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S1. Error estimation 

S1.1. Uncertainty in model forcing 

In flood forecasting, the most critical model driving data is rainfall. We used log-normal multiplicative perturbation to 

characterize rainfall errors (McMillan et al., 2011; DeChant and Moradkhani, 2012; Gong et al., 2023):  

 𝑷𝑗
𝑜(𝑡𝑖) = 𝜹𝑷(𝑡𝑖) ∙ 𝑷(𝑡𝑖) (S1-1) 

Where 𝑷(𝑡𝑖) = [𝑃1(𝑡𝑖), … , 𝑃𝑁𝑝
(𝑡𝑖)]𝑻 ∈ ℛ𝑁𝑝  is the rainfall observation vector; 𝑁𝑝  is the dimensionality of the rainfall 5 

observations; 𝜹𝑷(𝑡𝑖) is lognormal perturbation matrix. The errors in the precipitation measurement are assumed to be spatially 

independent, so that, 𝜹𝑷(𝑡𝑖)  is also a diagonal matrix. The diagonal element is 𝛿𝑛
𝑃(𝑡𝑖), (𝑛 = 1, … , 𝑁𝑝) , and 

𝑙𝑛 𝛿𝑛
𝑃(𝑡𝑖)~𝑁(𝜇𝑙𝑛𝑝, 𝜎𝑙𝑛𝑝) follows a lognormal distribution with the mean of 1.0 and standard deviation of 𝜎𝑝. Additionally, a 

first-order autoregressive model is employed to represent the temporal correlation in precipitation measurement errors. At each 

time step, the perturbation is mathematically adjusted as follows: 10 

𝑙𝑛 𝛿𝑛
𝑃(𝑡𝑖) =  𝜇𝑙𝑛𝑝 + 𝛼𝑙𝑛𝑝[𝑙𝑛 𝛿𝑛

𝑃(𝑡𝑖−1) − 𝜇𝑙𝑛𝑝] + 𝜑𝜎𝑙𝑛𝑝(1 − 𝛼𝑙𝑛𝑝
2)0.5 (S1-2) 

Where 𝜇𝑙𝑛𝑝 = −0.5𝜎𝑙𝑛𝑝
2; 𝛼𝑙𝑛𝑝 is autocorrelation coefficient for precipitation measurement errors. 

S1.2. Uncertainty in observations 

The observation error is generalized as functions of the corresponding observed values (Weerts & El Serafy, 2006; Clark et 

al., 2008; Alvarez-Garreton et al., 2015): 

 𝒚𝑗
𝒐(𝑡𝑖) = [𝑰 + 𝜹𝒚(𝑡𝑖)] ∙ 𝒚(𝑡𝑖) (S1-3) 

Where 𝒚𝑗
𝒐(𝑡𝑖) ∈ ℛ𝑁𝑦  represents the perturbed observation vector for the jth ensemble. 𝑰  is identity matrix; 𝜹𝒚(𝑡𝑖)  is 15 

Gaussian perturbation matrix. Assuming that the observation errors are spatially independent, 𝜹𝒚(𝑡𝑖) ∈ ℛ𝑁𝑦×𝑁𝑦  is a diagonal 

matrix with diagonal elements 𝛿𝑛
𝑦(𝑡𝑖), (𝑛 = 1, … , 𝑁𝑦). When assimilating soil moisture observations, the diagonal elements 

follow a normal distribution 𝛿𝑛
𝑦(𝑡𝑖)~𝑁(0, 𝜎𝑦𝑠) , and similarly, 𝛿𝑛

𝑦(𝑡𝑖)~𝑁(0, 𝜎𝑦𝑑)  is used when assimilating discharge 

observations. Furthermore, we employ a first-order autoregressive model to account for the temporal correlation in observation 

errors. At time step 𝑡, the perturbation is adjusted using the formula: 20 

 𝛿𝑛
𝑦(𝑡𝑖) = 𝜇𝑦 + 𝛼𝑦[𝛿𝑛

𝑦(𝑡𝑖−1) − 𝜇𝑦] + 𝜑𝜎𝑦(1 − 𝛼𝑦
2)0.5 (S1-4) 

Where 𝜇𝑦 = 0; 𝜑 is a standard Gaussian noise; 𝜎𝑦 is the standard deviation, which, as previously stated, takes the values 

𝜎𝑦𝑠 or 𝜎𝑦𝑑; 𝛼𝑦 is the autocorrelation coefficient, with values of 𝛼𝑦𝑠 when assimilating soil moisture observations, or 𝛼𝑦𝑑 

when assimilating discharge observations. 



