
Point-by-point response to Anonymous Reviewer #1 

 
We would like to sincerely appreciate you for the review of our manuscript “State 

updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil 

moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models” 

and the constructive suggestions. We sincerely believe these comments facilitate the 

quality improvement of this manuscript. All the comments have been considered and a 

point-by-point response has been provided below. 

 

The point-by-point response is formatted as follows: 

- Reviewer’s comments are shown in blue 

- Authors’ response are shown in black 

- Authors’ changes in the manuscript are shown in red. The line numbers indicated 

in this response are those in the "Revised Manuscript with no changes marked" 

document 

- The unchanged parts of the manuscript are shown in black 

------------------------------------------------------------------------------------------------------- 

This study provides a comprehensive review of hydrological data assimilation for flood 

simulation (forecasting). It attempts to integrate soil moisture data from various sources 

and jointly assimilate them with runoff observations into a hydrological model. The 

uniqueness of this paper lies in its first-time application of the Asynchronous Ensemble 

Kalman Filter (AEnKF) for such joint assimilation, with a consideration of the temporal 

correlation of observation errors. The paper is well-structured, rich in content, and the 

results are presented clearly, which made it an engaging read for me. Overall, it is a 

well-conducted study. However, there are some areas that could be further improved, 

such as the insufficient discussion of the AEnKF method in the introduction. Below are 

some of my comments and suggestions: 

Response: Thank you very much for your concise paper summary and positive 

feedback on our research. We are honored that our paper has captured your interest. We 

have carefully considered all of your comments and responded them in the subsequent 

specific comments section. 

 



Specific Comments: 

============ 

1. The Asynchronous Ensemble Kalman Filter (AEnKF) is a simple yet effective data 

assimilation method, well-suited for state updating in hydrological models. However, 

the authors have not sufficiently discussed the existing research and applications of the 

AEnKF method. I recommend that the authors emphasize this discussion more 

prominently in the Introduction (page 3). 

Response: Thanks for the helpful suggestion. We have recognized this issue and 

included a discussion on existing research and applications of the AEnKF method in 

the Introduction section of the revised manuscript (LINES 77-90). 

Revised Manuscript LINES 77-90: 

The AEnKF technique was first applied by Krymskaya (2013) to the problem of history 

matching in reservoir engineering. The study revealed that AEnKF outperforms EnKF 

in parameter estimation and utilizes the data with similar efficiency. The AEnKF is 

recognized for its simplicity and high computational efficiency, offering significant 

potential in short-term flood forecasting applications. Despite its promise, the scope of 

research in this area is relatively limited. Among the few studies conducted, Mazzoleni 

et al. (2018) evaluated AEnKF assimilation in simplified flow routing models, 

highlighting its exceptional performance in both lumped and distributed flow routing. 

Tao et al. (2016) summarized the hydrological forecasting test conducted during the 

2014 IPHEx-IOP campaign, proposing a framework for improving flood prediction in 

mountainous regions through the assimilation of discharge data using the AEnKF 

method, with a focus on enhancing forecast accuracy and reducing uncertainty. In 

addition, Rakovec et al. (2015) and our earlier study (Gong et al., 2024) applied the 

AEnKF to the distributed HBV-96 model and the Xin'anjiang model, respectively. 

These studies examined effectiveness of AEnKF in real-time correction through the 

assimilation of observed discharge in distributed and semi-distributed hydrological 

models, revealing that AEnKF outperforms the standard EnKF. However, these studies 

assimilate only a single type of observational data (e.g., observed discharge) using the 

AEnKF method, which does not take full advantage of the AEnKF. 

 

2. The discussion of the advantages of AEnKF should be included in the introduction 

rather than in the methodology section (page 5, Lines 160-163). 

Response: Thanks for the helpful suggestion. We have deleted this section in the 

revised manuscript (LINES 191-192), as the advantages of AEnKF have already been 

discussed in the Introduction. 

Revised Manuscript LINES 191-192: 



The Asynchronous Ensemble Kalman Filter (AEnKF) represents a straightforward 

enhancement of the Ensemble Kalman Filter (EnKF), utilizing the same assimilation 

framework as EnKF. Its uniqueness lies in its capability to assimilate multi-temporal 

observational data, enabling it to effectively incorporate a broader temporal spectrum 

of observations. This feature is particularly advantageous in capturing the dynamic 

nature of hydrological processes over time. 

 

3. It is very interesting that the study considers the temporal correlation of observation 

errors and rainfall errors in data assimilation, as most studies assume these errors are 

independent. Could the authors provide more details on how this was specifically 

implemented? (page 8, Lines 220-222) 

Response: Thank you very much for your comment. We addressed the temporal 

correlation of rainfall and runoff observation errors using a simple first-order 

autoregressive model. By designing an appropriate first-order autoregressive function, 

we ensured that the error model, which accounts for temporal correlation, maintains the 

same mean and standard deviation as the original error model after transformation. 

Please see S1.1 and S1.2 in the Supplement documentation for the details. 

Revised Supplement Part S1.1: 

S1.1. Uncertainty in model forcing 

In flood forecasting, the most critical model driving data is rainfall. We used log-normal 

multiplicative perturbation to characterize rainfall errors (McMillan et al., 2011; 

DeChant and Moradkhani, 2012; Gong et al., 2023):  

 𝑷𝑗
𝑜(𝑡𝑖) = 𝜹𝑷(𝑡𝑖) ∙ 𝑷(𝑡𝑖) (S1-1) 

Where 𝑷(𝑡𝑖) = [𝑃1(𝑡𝑖), … , 𝑃𝑁𝑝
(𝑡𝑖)]𝑻 ∈ ℛ𝑁𝑝 is the rainfall observation vector; 𝑁𝑝 is 

the dimensionality of the rainfall observations; 𝜹𝑷(𝑡𝑖)  is lognormal perturbation 

matrix. The errors in the precipitation measurement are assumed to be spatially 

independent, so that, 𝜹𝑷(𝑡𝑖)  is also a diagonal matrix. The diagonal element is 

𝛿𝑛
𝑃(𝑡𝑖), (𝑛 = 1, … , 𝑁𝑝) , and 𝑙𝑛 𝛿𝑛

𝑃(𝑡𝑖)~𝑁(𝜇𝑙𝑛𝑝, 𝜎𝑙𝑛𝑝)  follows a lognormal 

distribution with the mean of 1.0 and standard deviation of 𝜎𝑝. Additionally, a first-

order autoregressive model is employed to represent the temporal correlation in 

precipitation measurement errors. At each time step, the perturbation is mathematically 

adjusted as follows: 



𝑙𝑛 𝛿𝑛
𝑃(𝑡𝑖) =  𝜇𝑙𝑛𝑝 + 𝛼𝑙𝑛𝑝[𝑙𝑛 𝛿𝑛

𝑃(𝑡𝑖−1) − 𝜇𝑙𝑛𝑝]

+ 𝜑𝜎𝑙𝑛𝑝(1 − 𝛼𝑙𝑛𝑝
2)0.5 

(S1-2) 

Where 𝜇𝑙𝑛𝑝 = −0.5𝜎𝑙𝑛𝑝
2 ; 𝛼𝑙𝑛𝑝  is autocorrelation coefficient for precipitation 

measurement errors. 

Revised Supplement Part S1.2: 

S1.2. Uncertainty in observations 

The observation error is generalized as functions of the corresponding observed values 

(Weerts & El Serafy, 2006; Clark et al., 2008; Alvarez-Garreton et al., 2015): 

 𝒚𝑗
𝒐(𝑡𝑖) = [𝑰 + 𝜹𝒚(𝑡𝑖)] ∙ 𝒚(𝑡𝑖) (S1-3) 

Where 𝒚𝑗
𝒐(𝑡𝑖) ∈ ℛ𝑁𝑦 represents the perturbed observation vector for the jth ensemble. 

𝑰  is identity matrix; 𝜹𝒚(𝑡𝑖)  is Gaussian perturbation matrix. Assuming that the 

observation errors are spatially independent, 𝜹𝒚(𝑡𝑖) ∈ ℛ𝑁𝑦×𝑁𝑦  is a diagonal matrix 

with diagonal elements 𝛿𝑛
𝑦(𝑡𝑖), (𝑛 = 1, … , 𝑁𝑦) . When assimilating soil moisture 

observations, the diagonal elements follow a normal distribution 𝛿𝑛
𝑦(𝑡𝑖)~𝑁(0, 𝜎𝑦𝑠), 

and similarly, 𝛿𝑛
𝑦(𝑡𝑖)~𝑁(0, 𝜎𝑦𝑑)  is used when assimilating discharge observations. 

Furthermore, we employ a first-order autoregressive model to account for the temporal 

correlation in observation errors. At time step 𝑡, the perturbation is adjusted using the 

formula: 

 𝛿𝑛
𝑦(𝑡𝑖) = 𝜇𝑦 + 𝛼𝑦[𝛿𝑛

𝑦(𝑡𝑖−1) − 𝜇𝑦] + 𝜑𝜎𝑦(1 − 𝛼𝑦
2)0.5 (S1-4) 

Where 𝜇𝑦 = 0; 𝜑 is a standard Gaussian noise; 𝜎𝑦 is the standard deviation, which, 

as previously stated, takes the values 𝜎𝑦𝑠  or 𝜎𝑦𝑑 ; 𝛼𝑦  is the autocorrelation 

coefficient, with values of 𝛼𝑦𝑠 when assimilating soil moisture observations, or 𝛼𝑦𝑑 

when assimilating discharge observations. 

