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Abstract. Assimilating either soil moisture or streamflow individually has been well demonstrated to enhance the simulation 15 

performance of hydrological models. However, the runoff routing process may introduce a lag between soil moisture and 

outlet discharge, presenting challenges in simultaneously assimilating the two types of observations into a hydrological 

model. The Asynchronous Ensemble Kalman Filter (AEnKF), an adaptation of the Ensemble Kalman Filter (EnKF), is 

capable of utilizing observations from both the assimilation moment and preceding periods, thus holding potential to address 

this challenge. Our study first merges soil moisture data collected from field soil moisture monitoring sites with China 20 

Meteorological Administration Land Data Assimilation System (CLDAS) soil moisture data. We then employ the AEnKF, 

equipped with improved error models, to assimilate both observed outlet discharge and the merged soil moisture data into 

the Xin'anjiang model. This process updates the state variables of the model, aiming to enhance real-time flood forecasting 

performance. The testing on both synthetic and real-world cases demonstrates that assimilation of these two types of 

observations simultaneously substantially reduces the accumulation of past errors in the initial conditions at the start of the 25 

forecast, thereby aiding in elevating the accuracy of flood forecasting. Moreover, the AEnKF with the enhanced error model 

consistently yields greater forecasting accuracy across various lead times compared to the standard EnKF. 

1 Introduction 

Floods, among the most frequent natural disasters, significantly affect infrastructure and agricultural yields and may even 

directly endanger the lives of local residents (Johnson et al., 2020). The destructiveness of flash floods is particularly notable. 30 

In recent decades, flash floods triggered by localized torrential rains have frequently resulted in significant human casualties 
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(Pilon, 2002). Short-term flood forecasting, a vital non-structural approach to flood mitigation, plays a crucial role in 

facilitating emergency responses in flood-prone regions (Craninx et al., 2021). Hydrological models are instrumental in flood 

forecasting, utilizing mathematical and physical representations to analyze the various components of the catchment 

hydrological processes, including precipitation, evaporation, and runoff, as well as their interplay. This understanding aids in 35 

comprehending catchment hydrological characteristics and trends, crucial for simulating and forecasting hydrological 

processes. The Xin'anjiang model, extensively applied in operational short-term flood forecasting in China, stands as one of 

the well-known semi-distributed hydrological models. Its broad applicability, especially in the humid and semi-humid 

climate zones of the Yangtze River Basin, has been substantiated by extensive studies (e.g. Fang et al., 2017; Gong et al., 

2021; Zang et al., 2021). 40 

However, in hydrological simulations, multiple sources of uncertainty, such as uncertainties in model inputs, structure, and 

parameters, can significantly affect the accuracy of the simulations (Beven, 1993; Ajami et al., 2007). In short-term flood 

forecasting, an additional process, often referred to as the real-time correction process, is typically employed to mitigate 

these uncertainties. A notable strategy in real-time correction involves the recursive adjustment of the hydrological model's 

state variables based on available real-time observational data. It helps reduce the error accumulation in the initial conditions 45 

of hydrological model, a factor that has been identified as a primary source of uncertainty at the start of flood forecasting 

(Shukla and Lettenmaier, 2011; Yossef et al., 2013; Thiboult et al., 2016). This process is sometimes termed hydrological 

data assimilation in literature (e.g. Clark et al., 2008). The Ensemble Kalman Filter (EnKF) (Evensen, 2003), which 

integrates ensemble forecasting concepts with Kalman filter and employs Monte Carlo methods for error statistic prediction, 

effectively addresses the inability of Kalman filtering to handle nonlinear systems. Its robustness, flexibility, and ease of use 50 

have led to its widespread application in hydrological data assimilation (Clark et al., 2008; Liu et al., 2012; Rakovec et al., 

2012; Piazzi et al., 2021). 

Data assimilation typically falls into two categories: synchronous and asynchronous methods. Synchronous methods depend 

solely on observational data at a specific update moment, while asynchronous methods broaden this scope by incorporating 

data over a time frame, including both current and preceding time steps (Sakov and Bocquet, 2018). This distinction is 55 

particularly crucial in sequential assimilation, where commonly employed sequential filters like the EnKF utilize a 

synchronous strategy. Conversely, the asynchronous strategy is predominantly used in smoothers, such as the Ensemble 

Kalman Smoother (EnKS) (Evensen and Van Leeuwen, 2000). While the EnKS augments reanalysis by integrating future 

observational data backwards in time, its forecasting efficacy (including real-time forecasting) aligns with that of the EnKF 

(Evensen, 2009). The intrinsic difference between smoothers and filters is their focus: smoothers assimilate future 60 

observational data, while filters process past observational data (Rakovec et al., 2015). Hence, in hydrological data 

assimilation with a focus on forecasting, filters are generally the preferred choice over smoothers. 

In recent years, researchers have made strides in integrating asynchronous strategies into filters for sequential assimilation. 

This is notably evident in the development of the Four-Dimensional Ensemble Kalman Filter (4D-EnKF) (Hunt et al., 2004) 

and the Four-Dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) (Hunt et al., 2007). The 4D-EnKF stands 65 
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out for its ability to synchronize the timing of observations with lower computational demands, particularly effective in 

linear dynamics. In contrast, the 4D-LETKF builds upon the 4D-EnKF by prioritizing spatial localization and refining the 

handling of nonlinear observation operators. This enhancement renders it more effective and versatile in managing high-

dimensional, chaotic systems, especially in meteorology and climatology. Building on this, Sakov et al. (2010, 2018) 

introduced the asynchronous ensemble Kalman filter (AEnKF). Remarkably, the AEnKF and 4D-LETKF are essentially 70 

equivalent (Sakov et al., 2010), both employing ensemble-based methods to update model states based on observational data. 

The 4D-LETKF processes asynchronous observations by amalgamating them and updating the state via ensemble transform 

matrices. Conversely, the AEnKF accomplishes this by advancing corrections along the forecast system trajectory, utilizing 

ensemble observations from the observation time, thereby efficiently assimilating both past and future data. AEnKF is 

designed to be computationally efficient, which is noted for its relative simplicity in implementation compared to 4D-75 

LETKF. It modifies the standard EnKF by using ensemble observations from the time of observations, a straightforward 

change that does not significantly complicate the assimilation process. The AEnKF technique was first applied by 

Krymskaya (2013) to the problem of history matching in reservoir engineering. The study revealed that AEnKF outperforms 

EnKF in parameter estimation and utilizes the data with similar efficiency. The AEnKF is recognized for its simplicity and 

high computational efficiency, offering significant potential in short-term flood forecasting applications. Despite its promise, 80 

the scope of research in this area is relatively limited. Among the few studies conducted, Mazzoleni et al. (2018) evaluated 

AEnKF assimilation in simplified flow routing models, highlighting its exceptional performance in both lumped and 

distributed flow routing. Tao et al. (2016) summarized the hydrological forecasting test conducted during the 2014 IPHEx-

IOP campaign, proposing a framework for improving flood prediction in mountainous regions through the assimilation of 

discharge data using the AEnKF method, with a focus on enhancing forecast accuracy and reducing uncertainty. In addition, 85 

Rakovec et al. (2015) and our earlier study (Gong et al., 2024) applied the AEnKF to the distributed HBV-96 model and the 

Xin'anjiang model, respectively. These studies examined effectiveness of AEnKF in real-time correction through the 

assimilation of observed discharge in distributed and semi-distributed hydrological models, revealing that AEnKF 

outperforms the standard EnKF. However, these studies assimilate only a single type of observational data (e.g., observed 

discharge) using the AEnKF method, which does not take full advantage of the AEnKF. 90 

In the context of real-time correction processes employing AEnKF, the types of observations to assimilate constitute another 

key factor influencing the effectiveness. Popular observation types currently assimilated include discharge, soil moisture, 

and snow data, among others (Gong et al., 2023). In rainfall-runoff modeling, soil moisture plays a pivotal role in driving the 

runoff generation process (Massari et al., 2014). A wealth of research has demonstrated that updating hydrological model 

states through the assimilation of soil moisture significantly enhances the precision of runoff simulations and forecasts (e.g., 95 

Wanders et al., 2014; Alvarez-Garreton et al. 2015; Chao et al., 2022). These studies typically rely on a single type of soil 

moisture dataset. One of the highlights of our study is that it simultaneously considers the advantages of site observation data 

and soil reanalysis datasets, enhancing both the timeliness and spatial accuracy of the soil moisture data. Specifically, in the 

real-time correction process of flood forecasting, there is a high demand for the timeliness of observational data to swiftly 
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respond to flood events. Satellite remote sensing data and reanalysis products often suffer from delays in data release or 100 

lengthy observational intervals. In contrast, ground-based soil moisture measurements offer high accuracy and timeliness but 

are limited to point-scale data, failing to capture the spatial distribution of soil moisture. To overcome this limitation, the 

Weighted k-Nearest Neighbor (WKNN) algorithm (Pedregosa et al., 2011; Jung et al., 2017) is employed to fuse ground soil 

moisture measurements with reanalysis soil moisture data. This approach involves establishing a regression relationship 

between historical ground and reanalysis data, subsequently generating real-time, spatially distributed, fusion soil moisture 105 

data from current ground observations. On the other hand, discharge observations, due to their direct relevance to flow or 

water level predictions crucial in flood forecasting, are another valuable choice for assimilation. They provide a 

comprehensive view of the hydrological conditions of a catchment. Discharge measurements are often more accessible and 

offer more timely data than soil moisture readings, generally yielding greater reliability (Li et al., 2013). Numerous studies 

have concentrated on assimilating observed discharge data to enhance flood forecasting, showcasing the substantial potential 110 

and impressive effectiveness of this strategy across various regions (e.g., Clark et al., 2008; Sun et al., 2020; Gong et al., 

2023). Given that assimilating soil moisture or discharge alone can provide acceptable results, exploring the simultaneous 

assimilation of both observation types warrants consideration. Previous studies have highlighted the benefits of concurrently 

assimilating various observation types. Techniques such as the EnKF (Meng et al., 2017), Variational Assimilation (VAR) 

(Lee et al., 2011), and Tempered Particle Filter (TPF) (García-Alén et al., 2023) have consistently shown that joint 115 

assimilation generally surpasses the efficiency of single-type assimilation. Although these findings are encouraging, the 

advantage of joint assimilation may not always hold. This is partly because each observation type represents a specific 

hydrological process, with correlations among variables varying across different spatial and temporal scales. For instance, 

soil moisture immediately responds to rainfall, while streamflow responses are inherently delayed due to the time delay in 

the routing process (Meng et al., 2017). Such delays can lead to the accumulation of uncertainties in discharge predictions, 120 

an aspect often overlooked in synchronized assimilation methods. Contrarily, the AEnKF method considers all observational 

data within a specific time window, rather than just a single observation at the update time, effectively considering the time 

delays in routing processes and offering a novel approach for the combined assimilation of diverse observation types. 