 

 

S1.3. Uncertainty in model state 

In the assimilation of observed outlet discharge, the key model state variable updated is cumulative channel flow. This variable 25 

represents the outflow from each sub-basin on the routing calculation unit, denoted as 𝑄𝐶. This state variables are perturbed 

using a Gaussian error function (Li et al., 2014), and the state variables of the jth ensemble are changed to: 

 𝑿𝑗
𝑓′

(𝑡𝑖) = 𝑿𝑗
𝑓

(𝑡𝑖) + 𝜹𝒙(𝑡𝑖) ∙ 𝑿𝑗
𝑓

(𝑡𝑖) (S1-5) 

Where 𝑿𝑗
𝑓

(𝑡𝑖) = [𝑄𝐶𝑗,1(𝑡𝑖), 𝑄𝐶𝑗,2(𝑡𝑖), . . , 𝑄𝐶𝑗,𝑁𝑥
(𝑡𝑖)]𝑻 ∈ ℛ𝑁𝑥, and when assimilating discharge observations, 𝑁𝑥 is set as the 

number of sub-reaches; 𝜹𝒙(𝑡𝑖) is diagonal Gaussian perturbation matrix, and the diagonal element is 𝛿𝑛
𝑥(𝑡𝑖), (𝑛 = 1, … , 𝑁𝑥), 

and 𝛿𝑛
𝑥(𝑡𝑖)~𝑁(0, 𝜎𝑑). 30 

When assimilating observed soil moisture, the model state variables representing soil humidity need to be updated. Specifically, 

this refers to the tension water storage (including upper, and lower layer tension water) and the free water storage in the 

Xin'anjiang model. The perturbation of soil state variables follows the same form as in Eq. (S1-5), but 𝑿𝑗
𝑓

(𝑡𝑖) =

[𝑾𝑗(𝑡𝑖), 𝑾𝑼𝑗(𝑡𝑖), 𝑾𝑳𝑗(𝑡𝑖), 𝑺𝑗(𝑡𝑖)]𝑇 ∈ ℛ𝑁𝑥 , and 𝑁𝑥  is set as 4 ∗ 𝑁𝑠𝑢𝑏  in this case (𝑁𝑠𝑢𝑏  is the number of sub-basins). 

Here, 𝑾𝑗(𝑡𝑖) = [𝑊𝑗,1(𝑡𝑖), . . , 𝑊𝑗,𝑁𝑠𝑢𝑏
(𝑡𝑖)] , 𝑾𝑼𝑗(𝑡𝑖) = [𝑊𝑈𝑗,1(𝑡𝑖), . . , 𝑊𝑈𝑗,𝑁𝑠𝑢𝑏

(𝑡𝑖)] , 𝑾𝑳𝑗(𝑡𝑖) = [W𝐿(𝑡𝑖), . . , 𝑊𝐿𝑗,𝑁𝑠𝑢𝑏
(𝑡𝑖)] , 35 

and 𝑺𝑗(𝑡𝑖) = [𝑆𝑗,1(𝑡𝑖), . . , 𝑆𝑗,𝑁𝑠𝑢𝑏
(𝑡𝑖)]. The diagonal elements of 𝜹𝒙(𝑡𝑖) become 𝛿𝑛

𝑥(𝑡𝑖)~𝑁(0, 𝜎𝑠).  

We introduce the Bias-corrected Gaussian Error Model (BGEM) (Ryu et al., 2009) to reduce biases arising from the need to 

adhere to physical constraints, which occur when Gaussian perturbations push variables beyond their limits, leading to 

truncation errors in hydrological model predictions. The BGEM method is accomplished by running an unperturbed model in 

parallel with the ensemble model simulations. The average bias, 𝜹𝒃(𝑡𝑖), of the perturbed state variables at time step 𝑡𝑖 is 40 

calculated using the formula: 

 𝜹𝒃(𝑡𝑖) =
1

𝑁𝑒

∑[𝑿𝑗
𝑓′

(𝑡𝑖) − 𝑿𝑏(𝑡𝑖)]

𝑁𝑒

𝑛=1

 (S1-6) 

Where 𝑿𝑏(𝑡𝑖) represents the soil moisture derived from the undisturbed simulation. The bias-corrected set of state variables 

is then acquired by deducting the average bias 𝜹𝒃(𝑡𝑖) from the perturbed variables 𝑿𝑗
𝑓′

(𝑡𝑖).  

