality or the variation in forecast lead times considered in the QM-based 

bias removal process? More detailed documentation on this aspect should be included 

in the manuscript.  

Reply: The QM is constructed separately for each lead time to account for forecast bias 

variations across different lead times. For each lead time, a single model is applied 

across all months, which is aligned with the structure of the CNN model built in this 

study. This approach is considered able to more effectively capture biases across 

different lead times while maintaining a uniform correction across the seasonal cycle. 

The following text has been added in the revised manuscript: 

Line 238-240: The QM is constructed separately for each lead time to account for 

forecast bias variations across different lead times. For each lead time, a single model 

is applied across all months, which is aligned with the structure of the CNN model built 

in this study. 

 

Comment: Furthermore, given that QM is primarily designed for bias removal rather 

than enhancing the temporal correspondence between forecast time series and 

observations, the reviewer suggests that the authors also evaluate the resulting forecasts 

(both precipitation and streamflow) in terms of their bias. Specifically, the overall CDF 

of precipitation forecasts generated by different statistical downscaling methods should 

be compared. Given that these downscaled precipitation forecasts eventually run 

through lumped hydrologic models, CDF of the areal averaged precipitation forecasts 

is perhaps a good way to demonstrate the bias condition at all percentiles across the 

study region. While the proposed DL technique improves the predictive skill of S2S 

precipitation, it would be valuable to see whether it also reduces forecast bias compared 

to QM.  

Reply: In response to your suggestion, we calculate and compare the cumulative 

distribution function of the areal-averaged precipitation forecasts of the study region 



generated by EC-QM and EC-CNN in the test period. The following analysis text has 

been added in the revised manuscript: 

Line 356-367: Figure 6 presents cumulative distribution function (CDFs) of EC, EC-

QM and EC-CNN forecasted precipitation averaged over the SR across the lead times. 

Notably, the EC-QM forecast consistently aligns well with the observed CDF across all 

lead times, which reflects the intended purpose of QM to match the empirical 

distribution through quantile mapping. This result demonstrates EC-QM is good at 

correcting the raw EC forecast to follow the observed distribution closely, despite an 

overall large RMSE and RE compared to EC-CNN. 

The EC-CNN forecast shows improvement over the EC forecasts and EC-QM forecasts 

by better approximating the observed CDF for the first 15 days. However, as compared 

to EC and EC-QM, the EC-CNN begins to deviate more significantly from the observed 

CDF as lead times increase. Specifically, the EC-CNN forecast appears to concentrate 

around medium precipitation values for 16-30 days, which underestimates the 

frequency of both lighter and heavier precipitation events. This pattern suggests that, 

while EC-CNN improves the overall accuracy of light and heavy rains of the raw EC 

forecasts at all lead times (Figure 4), the distributional accuracy, particularly for 

extreme precipitation events, may be compromised over extended lead times. A 

discussion on the possible cause of biases in CDF for different forecasts is provided in 

Section 5.4. 



 

Figure 6. The cumulative distribution function (CDF) of areal-averaged precipitation 

for observed precipitation, the ensemble means of EC, EC-QM, and EC-CNN forecasts 

at different lead times during the test period. 

Line 519-531 of Section 5.4: One limitation of the proposed EC-CNN model is its 

reduced accuracy in capturing the cumulative distribution function (CDF) over lead 

times extending beyond 15 days. While EC-CNN outperforms in terms of RMSE and 

RE for both light and heavy rainfall events (Figure 4), its CDF deviates from observed 

patterns for these longer lead times. In contrast, EC and EC-QM tend to align more 

closely with observed CDFs at these lead times. We attribute this to the following 

possible reason. 

