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Abstract 27 

The Hybrid Ensemble and Variational Data Assimilation framework for Environmental 28 

Systems (HEAVEN) is a method developed to enhance hydrologic model predictions while 29 

accounting for different sources of uncertainties involved in various layers of model simulations. 30 

While the  effectiveness of this data assimilation in forecasting streamflow have been proven in 31 

previous studies, its potential to improve flood forecasting during extreme events remains 32 

unexplored. This study aims to demonstrate this potential by employing HEAVEN to assimilate 33 

streamflow data from USGS stations into a conceptual hydrologic model to enhance its capability 34 

to forecast hurricane-induced floods across multiple locations within three watersheds in the 35 

Southeastern United States. The SAC-SMA hydrologic model is driven by two variables: 36 

precipitation and Potential Evapotranspiration (PET), collected from phase 2 of the North 37 

American Land Data Assimilation System (NLDAS-2) and MODIS (Moderate Resolution 38 

Imaging Spectroradiometer) satellite data, respectively. We have validated the probabilistic 39 

streamflow predictions during five instances of hurricane-induced flooding across three regions. 40 

The results show that this data assimilation approach significantly improves hydrologic model’s 41 

ability to forecast extreme river flows. By accounting for different sources of uncertainty in model 42 

predictions—in particular model structural uncertainty in addition to model parameter uncertainty, 43 

and atmospheric forcing data uncertainty, the HEAVEN emerges as a powerful tool for enhancing 44 

flood prediction accuracy. 45 

Keywords: Data Assimilation; Hydrologic Modeling; Extreme Event; Hazard; Uncertainty 46 

Quantification 47 
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1. Introduction 48 

Floods rank among the most devastating and destructive natural calamities globally, 49 

annually causing significant economic losses and fatalities. The iterature indicates that climate 50 

change will amplify the magnitude and frequency of river flooding across the United States ( 51 

Mallakpour and Villarini, 2015; Alipour et al., 2020b;). This is due to the warming climate that 52 

leads to more water evaporating from land and ocean, which in turn increase the size and frequency 53 

of the heavy precipitation events, and therefore, escalate the flooding risk (Alipour et al., 2020a; 54 

Blöschl et al., 2019). According to the United Nations report, flooding alone affected 2.3 billion 55 

people globally from 1995 to 2015 (Wahlstrom and Guha-Sapir, 2015).  56 

A flood modeling system is indispensable to increase the resiliency of communities prone 57 

to flooding by minimizing and mitigating their consequences and impacts. Developing an accurate 58 

and reliable flood forecasting and inundation system requires multiple components, including: 1) 59 

a numerical weather prediction model to estimate the atmospheric forcing variables such as 60 

precipitation, 2) a hydrological model to simulate the rainfall-runoff process and other hydrologic 61 

fluxes such as streamflow, and 3) a hydrodynamic model for streamflow routing and flood 62 

inundation mapping (Grimaldi et al., 2019; Jafarzadegan et al., 2023). Hydrologic and 63 

hydrodynamic models together constitute a pivotal part of the flood inundation mapping task, 64 

which enables the decision-makers to execute safe urban planning and operational risk 65 

management (Annis et al., 2020; Zischg et al., 2018). Existing literature reveals numerous studies 66 

concentrating on rainfall-runoff processes and floodplain dynamics, as well as the development of 67 

integrated hydrologic and hydrodynamic models. These efforts aim to enhance flood forecasting, 68 

assess flood risks, and model flood hazards across spatio-temporal scales (e.g., Felder et al., 2017; 69 

Laganier et al., 2014; Mai and De Smedt, 2017; Nguyen et al., 2016; Sindhu and Durga Rao, 2017; 70 

Tripathy et al., 2024).  71 
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Flood predictions and inundation maps are often inaccurate and erroneous due to different 72 

sources of uncertainties involved in different layers of the modeling chain (Ahmadisharaf et al., 73 

2018; Annis et al., 2020; Apel et al., 2004). These include the hydraulic model structure, 74 

parameters (e.g., channel and floodplain roughness values), and boundary conditions, that is the 75 

upstream and downstream river discharge. While many studies underscore the significance of 76 

addressing uncertainties associated with channel and floodplain friction parameters (Aronica et al., 77 