 

4. As far as I know, the Xin'anjiang model is based on the saturation-excess theory, 

making it suitable only for regions where this runoff generation mechanism dominates, 

such as humid and semi-humid areas. It is not applicable in regions where infiltration-

excess theory is predominant, such as arid and semi-arid areas. Could the authors clarify 



whether the method proposed in this study is applicable to arid and semi-arid regions? 

(page 9, Lines 251-260) 

Response: Thank you for your discussion of the Xin'anjiang model. We completely 

agree with your view on its runoff generation mechanism. The Xin'anjiang model is 

indeed only suitable for humid regions where the saturation-excess runoff mechanism 

is dominant and is not applicable to arid and semi-arid regions. However, it is important 

to note that the state updating method proposed in this study is not limited to coupling 

with the Xin'anjiang model. In fact, this method can be easily coupled with any 

hydrological model that includes state variables related to soil moisture and channel 

storage. When coupled with hydrological models suitable for semi-arid and arid regions, 

it can be effectively applied in those areas. We have discussed this issue in the 

Discussion section of the revised manuscript (LINES 663-671). 

Revised Manuscript LINES 663-671: 

The Xin'anjiang model is a conceptual hydrological model that generalizes the rainfall-

runoff process. Its most prominent feature is performing runoff production calculations 

based on the saturation-excess runoff mechanism, meaning net rainfall is first entirely 

used to replenish soil water, and once the soil moisture content in the unsaturated zone 

reaches field capacity, all subsequent net rainfall is used to generate runoff. Therefore, 

the Xin'anjiang model is only suitable for humid and semi-humid regions where the 

saturation-excess runoff mechanism is dominant and is not applicable to arid and semi-

arid regions. However, it is important to note that the state updating method proposed 

in this study is not limited to coupling with the Xin'anjiang model. In fact, this method 

can be easily coupled with any lumped or semi-distributed hydrological model that 

includes state variables related to soil moisture and channel storage. When coupled with 

hydrological models suitable for semi-arid and arid regions, it can be effectively applied 

in those areas. 

 

5. How are the initial state values for the daily simulation model set? (page 15, Lines 

363-364) 

Response: Thank you for your comment. In this study, the initial values for the daily 

simulation are set with the soil moisture content at half of the saturation value, and the 

sub-reaches outflow was set as the observed discharge at the basin outlet on the start 

date, divided by the total number of sub-reaches. In fact, after an extended period of 

daily simulation, the initial values of the state variables have a negligible impact on the 

study, so they can be set to any reasonable value. We have emphasized this point in the 

revised manuscript (LINES 371-377). 

Revised Manuscript LINES 371-377: 



As long as the warming-up period is adequately long, the influence of initial soil 

moisture on the simulation at the end of warming-up period, allowing soil moisture for 

daily simulation to be used as initial conditions for hourly simulation (Yao et al., 2012). 

The initial values of the daily simulations have a minimal effect on the hourly 

simulation, so they can be set arbitrarily within reason. In this study, the initial values 

for the daily simulation are set with the soil moisture content at half of the saturation 

value, and the sub-reaches outflow is set as the observed discharge at the basin outlet 

on the start date, divided by the total number of sub-reaches. 

 

6. Why a longer assimilation time window sometimes leads to poorer results. Could the 

authors provide an explanation for this? (page 17, Lines 427-433) 

Response: Thank you for your comment. This is primarily because a longer time 

window includes too much historical information, which may have a weak correlation 

with the current state variables. Including too much historical observational information 

in the assimilation system may lead to a degradation in assimilation performance. Tao 

et al. (2016) (https://doi.org/10.1016/j.jhydrol.2016.02.019) tested the performance of 

the standard AEnKF method with 1-3 hour assimilation time windows and obtained 

similar results. They found that the 2-hour time window generally yielded better 

assimilation results than the 3-hour time window, while the 1-hour time window 

performed the worst. We have discussed this phenomenon in the Discussion section of 

the revised manuscript (LINES 614-620). 

Revised Manuscript LINES 614-620: 

In the study of assimilation windows for AEnKF in synthetic cases, we found that 

longer assimilation windows do not necessarily yield better results (Fig. 3). This is 

primarily because a longer time window includes too much historical information, 

which may have a weak correlation with the current state variables. Due to the 

nonlinearity of the hydrological model, where overly long windows can result in the 

system assimilating excessive noise, which negates the benefits derived from 

incorporating past observations. Tao et al. (2016) obtained similar results when 

studying the assimilation window length (1-3 hour) for the assimilation of observed 

discharge only. They found that the 2-hour time window generally yielded better 

assimilation results than the 3-hour time window, while the 1-hour time window 

performed the worst. 

 

7. What does "One-step prediction" refer to? Does it mean a one-hour forecast? Please 

clarify. (page 18, Line 444) 



Response: We apologize for any confusion caused by this imprecise description. "One-

step prediction" indeed refers to a one-hour forecast, and we have clarified this in the 

revised manuscript (LINE 458). 

Revised Manuscript LINE 458: 

One-step (one-hour) prediction 

 

8. Why was the lead time set to 8 hours? (page 31, Figure 13) 

Response: Thank you for your comment. In our real-world cases, we selected an 8-

hour lead time primarily due to the limitations of data length. To ensure the consistency 

of the forecast sequence length and the comparability of results, the forecast start time 

for different lead times within the same flood event was set to the same point -- 

specifically, the LT hour after the flood start time (the earliest available hourly data). 

LT represents the longest lead time in this study. If the longest lead time is set to LT = 

8 hours, even for a 1-hour lead time, the forecast begins at the 8th hour after the flood 

start time. Given the overall short length of available hourly data, in some flood events, 

the peak occurs as early as the 9th or 10th hour after the forecast begins. If the lead time 

were set longer than 8 hours, the forecast sequence might not include the flood peak, 

rendering the results meaningless for flood forecasting. Therefore, in the real-data 

experiments, we set the maximum lead time to 8 hours. To compensate for the shorter 

lead time in the real-world cases, we extended the maximum lead time to 24 hours in 

the synthetic data experiments, which is fully adequate for flood forecasting in medium 

to small basins covering several thousand square kilometers. We have provided 

additional explanations in the Experimental Setup section of the revised manuscript for 

synthetic cases (LINES 379-383) and real-world cases (LINES 400-404), respectively. 

Revised Manuscript LINES 379-383: 

In the synthetic cases, the hydrological model operates on an hourly timestep with a 

maximum lead time of 24 hours, and ensemble simulations involve 100 members. The 

initial soil moisture is set to half of the maximum value. To ensure consistency in the 

length of forecast sequences and the comparability of results, the start time for 

forecasting the same flood event under different lead times is set at the same moment -

- specifically, the 24 hours (maximum lead time) after the flood start time. 

Revised Manuscript LINES 400-404: 

In the real-world cases, the timestep and number of ensemble members are the same as 

in the synthetic cases. Similar to the synthetic cases, to ensure the comparability of 

results, the forecast start time for all lead times is uniformly delayed from the flood 



onset (the earliest available hourly data) by a duration corresponding to the maximum 

lead time. For some flood events, high flow occurred as early as the 9th hour after onset. 

To avoid missing the peak flow, the maximum lead time is set to 8 hours. 

 

9. Any limitations of the study should be openly discussed, along with suggestions for 

future research. (page 32) 

Response: Thank you for your suggestion. In the revised manuscript, we have included 

a discussion on the limitations of the methodology used in this study (LINES 662-680). 

Revised Manuscript LINES 662-680: 

6.3 Limitations 

The Xin'anjiang model is a conceptual hydrological model that generalizes the rainfall-

runoff process. Its most prominent feature is performing runoff production calculations 

based on the saturation-excess runoff mechanism, meaning net rainfall is first entirely 

used to replenish soil water, and once the soil moisture content in the unsaturated zone 

reaches field capacity, all subsequent net rainfall is used to generate runoff. Therefore, 

the Xin'anjiang model is only suitable for humid and semi-humid regions where the 

saturation-excess runoff mechanism is dominant and is not applicable to arid and semi-

arid regions. However, it is important to note that the state updating method proposed 

in this study is not limited to coupling with the Xin'anjiang model. In fact, this method 

can be easily coupled with any lumped or semi-distributed hydrological model that 

includes state variables related to soil moisture and channel storage. When coupled with 

hydrological models suitable for semi-arid and arid regions, it can be effectively applied 

in those areas. 

Semi-distributed hydrological models, like the Xin'anjiang model used in this study, 

have smaller state variable dimensions, allowing for the direct application of the 

proposed state updating scheme. However, in distributed models where each 

computational grid (e.g., DEM-based grids) has its own state variables, the state 

dimension becomes large, making direct application inefficient or prone to spurious 

correlations from distant observations. To resolve this, we recommend applying 

covariance localization to AEnKF (Janjić et al., 2011) or other localization techniques 

(Khaniya et al., 2022). For instance, in covariance localization, a localization radius 

(RL) is set, and the forecast error covariance matrix is adjusted using a correlation 

matrix derived from the Schur product theorem. This study focuses on jointly 

assimilating soil moisture and streamflow using AEnKF, and performing localization 

on AEnKF is beyond the scope of this research. We will explore this further in future 



work. 

 

Special thanks to you for your good comments. Other revisions to the manuscript 

can be found in " Point-by-point response to Anonymous Reviewer #2" and " 

Point-by-point response to Zongping Ren’s comments".  

 

Reference mentioned in the responses 

Tao, J., Wu, D., Gourley, J., Zhang, S. Q., Crow, W., Peters-Lidard, C., & Barros, A. P.: 

Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the 

challenge. J. Hydrol., 541, 434-456, https://doi.org/10.1016/j.jhydrol.2016.02.019, 

2016. 