Over extended lead times (>15 days), extreme precipitation values of EC and EC-QM 

forecasts tend to be more incorrectly assigned to specific time, leading to, for instance, 

storm-level precipitation predictions on dry days or nearly zero precipitation 

predictions on storm days. While these misplaced extremes inflate daily errors, they 

still allow the overall CDF of the forecast to retain both high and low ends of the 

precipitation distribution. The EC-CNN model, however, is designed to minimize daily 

errors by adjusting outliers and bringing exaggerated values closer to moderate levels, 

thereby reducing large forecast errors. For example, when EC forecasts a high 



precipitation event on a dry day, EC-CNN mitigates this by lowering the extreme to a 

more typical value. While this adjustment helps decrease RMSE and RE, it 

inadvertently compresses the distribution toward the center by reducing the frequency 

of both extreme high and low precipitation values. This approach limits the model 

ability to capture the full distribution, resulting in a CDF that is overly concentrated 

around moderate values. 

Comment: The reviewer feels that the description of the employed statistical 

downscaling techniques is unclear in general. It appears that the proposed CNN-ResNet 

generates a single precipitation prediction value while using multiple spatially 

distributed forecast variables as inputs (Figure 2). If this is indeed the case, the proposed 

framework seems more like an "upscaling " rather than "downscaling" technique. This 

also raises questions about how the authors produced the spatially distributed 

precipitation climatology plot (Figure 6). Additionally, given that CNN-based 

structures typically produce square-shaped outputs, were any masks applied during the 

training of the proposed CNN-ResNet?   

Reply: We agree with you that additional details are needed in the description of 

methods.  

The CNN incorporating ResNet blocks is indeed a downscaling technique in our study. 

Specifically, it downscales ECMWF S2S ensemble reforecasts from a coarse 1.5° 

resolution to a finer 0.25° resolution, which corresponds to the resolution of the CN05.1 

observation-based dataset. The CNN model takes spatially distributed inputs of 19 

predictors, such as geopotential height, temperature, and humidity, from the ECMWF 

dataset. These inputs cover a 3×3 area of coarse grid cells at 1.5° resolution, centered 

around the target fine grid cell at 0.25° resolution. The predicted precipitation has a 

spatial resolution of 0.25 degrees and is areal-averaged to the two sub-basins of the SR 

before being input into the hydrologic model. Due to the square-shaped input structure 

of the CNN model, some ECMWF data from outside the basin boundary are included 

in the input. For the outputs, the CNN loops over each fine-resolution grid cell (0.25 

degrees) within the basin boundary, generating a high-resolution precipitation forecast 

for the study basin. Therefore, no masks are applied during training, as the model is 

trained to predict each fine-resolution grid cell individually within the basin boundary. 

These details are added to Section 3.2.1: 



Line 173-181: Specifically, it downscales a total of 10 ensemble members of the 

ECMWF S2S reforecasts from a 1.5° resolution to a 0.25° resolution, using the CN05.1 

reference precipitation dataset. The model takes spatially distributed inputs of 19 

predictors, including the surface elevation, convective precipitation, total precipitation 

at the surface level, and U/V wind components, specific humidity, temperature, and 

geopotential height at 200/500/850 hPa pressure levels, from ECMWF forecasts. These 

inputs cover a 3×3 area of coarse grid cells at 1.5° resolution, centered around the target 

fine grid cell at 0.25° resolution. Due to the square-shaped input structure of the CNN 

model, some ECMWF data from outside the basin boundary are included in the input. 

For the outputs, the predictand is the daily precipitation at a spatial resolution of 0.25°, 

and the CNN loops over each fine-resolution grid cell (0.25°) within the basin boundary, 

thereby generating a high-resolution precipitation forecast for the entire SR. 

 

Comment: Similarly, is QM conducted at each pixel across the study watershed? If so, 

does the raw spatial resolution of the S2S precipitation forecast match that of the 

reference precipitation? These questions are particularly relevant considering the 

employed hydrologic models are lumped. It is important to clarify for the audience at 

which specific technical step(s) the spatially distributed forecast variables are converted 

into area averages.  

Reply: The raw ECMWF S2S precipitation reforecasts are released at a 1.5° resolution, 

while the reference CN05.1 observation dataset is at a 0.25° resolution. To match the 

forecast resolution with reference dataset resolution, QM is performed by looping over 

0.25° fine grid cells to establish the empirical cumulative distribution function for each 

fine grid cell based on its corresponding 1.5° coarse grid cell from ECMWF reforecasts. 