 �̃�𝑗
𝑓′

(𝑡𝑖) = 𝑿𝑗
𝑓′

(𝑡𝑖) − 𝜹𝒃(𝑡𝑖) (S1-7) 

S1.4. Maximum a posteriori estimation method 

The hyperparameters required in the aforementioned error model include 𝜎𝑦𝑠 , 𝛼𝑦𝑠 , 𝜎𝑦𝑑 , 𝛼𝑦𝑑 , 𝜎𝑙𝑛𝑝 , 𝛼𝑙𝑛𝑝 , 𝜎𝑠 , and 𝜎𝑑 . To 45 

identify the globally optimal values of these hyperparameters, the Maximum a posteriori estimation method (MAP) is applied. 

This method aims to maximize the probability density of the hyperparameters with given the observed historical flood events. 



 

 

This section offers a concise overview of the MAP. For a comprehensive understanding of the implementation of the method, 

refer to our previous study by Gong et al. (2023). 

Following Bayesian theory, the posterior probability density is expressed as a product of the prior probability density and the 50 

conditional probability density of historical observations: 

 𝑝(𝝍|𝒚) ∝ 𝜒(𝝍) = 𝑝(𝝍) × 𝑝(𝒚|𝝍) (S1-8) 

Where 𝝍 = (𝜎𝑦𝑠, 𝛼𝑦𝑠, 𝜎𝑦𝑑, 𝛼𝑦𝑑, 𝜎𝑙𝑛𝑝, 𝛼𝑙𝑛𝑝, 𝜎𝑠, 𝜎𝑑) is hyperparameter array; 𝑝(𝒚|𝝍) is the conditional probability density 

of the historical observations 𝒚  given 𝝍 ; 𝑝(𝝍)  is a prior probability density, calculated as the product of individual 

probabilities: 

 𝑝(𝝍) = 𝑝(𝜎𝑦𝑠)𝑝(𝛼𝑦𝑠)𝑝(𝜎𝑦𝑑)𝑝(𝛼𝑦𝑑)𝑝(𝜎𝑙𝑛𝑝)𝑝(𝛼𝑙𝑛𝑝)𝑝(𝜎𝑠)𝑝(𝜎𝑑) (S1-9) 

The conditional probability density 𝑝(𝒚|𝝍) is determined as:  55 

 𝑝(𝒚|𝝍) = ∏ ∏ 𝑝(𝑦𝑖,𝑡|𝝍)

𝑁𝑡

𝑡=1

𝑁𝑦

𝑖=1

 (S1-10) 

For global optimization, the Shuffled Complex Evolution (SCE-UA) method (Duan et al., 1992) is employed, setting the 

objective function in a negative logarithmic format: 

 𝑓𝑂𝐵𝐽 =
1

𝑁𝑓

∑ −ln [𝜒(𝝍)]

𝑁𝑓

𝑚=1

 (S1-11) 

S2. Multi-source soil moisture data fusion 

Table S2-1. List of WKNN model parameters 

Sub-basin 
W WU WL S 

K p K p K p K p 

1 2 1 19 1 18 1 4 1 

2 15 1 19 1 15 1 6 1 

3 19 1 13 1 12 1 4 1 

4 14 1 10 1 6 1 4 1 

5 2 1 18 1 16 1 4 1 

6 19 1 14 1 14 1 4 1 

7 18 1 19 1 19 1 2 1 

8 7 1 16 1 18 1 4 1 

9 11 1 19 1 10 1 5 1 

10 16 1 14 1 7 1 5 1 



 

 

S3. Evaluation metrics 60 

S3.1. Normalized Nash-Sutcliffe efficiency coefficient (NNSE) 