However, to our knowledge, there are no existing studies on the performance of AEnKF in assimilating multiple types of 

observational datasets (such as soil moisture and discharge measurements), which could significantly improve the accuracy 125 

of short-term flood forecasting. 

In AEnKF assimilation, ensemble dispersion is achieved by introducing pre-determined noise (commonly zero-mean 

Gaussian noise) into model state variables and forcing data. The models governing these perturbations are termed ‘error 

models’, and their associated parameters are known as ‘hyperparameters’ (Thiboult and Anctil, 2015). Improper handling of 

these uncertainties can potentially impair the efficacy of ensemble-based Kalman filters (Crow and Van Loon, 2006; 130 

Pathiraja et al., 2018). The commonly adopted practice involves setting the hyperparameters of error models based on the 

empirical knowledge of hydrologists or forecasters (e.g., Weerts and El Serafy, 2006; Clark et al., 2008; Sun et al., 2020). 

This approach is highly subjective, resulting in forecast results that may significantly differ among practitioners. The 
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Maximum a posteriori estimation (MAP) method (Li et al., 2014; Gong et al., 2023) represents a Bayesian inference 

technique specifically designed for ensemble-based Kalman filters. This method leverages historical observational data to 135 

objectively estimate the hyperparameters in error models, thereby substantially mitigating the subjectivity associated with 

hyperparameter configuration. Notably, the strengths of MAP method, compared to alternatives like the kernel conditional 

density estimation method (Pathiraja et al., 2018), include its independence from the need for sequential observations to be 

independent. Furthermore, it enables concurrent estimation of hyperparameters across diverse error models, making it 

particularly compatible with the error models employed in AEnKF. Another challenge in AEnKF assimilation is reducing 140 

the systematic biases that arise from perturbations. When creating ensemble dispersion using error models, it is implicitly 

assumed that the introduction of noise will not lead to systematic biases in the model outputs (Ryu et al., 2009). Nevertheless, 

the strong non-linearity of hydrological models and the stringent physical limitations on some state variables mean that even 

zero-mean Gaussian perturbations may result in systematic biases (Alvarez-Garreton et al., 2015). A case in point is soil 

moisture, which must stay below saturation levels. During flooding, when soil moisture approaches saturation, perturbing 145 

this variable risk breaching these physical boundaries. Subsequent corrections made by the hydrological model to align with 

saturation levels may introduce truncation errors in the prediction of the background field. To counter this, our study 

incorporates the Bias-corrected Gaussian Error Model (BGEM) (Ryu et al., 2009), which introduces an unperturbed model 

run in parallel to the ensemble. This unperturbed model is utilized to correct the biases induced by perturbations. Our prior 

research (Gong et al., 2024) has shown that the BGEM is effective in alleviating systematic biases caused by random 150 

perturbations in soil moisture state variables. However, the performance of the AEnKF with these enhanced error models 

when assimilating multiple types of observations has yet to be further tested. 

This study developed an efficient joint data assimilation framework for real-time correction of short-term flood forecasting 

based on AEnKF with improved error models. One of the main highlights of this study is the consideration of the inherent 

limitations of single-source soil moisture data. By fusing ground-based soil moisture measurements with reanalysis data 155 

from the China Meteorological Administration Land Data Assimilation System (CLDAS), the study generates a reliable, 

real-time spatial distribution dataset of soil moisture that aligns with the 8-hour observation intervals of monitoring sites. The 

second highlight is that the AEnKF with improved error models fully accounts for the time delays in routing process, 

enabling effective joint assimilation of soil moisture data and discharge observations. Upon establishing the appropriate 

assimilation time window for the AEnKF with improved error models, the study conducted a detailed comparison between 160 

the joint assimilation scheme and individual assimilation schemes (including the separate assimilation of soil moisture or 

discharge observation data) using synthetic and real-world cases. This comparison effectively underscores the superior 

performance of the joint assimilation framework proposed in this study.  
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2 Methodology and method 

2.1 Hydrological model 165 

The Xin'anjiang model, conceptualized by Zhao (1992), is a distinguished hydrological model, primarily based on a 

saturation excess mechanism. Renowned for its straightforward structure and explicit parameter definitions, this model 

excels in simulating humid catchments, making it a popular tool for flood forecasting in in China. To account for spatial 

variability in rainfall distribution and surface characteristics, the model typically segments a catchment into several sub-

basins. These sub-basins act as computational units for runoff generation and routing.  170 

The Xin'anjiang model demands relatively straightforward driving data, and key inputs include the areal mean rainfall depth 

(P) and pan evaporation (EM) for each sub-basin. The model typically comprises four main components: evapotranspiration, 

runoff production, runoff separation, and flow routing, involving the calibration of 16 distinct parameters. The flow chart of 

the Xin'anjiang model is presented in Fig. 1. Soil evaporation is derived from pan evaporation data using a 'three-layer soil 

moisture module'. The runoff generation is based on a saturation-excess mechanism, where runoff is produced only when the 175 

soil moisture in the unsaturated zone reaches field capacity. The 'lag and route' method calculates the outflow from each sub-

basin. Flow routing from the sub-basin outlets to the total basin outlet employs the Muskingum method to successive sub-

reaches. It is implemented through dividing the channel from each sub-basin outlet to the total basin outlet into varying 

numbers of sub-reaches. These sub-reaches are based on the distance from each sub-basin outlet to the total basin outlet. In 

addition, the basin inflow is directly calculated to the outlet by the Muskingum method. 180 

 

Fig. 1. Flow Chart of Xin'anjiang Model. The variables in the boxes indicate the model state, inputs and outputs, and the symbols 

outside the corresponding blocks are model parameters. 

Zhao (1992) categorized the parameters of Xin'anjiang model into sensitive and non-sensitive groups. In real-world cases, 

non-sensitive parameters are assigned values based on expert judgment, while optimal values for sensitive parameters are 185 



7 

 

derived from historical data using the Shuffled Complex Evolution (SCE-UA) method (Duan et al., 1992). For synthetic 

cases, however, parameters are taken as recommend defaults. Table 1 summarizes these parameters. 

Table 1. Parameters of the Xin'anjiang model 

Parameter a Description 
Synthetic 

cases 

Real-world 

cases  

K the ratio of potential evapotranspiration to pan evaporation 1.00 0.95 

C Evapotranspiration coefficient of deeper layer 0.13 0.05 

WUM Averaged tension water capacity of upper layer (mm) 12.5 19.9 

WLM Averaged tension water capacity of lower layer (mm) 75.0 64.4 

B Exponent of the tension water capacity curve 0.40 0.38 

WM Averaged tension water capacity (mm) 125.0 119.8 

IM Percentage of impervious areas in the catchment 0.01 0.03 

SM Averaged free water storage capacity (mm) 30.0 16.7 

EX Exponent of the free water capacity curve 1.25 1.50 

KI Daily outflow coefficient of free water storage to interflow 0.35 0.02 

KG Daily outflow coefficient of free water storage to groundwater 0.35 0.68 

CI Daily recession constant of the interflow storage 0.70 0.52 

CG Daily recession constant of the groundwater storage 0.99 0.93 

CS Daily recession constants of channel network storage 0.50 0.88 

LAG Lag in time (h) 0 1 

XE Parameters of the Muskingum method 0.25 0.01 

a Parameters in bold and underline text indicate sensitive parameters. 

2.2 Asynchronous Ensemble Kalman filter 190 

The Asynchronous Ensemble Kalman Filter (AEnKF) represents a straightforward enhancement of the Ensemble Kalman 

Filter (EnKF), utilizing the same assimilation framework as EnKF. We follow the notation of Ide et al. (1997) and Vetra-

Carvalho et al. (2018) as closely as possible, aiming to make our paper accessible and practical for both data assimilation 

specialists and a broader audience interested in applying these methods. To this end, the dimension of the state space, 

observation space is denoted as 𝑁𝑥  and 𝑁𝑦 . Further, the time index is always denoted in parentheses to the right of the 195 

variable, i.e. (.)(𝑡𝑖). Notably, the observational data are categorized into two types: the observed discharge at the catchment 

outlet and soil moisture across sub-basins. During an ensemble run of the dynamic model, the assimilation process has two 

steps: the soil moisture observations are used to update the soil states, and the discharge observations are used to update 

cumulative channel flow. Consequently, for each assimilation process, the values of 𝑁𝑦 can differ, and the same applies to 

𝑁𝑥.  200 
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2.2.1 Ensemble Kalman filter 

At a given time 𝑡𝑖, we define the model state vector as 𝒙(𝑡𝑖) ∈ ℛ
𝑁𝑥  and the observation vector as 𝒚(𝑡𝑖) ∈ ℛ

𝑁𝑦. In the EnKF 

framework, it is crucial to generate a set of independent model state vectors. These vectors constitute an ensemble matrix, 

denoted as 𝑿(𝑡𝑖) ∈ ℛ
𝑁𝑥×𝑁𝑒 , where 𝑁𝑒  is the total number of the ensemble members. The initial 𝑿(0) is obtained by the 

Monte Carlo method. 205 

The state transfer equation at the forecast step is represented by 

𝒙𝑗
𝑓
(𝑡𝑖+1) = ℳ[𝒙𝑗

𝑎(𝑡𝑖), 𝑼(𝑡𝑖)] + 𝜼(𝑡𝑖) (1) 

Where ℳ[. ]: ℛ𝑁𝑥 → ℛ𝑁𝑥  signifies the dynamic model, such as the Xin'anjiang model; 𝑼(𝑡𝑖) represents the forcing data 

(including rainfall, evaporation, etc.); 𝜼(𝑡𝑖) ∈ ℛ
𝑁𝑥 symbolizes the process or system noise characterized by a mean of zero 

and a covariance matrix 𝑸(𝑡𝑖). In addition, the subscript ‘j’ signifies the ensemble index, ranging from 1 to 𝑁𝑒 . The 

forecasted values from the dynamic model are marked with a superscript ‘𝑓’, while the analysis (updated) values from the 210 

filter are denoted by a superscript ‘𝑎’. 

