
Response to Reviewer #2 

Thank you for your comments. Below are our replies to each of your comment. 

We believe that the planned changes will improve the clarity and significance of our manuscript. 

 

Comment: Although QM is a widely applied technique and should be familiar to the general 

audience of HESS, the reviewer believes that some key information or references may need to be 

incorporated. Precipitation data is known to be highly skewed, making the selection of the 

distribution function critically important for the effectiveness of QM. However, such details appear 

to be missing in the current manuscript.  

Reply: In our current implementation of QM, a specific distribution function is not required as we 

use a non-parametric approach. This method directly adjusts the quantiles of the forecasted and 

observed data without assuming a specific distribution. To be specific, the empirical cumulative 

distribution functions of observed and forecasted daily precipitation are built respectively, and each 

percentile of the forecasted data is adjusted to match the corresponding percentile in the observed 

data. Dry days with a precipitation amount less than 0.1 mm are excluded from the derivation of 

empirical cumulative distribution functions. Several studies have indicated the effectiveness of this 

approach in improving the overall precipitation forecasts (Manzanas et al., 2018; Cannon et al., 

2015). 

We will revise the manuscript to provide details on the implementation of the QM approach 

and provide the necessary references to support it. 
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Comment: Additionally, the reviewer is curious about the specific implementation of QM. Was 

seasonality or the variation in forecast lead times considered in the QM-based bias removal process? 

More detailed documentation on this aspect should be included in the manuscript.  

Reply: In our current implementation, the QM is constructed separately for each lead time to 

account for forecast bias variations across different lead times. For each lead time, a single model 

is applied across all months, which is aligned with the structure of the CNN model built in this study. 

This approach is considered able to more effectively capture biases across different lead times while 

maintaining a uniform correction across the seasonal cycle. 

We will clarify this aspect in the manuscript and provide more details on the implementation 

of the QM process to ensure a clear understanding of the methodology. 

 

Comment: Furthermore, given that QM is primarily designed for bias removal rather than 



enhancing the temporal correspondence between forecast time series and observations, the reviewer 

suggests that the authors also evaluate the resulting forecasts (both precipitation and streamflow) in 

terms of their bias. Specifically, the overall CDF of precipitation forecasts generated by different 

statistical downscaling methods should be compared. Given that these downscaled precipitation 

forecasts eventually run through lumped hydrologic models, CDF of the areal averaged precipitation 

forecasts is perhaps a good way to demonstrate the bias condition at all percentiles across the study 

region. While the proposed DL technique improves the predictive skill of S2S precipitation, it would 

be valuable to see whether it also reduces forecast bias compared to QM.  

Reply: We agree that while QM primarily addresses bias removal, it would be beneficial to evaluate 

both the precipitation and streamflow forecasts in terms of bias. In response to your suggestion, we 

plan to compare the cumulative distribution functions (CDFs) of the areal-averaged precipitation 

forecasts generated by QM and the proposed deep learning (DL) framework, which could provide 

a comprehensive view of the bias at all percentiles. 

We believe this additional analysis will allow us to assess not only the predictive skill but also 

the extent to which the DL technique reduces forecast bias compared to QM. We will incorporate 

this comparison into the revised manuscript to offer a clearer picture of the effectiveness of our 

approach in reducing forecast bias.  

 

Comment: The reviewer feels that the description of the employed statistical downscaling 

techniques is unclear in general. It appears that the proposed CNN-ResNet generates a single 

precipitation prediction value while using multiple spatially distributed forecast variables as inputs 

(Figure 2). If this is indeed the case, the proposed framework seems more like an "upscaling " rather 

than "downscaling" technique. This also raises questions about how the authors produced the 

spatially distributed precipitation climatology plot (Figure 6). Additionally, given that CNN-based 

structures typically produce square-shaped outputs, were any masks applied during the training of 

the proposed CNN-ResNet?   

Reply: The CNN incorporating residual blocks, or the CNN-ResNet framework, in our study is 

indeed a downscaling technique. Specifically, it downscales ECMWF S2S reforecasts from a coarse 

1.5-degree resolution to a finer 0.25-degree resolution, which corresponds to the resolution of the 

CN05.1 observation-based dataset. The CNN uses spatially distributed inputs (e.g., geopotential 

height, temperature, humidity) from the ECMWF dataset, covering 7×7 1.5-degree coarse grid cells 

centered on the target 0.25-degree fine grid cell. Due to the square-shaped input structure of the 

CNN model, some ECMWF data from outside the basin boundary are included in the input. For the 

outputs, the CNN loops over each fine-resolution grid cell (0.25 degrees) within the basin boundary, 

generating a high-resolution precipitation forecast for the region of interest. Therefore, no masks 

are applied during training, as the model is trained to predict each fine-resolution grid cell 

individually within the basin boundary. 