2002; Bates et al., 2004; Papaioannou et al., 2017; Pappenberger et al., 2005; Werner et al., 2005), 78 

channel geometry (Bhuyian et al., 2015; Neal et al., 2015), model structure (Dimitriadis et al., 79 

2016; Liu et al., 2019; Petroselli et al., 2019), and input digital elevation model (DEM) resolution 80 

(Petroselli et al., 2019) in assessing the uncertainty of inundation mapping, little attention has been 81 

given to uncertainties within the hydrologic processes directly impacting flood modeling 82 

performance. In most of these studies, the hydrological uncertainties are related to the rating curves 83 

(Bermúdez et al., 2017; Di Baldassarre and Montanari, 2009; Domeneghetti et al., 2012; 84 

Pappenberger et al., 2006) and the shape of the flow hydrographs (Domeneghetti et al., 2013; 85 

Scharffenberg and Kavvas, 2011; Savage et al., 2016), but they did not explicitly account for the 86 

uncertainty associated with different components of the hydrologic model predictions, such as the 87 

forcing data uncertainty (due to the limitation of measurements and spatiotemporal 88 

representativeness of the data), model parameter uncertainty (due to conceptualization of the 89 

model and non-uniqueness of parameters), model structural uncertainty due to the imperfect 90 

representation of a real system (Pathiraja et al., 2018; Parrish et al., 2012), and initial and boundary 91 

condition uncertainty (Abbaszadeh et al., 2018a; Moradkhani et al., 2018a). This study seeks to 92 

account for all the aforementioned sources of uncertainties involved in hydrologic model 93 

predictions within a Bayesian framework and studies their impacts on hurricane-induced extreme 94 
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river discharges across different regions in the Southeastern United States (SEUS). It is expected 95 

that reducing hydrologic uncertainties result in improving the accuracy and reliability of flood 96 

inundation mapping when the enhanced hydrologic forecasts are utilized to drive the 97 

hydrodynamic model. 98 

Bayesian methods have been extensively utilized in a numerous studies to characterize, 99 

quantify and reduce the uncertainties in hydrologic model predictions. (Abbaszadeh et al., 2020; 100 

Dechant and Moradkhani, 2012; Kuczera and Parent, 1998; Marshall et al., 2004; Moradkhani et 101 

al., 2005; Pathiraja et al., 2018b; Yan and Moradkhani, 2016). Data Assimilation (DA) is a well-102 

received Bayesian approach in the hydrometeorological community to account for the 103 

uncertainties involved in different layers of hydrologic model predictions by probabilistically 104 

conditioning the states of the model on observations (Moradkhani et al., 2005; Liu and Gupta 2007; 105 

Clark et al. 2008; Vrugt et al. 2006; Moradkhani et al. 2018; Abbaszadeh et al. 2018).  The DA 106 

methods based on the Ensemble Kalman Filter (EnKF) and Particle Filter (PF) were designed to 107 

recursively estimate both states and parameters. In these methods, Monte Carlo sampling and 108 

sequential updating are applied to not only a vector of model parameters but also to a set of 109 

prognostic and diagnostic state variables at each assimilation step (see Moradkhani et al., (2018) 110 

and references therein). The probability distributions of both model states and parameters are 111 

recursively and independently updated at each time step when a new observation becomes 112 

available. These approaches provide better state and parameter estimates through which the 113 

modeling system enables to evolve consistently over time and consequently result in improved 114 

model predictions while accounting for uncertainties (Yan et al. 2015; Plaza et al. 2012; Hain et 115 

al. 2012; Lee et al. 2011; Lievens et al. 2016; Dechant and Moradkhani 2012, 2011; Abbaszadeh 116 

et al. 2018; Montzka et al. 2013; Koster et al. 2018).  117 
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In this study, we utilize a recently developed state-of-the-art hydrologic data assimilation 118 

method, hereafter referred to as HEAVEN (Hybrid Ensemble and Variational Data Assimilation 119 

framework for Environmental Systems), to address all sources of uncertainties (i.e., forcing data, 120 

parameters, model structure, and initial conditions) in hydrologic simulations (Abbszadeh et al., 121 