During the analysis step, we create a set of new observation vectors by perturbing the original observation vector 𝒚(𝑡𝑖), as 

described by 

 𝒚𝑗
𝒐(𝑡𝑖) = 𝒚(𝑡𝑖) + 𝜺(𝑡𝑖) (2) 

Where 𝒚𝑗
𝒐(𝑡𝑖) ∈ ℛ

𝑁𝑦  represents the perturbed observation vector for the jth ensemble, and 𝜺(𝑡𝑖) ∈ ℛ
𝑁𝑦  is Gaussian noise 

characterized by covariance matrix 𝑹(𝑡𝑖). We assume spatial independence of observation errors, thereby designating 𝑹(𝑡𝑖) 215 

as a diagonal matrix. Furthermore, the state update equation is expressed as follows: 

 𝒙𝑗
𝑎(𝑡𝑖) = 𝒙𝑗

𝑓
(𝑡𝑖) + 𝑲(𝑡𝑖) ∙ (𝒚𝑗

𝒐(𝑡𝑖) −ℋ[𝒙𝑗
𝑓
(𝑡𝑖)]) (3) 

Where ℋ[. ] is the measurement operator that maps the state space to observation space, which is also Xin'anjiang model in 

this study, and 𝑲(𝑡𝑖) is the Kalman gain matrix calculated by the following: 

 𝑲(𝑡𝑖) = 𝑷
𝒇(𝑡𝑖)𝑯

𝑇[𝑯𝑷𝒇(𝑡𝑖)𝑯
𝑇 + 𝑹(𝑡𝑖)]

−1 (4) 

In scenarios where the state space dimensionality, 𝑁𝑥, is substantial, bypassing the direct computation of 𝑷𝒇(𝑡𝑖) in favor of 

calculating 𝑷𝒇(𝑡𝑖)𝑯
𝑇 and 𝑯𝑷𝒇(𝑡𝑖)𝑯

𝑇  emerges as a strategy to enhance computational efficiency, as highlighted by Nerger 220 

and Hiller (2013). 

2.2.2 Asynchronous variant 

AEnKF is based on the concept of joint state-observation space, where the ensemble is replaced by a joint ensemble that 

combines state and observation information. Updating model states involves considering observations from both the current 

and previous time steps, controlled by the assimilation time window, tw. This window defines the duration over which 225 

observations are considered for the analysis, for instance, including data from the previous five hours. Moreover, when 

assimilating only current observations (𝑡𝑤 = 0), the AEnKF reverts to standard EnKF. In the AEnKF, the observation vector 

is altered to: 
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 �̃�(𝑡𝑖) = [𝒚(𝑡𝑖)
𝑇 , 𝒚(𝑡𝑖−1)

𝑇 , … , 𝒚(𝑡𝑖−𝑡𝑤)
𝑇]𝑇 ∈ ℛ(𝑡𝑤+1)∗𝑁𝑦  (5) 

Where �̃�(𝑡𝑖) is the joint observation vector, and �̃�(𝑡𝑖) denotes the covariance matrix of the associated observation noise, 

expressed as a diagonal matrix: 230 

 �̃�(𝑡𝑖) = [

𝑹(𝑡𝑖) ⋯ 0

⋮
𝑹(𝑡𝑖−1)

⋱
⋮

0 ⋯ 𝑹(𝑡𝑖−𝑡𝑤)

] (6) 

Similarly, the model prediction vector from the prior 𝑡𝑤 time steps in the observation space is used to expand the state vector: 

 𝒙𝑗
𝑓
(𝑡𝑖) = (𝒙𝑗

𝑓(𝑡𝑖+1)
𝑇 ,ℋ[𝒙𝑗

𝑓
(𝑡𝑖−1)]

𝑇 ,ℋ[𝒙𝑗
𝑓
(𝑡𝑖−2)]

𝑇 , … ,ℋ[𝒙𝑗
𝑓
(𝑡𝑖−𝑡𝑤)]

𝑇)
𝑇
∈ ℛ𝑁𝑥+𝑡𝑤∗𝑁𝑦 (7) 

Furthermore, the new state definition introduces an augmented observation operator �̃�(𝑡𝑖): 

 �̃� = [

ℋ ⋯ 0

⋮
𝐼𝑖

⋱
⋮

0 ⋯ 𝐼𝑖−𝑡𝑤

] (8) 

Where I, with the corresponding subscript, stands for identity elements on the diagonal, matching the dimensions in Eq. (7).  

Following these augmented equations for 𝒙𝑗
𝑓
(𝑡𝑖), �̃�(𝑡𝑖), �̃�(𝑡𝑖), and �̃�, we can directly apply these augmented variables in 

the EnKF process (Section 2.1.1) to implement the AEnKF assimilation. Crucially, in the joint state vector �̃�𝑗
𝑓
(𝑡𝑖), model 235 

prediction vectors within the observation space, such as 𝓗[𝒙𝑗
𝑓(𝑡𝑖−1)] and others, are considered diagnostic variables instead 

of state variables. As a result, they are not updated during the analysis step. Specifically, in Eq. (3), only the first 𝑁𝑥 

elements of the vector 𝒙𝑛,𝑡 are calculated, while others are disregarded. 

2.3 Error estimation 

Both the EnKF and its variant, update model states by employing a weighted average of observational data and model 240 

forecasts. This process highlights the crucial role of model and observational errors in determining the effectiveness of the 

assimilation system. Particularly in rainfall-runoff modeling, where uncertainties in both model and observations are 

inherently ambiguous, generalizing these uncertainties is instrumental in acquiring refined approximations of suboptimal 

model states. A common technique involves adding unbiased noise to observations, model forcing and model states. 

Observations involved in this study include discharge at catchment outlet and observed soil moisture. We generalize the 245 

observational errors as Gaussian perturbations related to the corresponding observed values (Weerts and El Serafy, 2006; 

Clark et al., 2008; Alvarez-Garreton et al., 2015). Given that rainfall serves as the most critical input information for the 

hydrological model, we employ log-normal multiplicative perturbations to describe the errors associated with rainfall, 

thereby representing the uncertainty in model forcing (McMillan et al., 2011; DeChant and Moradkhani, 2012). Moreover, 

we introduce a first-order autoregressive model to represent the temporal correlation within the observational errors and the 250 

forcing errors. 
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In the assimilation of observed discharge at catchment outlet, the key model state variable updated is cumulative channel 

flow. This variable represents the outflow from each sub-basin on the routing calculation unit (sub-reaches in this study), 

denoted as 𝑄𝐶. As Li et al. (2014), this state variables are perturbed using a Gaussian function. When assimilating observed 

soil moisture, the model state variables representing soil humidity need to be updated. Specifically, this refers to the tension 255 

water storage (including upper, and lower layer tension water) and the free water storage in the Xin'anjiang model. In the 

Xin'anjiang model, the soil moisture state variables receive physical constraints. The free water storage (denoted as S) 

reflects the soil moisture in the topsoil layer, specifically the humus layer (Yao et al., 2012). Therefore, it is assumed that the 

free water storage can be considered to range between the saturation moisture content and the field capacity, with its upper 

limit controlled by the parameter SM and the lower limit set to zero. On the other hand, the tension water storage (denoted as 260 

W) represents the soil moisture throughout the entire soil profile, encompassing the whole unsaturated zone (Yao et al., 

2012). Consequently, the tension water storage is considered to vary between the field capacity and the wilting point, with its 

upper limit governed by the parameter WM and the lower limit being zero. The WU, WL, and WD represent the upper, lower, 

and deep layer tension water storage, respectively, with their upper limits controlled by the parameters WUM, WLM, and 

WDM, and 𝑊𝑀 = 𝑊𝑈𝑀 +𝑊𝐿𝑀 +𝑊𝐷𝑀 . When the variables approach the upper or lower limit, the Gaussian 265 

perturbations may cause it to violate the physical constraints. If the hydrological model corrects it, it will lead to the 

truncation error in the background field predictions. We introduce the Bias-corrected Gaussian Error Model (BGEM) 

proposed by Ryu et al. (2009), aimed at reducing biases that emerge due to adherence to physical constraints.  

The aforementioned error models are controlled by parameters known as ‘hyperparameters’ (Thiboult and Anctil, 2015), 

such as the hyperparameters for Gaussian perturbations are mean and standard deviation. We apply the Maximum a 270 

posteriori estimation method (MAP) to identify the globally optimal values of these hyperparameters (Gong et al., 2023). 

The MAP method aims to maximize the probability density of the hyperparameters with given the observed historical flood 

events. Supplement 1 provides a comprehensive introduction to the implementation of error estimation in this study. 