We will clarify this process in the manuscript to avoid any potential confusion about the 

methodology and ensure that the CNN-ResNet framework is well understood. 

 

Comment: Similarly, is QM conducted at each pixel across the study watershed? If so, does the raw 

spatial resolution of the S2S precipitation forecast match that of the reference precipitation? These 

questions are particularly relevant considering the employed hydrologic models are lumped. It is 



important to clarify for the audience at which specific technical step(s) the spatially distributed 

forecast variables are converted into area averages.  

In general, it is recommended that the entire methodology section be revised to avoid potential 

confusion and to ensure clarity on the steps involved in the downscaling process.  

Reply: The raw ECMWF S2S precipitation reforecasts are released at a 1.5-degree resolution, while 

the reference CN05.1 observation dataset is at a 0.25-degree resolution. To match the forecast 

resolution with reference dataset resolution, QM is performed by looping over 0.25-degree fine grid 

cells to establish the empirical cumulative distribution function for each fine grid cell based on its 

corresponding 1.5-degree coarse grid cell from ECMWF reforecasts. This method is widely used in 

statistical downscaling to account for the resolution mismatch between coarse forecast models and 

high-resolution observational data (Gudmundsson et al., 2012).  

Given that the hydrologic models employed in this study are lumped, the spatially distributed 

precipitation forecasts (both from QM and CNN) are converted to area averages after the 

downscaling step. This averaging occurs within the study area before the precipitation data are input 

into the hydrologic models. 

We agree that these technical steps should be clarified to avoid any confusion. We will revise 

the methodology section to clearly outline the process, including how the downscaling is conducted 

at each pixel and how the spatially distributed data are subsequently converted into area averages 

for use in the lumped hydrologic models. 
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Comment: The reviewer suggests conducting additional seasonal and spatial analysis to better 

highlight the strengths and weaknesses of the proposed CNN-ResNet downscaling technique. First, 

the reviewer notes that the study watershed covers a broad area (around 10 degrees, or 

approximately 1000 km, in both the north-south and east-west directions). This suggests significant 

spatial and seasonal variability in terms of precipitation generation mechanisms, magnitude, 

frequency, etc. However, this variability is not discussed in the manuscript, limiting the audience's 

understanding of the study watershed.  

Building on this, it would be interesting to examine whether the proposed framework is equally 

effective across different seasons and geospatial locations, or if its performance varies. The reviewer 

believes such an analysis would be crucial in further enhancing the quality of the manuscript. 

Consequently, it is recommended that the authors evaluate the post-processed precipitation both 

spatially and seasonally. Since the proposed method is a statistical downscaling technique, it is 

important to demonstrate its skill over such a large study region. This additional analysis would 

provide valuable insights into the effectiveness of the method across different conditions.  

Reply: Thank you for your suggestion. We fully understand the importance of examining spatial 

and seasonal variability across such a large and diverse study area. 

While we agree that spatial analysis is crucial due to the broad area covered by the basin and 



its variability in precipitation generation mechanisms, our downscaling and model evaluations were 

all conducted during the wet season, specifically from May to August. This period is chosen because 

it accounts for the majority of annual precipitation, which is key to water resources management 

and flood prevention in the region. Therefore, an evaluation across different seasons may not be the 

primary focus of this paper. We will revise the manuscript to highlight the focus is on the wet season. 

However, we fully agree that conducting a spatial analysis within the wet season, with the 

geographic variability (e.g., northern plateau versus southern hill regions) taken into account, will 

provide important insights into the performance of the CNN-ResNet model. This analysis will allow 

us to assess if the model performs consistently across the different parts of the watershed and help 

identify any areas where its performance may vary.  

A preliminary spatial analysis on the RMSE of EC and EC-CNN forecast for lead times of 1-

10, 11-20 and 21-30 days is presented in the Figure R1 below. It can be seen that the EC-CNN 

improves the forecast skills of the raw ECMWF forecasts over the majority of the basin for all lead 

times. For example, the RMSE is reduced from 3.4 mm/day to an average of 2.2 mm/day at the 

northern headwaters of the basin for the lead time of 21-30 days. Similar improvements can also be 

seen around the southern part of the basin. 

 

Figure R1. RMSE of EC and EC-CNN forecasted precipitation for lead times of 1-10, 11-20 and 

21-30 days. 

We will perform a comprehensive spatial analysis and revise the manuscript accordingly.  