 

 



Point-by-point response to Anonymous Reviewer #2 

 

We would like to sincerely appreciate you for the review of our manuscript “State 

updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil 

moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models” 

and the constructive suggestions. We sincerely believe these comments facilitate the 

quality improvement of this manuscript. All the comments have been considered and a 

point-by-point response has been provided below. 

 

The point-by-point response is formatted as follows: 

- Reviewer’s comments are shown in blue 

- Authors’ response are shown in black 

- Authors’ changes in the manuscript are shown in red. The line numbers indicated 

in this response are those in the "Revised Manuscript with no changes marked" 

document 

- The unchanged parts of the manuscript are shown in black 

------------------------------------------------------------------------------------------------------- 

In the manuscript, joint assimilating streamflow and soil moisture data via 

Asynchronous Ensemble Kalman Filter with enhanced Error Models was conducted. 

The modelling results are improved compared with conventional methods. The findings 

are very helpful for real-time flood forecast. The following points should be further 

clarified in the revised version. 

Response: Thank you for your concise summary of the paper and for your positive 

feedback on our study. We have carefully considered all of your comments and 

responded them in the subsequent specific comments section. 

 

Specific Comments: 

============ 

1. Methods section, I suggest ‘hydrological model’ should be introduced first. Then the 

readers could understand the model parameters easily in other sections. 

Response: Thank you for your suggestion. We have adjusted the structure of the 

Methodology and method section, beginning with an introduction to the hydrological 

model (LINES 164-189). 



Revised Manuscript LINES 164-189: 

2 Methodology and method 

2.1 Hydrological model 

The Xin'anjiang model, conceptualized by Zhao (1992), is a distinguished hydrological 

model, primarily based on a saturation excess mechanism. Renowned for its 

straightforward structure and explicit parameter definitions, this model excels in 

simulating humid catchments, making it a popular tool for flood forecasting in in China. 

To account for spatial variability in rainfall distribution and surface characteristics, the 

model typically segments a catchment into several sub-basins. These sub-basins act as 

computational units for runoff generation and routing.  

The Xin'anjiang model demands relatively straightforward driving data, and key inputs 

include the areal mean rainfall depth (P) and pan evaporation (EM) for each sub-basin. 

The model typically comprises four main components: evapotranspiration, runoff 

production, runoff separation, and flow routing, involving the calibration of 16 distinct 

parameters. The flow chart of the Xin'anjiang model is presented in Fig. 1. Soil 

evaporation is derived from pan evaporation data using a 'three-layer soil moisture 

module'. The runoff generation is based on a saturation-excess mechanism, where 

runoff is produced only when the soil moisture in the unsaturated zone reaches field 

capacity. The 'lag and route' method calculates the outflow from each sub-basin. Flow 

routing from the sub-basin outlets to the total basin outlet employs the Muskingum 

method to successive sub-reaches. It is implemented through dividing the channel from 

each sub-basin outlet to the total basin outlet into varying numbers of sub-reaches. 

These sub-reaches are based on the distance from each sub-basin outlet to the total basin 

outlet. In addition, the basin inflow is directly calculated to the outlet by the Muskingum 

method. 

 
Fig. 1. Flow Chart of Xin'anjiang Model. The variables in the boxes indicate the model state, 

inputs and outputs, and the symbols outside the corresponding blocks are model parameters. 



Zhao (1992) categorized the parameters of Xin'anjiang model into sensitive and non-

sensitive groups. In real-world cases, non-sensitive parameters are assigned values 

based on expert judgment, while optimal values for sensitive parameters are derived 

from historical data using the Shuffled Complex Evolution (SCE-UA) method (Duan 

et al., 1992). For synthetic cases, however, parameters are taken as recommend defaults. 

Table 1 summarizes these parameters. 

Table 1. Parameters of the Xin'anjiang model 

Parameter a Description 

Synthetic 

cases 

Real-

world 

cases  

K the ratio of potential evapotranspiration to pan evaporation 1.00 0.95 

C Evapotranspiration coefficient of deeper layer 0.13 0.05 

WUM Averaged tension water capacity of upper layer (mm) 12.5 19.9 

WLM Averaged tension water capacity of lower layer (mm) 75.0 64.4 

B Exponent of the tension water capacity curve 0.40 0.38 

WM Averaged tension water capacity (mm) 125.0 119.8 

IM Percentage of impervious areas in the catchment 0.01 0.03 

SM Averaged free water storage capacity (mm) 30.0 16.7 

EX Exponent of the free water capacity curve 1.25 1.50 

KI Daily outflow coefficient of free water storage to interflow 0.35 0.02 

KG Daily outflow coefficient of free water storage to groundwater 0.35 0.68 

CI Daily recession constant of the interflow storage 0.70 0.52 

CG Daily recession constant of the groundwater storage 0.99 0.93 

CS Daily recession constants of channel network storage 0.50 0.88 

LAG Lag in time (h) 0 1 

XE Parameters of the Muskingum method 0.25 0.01 

a Parameters in bold and underline text indicate sensitive parameters. 

 

2. Figure 2(b), there are 3 discharge stations, namely Hexi, Gaochetou, and 

Wuqiangxibashang. But it is hard to see the controlled drainage area for these 3 stations. 

Although the rainfall station, soil moisture monitoring sites are can be seen, it should 

be described in the main text. 

Response: We apologize for the misunderstanding caused by the unclear image 

description. To clarify, of the three hydrological stations, Wuqiangxibashang provides 

outflow data at the basin outlet, while Hexi and Gaochetou provide inflow data to the 

basin. However, due to the lack of soil moisture and rainfall data within their control 

areas, the control areas of Hexi and Gaochetou station were not included in this study. 

We have emphasized this point in the “Study areas and data” section of the revised 

manuscript (LINES 356-359). 

Revised Manuscript LINES 356-359: 



Among the three discharge stations in the study catchment, Wuqiangxibashang provides 

the outflow data at the outlet, while Hexi and Gaochetou are stations that provide inflow 

data for the study area. Due to the lack of soil moisture and rainfall data within their 

controlled areas, the control areas of Hexi and Gaochetou are not included in the study. 

For an overview of the data used in this study, please see Supplement 4. 

 

3. In the study region, is there any hydraulic infrastructure to affect runoff generation? 

Response: Thank you for your common. The study area is a natural watershed, and the 

only nearby large reservoir is located downstream of the Wuqiangxibashang station. As 

a result, it does not significantly impact the forecast results for the study area. 

 

4. Line 389, ‘the maximum lead time is set to 8 hours to avoid missing peak flows’. I 

cannot understand the linkage between lead time and peak flows. 

Response: Thank you for your comment. This issue was also addressed in our response 

to Anonymous Reviewer #1. In our real-world cases, we selected an 8-hour lead time 

primarily due to the limitations of data length. To ensure the consistency of the forecast 

sequence length and the comparability of results, the forecast start time for different 

lead times within the same flood event was set to the same point -- specifically, the LT 

hour after the flood start time (the earliest available hourly data). LT represents the 

longest lead time in this study. If the longest lead time is set to LT = 8 hours, even for a 

1-hour lead time, the forecast begins at the 8th hour after the flood start time. Given the 

overall short length of available hourly data, in some flood events, the peak occurs as 

early as the 9th or 10th hour after the forecast begins. If the lead time were set longer 

than 8 hours, the forecast sequence might not include the flood peak, rendering the 

results meaningless for flood forecasting. Therefore, in the real-data experiments, we 

set the maximum lead time to 8 hours. To compensate for the shorter lead time in the 

real-world cases, we extended the maximum lead time to 24 hours in the synthetic data 

experiments, which is fully adequate for flood forecasting in medium to small basins 

covering several thousand square kilometers. We have provided additional explanations 

in the Experimental Setup section of the revised manuscript for synthetic cases (LINES 

379-383) and real-world cases (LINES 400-404), respectively. 

Revised Manuscript LINES 379-383: 

In the synthetic cases, the hydrological model operates on an hourly timestep with a 

maximum lead time of 24 hours, and ensemble simulations involve 100 members. The 

initial soil moisture is set to half of the maximum value. To ensure consistency in the 



length of forecast sequences and the comparability of results, the start time for 

forecasting the same flood event under different lead times is set at the same moment -

- specifically, the 24 hours (maximum lead time) after the flood start time. 

Revised Manuscript LINES 400-404: 

In the real-world cases, the timestep and number of ensemble members are the same as 

in the synthetic cases. Similar to the synthetic cases, to ensure the comparability of 

results, the forecast start time for all lead times is uniformly delayed from the flood 

onset (the earliest available hourly data) by a duration corresponding to the maximum 

lead time. For some flood events, high flow occurred as early as the 9th hour after onset. 

To avoid missing the peak flow, the maximum lead time is set to 8 hours. 

 

5. Discussion is an important part. I suggest it be a separate section. If the proposed 

method are used in distributed hydrological models (i.e. distributed Xin’anjiang model), 

what will be the results? 