2.4 Multi-source soil moisture data fusion 

The soil moisture reanalysis data are sourced from the China Meteorological Administration Land Data Assimilation System 275 

(CLDAS) near-real-time dataset (https://data.cma.cn/). While the CLDAS dataset demonstrates a reasonable level of 

accuracy within China, with a regional average correlation coefficient of 0.89, a root mean square error of 0.02 m³/m³, and a 

bias of 0.01 m³/m³ (Wang and Li, 2020), it faces limitations due to missing values in some areas and data latency (published 

with a two-day lag), restricting its application in real-time flood forecasting in small and medium-sized catchments. On the 

other hand, ground station measurements offer high precision and timeliness (real-time data) but represent point-scale soil 280 

moisture, while the Xin'anjiang model simulates soil moisture as areal averages for sub-basin, necessitating consideration of 

spatial scale effects. To bridge this gap and assimilate soil moisture observations into the Xin'anjiang model, this study 

employs weighted k nearest neighbor (WKNN) algorithm (Pedregosa et al., 2011) to merge CLDAS soil moisture data 

(hereinafter referred to as CLDAS) with in-suit soil moisture data collected from monitoring sites (hereinafter referred to as 
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IN-SUIT). This method generates real-time, spatially distributed soil moisture data, based on in-situ observations and the 285 

spatial distribution from the CLDAS dataset, ensuring compatibility with the tension water storage and free water storage in 

the Xin'anjiang model. 

The Harmonized World Soil Database (HWSD) provides soil texture map for two layers: 0-30 cm (topsoil layer, T) and 30-

100 cm (subsoil layer, S). Initially, using the technique by Reynolds et al. (2000), soil transfer functions (PTFs) are applied 

to the grid of soil texture map. This process involves estimating wilting point 𝜃𝑤𝑝, field capacity 𝜃𝑓𝑐, and saturation moisture 290 

content 𝜃𝑠  for each grid layer based on its soil clay and sand percentage contents, along with USDA soil texture 

classification. In this study, we assume that the soil moisture constants for each sub-basin are the arithmetic average of the 

grid-scale soil moisture constants within the corresponding areas. 

In the Xin'anjiang model, tension water capacity (WM), corresponding to available water capacity, is defined as the moisture 

content between the wilting point and field capacity, thus representing the thickness of the unsaturated zone. Free water 295 

capacity (SM) is defined as the moisture content between field capacity and saturation moisture content, relating to the 

thickness of the humus soil layer. Accordingly, we define a conceptual soil profile in the Xin'anjiang model, where the soil 

profile of tension water is divided into upper, lower, and deep layers. The capacity of each layer is calculated as:  

 𝑾𝑳 =
𝑾𝑾𝑴

(𝜃𝑓𝑐 − 𝜃𝑤𝑝)
 (9) 

Where 𝑾𝑳 is the soil profile thickness matrix of tension water, 𝑾𝑳 = (𝑊𝑈𝐿,𝑊𝐿𝐿,𝑊𝑊𝐿), representing the thickness of the 

upper, lower, and entire soil profile of tension water in mm, respectively, and 𝑾𝑾𝑴 = (𝑊𝑈𝑀,𝑊𝐿𝑀,𝑊𝑀). Similarly, the 300 

thickness of the conceptual soil profile of free water is calculated as: 

 𝑆𝐿 =
𝑆𝑀

(𝜃𝑠 − 𝜃𝑓𝑐)
 (10) 

Subsequently, linear interpolation is used to adjust the IN-SITU data and CLDAS reanalysis soil moisture data, both at 

varying depths, to match the thickness of the conceptual soil profile. This step is followed by the calculation of tension and 

free water storage, derived from the transformed IN-SITU and CLDAS data. The calculation formula is as follows: 

 

{
 
 

 
 
𝑾𝑶𝑩𝑖 = (𝜽_𝑾𝑳𝑖 − 𝜃𝑤𝑝) ×𝑾𝑳

′

𝑾𝑳′ = (
𝑊𝑈𝐿 0 0
0 𝑊𝐿𝐿 0
0 0 𝑊𝑊𝐿

)

 (11a) 

 𝑆𝑂𝐵𝑖 = (𝜃_𝑆𝐿𝑖 − 𝜃𝑓𝑐) × 𝑆𝐿 (11b) 

Where, 𝑆𝑂𝐵 and 𝑾𝑶𝑩 = (𝑊𝑈𝑂𝐵,𝑊𝐿𝑂𝐵,𝑊𝑊𝑂𝐵) respectively represent the free water storage and tension water storage 305 

at various layers, derived from observation data. These are referred to as the observed free water storage and observed 

tension water storage. 𝜽_𝑾𝑳 = (𝜃_𝑊𝑈𝐿, 𝜃_𝑊𝐿𝐿, 𝜃_𝑊𝑊𝐿)  and 𝜃_𝑆𝐿  indicate the soil moisture contents after linear 

interpolation to the respective conceptual soil profile thicknesses. The subscript 𝑖 indicates different data sets, namely IN-

SUIT or CLDAS. 



12 

 

Finally, using the WKNN method, soil moisture data from the IN-SUIT dataset is integrated with the CLDAS dataset. The 310 

specific implementation steps are as follows:  

(1) Normalize the observed free water content and observed tension water content from the dataset using the min-max 

normalization method. Denote the normalized observation vector as 𝑷𝑺𝑴: 

 𝑷𝑺𝑴𝒊 = (𝑾𝑶𝑩𝒊
′ , 𝑆𝑂𝐵𝑖

′) (12) 

(2) The Minkowski distance is used to measure the proximity between the IN-SUIT data under evaluation and historical 

samples. A smaller distance indicates a closer match between the evaluated soil moisture content and the historical sample. 315 

The distance is calculated as follows: 

 𝑑 = (∑|𝑝𝑠𝑚IN−SUIT,𝑗
𝑅𝑇𝐷 − 𝑝𝑠𝑚IN−SUIT,𝑗

𝐻𝐷 |𝑝
𝑛

𝑗=1

)

1/𝑝

 (13) 

Where, 𝑝𝑠𝑚IN−SUIT,𝑗 represents the jth element of the vector 𝑷𝑺𝑴IN−SUIT; n is the dimension of 𝑷𝑺𝑴IN−SUIT. Superscript 

RTD stands for the data under evaluation, and HD denotes historical data. The distances between the data under evaluation 

and each historical sample are ranked in ascending order. The K nearest historical samples are then selected as reference 

indices based on this principle. 320 

(3) The inverse distance weighting method is used to calculate the final observed free water storage and observed tension 

water storage based on the K nearest historical samples: 

 ω𝑚 =
1

𝑑𝑚
∑

1

𝑑𝑚

𝐾

𝑚=1

⁄  (14a) 

 𝑷𝑺𝑴𝑅𝐺𝐶 = ∑ 𝜔𝑚𝑷𝑺𝑴𝐶𝐿𝐷𝐴𝑆,𝑚

𝐾

𝑚=1

 (14b) 

Where, 𝑷𝑺𝑴𝑅𝐺𝐶  is the normalized merged observational soil moisture vector; ω represents the inverse distance weights; 

𝑷𝑺𝑴𝐶𝐿𝐷𝐴𝑆,𝑚 is the normalized CLDAS observation data vector corresponding to the m-th sample. The merged observed 

tension water storage 𝑾𝑶𝑩𝑅𝐺𝐶 = (𝑊𝑈𝑂𝐵𝑅𝐺𝐶 ,𝑊𝐿𝑂𝐵𝑅𝐺𝐶 ,𝑊𝑊𝑂𝐵𝑅𝐺𝐶) and merged observed free water storage 𝑆𝑂𝐵𝑅𝐺𝐶  are 325 

obtained after denormalization 

In this study, the Grid Search (GS) method (Bergstra and Bengio, 2012; Alibrahim and Ludwig,2021) is employed to 

optimize the hyper-parameters K and p, accompanied by a three-fold cross-validation. This approach ensures maximum R-

squared and minimum root mean squared error for the test set, balancing model generalizability with accuracy (Table S2-1). 

For the multi-source soil moisture data fusion, 70% of the historical dataset is used as the training set for model training, 330 

while the remaining 30% serves as the test set to verify model generalization. 
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2.5 Evaluation metrics 

In this study, we use four metrics to assess the assimilation effectiveness, focusing on both optimal single-value and 

ensemble performances, as suggested by McInerney et al. (2020). The optimal single-value performance, indicating the 

highest simulation accuracy, is represented by the ensemble mean values of the simulated discharge. The ensemble 335 

performance evaluation, in contrast, examines the simulated discharge ensemble through the lens of ensemble forecasting, 

covering both the overall performance of ensemble and its reliability. 

For quantitatively assessing the optimal single-value performance, we employ the Normalized Nash-Sutcliffe efficiency 

coefficient (NNSE) (Nossent and Bauwens, 2012) and the root mean squared error (RMSE). The Continuous Ranked 

Probability Score (CRPS), introduced by Hersbach (2000), measures the overall performance of ensemble. The reliability 340 

component of CRPS, denoted as RELI, focuses on assessing ensemble reliability. For these metrics, we use the ratios of 

AEnKF to Open Loop (ensemble run without assimilation), represented as RRMSE, RCRPS, and RRELI. Moreover, the event-

averaged values of these ratios are denoted as MRRMSE, MRCRPS, and MRRELI. The mean value of NNSE for multiple flood 

events is denoted as MNNSE. In synthetic cases, 'synthetic true values' serve as the benchmark for all evaluation metrics, 

while observed values are used in real-world cases. Additional information about these metrics can be found in Supplement 345 

3. 