 

Comment: If the potential workload is manageable, the reviewer strongly recommends that the 

authors utilize the entire ensemble of S2S precipitation forecasts from ECMWF in their experiments, 

rather than focusing on the ensemble means. The primary reason for this suggestion is that neither 

precipitation forecasts nor the corresponding streamflow predictions can be applied 

deterministically at a subseasonal timescale due to limited skills at longer forecast lead times.  

At this timescale, probabilistic forecasts are typically constructed using multiple predictions (i.e., 

ensemble forecasts). While the proposed framework appears effective and interesting, the reviewer 



believes its full potential can be better demonstrated with a revised experimental design that aligns 

more closely with real-world needs (i.e., ensemble predictions).  

Following this suggestion, the reviewer suggests the authors to incorporate additional probabilistic 

evaluation metrics, such as CRPS or CRPSS, for a more comprehensive assessment of the 

framework's performance for both post-processed precipitation forecasts and the corresponding 

streamflow predictions.   

Reply: We agree with your suggestion to incorporate ensemble-based predictions, as probabilistic 

forecasts are more suitable for sub-seasonal timescales due to the inherent uncertainties at longer 

lead times (Li et al., 2019; Ferranti et al., 2018). To address this, we will use all ensemble members 

from the ECMWF S2S precipitation reforecasts and build ensemble CNN models to generate 

probabilistic forecasts. For the probabilistic evaluation, we will apply Continuous Ranked 

Probability Skill Score (CRPSS) to the ensemble forecasts. This metric is widely used for evaluating 

ensemble precipitation forecasts and accounting for uncertainties across multiple ensemble 

members (Bremnes, 2020). 

We will revise the manuscript to present probabilistic forecasting and its benefits for improving 

the predictability of precipitation and streamflow on sub-seasonal timescales. Thank you again for 

this suggestion. 

 

References 

Bremnes, J. B. (2020). Ensemble postprocessing using quantile function regression based on neural 

networks and Bernstein polynomials. Monthly Weather Review, 148(1), 403-414. 

Li, W., Pan, B., Xia, J., and Duan, Q. (2021). Convolutional neural network-based statistical post-

processing of ensemble precipitation forecasts. Journal of hydrology, 605, 127301.  

Ferranti, L., Corti, S., & Janousek, M. (2018). Flow-dependent verification of the ECMWF 

ensemble over the Euro-Atlantic sector. Quarterly Journal of the Royal Meteorological Society, 

144(712), 317-326. 

 

Comment: Lien 126: What is the naive spatial resolution of the collected S2S precipitation forecasts 

from ECMWF?   

Reply: The S2S precipitation reforecasts from ECMWF collected in this study are with a spatial 

resolution of 1.5 degrees. We will clarify this point in the revised manuscript to ensure the spatial 

resolution of the input data is clearly understood. 

 

Comment: Line 142: EC-CNN is referenced here for the first time in the manuscript, but without a 

clear explanation.  

Reply: We will provide a more detailed description when first introducing EC-CNN, which refers 

to the statistically downscaled ECMWF S2S reforecasts using the proposed CNN framework. 

 

Comment: Line 250: It seems a standardized metric is employed here (i.e., NSE) to evaluate the 

hydrologic model calibration. The reviewer wonders why switch to RMSE and other metrics for 

later streamflow predictive skill evaluation? While RMSE is a widely applied metric in many fields, 

standardized metrics such as NSE and KGE might be more familiar to researchers in the hydrology 

community.  



Reply: It is true that the hydrologic model calibration is evaluated using the Nash-Sutcliffe 

Efficiency (NSE). For consistency and to align with hydrologic model evaluation metrics, we agree 

that it would be appropriate to add NSE for the later streamflow predictive skill evaluation as well, 

and we will revise the manuscript accordingly.  

 

Comment: Line 354: Perhaps “forecast issue date” is more appropriate for the titles of different 

panels in Figure 8. Also, it would be interesting to see these examples where the proposed 

framework delivers more accurate streamflow predictions. Overall skill evaluation would still be 

more informative in general. Perhaps these figures could be included in the supplementary material 

so that previous suggested additional evaluation and analysis could be included in the main 

manuscript.  

Reply: We agree that using ‘forecast issue date’ would be more appropriate for the titles of different 

panels in Figure 8. We will update the figure accordingly in the revised manuscript. 

Additionally, we will follow your recommendation to prioritize more comprehensive 

evaluation and analysis in the main manuscript, while moving very detailed figures and additional 

examples to the supplementary material. We believe this will allow for a clearer focus on the overall 

skill evaluation in the main text, while still providing valuable examples for interested readers. 

 

  