Given that the hydrologic models employed in this study are lumped, the spatially 

distributed precipitation forecasts (both from QM and CNN) are converted to area 

averages of two sub-basins of the SR after the downscaling step.  

The following text has been added or modified in the revised manuscript: 

Line 231-232: To match the 1.5° forecast resolution with the 0.25° reference dataset 

resolution, the empirical CDFs are established separately for each 0.25° grid from the 

corresponding 1.5° forecast grid cell.   

Line 158-159: All these gridded forecasts are areal-averaged over the two sub-basins of 



the SR (Fig. 1) before being input to the lumped hydrologic models. 

 

Comment: In general, it is recommended that the entire methodology section be 

revised to avoid potential confusion and to ensure clarity on the steps involved in the 

downscaling process.  

Reply: We have revised the methodology section to clearly outline this process. Please 

see above replies. 

 

Comment: The reviewer suggests conducting additional seasonal and spatial analysis 

to better highlight the strengths and weaknesses of the proposed CNN-ResNet 

downscaling technique. First, the reviewer notes that the study watershed covers a 

broad area (around 10 degrees, or approximately 1000 km, in both the north-south and 

east-west directions). This suggests significant spatial and seasonal variability in terms 

of precipitation generation mechanisms, magnitude, frequency, etc. However, this 

variability is not discussed in the manuscript, limiting the audience's understanding of 

the study watershed.  

Building on this, it would be interesting to examine whether the proposed framework 

is equally effective across different seasons and geospatial locations, or if its 

performance varies. The reviewer believes such an analysis would be crucial in further 

enhancing the quality of the manuscript. Consequently, it is recommended that the 

authors evaluate the post-processed precipitation both spatially and seasonally. Since 

the proposed method is a statistical downscaling technique, it is important to 

demonstrate its skill over such a large study region. This additional analysis would 

provide valuable insights into the effectiveness of the method across different 

conditions.  

Reply: Thank you for your suggestion. We fully understand the importance of 

examining spatial variability across such a large and diverse study area. 

In terms of forecasts in different seasons, our model implementation and evaluations 

were all conducted during the wet season, specifically from May to August. This period 

is chosen because it accounts for the majority of annual precipitation, which is key to 

water resources management and flood prevention in the region. Therefore, an 

evaluation across different seasons may not be the primary focus of this paper. We have 



revised the manuscript to highlight the focus is on the wet season, and the following 

text has been modified in the revised manuscript: 

Line 104-105: Aiming at enhancing sub-seasonal hydrometeorological forecasts for the 

wet season in this area, we start by addressing the following questions. 

Line 149-151: The presented sub-seasonal hydrometeorological forecasting framework 

aims to improve the daily precipitation forecasts and the corresponding streamflow 

forecasts at the Shigu hydrologic station during the wet season (May to August) for a 

lead time up to 30 days. 

On the other hand, we fully agree that conducting a spatial analysis within the wet 

season can provide important insights into the performance of the deep learning model. 

Therefore, we carried out a spatial analysis on the RMSE of EC, EC-QM and EC-CNN 

forecasts, and the following text and figure have been added to the revised manuscript: 

Line 343-352: To investigate the spatial characteristics of precipitation forecasts, Figure 

5 presents the spatial distribution on the RMSE of EC and EC-CNN forecast for lead 

times of 1-10, 11-20 and 21-30 days. It is clear that the EC-CNN improves the forecast 

skill of the raw ECMWF forecasts over the majority of the SR for all lead times. For 

example, the RMSE is reduced from 3-5 mm/day for EC forecasts to 1-2 mm/day for 

EC-CNN forecasts at the northern sub-basin for all lead times. Similar improvements 

can also be seen around the southern part of the basin, for example the southernmost 

part of SR sees RMSE over 10 mm/day for EC forecasts at lead times of 11-30 days but 

reduces to 6-7 mm/days for EC-CNN forecasts. In addition, by comparing Fig. R1b and 

Fig. R1c it can be seen that the EC-CNN shows larger improvements than EC-QM 

across the SR for all lead times. The above results indicate that EC-CNN not only 

improves the raw forecasts temporally, but also enhances their spatial accuracy across 

various regions of the SR. This basin-wise improvement allows for more reliable 

predictions across diverse hydrological zones within the SR, which could further 

benefit the hydrologic modelling. 