Response: Thank you for your suggestion, which has been extremely helpful for 

improving the paper. In the revised manuscript, we have included a separate discussion 

section, focusing on topics such as typical flood events and the limitations of the 

proposed method (LINES 612-680). This includes the challenges of applying the 

method to distributed hydrological models. Semi-distributed hydrological models, like 

the Xin'anjiang model used in this study, have smaller state variable dimensions, 

allowing for the direct application of the proposed state updating scheme. However, in 

distributed models where each computational grid (e.g., DEM-based grids) has its own 

state variables, the state dimension becomes large, making direct application inefficient 

or prone to spurious correlations from distant observations. To resolve this, we 

recommend applying covariance localization to AEnKF (Janjić et al., 2011, 

https://doi.org/10.1175/2011MWR3552.1) or other localization techniques (Khaniya et 

al., 2022, https://doi.org/10.1016/j.jhydrol.2022.127651). For instance, in covariance 

localization, a localization radius RL is set, and the forecast error covariance matrix is 

adjusted using a correlation matrix derived from the Schur product theorem. This study 

focuses on jointly assimilating soil moisture and streamflow using AEnKF, and 

performing localization on AEnKF is beyond the scope of this research. We will explore 

this further in future work. 

Revised Manuscript LINES 612-680: 

6. Discussion 

6.1 Discussion of AEnKF time window in synthetic cases 



In the study of assimilation windows for AEnKF in synthetic cases, we found that 

longer assimilation windows do not necessarily yield better results (Fig. 3). This is 

primarily because a longer time window includes too much historical information, 

which may have a weak correlation with the current state variables. Due to the 

nonlinearity of the hydrological model, where overly long windows can result in the 

system assimilating excessive noise, which negates the benefits derived from 

incorporating past observations. Tao et al. (2016) obtained similar results when 

studying the assimilation window length (1-3 hour) for the assimilation of observed 

discharge only. They found that the 2-hour time window generally yielded better 

assimilation results than the 3-hour time window, while the 1-hour time window 

performed the worst. 

6.2 Discussion of two flood events in real-world cases 

In flood simulation and forecasting, peak flow rates are a primary focus for researchers. 

Using the two flood events with the most significant peak flow errors in the OL mode 

in 2023 (No.2023040308 and No.2023052008) as case studies, we examined the 

variations in free water storage and discharge at the catchment outlet.  

Fig. 12 display the hydrographs simulated for No.2023040308. Black lines (dots) 

signify observed values. Grey lines and bands represent the ensemble mean and range 

of the OL, respectively. Similarly, green lines and bands illustrate the ensemble mean 

and range for the AEnKF. In examining the time series of free water storage, it is evident 

that observational data points almost never fall within the grey bands of the OL scheme. 

This indicates a notable difference between the soil moisture levels simulated by the 

Xin'anjiang model and those derived from observational data. Both AEnKFS and 

AEnKFSQ exhibit similar update patterns, where the post-update ensemble mean 

values significantly shift towards observational data. Concurrently, this adjustment 

expands the ensemble bands, indicating an increase in ensemble simulation accuracy 

for AEnKFS and AEnKFSQ, along with an increased ensemble spread. In the analysis 

of the discharge time series, it becomes evident that the ensemble distribution from the 

AEnKF aligns more closely with observational data and presents a narrower bandwidth 

than that of the OL. This trend suggests that the ensemble accuracy with AEnKF 

exceeds that of the OL scheme, and also demonstrates a reduced ensemble spread. 

Furthermore, the ensemble distribution observed during peak periods is more expansive 

than during the onset and recession periods of flood. This is attributed to the error 

models applied. These models introduce larger perturbations in the assimilation system 

during peak periods, leading to a broader ensemble distribution, which, in turn, ensures 



a more effective assimilation during these critical periods. In examining the time series 

of discharge, it is noted that both AEnKFQ and AEnKFS significantly reduced the 

height of the simulated flood peak. The AEnKFQ scheme shows effectiveness around 

the 20th hour, following the assimilation of approximately 20 discharge observations, 

achieving a relative error of 17% in the simulated flood peak (maximum instantaneous 

flow) compared to the observed peak. AEnKFS started effectively updating the 

discharge following the assimilation of the third group of soil moisture observations at 

the 17th hour, which led to a flood peak relative error of 13%. The AEnKFSQ scheme 

successfully amalgamates the strengths of both, culminating in a reduced flood peak 

relative error of merely 8%.  

 

Fig. 12. Hydrograph during flood event labeled No.2023040308. (a-b) AEnKFQ Scheme, (c-d) 

AEnKFS Scheme, (e-f) AEnKFSQ Scheme. The upper panel shows the discharge at the catchment 

outlet, and the lower panel displays the free water storage in sub-basin 1. 

In the case of flood event labeled No.2023052008, as illustrated in Fig. 13, the time 

series exhibits a similar pattern to No. 2023040308. The peak flooding occurred 

between the 25th and 33rd hours, which corresponds to the period between the fourth 

and fifth sets of soil moisture observations. During this interval, there is a notable and 

rapid increase in free water storage. Fig. 13 (c) indicates that the AEnKFS fails to 

effectively adjust the discharge volumes around the peak period. Conversely, the 

AEnKFQ scheme, which focused on updating cumulative channel flow, successfully 

rectified the peak flooding. Owing to the ineffectiveness of free water content updates 

in discharge correction, the assimilation impact of AEnKFSQ closely matched that of 

AEnKFQ. In summary, it is apparent that AEnKFSQ effectively integrates the strengths 

of both the AEnKFS and AEnKFQ schemes. Even when one of these strategies fails to 

update effectively, AEnKFSQ still manages to enhance the precision of discharge 

predictions. 



 
Fig. 1. Hydrograph during flood event labeled No.2023052008. (a-b) AEnKFQ Scheme, (c-d) 

AEnKFS Scheme, (e-f) AEnKFSQ Scheme. The upper panel shows the discharge at the catchment 

outlet, and the lower panel displays the free water storage in sub-basin 1. 

6.3 Limitations 

The Xin'anjiang model is a conceptual hydrological model that generalizes the rainfall-

runoff process. Its most prominent feature is performing runoff production calculations 

based on the saturation-excess runoff mechanism, meaning net rainfall is first entirely 

used to replenish soil water, and once the soil moisture content in the unsaturated zone 

reaches field capacity, all subsequent net rainfall is used to generate runoff. Therefore, 

the Xin'anjiang model is only suitable for humid and semi-humid regions where the 

saturation-excess runoff mechanism is dominant and is not applicable to arid and semi-

arid regions. However, it is important to note that the state updating method proposed 

in this study is not limited to coupling with the Xin'anjiang model. In fact, this method 

can be easily coupled with any lumped or semi-distributed hydrological model that 

includes state variables related to soil moisture and channel storage. When coupled with 

hydrological models suitable for semi-arid and arid regions, it can be effectively applied 

in those areas. 

Semi-distributed hydrological models, like the Xin'anjiang model used in this study, 

have smaller state variable dimensions, allowing for the direct application of the 

proposed state updating scheme. However, in distributed models where each 

computational grid (e.g., DEM-based grids) has its own state variables, the state 

dimension becomes large, making direct application inefficient or prone to spurious 

correlations from distant observations. To resolve this, we recommend applying 

covariance localization to AEnKF (Janjić et al., 2011) or other localization techniques 

(Khaniya et al., 2022). For instance, in covariance localization, a localization radius 

(RL) is set, and the forecast error covariance matrix is adjusted using a correlation 

matrix derived from the Schur product theorem. This study focuses on jointly 

assimilating soil moisture and streamflow using AEnKF, and performing localization 

on AEnKF is beyond the scope of this research. We will explore this further in future 



work. 

 

6. Section 5.1.3, only 6 flood events are selected for analysis, could you add some flood 

events in 2024? Could you please provide the simulated hydrographs by the 

assimilation schemes for the 6 events? 

Response: Thank you for your suggestion. We have realized that the most recent year’s 

flood data was not utilized. Recently, we collected data of two flood events 

(No.2024040100 and No.2024042900) in 2024, as shown in Section S4 of the 

supplement document (LINES S106-S123). We have added simulations and analyses 

of these two flood events in both the synthetic and real-world cases. Consequently, 

Figures 3-11, Table 3, and the corresponding results have been updated. The new results 

can be found in "5 Results" section of the revised manuscript (LINES 416-611) and are 

not presented here. It is important to emphasize that the addition of the 2024 flood 

events did not alter the main conclusions of this study, which potentially further 

validates the general applicability of the proposed method. 

We have also included the hydrographs for all eight flood events, please see the revised 

supplement document (S5. Hydrographs in Real-world Cases). 

Revised Supplement LINES S106-S123: 

This hydro-meteorological data utilized in the study spanning from 2014 to 2024, 

provided by the Hunan Provincial Hydrological Bureau, including evaporation, 

precipitation, and discharge data. Within the catchment, there are 17 rain gauges, one 

evaporation observation station, and four discharge observation stations. Evaporation 

data are derived from daily pan evaporation measurements using the E-601 pan, with 

hourly values calculated as 1/24th of the daily measurements. Notably, with only one 

evaporation observation station in the catchment, it is assumed that the observed 

evaporation is spatially uniform. When multiple rain gauges exist within a sub-

catchment, the area-averaged rainfall is calculated as the arithmetic mean of all gauge 

observations. For discharge observation stations, Wuqiangxibashang (WQXBS) serves 

as the outlet observation station, while the remaining three stations Hexi (HX), Pushi 

(PS), and Gaochetou (GCT) measure inflow. Hourly observations of precipitation and 

discharge are intermittent, thus hourly data are only available during flood events, with 

daily data available at other times. Fifteen flood events from 2014 to 2018 were used 

for model calibration, and sixteen events from 2019 to 2024 for model validation. 

Considering soil moisture data availability, eight flood events in 2023 and 2024 were 

used for assimilation studies. For an overview of these flood events, refer to Table S4-

1. The statistical characteristics of the observed and simulated peak flows are presented 

in Table S4-2. 