3 Study areas and data 

The Wuqiangxi catchment (Fig. 2), is located in the middle reaches of the Yuan River, the third-largest tributary of the 

Yangtze River. It covers an area of approximately 8,033 km², with elevations ranging from 42 to 1,396 meters. The 

geographical coordinates of the catchment extend from 109°44′ E to 111°01′ E and from 28°01′ N to 29°07′ N. Situated in 350 

the mid-subtropical monsoon humid climate zone, Wuqiangxi catchment experiences abundant rainfall and rich water 

resources. The average annual precipitation is around 1,400 mm, with uneven distribution throughout the year, 

predominantly during the flood season (March to September). The catchment, located in the subtropical evergreen and 

deciduous broadleaf forest belt, features dense vegetation, predominantly forests and grasslands. The soil texture is primarily 

loamy. For this study, the Wuqiangxi Catchment is divided into 10 sub-basins, each identified by red underlined numbers in 355 

Fig. 2b, ensuring at least one rain gauge in each sub-basin. Among the three discharge stations in the study catchment, 

Wuqiangxibashang provides the outflow data at the outlet, while Hexi and Gaochetou are stations that provide inflow data 

for the study area. Due to the lack of soil moisture and rainfall data within their controlled areas, the control areas of Hexi 

and Gaochetou are not included in the study. For an overview of the data used in this study, please see Supplement 4. 
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 360 

Fig. 2 Study catchment. (a) Digital Elevation Map (DEM); (b)Sub-basins and observation stations; (c) Soil texture (0 to 30 cm); (d) 

Soil texture (30 to 100 cm). 
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4 Experimental setup 

4.1. Warming-up period 

In China, hydrometeorological data are typically reported at sub-daily intervals during flood periods and on a daily basis 365 

otherwise, to support flood forecasting and water resource management. The Xin'anjiang model operates in two modes to 

meet these needs: it uses hourly simulations for flood forecasting and daily simulations for managing water resources. The 

hourly simulations require initial soil moisture for each sub-basin, which are derived from the daily simulations (Chen et al., 

2023). Consequently, a daily simulation must be performed prior the hourly simulation, starting at least four months earlier 

to allow for a sufficient warming-up (spin-up) period. This period enables the soil moisture simulated daily, driven by 370 

observed hydrometeorological data, to gradually approaches actual soil moisture (Kim et al., 2018). As long as the warming-

up period is adequately long, the influence of initial soil moisture on the daily simulation becomes minimal by the end of 

warming-up period, allowing soil moisture for daily simulation to be used as initial conditions for hourly simulation (Yao et 

al., 2012). The daily simulation in this study began on February 10, 2014. Testing showed that even in extreme cases where 

the initial soil moisture in the daily simulation is set to zero or fully saturated, there is almost no impact on the flood 375 

simulation results. So, they can be set arbitrarily within reason. In this study, the initial values for the daily simulation are 

set with the soil moisture content at half of the saturation value, and the sub-reaches outflow is set as the observed discharge 

at the basin outlet on the start date, divided by the total number of sub-reaches. 

4.2. Synthetic cases 

In the synthetic cases, the hydrological model operates on an hourly timestep with a maximum lead time of 24 hours, and 380 

ensemble simulations involve 100 members. The initial soil moisture is set to half of the maximum value. To ensure 

consistency in the length of forecast sequences and the comparability of results, the start time for forecasting the same flood 

event under different lead times is set at the same moment -- specifically, the 24 hours (maximum lead time) after the flood 

start time. To capture peak flows even at the maximum lead time, the start of each flood event is advanced by 24 hours. 

However, due to the lack of hourly observations prior to the actual onset of the flood, data for these initial 24 hours are 385 

derived by interpolating from daily observations. Synthetic data are generated as follows. Firstly, historical flood events are 

utilized to apply the MAP method, producing an optimal hyperparameters set �̂�. Here, �̂�𝑙𝑛𝑝 and �̂�𝑙𝑛𝑝 control the error model 

of forcing data (Supplement 1.1). This introduces random perturbations into hourly rainfall observations, creating a set of 

random rainfall data, referred to as ‘synthetic true rainfall’. Similarly, �̂�𝑦𝑑  and �̂�𝑦𝑑  manage the observation error model 

(Supplement 1.2), perturbing basin inflow to produce a dataset known as ‘synthetic true inflow’. Subsequently, the 390 

Xin'anjiang model, driven by the ‘synthetic true rainfall’ and ‘synthetic true inflow’, along with the recommended 

parameters (see Table 1), outputs state variables (such as tension water storage) and discharge at the catchment outlet for 

each timestep. These outputs are designated as the ‘synthetic true state variables’ and ‘synthetic true discharge’. In the final 

phase, optimal hyperparameter sets (�̂�𝑦𝑠, �̂�𝑦𝑠) and (�̂�𝑦𝑑, �̂�𝑦𝑑) are applied to the observation error model, respectively. This 
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step introduces random perturbations into the ‘synthetic true state variables’ and ‘synthetic true discharge’, resulting in the 395 

creation of ‘synthetic observed state variables’ and ‘synthetic observed discharge’. Specifically, synthetic observations of 

tension and free water storage are employed to update the simulated values in the Xin'anjiang model. On the other hand, 

synthetic discharge observation is utilized for updating cumulative channel flow. Both these assimilation processes are 

conducted at an hourly interval. 

4.3. Real-world cases 400 

In the real-world cases, the timestep and number of ensemble members are the same as in the synthetic cases. Similar to the 

synthetic cases, to ensure the comparability of results, the forecast start time for all lead times is uniformly delayed from the 

flood onset (the earliest available hourly data) by a duration corresponding to the maximum lead time. For some flood events, 

high flow occurred as early as the 9th hour after onset. To avoid missing the peak flow, the maximum lead time is set to 8 

hours. The observational tension water storage 𝑾𝑶𝑩𝑅𝐺𝐶  and free water storage 𝑆𝑂𝐵𝑅𝐺𝐶 , as introduced in Section 2.4, are 405 

used to assimilate the simulated tension and free water storage in the Xin'anjiang model, with an assimilation interval of 8 

hours. Additionally, discharge observation is assimilated into the cumulative channel flow with a 1-hour interval. Note that 

in both the synthetic and real-world cases in this study, we use historical rainfall data as a perfect proxy for rainfall 

prediction with the aim of assessing temporal persistence of the assimilation effect without introducing uncertainty from 

numerical weather prediction. Temporal persistence refers to the duration over which the updating applied to state variables 410 

by AEnKF at the start of forecasting continue to hold in the future. 

By introducing the unbiased perturbations into the model forcing and states, and running the Xin'anjiang model in ensemble 

mode without assimilation, the operation is referred to as Open Loop (OL). In contrast, an ensemble run integrated with the 

AEnKF assimilation is referred to as AEnKF. To reduce the effects of random perturbations on outcomes, each flood event 

in our study is subjected to five repeated ensemble simulations. We then select the simulation corresponding to the median 415 

RMSE in the forecasted discharge as our final outcome. 

5. Results 

5.1. Synthetic Cases 

5.1.1. Hyperparameter estimation for error models 

Most current assimilation methods, while suboptimal for complex hydrological processes, still yield reliable outcomes within 420 

a reasonably characterized uncertainty. Our approach to error characterization, widely adopted in hydrology, involves 

perturbing model forcing, observations, and states from an assumed distribution. We applied the MAP method for global 

hyperparameter optimization, with optimal parameters detailed in Table 2. These optimized hyperparameters are used in 

error models for both synthetic and real-world cases. However, given the limited flood events used for calibration, the 
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hyperparameter optimization, akin to model parameter calibration, might exhibit uncertainty and parameter equifinality, 425 

leading to multiple hyperparameter combinations may produce similar ensemble simulations. 

Table 2. Hyperparameter estimated by MAP method 

Hyperparameter Optimal value 

𝜎𝑦𝑠 0.108 

𝛼𝑦𝑠 0.340 

𝜎𝑦𝑑 0.106 

𝛼𝑦𝑑 0.312 

𝜎𝑙𝑛𝑝 0.482 

𝛼𝑙𝑛𝑝 0.456 

𝜎𝑠 0.058 

𝜎𝑑 0.220 

5.1.2. The time window of AEnKF 

The AEnKF employs observational data from both the current and preceding time periods for assimilation, with the duration 

of the past interval defined by the time window, 𝜔. Determining the optimal duration for assimilating past observations is 430 

critical for the effectiveness of AEnKF. If the time window is set too narrowly, the system might fail to fully capitalize on 

historical data to enhance assimilation precision. On the other hand, an excessively broad time window could lead the 

nonlinear system to incorporate irrelevant information from distant past periods, potentially undermining assimilation 

performance. Therefore, we conducted tests to assess the impact of varying time windows on discharge forecast accuracy. 

Specifically, for soil moisture observations, we explored three different time windows: 𝜔𝑠 = 1 hour, 𝜔𝑠 = 3 hours, and 435 

𝜔𝑠 = 5 hours. Similarly, for discharge observations, we examined time windows 𝜔𝑑 of 1 hour, 3 hours, and 5 hours. To 

facilitate clarity, these assimilation time windows are denoted using dual numerical subscripts. For instance, the AEnKF 

utilizing 𝜔𝑠 = 1 and 𝜔𝑑 = 3 is designated as AEnKF13, and similar nomenclature applies to other configurations. 

The disparity in forecast discharge accuracy across different time windows is presented in Fig. 3. It shows the MNNSE and 

MRRMSE metrics for forecast discharge across lead times of 1 to 24 hours under assorted time window combinations. It's 440 

observed that the performance of the AEnKF varies across these time windows. The most effective assimilation across all 

lead times is achieved with 𝜔𝑠 = 3 and 𝜔𝑑 = 3. It's important to note, however, that even with the least effective time 

windows (𝜔𝑠 = 1 and 𝜔𝑑 = 5), performance of AEnKF still surpasses that of the EnKF. In more detail, the time windows 

for soil moisture and discharge have complex interactions that collectively influence the forecast results for catchment outlet 

discharge. For soil moisture assimilation, a 3-hour window demonstrates the most significant benefits. In terms of NNSE, the 445 

5-hour window outperforms the 1-hour in most cases, except when 𝜔𝑑 = 3, where the reverse is true. In the assimilation of 

outlet discharge, the 3-hour window generally proves most effective, but with a larger soil moisture window (𝜔𝑠 = 5), 

assimilating discharge data with 1-hour window yields the best results. Almost universally, the 1-hour window performs as 
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well as or surpasses the 5-hour window. This indicates that longer assimilation windows do not necessarily yield better 

results. Therefore, for upcoming studies involving synthetic data cases, the AEnKF will utilize assimilation time windows of 450 

𝜔𝑠 = 3 hours and 𝜔𝑑 = 3 hours. 