The range of Nash-Sutcliffe efficiency coefficient (NSE) is (−∞, 1]. For a flood event, a higher NSE indicates that the 

simulated discharge process is closer to the observed discharge process. When the simulated hydrograph coincides with the 

observed hydrograph, the NSE value is equal to 1.0. The NSE is calculated as following: 

 𝑁𝑆𝐸 = 1 −
∑ (�̅�𝑡

𝑠𝑖𝑚 − 𝑦𝑡)
2

𝑡

∑ (𝑦𝑡 − 𝑦𝑎𝑣𝑒)2
𝑡

 (S3-1) 

Where 𝑦𝑡 is the observed discharge at time step t; 𝑦𝑎𝑣𝑒  is the temporal mean of the observed discharge in a flood event; �̅�𝑡
𝑠𝑖𝑚 65 

is the simulated discharge (ensemble mean discharge for the ensemble run or the simulated discharge of the Xin'anjiang model 

for the deterministic run).  

The potential issue arising from the lower limit of negative infinity in NSE can be addressed by employing a specific equation 

that normalizes the NSE. This approach rescales the NSE to fall within the (0,1] range, resulting in what is termed the 

Normalized Nash-Sutcliffe Efficiency (NNSE) (Nossent and Bauwens, 2012): 70 

 𝑁𝑁𝑆𝐸 =
1

2 − 𝑁𝑆𝐸
 (S3-2) 

It's important to note that NSE = 1 equates to NNSE = 1, NSE = 0 translates to NNSE = 0.5, and NSE = −∞ corresponds 

to NNSE = 0. The mean value of NNSE for multiple flood events is denoted as MNNSE. 

S3.2 Root mean square error (RMSE) 

The range of root mean square error (RMSE) is [0, ∞). A smaller value indicates higher accuracy of the simulated discharge. 

 𝑅𝑀𝑆𝐸 = √
1

𝑁𝑡

∑(�̅�𝑡
𝑠𝑖𝑚 − 𝑦𝑡)

2

𝑁𝑡

𝑡=1

 (S3-3) 

To compare the performance difference between the assimilation (Ens) and the open loop (OL), the ratio between them is 75 

calculated, denoted as R(.): 

 
𝑅𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸𝐸𝑛𝑠

𝑅𝑀𝑆𝐸𝑂𝐿

 (S3-4) 

The range of RRMSE values extends from [0, ∞). When RRMSE is less than 1.0, it indicates that the accuracy of ensemble 

mean of assimilation run surpasses that of the OL. Further, the mean value of RRMSE for multiple flood events is denoted as 

MRRMSE. 



 

 

S3.3. Continuous ranked probability score (CRPS) 80 

Overall performance about ensemble simulation is assessed using the Continuous Ranked Probability Score (CRPS) (Hersbach, 

2000). The CRPS is regarded as the integral of the Brier score over all possible threshold values for the variable. For non-

ensemble systems, CRPS that simplifies to mean absolute error (MAE). 

 𝐶𝑅𝑃𝑆 = ∫ [𝑃(𝑥) − 𝐻(𝑥 − 𝑥𝑎)]2
∞

−∞

𝑑𝑥 (S3-5) 

 𝑃(𝑥) = ∫ 𝜌(𝑦)𝑑𝑦
𝑥

−∞

 (S3-6) 

 𝐻(𝑧) = {
0, 𝑧 < 0
1, 𝑧 ≥ 0

 (S3-7) 

where 𝑃(𝑥) is the cumulative distribution; 𝑥 is the forecast value; and 𝑥𝑎 is the observed value. For the ensemble system, 

with equal weights for each ensemble, CRPS can be calculated by following.  85 

Let 𝑦𝑡,0
𝑠𝑖𝑚 = −∞ and 𝑦𝑡,𝑁𝑒+1

𝑠𝑖𝑚 = ∞, and arrange the ensemble members in ascending order to obtain the ordered simulated 

discharge ensemble �́�𝒕
𝒔𝒊𝒎, where the ensemble members satisfy the following equation: 

 �́�𝑡,𝑖
𝑠𝑖𝑚 < �́�𝑡,𝑗

𝑠𝑖𝑚, 𝑖 < 𝑗 ≤ 𝑁𝑒 (S3-8) 

The cumulative distribution function can be expressed as: 