 



Table S4-1. List of flood events investigated in this study 

 Serial number  Start date End date 

Observed  

Peak flow 

 (m3/s) 

Simulated  

Peak flow 

(m3/s) 

ca
li

b
ra

ti
o

n
 

No.2014052300 2014/05/23 00:00 2014/05/27 20:00 17356 17335 

No.2014070300 2014/07/03 00:00 2014/07/06 08:00 22705 21564 

No.2014071400 2014/07/14 00:00 2014/07/19 00:00 35725 35648 

No.2015060121 2015/06/01 21:00 2015/06/07 01:00 17762 17085 

No.2015060718 2015/06/07 18:00 2015/06/10 18:00 12017 11018 

No.2015062023 2015/06/20 23:00 2015/06/24 09:00 19196 16971 

No.2016050703 2016/05/07 03:00 2016/05/11 06:00 13051 12191 

No.2016062017 2016/06/20 17:00 2016/06/21 21:00 12472 10268 

No.2016062720 2016/06/27 20:00 2016/06/30 03:00 14996 13072 

No.2016070311 2016/07/03 11:00 2016/07/08 12:00 22278 21016 

No.2017052208 2017/05/22 08:00 2017/05/25 19:00 8872 8926 

No.2017062711 2017/06/27 11:00 2017/07/05 12:00 32147 32121 

No.2017081121 2017/08/11 21:00 2017/08/16 00:00 13091 14958 

No.2018053010 2018/05/30 10:00 2018/06/03 16:00 7348 7462 

No.2018092518 2018/09/25 18:00 2018/09/27 05:00 8518 7495 

v
al

id
at

io
n
 

No.2019051905 2019/05/19 05:00 2019/05/22 00:00 14024 13142 

No.2019070700 2019/07/07 00:00 2019/07/16 12:00 14046 13358 

No.2020070800 2020/07/08 00:00 2020/07/09 18:00 25963 23428 

No.2020071823 2020/07/18 23:00 2020/07/20 16:00 18688 15459 

No.2020091500 2020/09/15 00:00 2020/09/21 08:00 20829 20393 

No.2021050300 2021/05/03 00:00 2021/05/05 00:00 8021 8397 

No.2021051112 2021/05/11 12:00 2021/05/27 00:00 13347 12433 

No.2021060300 2021/06/03 00:00 2021/06/07 00:00 8391 7693 

No.2023040308 2023/04/03 08:00 2023/04/05 14:00 6192 7891 

No.2023050416 2023/05/04 16:00 2023/05/06 17:00 4747 4244 

No.2023052008 2023/05/20 08:00 2023/05/22 18:00 5660 7702 

No.2023062100 2023/06/21 00:00 2023/06/25 19:00 6940 5834 

No.2023063000 2023/06/30 00:00 2023/07/01 14:00 9317 7809 

No.2023072516 2023/07/25 16:00 2023/07/27 18:00 8449 7611 

No.2024040100 2024/04/01 00:00 2024/04/03 01:00 5430 6286 

No.2024042900 2023/04/29 00:00 2024/05/01 17:00 5735 5754 

a The flood events utilized for assimilation research are indicated by bold text with an underline. 

 

 

 

 

 

 



Table S4-2. Statistical characterization of peak flow 

  
Mean  

(m3/s) 

standard 

deviation 

(m3/s) 

Minim

-um 

(m3/s) 

Maxi-

mum 

(m3/s) 

Median 

(m3/s) 

Skew

-ness 

Kurt-

osis 

Coefficient 

of 

Variation 

95% confidence 

interval  

(m3/s) 

o
b

se
rv

ed
 

p
ea

k
 f

lo
w

 Calibr

-ation 
15982 8049 7348 35725 14996 1.03 0.55 0.50 (11534, 20431) 

Valid-

ation 
11255 6343 4747 25963 8420 0.89 0.37 0.56 (7879, 14630) 

S
im

u
la

te
d

 

P
ea

k
 f

lo
w

 Calibr

-ation 
15942 8142 7462 35648 14958 0.97 0.22 0.51 (11444, 20440) 

Valid-

ation 
10596 5669 4244 23428 7850 0.87 -0.15 0.53 (7578, 13614) 

 

Revised Supplement Part S5: 

S5. Hydrographs in Real-world Cases 

   

   

   

   

   



   

   

   

Figure S5-1. Hydrographs in real-world cases. The left panel shows the AEnKFQ scheme, 

the center panel shows the AEnKFS scheme, and the right panel shows the AEnKFSQ scheme 

 

Special thanks to you for your good comments. Other revisions to the manuscript 

can be found in " Point-by-point response to Anonymous Reviewer #1" and " 

Point-by-point response to Zongping Ren’s comments".  

 

Reference mentioned in the responses 

Janjić, T., Nerger, L., Albertella, A., Schröter, J., and Skachko, S.: On domain 

localization in ensemble-based Kalman filter algorithms. Mon. Weather Rev., 

139(7), 2046-2060, https://doi.org/10.1175/2011MWR3552.1, 2011.  

Khaniya, M., Tachikawa, Y., Ichikawa, Y., and Yorozu, K.: Impact of assimilating dam 

outflow measurements to update distributed hydrological model states: 

Localization for improving ensemble Kalman filter performance. J. Hydrol., 608, 

127651, https://doi.org/10.1016/j.jhydrol.2022.127651, 2022. 

 



Point-by-point response to Zongping Ren’s comments 

 

We would like to sincerely appreciate you for the review of our manuscript “State 

updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil 

moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models” 

and the constructive suggestions. We sincerely believe these comments facilitate the 

quality improvement of this manuscript. All the comments have been considered and a 

point-by-point response has been provided below. 

 

The point-by-point response is formatted as follows: 

- Reviewer’s comments are shown in blue 

- Authors’ response are shown in black 

- Authors’ changes in the manuscript are shown in red. The line numbers indicated 

in this response are those in the "Revised Manuscript with no changes marked" 

document 

- The unchanged parts of the manuscript are shown in black 

------------------------------------------------------------------------------------------------------- 

The study is briefly based on the development of the Xin'anjiang hydrological model. 

For this aim, Asynchronous Ensemble Kalman Filter (AEnKF) with enhanced error 

model is used to joint assimilate streamflow and multi-source soil moisture data. 

Furthermore, this paper proposes a novel method to integrate CLDAS soil moisture 

data with in situ observations, enhancing the accuracy of the dataset. Wuqiangxi 

catchment is selected for the application. The results produced by the AEnKF 

assimilating different types of observations are then evaluated by some performance 

metrics. The work is extensive and well-structured. The subject is novel and the study 

is valuable in terms of the hydrological forecasting in terms of flood events in river 

basins. However, the discussion of main and latest studies on the subject needs to be 

further strengthened. Some suggestions and comments to the authors are presented 

below: 

Response: Thank you for your concise summary of the paper and for your positive 

feedback on our study. We have carefully considered all of your comments and 

responded them in the subsequent specific comments section. 

 



Specific Comments: 

============ 

1. What are main differences between AEnKF and EnKF? Supported and related studies 

about AEnKF should be strongly presented in Introduction to emphasize highlights of 

the paper. 

Response: Thank you for your comment. The EnKF is a synchronous assimilation 

method that assimilates observations at the current time into the hydrological model at 

the analysis step. This means that EnKF updates the state variables of the Xin’anjiang 

model based only on observations from the current time step. In contrast, AEnKF is a 

more advanced asynchronous assimilation method, allowing for the assimilation of 

both current and past observations during the analysis step. Specifically, in this study, 

AEnKF assimilates observations from the current time and the previous twhours (tw is 

the assimilation time window) into the Xin'anjiang model, updating the model's state 

variables. This asynchronous assimilation helps to consider the complex nonlinear 

relationships between observations at multiple times and the hydrological model's state 

variables. We have included a discussion on existing research and applications of the 

AEnKF method in the Introduction section of the revised manuscript (LINES 77-90). 

Revised Manuscript LINES 77-90: 

The AEnKF technique was first applied by Krymskaya (2013) to the problem of history 

matching in reservoir engineering. The study revealed that AEnKF outperforms EnKF 

in parameter estimation and utilizes the data with similar efficiency. The AEnKF is 

recognized for its simplicity and high computational efficiency, offering significant 

potential in short-term flood forecasting applications. Despite its promise, the scope of 

research in this area is relatively limited. Among the few studies conducted, Mazzoleni 

et al. (2018) evaluated AEnKF assimilation in simplified flow routing models, 

highlighting its exceptional performance in both lumped and distributed flow routing. 

Tao et al. (2016) summarized the hydrological forecasting test conducted during the 

2014 IPHEx-IOP campaign, proposing a framework for improving flood prediction in 

mountainous regions through the assimilation of discharge data using the AEnKF 

method, with a focus on enhancing forecast accuracy and reducing uncertainty. In 

addition, Rakovec et al. (2015) and our earlier study (Gong et al., 2024) applied the 

AEnKF to the distributed HBV-96 model and the Xin'anjiang model, respectively. 

These studies examined effectiveness of AEnKF in real-time correction through the 

assimilation of observed discharge in distributed and semi-distributed hydrological 

models, revealing that AEnKF outperforms the standard EnKF. However, these studies 

assimilate only a single type of observational data (e.g., observed discharge) using the 

AEnKF method, which does not take full advantage of the AEnKF. 



2. Line 231. The SM is mentioned but not explained. Please insert a definition the first 

time it is mentioned. 