 

Fig. 3. The forecasted discharge accuracy under various time windows. (a)MNNSE, (b) 𝐌𝐑𝐑𝐌𝐒𝐄. 

5.1.3. Multivariate observation assimilation scheme 

Upon determining the assimilation time window, we meticulously analyzed the variances between three unique AEnKF 455 

assimilation strategies. These include the assimilation of solely observed soil moisture (labeled as AEnKFS), the assimilation 

of solely observed outlet discharge (labeled as AEnKFQ), and a joint assimilation of both two observations types (labeled as 

AEnKFSQ). 

One-step (one-hour) prediction 

In our assessment of one-step prediction of outlet discharge, we examined the optimal single-value performance and 460 

ensemble efficacy of the three schemes. The evaluation of the optimal single-value performance was conducted using NNSE 

and RRMSE as metrics. Fig. 4 (a-h) illustrates the NNSE values during eight flood events in 2023 and 2024 (refer to Table S4-

1).  Significantly, in events No.2023062100 and No.2023072516, the catchment experienced minimal rainfall (only one hour 

of rainfall exceeded 3mm), with the flood dynamics largely driven by basin inflows. Consequently, updates to soil moisture 

within the catchment had no influence on flood progression, and while assimilating observed discharge data slightly 465 

enhanced flood forecasting accuracy, the improvement was minimal and could be considered negligible. Conversely, in the 

other six events where rainfall predominantly influenced the flood dynamics, all three assimilation schemes outperformed 

the OL mode in NNSE scores, indicating improvements in one-step prediction accuracy to varying extents. Among these, 

AEnKFSQ, simultaneously assimilating observed soil moisture and discharge data, notably surpassed the other two schemes. 

This superiority is further supported by the RRMSE statistics in Fig. 4 (i), where the MRRMSE for AEnKFSQ showed a decrease 470 
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of 0.11 and 0.16 compared to AEnKFS and AEnKFQ, respectively. Moreover, soil moisture assimilation and discharge 

assimilation exhibited comparable performances, with only a marginal difference of 0.05 in MRRMSE. 

  

Fig. 4. The optimal single-value performance of three AEnKF assimilation schemes for synthetic cases. (a-h) NNSE, (i) 𝐑𝐑𝐌𝐒𝐄. 
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Subsequently, we conducted an evaluation of the ensemble performance across eight flood events, specifically examining the 475 

overall ensemble performance as measured by CRPS and the ensemble reliability as indicated by the RELI metric. In Fig. 5 

(a), the distribution of RCRPS values are showcased. For AEnKFQ scheme, RCRPS values fluctuated between 0.8 and 1.0, 

averaging at 0.89; for AEnKFS, the range is 0.39 to 1.03 with an average of 0.84; for AEnKFSQ, it varied from 0.29 to 1.01, 

averaging 0.74. This demonstrates an enhancement in overall ensemble performance for all schemes over the OL model, 

particularly for AEnKFSQ, which significantly outshone AEnKFS and AEnKFQ. Further, AEnKFS slightly outperforms 480 

AEnKFQ. The Fig. 5 (b) illustrates the RRELI scores, showing a similar trend of improved ensemble reliability for all three 

schemes over OL. Here, the reliability of AEnKFSQ is notably higher than that of both AEnKFS and AEnKFQ. On the other 

hand, AEnKFS is more reliable compared to AEnKFQ. 

 

Fig. 5. The ensemble performance of three AEnKF assimilation schemes for synthetic cases. (a) 𝐑𝐂𝐑𝐏𝐒, (b) 𝐑𝐑𝐄𝐋𝐈. 485 

Impact on state variables  

Within the context of one-step prediction, Fig. 6 presents the RRMSE for updated state variables of the Xin'anjiang model 

under three distinct assimilation schemes, involving free water storage, tension water storage across upper, lower, and total 

layers, and cumulative channel flow across all sub-basins. As anticipated, in the AEnKFQ scheme, which solely updates the 

cumulative channel flow without involving the runoff generation process, the state variables indicative of soil moisture (S, W, 490 

WU, WL) remain unaffected. This is reflected in Fig. 6 (a-d), where the mean RRMSE values associated with the grey boxes 

hover around 1.0. In the context of cumulative channel flow, AEnKFQ generally achieves a reduction in RMSE relative to 

the OL. 

In the case of AEnKFS, updating the soil moisture impacts both the runoff generation and the subsequent flow routing 

processes, leading to a response in all state variables. Significantly, AEnKFS scheme demonstrates the most substantial 495 
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corrections in free water storage (S), consistently yielding lower RMSE values than the OL scheme in all instances. When 

updating the total tension water storage (W), AEnKFS usually attains lower RMSE values compared to OL. However, this 

effect is less marked than that for free water storage. This is illustrated in Fig. 6 (b) where, except for Event 6 and Event 8, 

the average values associated with the red boxes exceed those in Fig. 6 (a). Contrastingly, updates to the upper and lower 

layers of tension water storage in the AEnKFS scheme produced opposite outcomes, with the RMSE values for these post-500 

updated state variables exceeding those of the OL. This phenomenon can be attributed to the following: Firstly, the initial 

soil moisture values in this study were set at half of their maximum, and during flood periods, saturation-excess runoff 

generation mechanism ensures rapid saturation of both the upper and lower tension water, reaching the maximum limits 

(WUM and WLM). Thereafter, due to the physical upper bounds of these variables, the assimilation process is hindered in 

effectively updating WU and WL values. Consequently, this may lead to a systematic underestimation of these values 505 

compared to actual measurements, and consequently higher RMSE values than OL. In contrast, free water storage, even 

during flood periods, may not persistently reach its maximum (SM), resulting in the most advantageous update effect for it. 

These results highlight the criticality of choosing appropriate state variables for updates in hydrological model state updating, 

particularly when utilizing methods such as AEnKF. 

In the case of AEnKFSQ, the updates to soil moisture state variables show similarities to those in AEnKFS. However, when it 510 

comes to the updates of cumulative channel flow, AEnKFSQ effectively integrates the strengths of both AENKFQ and 

AENKFS, resulting in a more outstanding performance. This outcome suggests that the concurrent assimilation of both soil 

moisture and discharge observations can efficiently utilize the advantages of each, leading to a greater assimilation accuracy 

than the assimilation of a single observation source. 
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 515 

Fig. 6. Effects of three assimilation schemes on state variables. (a) Free water storage (S), (b) Tension water storage (W), (c) Upper 

tension water storage (WU), (d) Lower tension water storage (WL), (e) Cumulative channel flow (QC). 
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Discharge Forecasting 

In our assessment, we analyzed the discharge simulation precision of three assimilation schemes over lead times ranging 

from 1 to 24 hours, aiming to gauge the temporal persistence of the assimilation effect. Fig. 7 (a-h) presents the NNSE for 520 

eight flood events. The events identified as 2023062100 (Fig. 7 d) and 2023072516 (Fig. 7 f) were mainly driven by inflows, 

exhibiting only slight improvements in state updates, and therefore are not included in further discussions. For the events 

identified as No.2023050416, No.2023052008, No.2024040100, and No.2024042900, the NNSE of each assimilation 

scheme exceeded that of OL across all lead times, indicating a consistent assimilation impact lasting up to 24 hours. For the 

event labeled No.2023040308, the temporal persistence for the AEnKFSQ, AEnKFS, and AEnKFQ schemes are noted as 8, 8, 525 

and 2 hours, respectively; in the case of the event marked as No.2023063000, these durations are 5, 4, and 1 hour. 

Importantly, it is noteworthy that even in No.2023063000, despite being the least effective, the NNSE discrepancy between 

AEnKFSQ and OL for lead times exceeding 8 hours remains below 0.02. Furthermore, AEnKFSQ demonstrated superior 

performance in most flood events across all lead times, compared to both AEnKFS and AEnKFQ. The notable exception is 

event No.2023052008, where AEnKFSQ excelles within a 4-hour lead time but slightly lagged behind the other two schemes 530 

beyond this duration. Nevertheless, the variance in NNSE for AEnKFSQ during this event stayed below 0.02. Fig. 7 (i) 

statistically illustrates the RRMSE values. Notably, the MRRMSE for each of the three assimilation schemes remains below 1.0 

for all lead times, signifying that in terms of event averages, each scheme achieves a temporal persistence of up to 24 hours. 

Additionally, the discharge forecast accuracy across nearly all lead times is ranked with AEnKFSQ surpassing AEnKFS, 

which itself exceeds AEnKFQ. 535 
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Fig. 7. Assessment of forecast discharge accuracy across three assimilation schemes during 1 to 24-hour lead times. (a-h) NNSE, (i) 

𝐑𝐑𝐌𝐒𝐄. 

5.2. Real-world Cases 540 

In real-world cases, the sensitive parameters of Xin'anjiang model are calibrated based on historical flood events. After 

global optimization using the SCE-UA, the Xin'anjiang model, equipped with optimally sensitive parameters, exhibited an 

average NSE of 0.88 for the calibration events and 0.75 for the validation events, demonstrating reliable and credible flood 

simulation and forecasting capabilities. 