2019). In particular, we study its usefulness and effectiveness in enhancing peak flow forecasts 122 

during an extreme event. The remainder of the paper is organized as follows. In Section 2, we 123 

present the materials and methods, encompassing the study areas and datasets, descriptions of the 124 

hydrologic model, data assimilation, and calibration methods. Section 3 examines the results of 125 

the hydrologic data assimilation and its advantages in enhancing peak flow forecasts. Section 4 126 

outlines the conclusions and provides suggestions for further expanding this research in the future. 127 

2. Materials and Methods 128 

This section first describes study areas and datasets used in this study, then introduces the 129 

hydrologic model that is used for streamflow prediction, and provides a summary for the model 130 

calibration and data assimilation methods.    131 

2.1 Study Areas 132 

This study is conducted over three watersheds in three different states in the southeast US. 133 

Figure 1 illustrates their geographical locations along with all the available USGS stations within 134 

those regions. Galveston, Mobile, and Savanah are the three watersheds located in hurricane-prone 135 

regions near the coast in the state of Texas, Alabama, and Georgia, respectively. These three 136 

watersheds encompass Galveston Bay, Mobile Bay, and Savanah Bay, respectively.  137 
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 138 

Figure 1. Location of Galveston, Mobile, and Savanah watersheds in three different states in the 139 
southeast US. Black points represent the USGS stations operated in each watershed.  140 

  141 
To provide a comprehensive analysis and show the robustness of the proposed approach in 142 

accounting for the uncertainties involved in hydrologic predictions and its benefit in generating 143 

accurate and reliable flood inundated areas, we conducted this study over five hurricane-induced 144 
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flooding events in three different regions in the SEUS. These include hurricane Harvey and Rita 145 

(in Galveston watershed), Hurricane Ivan (in Mobile watershed), and Hurricane Matthew and Irma 146 

(in Savanah watershed).  The Galveston watershed comprises nine HUC8s, including 12040202 147 

(East Galveston Bay), 12040203 (North Galveston Bay), 12040102 (Spring), 12040103 (East Fork 148 

San Jacinto), 12040201 (Sabine Lake), 12040204 (West Galveston Bay), 12040205 (Austin-149 

Oyster), 12040101 (West Fork San Jacinto), and 12040104 (Buffalo-San Jacinto). The climate in 150 

this region is humid subtropical with prevailing winds from the south and southeast that bring heat 151 

from the deserts of Mexico and moisture from the Gulf of Mexico. This watershed has a long, hot, 152 

and humid summer, such that the temperature exceeds above 32 °C in August, while the winter is 153 

often mild and the temperature does not usually drop below 4 °C. Snowfall in Galveston is 154 

generally rare, while the rainfall is frequent. With an average of 1000 mm, the rainfall is higher 155 

than the national average (767 mm). Hurricanes and tropical storms are notorious for wreaking 156 

havoc on the region's economy and environment and putting several communities at risk,  157 

including Houston, which is the fifth-largest metropolitan region in the US. In August 2017, 158 

hurricane Harvey with heavy rainfall and wind storms hit the Galveston area and caused significant 159 

flooding. Many locations around the bay area (i.e., Harris and Galveston counties) experienced 160 

more than 760 mm of rain in a few days that resulted in $23 billion in property damages, according 161 

to Reuters report (Ryan McNeill and Duff Wilson, 2017). In September 2005, hurricane Rita swept 162 

through east Texas and the Louisiana coast and resulted in extensive flooding, damages, and more 163 

than a hundred fatalities. Rita is the most intense tropical cyclone in the history of the Gulf of 164 

Mexico. According to the NOAA report (Richard D. Knabb, Daniel P. Brown, 2006), Rita’s wind 165 

storm resulted in some flooding across the river networks in northern regions of the Galveston Bay 166 

by pushing the river water southward.  167 
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The Mobile watershed only refers to the lower portion of the Mobile basin which consists 168 

of four HUC8s, including 03150204 (lower Alabama), 03160204 (Mobile-Tensaw), 03160205 169 

(Mobile Bay), and 03160203 (Lower Tombigbee). This region is characterized by a warm and 170 

temperate climate with well distributed high rainfall throughout the year. Even in the driest month 171 

of the year, this area experiences significant rainfall. The precipitation usually is in the form of 172 

rain, such that on average the annual rainfall reaches 1600 mm - almost two times more than the 173 

US average rainfall per year. In this watershed, summer is long and hot, and the winter is short and 174 

cold. In the warmest and coldest months of the year, the temperature usually does not rise above 175 