Response: Thank you for your suggestion. In response to the suggestions from 

Anonymous Reviewer #2, we have revised the structure of the paper by introducing the 

hydrological model at the beginning of the “Methodology and method” section. As a 

result, the definition of the parameter SM, averaged free water storage capacity, is now 

provided the first time it is mentioned in Table 1. 

Revised Manuscript Table 1: 

Table 1. Parameters of the Xin'anjiang model 

Parameter a Description 

Synthetic 

cases 

Real-

world 

cases  

K the ratio of potential evapotranspiration to pan evaporation 1.00 0.95 

C Evapotranspiration coefficient of deeper layer 0.13 0.05 

WUM Averaged tension water capacity of upper layer (mm) 12.5 19.9 

WLM Averaged tension water capacity of lower layer (mm) 75.0 64.4 

B Exponent of the tension water capacity curve 0.40 0.38 

WM Averaged tension water capacity (mm) 125.0 119.8 

IM Percentage of impervious areas in the catchment 0.01 0.03 

SM Averaged free water storage capacity (mm) 30.0 16.7 

EX Exponent of the free water capacity curve 1.25 1.50 

KI Daily outflow coefficient of free water storage to interflow 0.35 0.02 

KG Daily outflow coefficient of free water storage to groundwater 0.35 0.68 

CI Daily recession constant of the interflow storage 0.70 0.52 

CG Daily recession constant of the groundwater storage 0.99 0.93 

CS Daily recession constants of channel network storage 0.50 0.88 

LAG Lag in time (h) 0 1 

XE Parameters of the Muskingum method 0.25 0.01 

a Parameters in bold and underline text indicate sensitive parameters. 

 

3. Section 2.3. I am not clear on how the hydrological model simulates infiltration. 

What are the infiltration parameters? They don't seem to be shown in Table 1. It is not 

necessary to explain your hydrological model again in the manuscript, but I need to 

understand why infiltration parameters are not considered in the model perturbation. 

Response: Thank you for your comment. We have addressed your questions 

individually below. 

First, we should explain to you the method of calculating the runoff of the 

Xin'anjiang model. The Xin'anjiang model is a conceptual hydrological model that 

generalizes the rainfall-runoff process. Its most prominent feature is performing runoff 

production calculations based on the saturation-excess runoff mechanism, meaning net 



rainfall is first entirely used to replenish soil water, and once the soil moisture content 

in the unsaturated zone reaches field capacity, all subsequent net rainfall is used to 

generate runoff. Therefore, the Xin'anjiang model does not involve infiltration 

parameters. In the revised manuscript, we have explained the saturation-excess runoff 

mechanism in the “Hydrological Model” section (LINES 175-176). Detailed theoretical 

derivations of the soil evapotranspiration and runoff generation in the Xin'anjiang 

model are provided below. If you are interested in other aspects of the Xin'anjiang 

model, we recommend the famous paper "The Xinanjiang Model Applied in China" 

(Zhao, 1992, https://doi.org/10.1016/0022-1694(92)90096-E). 

(1) Evapotranspiration 

The Xin'anjiang model divides the soil into upper, lower, and deep layers based on 

vertical heterogeneity. It uses a three-layer evapotranspiration model to calculate actual 

evapotranspiration, involving parameters such as upper layer tension water capacity 

(WUM, mm), lower layer tension water capacity (WLM, mm), average basin tension 

water capacity (WM, mm), evapotranspiration conversion coefficient (K), and deep 

layer evapotranspiration coefficient (C). The three-layer evapotranspiration model is 

with the following principles: the upper layer evaporates according to its 

evapotranspiration capacity; if the upper layer's soil moisture content is insufficient, the 

remaining evapotranspiration capacity is drawn from the lower layer. The lower layer's 

evaporation is proportional to the evapotranspiration capacity and its soil moisture 

storage, with the ratio of the calculated lower layer evaporation to the remaining 

evapotranspiration capacity not less than the deep layer evapotranspiration coefficient. 

If this ratio is not met, the deficit is supplemented by the lower layer water storage. If 

the lower layer water storage is insufficient, it is supplemented by the deep layer water 

storage. The calculation formula for the three-layer evapotranspiration model can be 

summarized as follows. 

First, the evapotranspiration capacity EP (mm) is calculated using the pan 

evaporation (EM). 

 𝐸𝑃 = 𝐾 ∙ 𝐸𝑀 (R1) 

When 𝑃 + 𝑊𝑈 ≥ 𝐸𝑃 , the evapotranspiration for the upper, lower, and deep 

layers (EU, EL, and ED) are: 

 {
𝐸𝑈 = 𝐸𝑃
𝐸𝐿 = 0   
𝐸𝐷 = 0   

 (R2) 

When 𝑃 + 𝑊𝑈 < 𝐸𝑃, the upper layer evapotranspiration (EU) is： 

 𝐸𝑈 = 𝑃 + 𝑊𝑈 (R3) 



On this basis, the calculation of the lower layer evapotranspiration (EL) and the deep 

layer evapotranspiration (ED) is divided into three cases: 

1) When 𝑊𝐿 ≥ 𝐶 ∙ 𝐿𝑀, 

 {
𝐸𝐿 = (𝐸𝑃 − 𝐸𝑈) ∙ 𝑊𝐿/𝑊𝐿𝑀
𝐸𝐷 = 0                                         

 (R4) 

2) When 𝑊𝐿 < 𝐶 ∙ 𝐿𝑀 and 𝑊𝐿 ≥ 𝐶 ∙ (𝐸𝑃 − 𝐸𝑈), 

 {
𝐸𝐿 = 𝐶 ∙ (𝐸𝑃 − 𝐸𝑈)
𝐸𝐷 = 0                         

 (R5) 

3) When 𝑊𝐿 < 𝐶 ∙ 𝐿𝑀 and 𝑊𝐿 < 𝐶 ∙ (𝐸𝑃 − 𝐸𝑈), 

 {
𝐸𝐿 = 𝑊𝐿                                
𝐸𝐷 = 𝐶 ∙ (𝐸𝑃 − 𝐸𝑈) − 𝑊𝐿

 (R6) 

Once the upper, lower, and deep layer evapotranspiration (EU, EL, and ED) are 

fully calculated, the total evapotranspiration E (mm) is the sum of these three amounts: 

 𝐸 = 𝐸𝑈 + 𝐸𝐿 + 𝐸𝐷 (R7) 

(2) Runoff generation 

The Xin'anjiang model uses the saturation-excess runoff generation method to 

calculate runoff. Net rainfall (P-E) first replenishes soil moisture, with no runoff 

generated until the soil moisture reaches field capacity. Once the soil is saturated, all 

net rainfall contributes to runoff. The Xin'anjiang model uses a tension water capacity 

curve to characterize the spatial heterogeneity of soil moisture in the catchment, 

represented as: 

 
𝑓𝐴

𝐴𝑟𝑒𝑎
= [1 − (1 −

𝑊′

𝑊𝑀𝑀
)

𝐵

] (1 − 𝐼𝑀) + 𝐼𝑀 (R8) 

Where, 𝑓𝐴 is the runoff production area (km2); Area is the basin area (km2); 𝑊′ is the 

point tension water capacity in the basin (mm); WMM is the maximum point tension 

water capacity (mm); WM is the average basin tension water capacity (mm); B is the 

exponent of the tension water storage capacity curve; IM is the proportion of the 

impermeable area to the total basin area. Let W be the average basin tension water 

storage at the current time (mm), and 𝜉𝑊 be the vertical coordinate of W on the tension 

water capacity curve (mm). Integrating 𝑊′ from 0 to 𝜉𝑊 in Eq. (R8) yields:  

 𝑊 =
(1 − 𝐼𝑀) ∙ 𝑊𝑀𝑀

𝐵 + 1
[1 − (1 −

𝜉𝑊

𝑊𝑀𝑀
)

𝐵+1

] (R9) 

Substituting 𝜉𝑊 = 𝑊𝑀𝑀 and 𝑊 = 𝑊𝑀 into Eq. (R9) yields: 

 𝑊𝑀𝑀 =
𝑊𝑀 ∙ (𝐵 + 1)

(1 − 𝐼𝑀)
 (R10) 

Substituting Eq. (R10) into Eq. (R9) yields: 



 𝜉𝑊 = 𝑊𝑀𝑀 [1 − (1 −
𝑊

𝑊𝑀
)

1
1+𝐵

] (R11) 

The total runoff R (expressed in runoff depth, mm) can be expressed as: 

 𝑅 = ∫
𝑓𝐴

𝐴𝑟𝑒𝑎
𝑑𝑊′

𝑃−𝐸+𝜉𝑊

𝜉𝑊

 (R12) 

No runoff is generated when 𝑃 − 𝐸 ≤ 0. When 𝑃 − 𝐸 > 0, runoff is generated, 

and the total runoff R is calculated as follows in two scenarios: 

1) When 𝑃 − 𝐸 + 𝜉𝑊 < 𝑊𝑀𝑀, 

 𝑅 = 𝑃 − 𝐸 − 𝑊𝑀 + 𝑊 + 𝑊𝑀 [1 − (
𝑃 − 𝐸 + 𝜉𝑊

𝑊𝑀𝑀
)

(1+𝐵)

] (R13) 

2) When 𝑃 − 𝐸 + 𝜉𝑊 ≥ 𝑊𝑀𝑀， 

 𝑅 = 𝑃 − 𝐸 − 𝑊𝑀 + 𝑊 (R14) 

The Xin'anjiang model considers the vertical regulation of the vadose zone and 

uses a free water storage reservoir to divide the total runoff R into surface runoff RS, 

interflow RI, and groundwater runoff RG. The parameters involved include the 

averaged free water storage capacity SM, the exponent of the free water capacity curve 

EX, the daily outflow coefficient of free water storage to groundwater KG, and the daily 

outflow coefficient of free water storage to interflow KI. 