Considering that soil moisture observations are obtained every 8 hours in real-world cases, as opposed to hourly in synthetic 545 

cases, we have drawn on synthetic case results to establish an assimilation time window for soil moisture as close as possible 

to 3 hours, set at 8 hours. Therefore, 𝜔𝑠 is designated as 8 hours, utilizing only the observations from the current time and 

those from 8 hours earlier for assimilation. For the discharge assimilation, we set the time window to be consistent with the 

synthetic cases, i.e., 𝜔𝑑 = 3  hours. Additionally, guided by the insights from synthetic cases, in real-world cases, we 

incorporate all available soil moisture observations but limit updates to the free water storage component of the Xin'anjiang 550 

model. 

5.2.1. Fusion of in situ data with CLDAS soil moisture data 

The soil moisture data fused using the WKNN model exhibits enhanced timeliness, with the soil moisture in each conceptual 

soil profile aligning closely with that of the CLDAS data (Table 3). Specifically, during the calibration set, the correlation 

coefficients with CLDAS data consistently exceed 0.9. Additionally, the correlation coefficients in the validation set are 0.85, 555 

0.80, 0.84, and 0.75, respectively, indicating that the WKNN model possesses robustness and generalizability. It effectively 

captures the statistical relationship between point-scale and areal-scale soil moisture datasets. 
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Table 3. The correlation coefficient between the fused soil moisture data and CLDAS soil moisture data. 

Sub-basin 
𝑊𝑊𝑂𝐵𝑅𝐺𝐶  𝑊𝑈𝑂𝐵𝑅𝐺𝐶  𝑊𝐿𝑂𝐵𝑅𝐺𝐶  𝑆𝑂𝐵𝑅𝐺𝐶  

Calibration Verification Calibration Verification Calibration Verification Calibration Verification 

1 0.99 0.88 0.98 0.81 0.94 0.92 0.98 0.79 

2 0.95 0.94 0.98 0.80 0.95 0.92 0.98 0.69 

3 0.97 0.80 0.87 0.78 0.97 0.76 0.93 0.83 

4 0.98 0.84 0.86 0.78 0.93 0.72 0.98 0.66 

5 0.98 0.75 0.98 0.86 0.98 0.87 0.90 0.65 

6 0.97 0.88 0.88 0.77 0.83 0.86 0.92 0.79 

7 0.98 0.89 0.97 0.89 0.98 0.90 0.90 0.73 

8 0.99 0.90 0.95 0.93 0.98 0.94 0.98 0.89 

9 0.98 0.89 0.76 0.74 0.84 0.81 0.80 0.70 

10 0.88 0.73 0.78 0.67 0.86 0.72 0.89 0.77 

Average 0.97 0.85 0.90 0.80 0.93 0.84 0.93 0.75 

5.2.2. Multivariate observation assimilation scheme 

Free water storage update 560 

Within the context of one-step prediction, Fig. 8 displays the impact of updating free water storage in three different 

assimilation schemes, quantified by RRMSE. For the AEnKFQ scheme, there is no update to free water storage, leading to 

expected RRMSE values oscillating near 1.0. Conversely, both AEnKFS and AEnKFSQ successfully updated free water states, 

with mean values of RRMSE for free water storage in flood event simulations lying between 0.48 and 0.74. This demonstrates 

a 26% to 52% average reduction in RMSE for free water storage across various flood events, in comparison to the OL mode. 565 

Moreover, Fig. 8 reveals that, in the vast majority of cases, the whiskers (representing 1.5 times interquartile range) of the 

red and blue boxes remain below 1.0. This indicates that both AEnKFS and AEnKFSQ successfully updated the free water 

storage in most sub-basins for most flood events. The effective updates to free water storage will further impact the 

discharge process at the catchment outlet, which will be discussed in detail in the subsequent sections. 
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  570 

Fig. 8. Effects of three assimilation schemes on free water storage (S). 

One-step (one-hour) prediction  

We evaluate the optimal single-value performance of AEnKF in one-step (one hour) prediction. Fig. 9 illustrates the NNSE 

and RRMSE  values achieved through three AEnKF assimilation schemes. In the OL, the mean NNSE stands at 0.75. 

Following assimilation with three schemes, the mean values of NNSE improve to 0.79, 0.78, and 0.81, respectively. The 575 

RRMSE of AEnKFQ fluctuates between 0.78 and 1.0, with an average of 0.88; for AEnKFS, it ranges from 0.71 to 1.02, 

averaging 0.91; and for AEnKFSQ, it varies from 0.64 to 0.99, with an average of 0.84. These results show that all three 

AEnKF assimilation schemes enhance the optimal single-value performance, with AEnKFSQ outperforming AEnKFQ, which 

in turn exceeds AEnKFS. Moreover, AEnKFSQ achieves a higher improvement ceiling in certain flood events. For instance, 

the maximum reduction in RMSE reaches 22% for AEnKFQ, 29% for AEnKFS, and up to 36% for AEnKFSQ. 580 



28 

 

 

 

Fig. 9. The optimal single-value performance of three AEnKF assimilation schemes for real-world cases. (a) NNSE, (b) 𝐑𝐑𝐌𝐒𝐄. 

Fig. 10 utilizes RCRPS  and RRELI  metrics to evaluate overall ensemble performance and reliability. The RCRPS  values for 

AEnKFQ are in the range of 0.81 to 1.0, averaging at 0.90; for AEnKFS, they span from 0.71 to 1.02, averaging 0.92; and for 585 

AEnKFSQ, they vary from 0.66 to 0.98, averaging 0.86. Notably, AEnKFQ exhibits the narrowest boxplot, indicating a more 

focused distribution of RCRPS for this scheme. The average RCRPS for AEnKFS closely aligns with that of AEnKFQ, yet its 

boxplot shows greater breadth at both the top and bottom, suggesting a higher potential for improvement in overall ensemble 

performance but with increased instability. In contrast, the average RCRPS for AEnKFSQ is lower than those of the first two. 

While the boxplot width for AEnKFSQ is similar to that of AEnKFS, the upper boundary of the boxplot aligns more closely 590 

with AEnKFQ, and the upper whisker is shorter than that of AEnKFQ, indicating a comprehensive superiority of AEnKFSQ in 

overall ensemble performance compared to both AEnKFS and AEnKFQ. Similar findings also emerge in the assessment of 

ensemble reliability. AEnKFS and AEnKFQ exhibit similar mean RRELI  values, but the boxplot for AEnKFQ is more 

constricted. In contrast, AEnKFSQ shows a thorough superiority in ensemble reliability compared to both AEnKFS and 

AEnKFQ. 595 
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Fig. 10. The ensemble performance of three AEnKF assimilation schemes for real-world cases. (a) 𝐑𝐂𝐑𝐏𝐒, (b) 𝐑𝐑𝐄𝐋𝐈. 

Temporal persistence of the assimilation effect 

In previous analyses, the performance of three assimilation schemes in one-step prediction received attention. This section 600 

extends the examination to the temporal persistence of assimilation effects for these schemes. Fig. 11 displays discharge 

forecasting accuracy across various lead times, as measured by NNSE and RRMSE. Within a lead time range of 1 to 8 hours, 

both AEnKFS and AEnKFSQ demonstrate improvements in forecasting performance: AEnKFSQ exceeds AEnKFS within both  

lead times. AEnKFQ shows significantly shorter temporal persistence than the other two, slightly outperforming AEnKFS in 

one hour lead time but with a rapid decline in accuracy as lead time increases. Past a 5-hour lead time, the assimilation effect 605 

of AEnKFQ vanishes, leading to accuracy slightly below OL. And at different lead times, AEnKFSQ consistently outperforms 

AEnKFQ. This reveals that employing AEnKF for updating cumulative channel flow may notably enhance discharge 

forecasting accuracy in shorter lead times. While updating free water storage may not be as effective as AEnKFQ initially, it 

ensures a longer-lasting assimilation impact. The scheme of AEnKFSQ merges these strengths, offering robust discharge 

corrections and an extended temporal persistence of assimilation effects. 610 
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Fig. 11. The accuracy of forecasted discharge under different lead time. (a) NNSE, (b) 𝐑𝐑𝐌𝐒𝐄. 

6. Discussion 

6.1 Discussion of AEnKF time window in synthetic cases 

In the study of assimilation windows for AEnKF in synthetic cases, we found that longer assimilation windows do not 615 

necessarily yield better results (Fig. 3). This is primarily because a longer time window includes too much historical 

information, which may have a weak correlation with the current state variables. Due to the nonlinearity of the hydrological 

model, where overly long windows can result in the system assimilating excessive noise, which negates the benefits derived 

from incorporating past observations. Tao et al. (2016) obtained similar results when studying the assimilation window 

length (1-3 hour) for the assimilation of observed discharge only. They found that the 2-hour time window generally yielded 620 

better assimilation results than the 3-hour time window, while the 1-hour time window performed the worst. 

6.2 Discussion of two flood events in real-world cases 

In flood simulation and forecasting, peak flow rates are a primary focus for researchers. Using the two flood events with the 

most significant peak flow errors in the OL mode in 2023 (No.2023040308 and No.2023052008) as case studies, we 

examined the variations in free water storage and discharge at the catchment outlet.  625 

Fig. 12 display the hydrographs simulated for No.2023040308. Black lines (dots) signify observed values. Grey lines and 

bands represent the ensemble mean and range of the OL, respectively. Similarly, green lines and bands illustrate the 

ensemble mean and range for the AEnKF. In examining the time series of free water storage, it is evident that observational 

data points almost never fall within the grey bands of the OL scheme. This indicates a notable difference between the soil 

moisture levels simulated by the Xin'anjiang model and those derived from observational data. Both AEnKFS and AEnKFSQ 630 

exhibit similar update patterns, where the post-update ensemble mean values significantly shift towards observational data. 