32 °C and does not fall below 5 °C. In September 2004. Hurricane Ivan made landfall along the 176 

coasts from Destin in the Florida panhandle westward to Mobile Bay/Baldwin County, Alabama, 177 

according to the NOAA report.  The rainfall of this hurricane caused major flooding in both 178 

Alabama and northwest Florida. According to the National Weather Services 179 

(https://www.weather.gov/mob/ivan), Ivan resulted in nearly $14 billion in damage in both states. 180 

The radar-estimated data shows the rainfall associated with hurricane Ivan over the coastline of 181 

Alabama (near Orange Beach) reached more than 381 mm and then gradually decreased as the 182 

hurricane’s eye moved northward.  183 

The third watershed used in this study is Savanah, which is comprised of four HUC8s, 184 

including 03060106 (Middle Savannah), 03060109 (Lower Savannah), 03060110 (Calibogue 185 

Sound-Wright River), and 03060204 (Ogeechee Coastal). This watershed has a humid subtropical 186 

climate with long hot summers and temperate winters. In this region, the precipitation is mainly 187 

influenced by the Atlantic Ocean (from the east side) and the Appalachian Mountains (from the 188 

west side). The precipitation is usually in the form of rainfall throughout the year with some rare 189 

snowstorms that occur in the northern mountainous regions in winter. Climate change has a serious 190 
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impact in Savanah because of the severe heat and intense storms that cause periods of drought and 191 

flood, putting the region's water and food supplies at risk. The temperature usually does not go 192 

below 4 °C and over 34 °C in the coldest and warmest months of the year. November and August 193 

are the driest and wettest months of the year with an average precipitation of 61 mm and 183 mm, 194 

respectively. As shown in Figure 1, the predominant land cover in Savanah is wetlands. In October 195 

2016, Hurricane Matthew with strong winds and heavy rainfall hit the coastline of South Carolina 196 

and North Carolina and caused extensive coastal and inland flooding. The National Hurricane 197 

Center (NHC) reported dozens of deaths and $10 billion in damages across the US East Coast 198 

(Stewart, 2017). According to the NOAA report, Hurricane Matthew produced a copious amount 199 

of rain that led to record-breaking river levels in some locations in the Savannah region (Liberto, 200 

2016). A year after that, in September 2017, this region was again hit by Category 5 Hurricane 201 

Irma. The hurricane’s wind speed exceeded 60 mph in the Savanah region that resulted in a 202 

significant tidal surge in the Savanah River, according to the National Weather Service. The storm 203 

surge and tide together produced maximum inundation levels of 3 to 5 ft above ground level along 204 

the coast of Georgia and much of South Carolina that inflicted extensive damages to infrastructure, 205 

agriculture, and properties (John P. Cangialosi, Andrew S. Latto, 2017).   206 

2.2 Datasets  207 

We used MODIS (Moderate Resolution Imaging Spectroradiometer) PET (Potential 208 

Evapotranspiration), and NLDAS-2 (Phase 2 of the North American Land Data Assimilation 209 

System) precipitation forcing data to drive the hydrologic model and estimate the streamflow. The 210 

streamflow observations collected from the USGS (United States Geological Survey) stations were 211 

used for calibration, assimilation, and validation purposes. To collect the USGS streamflow data, 212 

we used Climata which is a python package that facilitates acquiring climate and water flow data 213 
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from a variety of organizations such as NOAA, NWS (National Weather Service), and USGS. The 214 

documentation of this package along with example scripts are available at Earth Data Science 215 

(2021).   216 

2.2.1 MODIS  217 

MODIS global evapotranspiration product MOD16 is a gridded land surface ET data set 218 

for the global land areas at 8-day, monthly and annual intervals (Mu et al., 2011, 2007). The output 219 

variables of the MOD16 product include 8-day, monthly and annual ET, λE (latent heat flux), PET 220 

(potential ET), PλE (potential λE), and ET_QC (quality control). In this study, we used MOD16A2 221 

PET product at 500 m spatial resolution and 8-day time-interval. Please note that the pixel values 222 

for PET are the sum of all eight days within the composite period. The dataset can be retrieved 223 

from https://lpdaac.usgs.gov/products/mod16a2v006/.  224 

2.2.2 NLDAS-2  225 

NLDAS-2 contains quality-controlled, and spatially and temporally consistent 226 

meteorological forcing data. Such as surface downward shortwave radiation, surface downward 227 

longwave radiation, specific humidity, air temperature, surface pressure, near-surface wind in u 228 

and v components, and precipitation rate. In this study, we used precipitation data from the 229 