 𝑃(�́�𝑡
𝑠𝑖𝑚) = 𝑝𝑖 ≡

𝑖

𝑁𝑒

 , �́�𝑡,𝑖
𝑠𝑖𝑚 < 𝑦𝑡

𝑠𝑖𝑚 < �́�𝑡,𝑖+1
𝑠𝑖𝑚  (S3-9) 

Based on Eq. (S3-5), the CRPS at time step t can be expressed as: 

 𝐶𝑅𝑃𝑆𝑡 = ∑ 𝛼𝑛𝑝𝑛
2

𝑁𝑒

𝑛=0

+ 𝛽𝑛(1 − 𝑝𝑛)2 (S3-10) 

where the values of 𝛼𝑛 and 𝛽𝑛 can be found in Table S3-1. Ultimately, the time-averaged CRPS for a flood event can be 90 

obtained through the following expression: 

 𝐶𝑅𝑃𝑆𝑎𝑣𝑒 = ∑ 𝛼𝑎𝑣𝑒,𝑛𝑝𝑛
2

𝑁𝑒

𝑛=0

+ 𝛽𝑎𝑣𝑒,𝑛(1 − 𝑝𝑛)2 (S3-11a) 

 𝛼𝑎𝑣𝑒,𝑛 =
1

𝑁𝑡

∑ 𝛼𝑡,𝑛

𝑁𝑡

𝑡=1

 (S3-11b) 

 𝛽𝑎𝑣𝑒,𝑛 =
1

𝑁𝑡

∑ 𝛽𝑡,𝑛

𝑁𝑡

𝑡=1

 (S3-11c) 

Table S3-1. Calculation table of 𝜶𝒏 and 𝜷𝒏 

  𝛼𝑛 𝛽𝑛 

𝑛 = 𝑁𝑒 𝑦𝑡 > �́�𝑡,𝑁𝑒
𝑠𝑖𝑚 𝑦𝑡 − �́�𝑡,𝑁𝑒

𝑠𝑖𝑚 0 

0 < 𝑛 < 𝑁𝑒  

𝑦𝑡 > �́�𝑡,𝑛+1
𝑠𝑖𝑚  �́�𝑡,𝑛+1

𝑠𝑖𝑚 − �́�𝑡,𝑛
𝑠𝑖𝑚 0 

�́�𝑡,𝑛+1
𝑠𝑖𝑚 > 𝑦𝑡 > �́�𝑡,𝑛

𝑠𝑖𝑚 𝑦𝑡 − �́�𝑡,𝑛
𝑠𝑖𝑚 �́�𝑡,𝑛+1

𝑠𝑖𝑚 − 𝑦𝑡  

𝑦𝑡 < �́�𝑡,𝑛
𝑠𝑖𝑚 0 �́�𝑡,𝑛+1

𝑠𝑖𝑚 − �́�𝑡,𝑛
𝑠𝑖𝑚 

𝑛 = 0 𝑦𝑡 < �́�𝑡,1
𝑠𝑖𝑚 0 �́�𝑡,1

𝑠𝑖𝑚 − 𝑦𝑡  

The ratio of CRPSave between Ens and OL is denoted as RCRPS: 



 

 

 
𝑅𝐶𝑅𝑃𝑆 =

𝐶𝑅𝑃𝑆𝑎𝑣𝑒,𝐸𝑛𝑠

𝐶𝑅𝑃𝑆𝑎𝑣𝑒,𝑂𝐿

 (S3-12) 

Further, the mean value of RRMSE for multiple flood events is denoted as MRCRPS. 

S3.4. Reliability part of continuous ranked probability score (RELI) 95 

The CRPS, as a composite indicator, can be decomposed into several distinct components. Among these, the reliability part, 

denoted as RELI, shares similarities with the performance of the Rank Histogram, effectively quantifying the reliability of the 

ensemble (Hersbach, 2000): 

 𝑅𝐸𝐿𝐼𝑎𝑣𝑒 = ∑ 𝑔𝑎𝑣𝑒,𝑛

𝑁𝑒

𝑛=0

(𝑜𝑎𝑣𝑒,𝑛 − 𝑝𝑛)2 (S3-13) 

When 0 < 𝑛 < 𝑁𝑒: 

 𝑜𝑎𝑣𝑒,𝑛 =
𝛽𝑎𝑣𝑒,𝑛

𝛼𝑎𝑣𝑒,𝑛 + 𝛽𝑎𝑣𝑒,𝑛

 (S3-14a) 