Concurrently, this adjustment expands the ensemble bands, indicating an increase in ensemble simulation accuracy for 

AEnKFS and AEnKFSQ, along with an increased ensemble spread. In the analysis of the discharge time series, it becomes 

evident that the ensemble distribution from the AEnKF aligns more closely with observational data and presents a narrower 
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bandwidth than that of the OL. This trend suggests that the ensemble accuracy with AEnKF exceeds that of the OL scheme, 635 

and also demonstrates a reduced ensemble spread. Furthermore, the ensemble distribution observed during peak periods is 

more expansive than during the onset and recession periods of flood. This is attributed to the error models applied. These 

models introduce larger perturbations in the assimilation system during peak periods, leading to a broader ensemble 

distribution, which, in turn, ensures a more effective assimilation during these critical periods. In examining the time series 

of discharge, it is noted that both AEnKFQ and AEnKFS significantly reduced the height of the simulated flood peak. The 640 

AEnKFQ scheme shows effectiveness around the 20th hour, following the assimilation of approximately 20 discharge 

observations, achieving a relative error of 17% in the simulated flood peak (maximum instantaneous flow) compared to the 

observed peak. AEnKFS started effectively updating the discharge following the assimilation of the third group of soil 

moisture observations at the 17th hour, which led to a flood peak relative error of 13%. The AEnKFSQ scheme successfully 

amalgamates the strengths of both, culminating in a reduced flood peak relative error of merely 8%.  645 

 

Fig. 12. Hydrograph during flood event labeled No.2023040308. (a-b) AEnKFQ Scheme, (c-d) AEnKFS Scheme, (e-f) AEnKFSQ 

Scheme. The upper panel shows the discharge at the catchment outlet, and the lower panel displays the free water storage in sub-

basin 1. 

In the case of flood event labeled No.2023052008, as illustrated in Fig. 13, the time series exhibits a similar pattern to No. 650 

2023040308. The peak flooding occurred between the 25th and 33rd hours, which corresponds to the period between the 

fourth and fifth sets of soil moisture observations. During this interval, there is a notable and rapid increase in free water 

storage. Fig. 13 (c) indicates that the AEnKFS fails to effectively adjust the discharge volumes around the peak period. 

Conversely, the AEnKFQ scheme, which focused on updating cumulative channel flow, successfully rectified the peak 

flooding. Owing to the ineffectiveness of free water content updates in discharge correction, the assimilation impact of 655 
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AEnKFSQ closely matched that of AEnKFQ. In summary, it is apparent that AEnKFSQ effectively integrates the strengths of 

both the AEnKFS and AEnKFQ schemes. Even when one of these strategies fails to update effectively, AEnKFSQ still 

manages to enhance the precision of discharge predictions. 

 
Fig. 13. Hydrograph during flood event labeled No.2023052008. (a-b) AEnKFQ Scheme, (c-d) AEnKFS Scheme, (e-f) 660 

AEnKFSQ Scheme. The upper panel shows the discharge at the catchment outlet, and the lower panel displays the 

free water storage in sub-basin 1. 

6.3 Limitations 

The Xin'anjiang model is a conceptual hydrological model that generalizes the rainfall-runoff process. Its most prominent 

feature is performing runoff production calculations based on the saturation-excess runoff mechanism, meaning net rainfall 665 

is first entirely used to replenish soil water, and once the soil moisture content in the unsaturated zone reaches field capacity, 

all subsequent net rainfall is used to generate runoff. Therefore, the Xin'anjiang model is mostly suitable for humid and semi-

humid regions where the saturation-excess runoff mechanism is dominant and is less or not applicable to arid and semiarid 

regions. However, it is important to note that the state updating method proposed in this study is not limited to coupling with 

the Xin'anjiang model. In fact, this method can be easily coupled with any lumped or semi-distributed hydrological model 670 

that includes state variables related to soil moisture and channel storage. When coupled with hydrological models suitable 

for semi-arid and arid regions, it can be effectively applied in those areas. 

Semi-distributed hydrological models, like the Xin'anjiang model used in this study, have smaller state variable dimensions, 

allowing for the direct application of the proposed state updating scheme. However, in distributed models where each 

computational grid (e.g., DEM-based grids) has its own state variables, the state dimension becomes large, making direct 675 

application inefficient or prone to spurious correlations from distant observations. To resolve this, we recommend applying 
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covariance localization (Janjić et al., 2011) to AEnKF or other localization techniques (Khaniya et al., 2022). For instance, in 

covariance localization, a localization radius (RL) is set, and the forecast error covariance matrix is adjusted using a 

correlation matrix derived from the Schur product theorem. This study focuses on jointly assimilating soil moisture and 

streamflow using AEnKF, and performing localization on AEnKF is beyond the scope of this research. We will explore this 680 

further in future work. 

Real-time flood forecasting is a dynamic prediction system based on real-time monitoring data, combined with hydrological 

and/or hydrodynamic models, to predict the evolution of flood processes. It provides critical information such as the time of 

peak flow, water levels, and discharge when a flood occurs. This type of forecasting is characterized by its high timeliness 

and short forecasting window, with the lead time generally set to several hours (e.g., Toth et al., 2000; Liu et al., 2016). The 685 

methods proposed in this study is particularly suited for state updating within real-time flood forecasting, as it dynamically 

updates the state variables of the hydrological model using real-time observational data, reducing the accumulation of errors. 

In real-world cases, we set the maximum lead time to 8 hours, which sufficiently meets the requirements for real-time flood 

forecasting in medium-sized catchments. This provides reliable real-time and near-real-time information for emergency 

responses, assisting government and flood control agencies in organizing evacuations, resource allocation, and reservoir 690 

operations, thereby minimizing casualties and property damage caused by floods. Moreover, to test the temporal persistence 

of the state updating method, we used historical observed rainfall as a perfect proxy for numerical weather forecasts, thereby 

avoiding the introduction of uncertainties from numerical weather predictions. As the lead time increases, uncertainties in 

numerical weather predictions may gradually replace the accumulation of errors in hydrological model state variables as the 

primary source of uncertainty in flood forecasting (Weerts et al., 2006; Yossef et al., 2013; Thiboult et al., 2016). For 695 

medium- to long-term flood forecasts, greater attention may need to be given to uncertainties stemming from numerical 

weather predictions. 

7. Conclusions 

This study uses the Asynchronous Ensemble Kalman Filter (AEnKF) with enhanced error models for assimilating two types 

of observational data into the Xin'anjiang model. The data include observed discharge at catchment outlet and soil moisture 700 

gathered from multiple sources. The objective is to diminish error accumulation in the initial conditions of the Xin'anjiang 

model at the start of flood forecasting, thereby enhancing initial conditions. The assimilation framework includes advanced 

error models, such as the BGEM model to reduce systematic biases from perturbed soil moisture and the MAP method for 

the objective estimation of hyperparameters in the error model. The study specifically contrasts three AEnKF assimilation 

strategies: (1) The AEnKFQ scheme updates cumulative channel flow in the Xin'anjiang model by assimilating observed 705 

outlet discharge; (2) The AEnKFS scheme focuses on updating soil moisture variables in the model by assimilating fused soil 

moisture observations; (3) The AEnKFSQ, a joint assimilation scheme, combines both discharge and soil moisture 

assimilation processes. 
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Generally, the AEnKF is considered an effective approach for updating hydrological model states. It integrates a greater 

amount of observational data while barely increasing the computational burden, making it highly suitable for flood 710 

forecasting. The effectiveness of assimilation with the AEnKF relates to the assimilation time window. Results of synthetic 

data cases indicate that an appropriate setting involves a 3-hour time window for assimilating observed soil moisture and 

outlet discharge. Moreover, in lead times ranging from 1 to 24 hours, this method consistently outperforms the EnKF 

approach. 

In synthetic case studies, while updating soil moisture state variables of the Xin'anjiang model, it is observed that effective 715 

updates are limited to free water storage and total tension water storage. This underscores the significance of choosing 

appropriate state variables for updates in the application of the AEnKF method. Further analysis revealed that with high-

quality, hourly available observational data, all three assimilation schemes maintained their effectiveness for up to 24-hour 

lead time. Notably, AEnKFSQ demonstrated enhanced optimal single-value performance, overall ensemble performance, and 

ensemble reliability, surpassing both AEnKFS and AEnKFQ. Specifically, in the one-step forecast, the MRRMSE for AEnKFSQ 720 

decreased by 0.11 and 0.16 compared to AEnKFS and AEnKFQ, respectively; the MRCRPS for AEnKFSQ decreased by 0.10 

and 0.15, and the MRRELI  decreased by 0.20 and 0.15 compared to AEnKFS and AEnKFQ, respectively. AEnKFSQ's 

advantage in optimal single-value performance persists up to a 24-hour lead time. 

In the real-world case studies, we merged soil moisture data from in-suit monitoring sites with the near-real-time CLDAS 

soil moisture data. This fusion produces spatially distributed data characterized by high temporal immediacy while 725 

addressing the limitation of point-scale in in-suit soil data. Contrasting with experiments using synthetic data, extending soil 

moisture observation intervals to 8 hours impacts the performance of the AEnKFS scheme. In one-step prediction, the 

AEnKFSQ scheme exhibits the highest level of accuracy with the MRRMSE of 0.84. Concurrently, the simulation precision of 

the AEnKFQ scheme exceeds that observed in AEnKFS, with MRRMSE values of 0.88 and 0.91, respectively. Variations in 

results are observed under different lead times. AEnKFSQ and AENKFS consistently demonstrate an assimilation effect 730 

duration of 8 hours, in contrast to the 5-hour temporal persistence of assimilation effect of AENKFQ. The use of AEnKF for 

updating cumulative channel flow markedly enhances the accuracy of discharge forecasting in a brief lead time. In contrast, 

the adjustment extent of discharge by updating free water storage in a single-step forecast might be less than that achieved 

with AEnKFQ. Nevertheless, it guarantees a more sustained assimilation effect. The AEnKFSQ integrates the strengths of the 

previous two strategies, thereby improving discharge forecasting accuracy even when a particular strategy does not update 735 

effectively and prolonging the temporal persistence of the assimilation effect. 
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