 

Figure 5. The spatial distribution of RMSE for the ensemble means of (a) EC forecasts, 

(b) EC-QM, and (c) EC-CNN forecasts averaged over lead times of 1-10 days, 11-20 

days, and 21-30 days during the test period. 

 

Comment: If the potential workload is manageable, the reviewer strongly recommends 

that the authors utilize the entire ensemble of S2S precipitation forecasts from ECMWF 

in their experiments, rather than focusing on the ensemble means. The primary reason 

for this suggestion is that neither precipitation forecasts nor the corresponding 

streamflow predictions can be applied deterministically at a sub-seasonal timescale due 

to limited skills at longer forecast lead times.  

At this timescale, probabilistic forecasts are typically constructed using multiple 

predictions (i.e., ensemble forecasts). While the proposed framework appears effective 

and interesting, the reviewer believes its full potential can be better demonstrated with 

a revised experimental design that aligns more closely with real-world needs (i.e., 

ensemble predictions).  

Following this suggestion, the reviewer suggests the authors to incorporate additional 



probabilistic evaluation metrics, such as CRPS or CRPSS, for a more comprehensive 

assessment of the framework's performance for both post-processed precipitation 

forecasts and the corresponding streamflow predictions.   

Reply: We agree with your suggestion to incorporate ensemble-based predictions, as 

they are more suitable for sub-seasonal timescales due to the inherent uncertainties at 

longer lead times (Ferranti et al., 2018). To this end, we employ all 10 ensemble 

members from the ECMWF S2S precipitation reforecasts and build ensemble QM and 

CNN models to generate ensemble forecasts. These ensemble precipitation forecasts 

are then input to hydrologic models for ensemble streamflow forecasting. For the 

evaluation of ensemble precipitation and streamflow forecasting, we applied 

Continuous Ranked Probability Skill (CRPS) to the ensemble forecasts. This metric is 

widely used for evaluating ensemble precipitation forecasts and accounting for 

uncertainties across multiple ensemble members (Bremnes, 2020). 

The following text of evaluation of ensemble precipitation forecasts has been added in 

the revised manuscript: 

Line 371-380: Figure 7 presents the CRPS of EC, EC-QM and EC-CNN forecasted 

precipitation averaged over the SR across the lead times. CRPS evaluates how close the 

ensemble forecast distribution is to the observed value, and a value close to zero means 

a better ensemble forecast. As can be seen in the figure, the CRPS for EC is around 1.1 

mm/day at lead times of 1-10 days and increases to around 1.4 mm/day at lead times of 

11-30 days. The EC-QM reduces the CRPS by an average of around 0.1 mm/day at all 

lead times, indicating an improvement in the probabilistic calibration and sharpness of 

the ensemble forecasts. The EC-CNN further reduces the CRPS for most of the lead 

times as compared to the EC-QM, especially for the first 5 days where the CRPS is 0.4 

mm/day lower than EC forecasts and 0.2 mm/day lower than EC-QM forecasts. This 

shows that the EC-CNN has an enhanced capability of representing the range of 

possible outcomes and improving the overall reliability in probabilistic forecasting. 

Such an advantage also offers better decision-making insights under uncertainty, which 

is favorable for risk management and planning across various time horizons. 



 

Figure 7. The CRPS of areal-averaged precipitation for the EC, EC-QM, and EC-CNN 

ensemble forecasts at different lead times during the test period. Error bar represents 

the 25th-75th percentile interval. 