 𝑔𝑎𝑣𝑒,𝑛 = 𝛼𝑎𝑣𝑒,𝑛 + 𝛽𝑎𝑣𝑒,𝑛 (S3-14b) 

When 𝑛 = 0: 100 

 𝑜𝑎𝑣𝑒,0 =
1

𝑁𝑡

∑ 𝐹𝐻(�́�𝑡,1
𝑠𝑖𝑚 − 𝑦𝑡)

𝑁𝑡

𝑡=1

 (S3-15a) 

 𝑔𝑎𝑣𝑒,0 =
𝛽𝑎𝑣𝑒,0

𝑜𝑎𝑣𝑒,0

 (S3-15b) 

When 𝑛 = 𝑁𝑒: 

 𝑜𝑎𝑣𝑒,𝑁𝑒
=

1

𝑁𝑡

∑ 𝐹𝐻(�́�𝑡,𝑁𝑒
𝑠𝑖𝑚 − 𝑦𝑡)

𝑁𝑡

𝑡=1

 (S3-16a) 

 𝑔𝑎𝑣𝑒,𝑁𝑒
=

𝛼𝑎𝑣𝑒,𝑁𝑒

1 − 𝑜𝑎𝑣𝑒,0

 (S3-16b) 

where FH(.) is the Heaviside function. 

Denote the ratio of RELIave between the assimilated system and the OL as: 

 
𝑅𝑅𝐸𝐿𝐼 =

𝑅𝐸𝐿𝐼𝑎𝑣𝑒,𝐸𝑛𝑠

𝑅𝐸𝐿𝐼𝑎𝑣𝑒,𝑂𝐿

 (S3-17) 

Further, the mean value of RRELI for multiple flood events is denoted as MRRELI. 

S4. Data Overview 105 

This hydro-meteorological data utilized in the study spanning from 2014 to 2023, provided by the Hunan Provincial 

Hydrological Bureau, including evaporation, precipitation, and discharge data. Within the catchment, there are 17 rain gauges, 

one evaporation observation station, and four discharge observation stations. Evaporation data are derived from daily pan 

evaporation measurements using the E-601 pan, with hourly values calculated as 1/24th of the daily measurements. Notably, 



 

 

with only one evaporation observation station in the catchment, it is assumed that the observed evaporation is spatially uniform. 110 

When multiple rain gauges exist within a sub-catchment, the area-averaged rainfall is calculated as the arithmetic mean of all 

gauge observations. For discharge observation stations, Wuqiangxibashang (WQXBS) serves as the outlet observation station, 

while the remaining three stations Hexi (HX), Pushi (PS), and Gaochetou (GCT) measure inflow. Hourly observations of 

precipitation and discharge are intermittent, thus hourly data are only available during flood events, with daily data available 

at other times. Fifteen flood events from 2014 to 2018 were used for model calibration, and fourteen events from 2019 to 2023 115 

for model validation. Considering soil moisture data availability, six flood events in 2023 were used for assimilation studies. 

For an overview of these flood events, refer to Table S3-1. 

Table S4-1. List of flood events investigated in this study 

 Serial number  Start date End date Observed Peak flow (m3/s) 