Considering that the free water storage capacity is also spatially heterogeneous, 

the Xin'anjiang model uses the free water capacity curve to represent this heterogeneity: 

 
𝑓𝐴

𝐴𝑟𝑒𝑎
= [1 − (1 −

𝑆′

𝑆𝑀𝑀
)

𝐵

] (R15) 

Using a derivation similar to that of the tension water capacity curve, we obtain: 

 𝑆𝑀𝑀 = 𝑆𝑀(𝐸𝑋 + 1) (R16) 

 𝜉𝑆 = 𝑆𝑀𝑀 [1 − (1 −
𝑆

𝑆𝑀
)

1
1+𝐸𝑋

] (R17) 

where 𝑆′  is the point free water storage capacity in the basin (mm); 𝑆𝑀𝑀  is the 

maximum point free water storage capacity (mm); SM is the average free water storage 

capacity (mm); EX is the exponent of the free water strage capacity curve; S is the 

average free water storage at the calculation timestep (mm); and 𝜉𝑆  is the vertical 

coordinate of S on the free water capacity curve (mm). 

The calculation for surface runoff RS is divided into two cases: 

1) When 𝑃 − 𝐸 + 𝜉𝑆 < 𝑆𝑀𝑀, 



 𝑅𝑆 = {𝑃 − 𝐸 − 𝑆𝑀 + 𝑆 + 𝑆𝑀 [1 − (
𝑃 − 𝐸 + 𝜉𝑆

𝑆𝑀𝑀
)

(1+𝐸𝑋)

]} 𝐹𝑅 (R18) 

2) When 𝑃 − 𝐸 + 𝜉𝑆 ≥ 𝑆𝑀𝑀, 

 𝑅𝑆 = (𝑃 − 𝐸 − 𝑆𝑀 + 𝑆) ∙ 𝐹𝑅 (R19) 

The corresponding interflow RI and groundwater runoff RG are: 

 𝑅𝐼 = (𝑆 +
𝑅 − 𝑅𝑆

𝐹𝑅
) ∙ 𝐾𝐼 ∙ 𝐹𝑅 (R20) 

 𝑅𝐺 = (𝑆 +
𝑅 − 𝑅𝑆

𝐹𝑅
) ∙ 𝐾𝐺 ∙ 𝐹𝑅 (R21) 

 

Revised Manuscript LINES 175-176: 

The runoff generation is based on a saturation-excess mechanism, where runoff is 

produced only when the soil moisture in the unsaturated zone reaches field capacity. 

 

4. Fig. 2. I suggest replacing the Yangtze River Basin with China to make it more 

understandable to the reader. 

Response: Thank you for your suggestion. We have improved Figure 2 in the revised 

manuscript according to your suggestion. 

Revised Manuscript Figure 2: 

 

Fig. 2 Study catchment. (a) Digital Elevation Map (DEM); (b)Sub-basins and observation 

stations; (c) Soil texture (0 to 30 cm); (d) Soil texture (30 to 100 cm). 



5. Section 5.1.2, Fig. 3. Could the authors explain why sometimes larger time window 

produces poorer results instead? Is it because observations that go too far back in time 

compromise the quality of real time? 

Response: Thank you for your comment. As in the response to Anonymous Reviewer 

#1, this is primarily because a longer time window includes too much historical 

information, which may have a weak correlation with the current state variables. 

Including too much historical observational information in the assimilation system may 

lead to a degradation in assimilation performance. Tao et al. (2016) 

(https://doi.org/10.1016/j.jhydrol.2016.02.019) tested the performance of the standard 

AEnKF method with 1-3 hour assimilation time windows and obtained similar results. 

They found that the 2-hour time window generally yielded better assimilation results 

than the 3-hour time window, while the 1-hour time window performed the worst. We 

have discussed this phenomenon in the Discussion section of the revised manuscript 

(LINES 614-620). 

Revised Manuscript LINES 614-620: 

In the study of assimilation windows for AEnKF in synthetic cases, we found that 

longer assimilation windows do not necessarily yield better results (Fig. 3). This is 

primarily because a longer time window includes too much historical information, 

which may have a weak correlation with the current state variables. Due to the 

nonlinearity of the hydrological model, where overly long windows can result in the 

system assimilating excessive noise, which negates the benefits derived from 

incorporating past observations. Tao et al. (2016) obtained similar results when 

studying the assimilation window length (1-3 hour) for the assimilation of observed 

discharge only. They found that the 2-hour time window generally yielded better 

assimilation results than the 3-hour time window, while the 1-hour time window 

performed the worst. 

 

6. Line 505-520, Fig. 7. There are flood events where the performance of the AEnKF 

remains superior to the OL even after 24 hours. Have authors provided an explanation 

for why the model correction persists for such an extended period in these cases? 

Response: Thank you for your comment. We believe that the assimilation effect of 

AEnKF can last for more than 24 hours, mainly because the soil moisture state variables 

were effectively updated in these events. The initial soil moisture state at the forecast 

start time reflects the basin's wetness at that moment and significantly impacts forecast 

accuracy for a considerably long lead time. In Rakovec et al. (2015) 

(https://doi.org/10.5194/hess-19-2911-2015), the average temporal persistence of the 



standard AEnKF assimilation effect could reach a 45-hour lead time, likely because 

they also updated the soil moisture state variables. 

 

7. Section 6. This part needs some improvements. Currently, it is presented in broad 

terms. Specifically, the conclusions drawn from the calculated performance metrics 

should be detailed explicitly. 

Response: Thank you for your suggestion. We have added the results of specific 

performance metrics to the Conclusion section of the revised manuscript (LINES 698-

719), making the conclusions more objective. 

Revised Manuscript LINES 698-719: 

In synthetic case studies, while updating soil moisture state variables of the Xin'anjiang 

model, it is observed that effective updates are limited to free water storage and total 

tension water storage. This underscores the significance of choosing appropriate state 

variables for updates in the application of the AEnKF method. Further analysis revealed 

that with high-quality, hourly available observational data, all three assimilation 

schemes maintained their effectiveness for up to 24-hour lead time. Notably, AEnKFSQ 

demonstrated enhanced optimal single-value performance, overall ensemble 

performance, and ensemble reliability, surpassing both AEnKFS and AEnKFQ. 

Specifically, in the one-step forecast, the MRRMSE for AEnKFSQ decreased by 0.11 and 

0.16 compared to AEnKFS and AEnKFQ, respectively; the MRCRPS  for AEnKFSQ 

decreased by 0.10 and 0.15, and the MRRELI decreased by 0.20 and 0.15 compared to 

AEnKFS and AEnKFQ, respectively. AEnKFSQ's advantage in optimal single-value 

performance persists up to a 24-hour lead time. 

In the real-world case studies, we merged soil moisture data from in-suit monitoring 

sites with the near-real-time CLDAS soil moisture data. This fusion produces spatially 

distributed data characterized by high temporal immediacy while addressing the 

limitation of point-scale in in-suit soil data. Contrasting with experiments using 

synthetic data, extending soil moisture observation intervals to 8 hours impacts the 

performance of the AEnKFS scheme. In one-step prediction, the AEnKFSQ scheme 

exhibits the highest level of accuracy with the MRRMSE  of 0.84. Concurrently, the 

simulation precision of the AEnKFQ scheme exceeds that observed in AEnKFS, with 

MRRMSE values of 0.88 and 0.91, respectively. Variations in results are observed under 

different lead times. AEnKFSQ and AENKFS consistently demonstrate an assimilation 

effect duration of 8 hours, in contrast to the 5-hour temporal persistence of assimilation 

effect of AENKFQ. The use of AEnKF for updating cumulative channel flow markedly 

enhances the accuracy of discharge forecasting in a brief lead time. In contrast, the 

adjustment extent of discharge by updating free water storage in a single-step forecast 

might be less than that achieved with AEnKFQ. Nevertheless, it guarantees a more 

sustained assimilation effect. The AEnKFSQ integrates the strengths of the previous two 



strategies, thereby improving discharge forecasting accuracy even when a particular 

strategy does not update effectively and prolonging the temporal persistence of the 

assimilation effect. 

 

8. Are there any limitations or recommendations for the application of this study? Is the 

proposed methodology applicable to all regions? Can the method be applied in data-

scarce regions with limited observations? 

Response: Thank you for your comment. The Xin'anjiang model is based on the 

saturation-excess runoff generation mechanism, where net rainfall is first entirely used 

to replenish soil water, and once the soil moisture content in the unsaturated zone 

reaches field capacity, all subsequent net rainfall is used to generate runoff. This runoff 

generation mechanism is generally applicable to humid and semi-humid regions, 

making the Xin'anjiang model theoretically suitable only for these areas. Since humid 

regions in China are most affected by flood disasters and the Xin'anjiang model is 

currently the most widely used hydrological model in operational flood forecasting in 

China, this study uses the Xin'anjiang model as an example and tests it only in humid 

regions in China. However, it is important to emphasize that the AEnKF method with 

the enhanced error models proposed in this study can be easily coupled with any 

hydrological model, so its application is not limited to humid and semi-humid regions. 

In future research, we will focus on coupling and testing the AEnKF with enhanced 

error models and other hydrological models. The proposed method in this study 

involves assimilating observational data into the hydrological model, making it 

inapplicable in data-scarce regions. We have added a discussion of the limitations of 

this study in the revised manuscript (LINES 662-680). 