The following text of evaluation of ensemble streamflow forecasts has been added in 

the revised manuscript: 

Line 433-441: Figure 10 presents the CRPS of EC, EC-QM and EC-CNN driven XAJ-

LSTM streamflow forecasts at Shigu across the lead times. The CRPS for EC is around 

120 m3/s at lead times of 1-5 days and increases rapidly to around 300 m3/s at lead 

times of 6-10 days, and further to 500 m3/s at lead times of 21-30 days. The EC-QM 

reduces the CRPS by an average of around 65 m3/s at all lead times, and the EC-CNN 

further reduces the CRPS for most of the lead times as compared to the EC-QM, 

especially for the lead times of 6-20 days where the CRPS is about 60 m3/s lower than 

EC forecasts and 25 m3/s lower than EC-QM forecasts. However, for lead times of 26-

30 days, the CRPS of EC-CNN is slightly larger than that of EC-QM, indicating the 

advantage of EC-CNN in ensemble forecasting is not evident for extended forecast lead 

times. Nevertheless, the EC-CNN improves the overall reliability in probabilistic 

streamflow forecasting for all lead times as compared to EC and for most lead times as 

compared to EC-QM, which can benefit the downstream water resources management 

under uncertainty. 



 

Figure 10. The CRPS of streamflow forecasts driven by the EC, EC-QM, and EC-CNN 

ensemble forecasts at different lead times during the test period. Error bar represents 

the 25th-75th percentile interval. 

 

References 

Bremnes, J. B. (2020). Ensemble postprocessing using quantile function regression 

based on neural networks and Bernstein polynomials. Monthly Weather Review, 148(1), 

403-414. 

Ferranti, L., Corti, S., & Janousek, M. (2018). Flow-dependent verification of the 

ECMWF ensemble over the Euro-Atlantic sector. Quarterly Journal of the Royal 

Meteorological Society, 144(712), 317-326. 

 

Comment: Lien 126: What is the naive spatial resolution of the collected S2S 

precipitation forecasts from ECMWF?   

Reply: The S2S precipitation reforecasts from ECMWF collected in this study are with 

a spatial resolution of 1.5 degrees.   

The following text has been modified in the revised manuscript: 

Line 142-144: The forecasted variables used in this study include precipitation, 

convective precipitation at the land surface, and temperature, wind components, 

geopotential heights, and specific humidity at 200/500/850hPa pressure levels. All of 

these variables are at a spatial resolution of 1.5°. 

 

Comment: Line 142: EC-CNN is referenced here for the first time in the manuscript, 

but without a clear explanation.  



Reply: We have added the explanation of EC, EC-CNN and EC-QM. 

The following text has been added or modified in the revised manuscript: 

Line 151-155: We first employ all 10 ensemble members from the ECMWF S2S 

gridded sub-seasonal precipitation reforecast dataset for the next 30 days as raw 

forecasts, denoted as EC. An ensemble of enhanced CNN models with ResNet blocks 

and a specialized loss function is established to statistically downscale and bias correct 

each ensemble member of the 1.5° EC raw precipitation forecasts to 0.25° grid 

resolution, with its post-processed forecast denoted EC-CNN (Section 3.2.1). The 

quantile mapping (QM) serves as a benchmark for comparison, with its post-processed 

forecast denoted EC-QM (Section 3.2.2). 

 

Comment: Line 250: It seems a standardized metric is employed here (i.e., NSE) to 

evaluate the hydrologic model calibration. The reviewer wonders why switch to RMSE 

and other metrics for later streamflow predictive skill evaluation? While RMSE is a 

widely applied metric in many fields, standardized metrics such as NSE and KGE might 

be more familiar to researchers in the hydrology community.  

Reply: In the revised version, the Nash-Sutcliffe Efficiency (NSE) is added for 

streamflow predictive skill evaluation. 

 

Comment: Line 354: Perhaps “forecast issue date” is more appropriate for the titles of 

different panels in Figure 8. Also, it would be interesting to see these examples where 

the proposed framework delivers more accurate streamflow predictions. Overall skill 

evaluation would still be more informative in general. Perhaps these figures could be 

included in the supplementary material so that previous suggested additional evaluation 

and analysis could be included in the main manuscript.  

Reply: We have renamed the titles to ‘forecast issue date’ in the revised manuscript. 

We have included the suggested analysis and evaluation in the manuscript while also 

keeping this figure in the revised manuscript.  