ca
li

b
ra

ti
o

n
 

No.2014052300 2014/05/23 00:00 2014/05/27 20:00 17356 

No.2014070300 2014/07/03 00:00 2014/07/06 08:00 22705 

No.2014071400 2014/07/14 00:00 2014/07/19 00:00 35725 

No.2015060121 2015/06/01 21:00 2015/06/07 01:00 17762 

No.2015060718 2015/06/07 18:00 2015/06/10 18:00 12017 

No.2015062023 2015/06/20 23:00 2015/06/24 09:00 19196 

No.2016050703 2016/05/07 03:00 2016/05/11 06:00 13051 

No.2016062017 2016/06/20 17:00 2016/06/21 21:00 12472 

No.2016062720 2016/06/27 20:00 2016/06/30 03:00 14996 

No.2016070311 2016/07/03 11:00 2016/07/08 12:00 22278 

No.2017052208 2017/05/22 08:00 2017/05/25 19:00 8872 

No.2017062711 2017/06/27 11:00 2017/07/05 12:00 32147 

No.2017081121 2017/08/11 21:00 2017/08/16 00:00 13091 

No.2018053010 2018/05/30 10:00 2018/06/03 16:00 7348 

No.2018092518 2018/09/25 18:00 2018/09/27 05:00 8518 

v
al

id
at

io
n
 

No.2019051905 2019/05/19 05:00 2019/05/22 00:00 14024 

No.2019070700 2019/07/07 00:00 2019/07/16 12:00 14046 

No.2020070800 2020/07/08 00:00 2020/07/09 18:00 25963 

No.2020071823 2020/07/18 23:00 2020/07/20 16:00 18688 

No.2020091500 2020/09/15 00:00 2020/09/21 08:00 20829 

No.2021050300 2021/05/03 00:00 2021/05/05 00:00 8021 

No.2021051112 2021/05/11 12:00 2021/05/27 00:00 13347 

No.2021060300 2021/06/03 00:00 2021/06/07 00:00 8391 

No.2023040308 2023/04/03 08:00 2023/04/05 14:00 6192 

No.2023050416 2023/05/04 16:00 2023/05/06 17:00 4747 

No.2023052008 2023/05/20 08:00 2023/05/22 18:00 5660 

No.2023062100 2023/06/21 00:00 2023/06/25 19:00 6940 

No.2023063000 2023/06/30 00:00 2023/07/01 14:00 9317 

No.2023072516 2023/07/25 16:00 2023/07/27 18:00 8449 



 

 

a The flood events utilized for assimilation research are indicated by bold text with an underline. 

The Wuqiangxi Catchment houses 10 soil moisture monitoring sites, established between 2018 and 2023. Of these, eight sites 120 

have sensing depths of 20, 40, and 60 cm, with observations taken every 2 hours. The remaining two stations have depths of 

10, 20, and 40 cm, with observations every 8 hours. For detailed information about these soil moisture monitoring sites, refer 

to Table S3-2. In the absence of a monitoring site in the No.6 sub-basin, we utilize data from the Daheping station, situated in 

the No.3 sub-basin, due to its close spatial proximity. 

Table S4-2. List of soil moisture monitoring sites 125 

Sub-

basin 

Soil moisture monitoring 

sites 

Sensing depths 

(cm) 

Start date of data 

availability 

Observation interval 

(h) 

1 Wuqiangxi 20/40/60 2022/10/09 2 

1 Qijiaping 20/40/60 2022/10/09 2 

2 Qinglang 20/40/60 2022/10/09 2 

3 Daheping 20/40/60 2022/11/22 2 

4 Madiyi 20/40/60 2022/10/28 2 

5 Guanzhuang 20/40/60 2022/10/09 2 

6 Daheping 20/40/60 2022/11/22 2 

7 Gaoqitou 20/40/60 2023/01/12 2 

8 Yuanling 20/40/60 2023/01/12 2 

9 Maxipu 10/20/40 2019/01/01 8 

10 Pushi 10/20/40 2018/01/01 8 

The soil moisture reanalysis data, sourced from the China Meteorological Administration Land Data Assimilation System 

(CLDAS V2.0) near-real-time dataset (https://data.cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0_NRT.html), released 

by the China Meteorological Administration. It has a spatial resolution of 0.0625° and a temporal resolution of one day, 

providing profile soil moisture across four layers (0-10 cm, 10-40 cm, 40-100 cm, 100-200 cm) from 2017 onwards (Liu et al., 

2019). This study utilizes data on the top three soil layers (0-10 cm, 10-40 cm, 40-100 cm) from 2018 to 2023. 130 

The DEM data were downloaded from the Geospatial Data Cloud (https://www.gscloud.cn/sources/accessdata/305?pid=302), 

selecting the SRTM digital elevation model with a resolution of 90 m. The soil texture map was sourced from the Harmonized 

World Soil Database version 1.2 (HWSD V1.2) (https://www.fao.org/soils-portal/data-hub/soil-maps-and-

databases/harmonized-world-soil-database-v12/en/), with a spatial resolution of approximately 1 km (30 arc-seconds). This 

study utilizes data on the percentage of sand and clay in the topsoil (0-30 cm) and subsoil (30-100 cm) layers, along with 135 

USDA soil texture classification data. 
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