Revised Manuscript LINES 662-680: 

6.3 Limitations 

The Xin'anjiang model is a conceptual hydrological model that generalizes the rainfall-

runoff process. Its most prominent feature is performing runoff production calculations 

based on the saturation-excess runoff mechanism, meaning net rainfall is first entirely 

used to replenish soil water, and once the soil moisture content in the unsaturated zone 

reaches field capacity, all subsequent net rainfall is used to generate runoff. Therefore, 

the Xin'anjiang model is only suitable for humid and semi-humid regions where the 

saturation-excess runoff mechanism is dominant and is not applicable to arid and semi-

arid regions. However, it is important to note that the state updating method proposed 

in this study is not limited to coupling with the Xin'anjiang model. In fact, this method 

can be easily coupled with any lumped or semi-distributed hydrological model that 

includes state variables related to soil moisture and channel storage. When coupled with 



hydrological models suitable for semi-arid and arid regions, it can be effectively applied 

in those areas. 

Semi-distributed hydrological models, like the Xin'anjiang model used in this study, 

have smaller state variable dimensions, allowing for the direct application of the 

proposed state updating scheme. However, in distributed models where each 

computational grid (e.g., DEM-based grids) has its own state variables, the state 

dimension becomes large, making direct application inefficient or prone to spurious 

correlations from distant observations. To resolve this, we recommend applying 

covariance localization to AEnKF (Janjić et al., 2011) or other localization techniques 

(Khaniya et al., 2022). For instance, in covariance localization, a localization radius 

(RL) is set, and the forecast error covariance matrix is adjusted using a correlation 

matrix derived from the Schur product theorem. This study focuses on jointly 

assimilating soil moisture and streamflow using AEnKF, and performing localization 

on AEnKF is beyond the scope of this research. We will explore this further in future 

work. 

 

9. As a crucial step in the study, the statistical characteristics of the data used (e.g., peak 

discharge) should be presented in detail. The statistical properties, including skewness, 

coefficient of variation, confidence intervals, boxplots for outlier data, distribution 

characteristics, minimum, maximum, and median values, etc., should be provided in a 

table. 

Response: Thank you for your suggestion. In Supplement (part S4), we have included 

a table (Table S4-2) with the statistical characteristics of the peak flow for the flood 

events in this study, including the mean, standard deviation, minimum, maximum, 

median, skewness, kurtosis, coefficient of variation, and 95% confidence interval.  

Revised Supplement Table S4-2: 

Table S4-2. Statistical characterization of peak flow 

  
Mean  

(m3/s) 

standard 

deviation 

(m3/s) 

Minim

-um 

(m3/s) 

Maxi-

mum 

(m3/s) 

Median 

(m3/s) 

Skew

-ness 

Kurt-

osis 

Coefficient 

of 

Variation 

95% confidence 

interval  

(m3/s) 

o
b

se
rv

ed
 

p
ea

k
 f

lo
w

 Calibr

-ation 
15982 8049 7348 35725 14996 1.03 0.55 0.50 (11534, 20431) 

Valid-

ation 
11255 6343 4747 25963 8420 0.89 0.37 0.56 (7879, 14630) 

S
im

u
la

te
d

 

P
ea

k
 f

lo
w

 Calibr

-ation 
15942 8142 7462 35648 14958 0.97 0.22 0.51 (11444, 20440) 

Valid-

ation 
10596 5669 4244 23428 7850 0.87 -0.15 0.53 (7578, 13614) 

 

10. I recommend including the error estimation and evaluation metrics section from the 

supplement as an appendix in the main document, rather than providing it as a separate 



file. This will facilitate a more cohesive understanding for interested readers. 

Response: Thank you for your suggestion. We have carefully considered your 

suggestions and provided a summary of these two sections in the main text (LINES 

239-273 and LINES 332-346), ensuring that general readers can gain a comprehensive 

understanding without being overwhelmed by excessive technical details. For data 

assimilation experts interested in the technical specifics, they can find detailed 

information in the supplementary materials. On the other hand, the main focus of this 

study is the joint assimilation of multi-source data using the improved AEnKF, and the 

main text is already quite lengthy in fully presenting this focus. After careful 

consideration, we believe that providing the technical details of error estimation and 

evaluation metrics as supplementary material is a better choice to improve the 

readability of the paper and manage the length of the main text. 

Revised Manuscript LINES 239-273: 

2.3 Error estimation 

Both the EnKF and its variant, update model states by employing a weighted average 

of observational data and model forecasts. This process highlights the crucial role of 

model and observational errors in determining the effectiveness of the assimilation 

system. Particularly in rainfall-runoff modeling, where uncertainties in both model and 

observations are inherently ambiguous, generalizing these uncertainties is instrumental 

in acquiring refined approximations of suboptimal model states. A common technique 

involves adding unbiased noise to observations, model forcing and model states. 

Observations involved in this study include discharge at catchment outlet and observed 

soil moisture. We generalize the observational errors as Gaussian perturbations related 

to the corresponding observed values (Weerts and El Serafy, 2006; Clark et al., 2008; 

Alvarez-Garreton et al., 2015). Given that rainfall serves as the most critical input 

information for the hydrological model, we employ log-normal multiplicative 

perturbations to describe the errors associated with rainfall, thereby representing the 

uncertainty in model forcing (McMillan et al., 2011; DeChant and Moradkhani, 2012). 

Moreover, we introduce a first-order autoregressive model to represent the temporal 

correlation within the observational errors and the forcing errors. 

In the assimilation of observed discharge at catchment outlet, the key model state 

variable updated is cumulative channel flow. This variable represents the outflow from 

each sub-basin on the routing calculation unit (sub-reaches in this study), denoted as 

𝑄𝐶. As Li et al. (2014), this state variables are perturbed using a Gaussian function. 

When assimilating observed soil moisture, the model state variables representing soil 

humidity need to be updated. Specifically, this refers to the tension water storage 

(including upper, and lower layer tension water) and the free water storage in the 

Xin'anjiang model. In the Xin'anjiang model, the soil moisture state variables receive 



physical constraints. The free water storage (denoted as S) reflects the soil moisture in 

the topsoil layer, specifically the humus layer (Yao et al., 2012). Therefore, it is assumed 

that the free water storage can be considered to range between the saturation moisture 

content and the field capacity, with its upper limit controlled by the parameter SM and 

the lower limit set to zero. On the other hand, the tension water storage (denoted as W) 

represents the soil moisture throughout the entire soil profile, encompassing the whole 

unsaturated zone (Yao et al., 2012). Consequently, the tension water storage is 

considered to vary between the field capacity and the wilting point, with its upper limit 

governed by the parameter WM and the lower limit being zero. The WU, WL, and WD 

represent the upper, lower, and deep layer tension water storage, respectively, with their 

upper limits controlled by the parameters WUM, WLM, and WDM, and 𝑊𝑀 =

𝑊𝑈𝑀 + 𝑊𝐿𝑀 + 𝑊𝐷𝑀 . When the variables approach the upper or lower limit, the 

Gaussian perturbations may cause it to violate the physical constraints. If the 

hydrological model corrects it, it will lead to the truncation error in the background 

field predictions. We introduce the Bias-corrected Gaussian Error Model (BGEM) 

proposed by Ryu et al. (2009), aimed at reducing biases that emerge due to adherence 

to physical constraints.  

The aforementioned error models are controlled by parameters known as 

‘hyperparameters’ (Thiboult and Anctil, 2015), such as the hyperparameters for 

Gaussian perturbations are mean and standard deviation. We apply the Maximum a 

posteriori estimation method (MAP) to identify the globally optimal values of these 

hyperparameters (Gong et al., 2023). The MAP method aims to maximize the 

probability density of the hyperparameters with given the observed historical flood 

events. Supplement 1 provides a comprehensive introduction to the implementation of 

error estimation in this study. 

Revised Manuscript LINES 332-346: 

2.5 Evaluation metrics 

In this study, we use four metrics to assess the assimilation effectiveness, focusing on 

both optimal single-value and ensemble performances, as suggested by McInerney et 

al. (2020). The optimal single-value performance, indicating the highest simulation 

accuracy, is represented by the ensemble mean values of the simulated discharge. The 

ensemble performance evaluation, in contrast, examines the simulated discharge 

ensemble through the lens of ensemble forecasting, covering both the overall 

performance of ensemble and its reliability. 

For quantitatively assessing the optimal single-value performance, we employ the 

Normalized Nash-Sutcliffe efficiency coefficient (NNSE) (Nossent and Bauwens, 2012) 

and the root mean squared error (RMSE). The Continuous Ranked Probability Score 

(CRPS), introduced by Hersbach (2000), measures the overall performance of ensemble. 

The reliability component of CRPS, denoted as RELI, focuses on assessing ensemble 

reliability. For these metrics, we use the ratios of AEnKF to Open Loop (ensemble run 



without assimilation), represented as RRMSE, RCRPS, and RRELI. Moreover, the event-

averaged values of these ratios are denoted as MRRMSE, MRCRPS, and MRRELI. The mean 

value of NNSE for multiple flood events is denoted as MNNSE. In synthetic cases, 

'synthetic true values' serve as the benchmark for all evaluation metrics, while observed 

values are used in real-world cases. Additional information about these metrics can be 

found in Supplement 3. 

 

Special thanks to you for your good comments. Other revisions to the manuscript 

can be found in "Point-by-point response to Anonymous Reviewer #1" and " 

Point-by-point response to Anonymous Reviewer #2".  
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