NLDAS_FORA0125_H product, which is a reasonable dataset for operational hydrologic 230 

modeling purposes. This dataset is available from 1979 to present with a spatial resolution of 1/8° 231 

and temporal resolution of 1 hour (Xia et al., 2012). This data can be retrieved from 232 

https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_002/summary.  233 

2.3 SAC-SMA Hydrologic Model  234 

In this study, we used Sacramento Soil Moisture Accounting Model (SAC-SMA) to 235 

simulate the streamflow at several locations within three different watersheds. The SAC-SMA 236 
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(Burnash et al., 1973) is a spatially-lumped continuous soil moisture model that represents each 237 

basin vertically by two soil zones: an upper zone and a lower zone. The upper and lower zones 238 

represent the short-term storage capacity and long-term groundwater storage, respectively. For 239 

descriptions of model parameters and state variables, we refer the readers to our previous study 240 

(Abbaszadeh et al., 2018). This model is widely used by the NOAA/NWS for operational flood 241 

forecasting in the US (Smith et al., 2003). SAC-SMA produces daily streamflow from daily PET 242 

and precipitation data. It is noted that here we disaggregated and aggregated the MODIS PET and 243 

NLDAS precipitation data, respectively, to 6-hour interval in order to be consistent with the SAC-244 

SMA hydrologic model that generally runs at a 6-hour time step. SAC-SMA model inputs include 245 

6-hour Mean Areal Precipitation (MAP) and 6-hour Mean Areal Potential Evapotranspiration 246 

(MAPE). These variables are calculated by delineating the drainage area contributing to each 247 

USGS station for which the hydrologic model is performed. 248 

2.4 Data Assimilation 249 

In this study, we use Hybrid Ensemble and Variational Data Assimilation framework for 250 

Environmental Systems, HEAVEN (Abbaszadeh et al., 2019) to account for all sources of 251 

uncertainties involved in the hydrologic model simulations. HEAVEN is a data assimilation 252 

method built through the combination of a deterministic four-dimensional variational (4DVAR) 253 

assimilation method with the particle filter (PF) ensemble data assimilation system. Since we 254 

already provided a comprehensive description of this data assimilation approach in the above 255 

article, here we briefly describe its formulation and implementation process. HEAVEN provides 256 

the possibility that both sequential and variational assimilation approaches can effectively feed 257 

each other in a single framework to produce a more complete representation of posterior 258 

distributions. The first step is to minimize the weak-constraint 4DVAR cost function (Eq. 1) within 259 
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an assimilation cycle and find the optimal initial condition, which is also known as analysis x!. 260 

For the time period of 𝑇 and assimilation window size 𝐾 ([𝑡", 𝑡#$%]), the number of assimilation 261 

cycles in the HEAVEN becomes 𝑇 𝐾( . For example, for a one year analysis period of 𝑇 = 365 262 

days, with the assumption of 𝐾 = 5 days, 73 assimilation cycles or windows are defined. In each 263 

assimilation cycle, k ranges between 0 to K, where 𝑘 = 0 indicates the initial time step. The 264 

optimal solution is the joint maximum likelihood estimate of the state variables within the 265 

assimilation window given the observations. The only free variable in the minimization of the cost 266 

𝐽 is the model state 𝑥" at the initial time 𝑡". The optimal solution (analysis) is obtained through an 267 

iterative method that, typically, relies on linearized versions of the model and observational 268 

operator to obtain a quadratic approximation to the cost 𝐽 (outer iteration) and adjoint modeling 269 

for gradient information. 270 

J(x", … , x&) = J' + J( + J)271 

=
1
2 8x" − x",':

+B,-8x" − x",': +
1
2<8y. − h.(x.):

+R.,-8y. − h.(x.):
&

.$"

272 

+
1
2<

(x. −ℳ.,-→.(x.,-, Θ, u.))+
&

.$-

Q,-(x. −ℳ.,-→.(x.,-, Θ, u.))								(1) 273 

k and K show time step in each assimilation window and assimilation window size, respectively. 274 

B, R., Q. specify prior, observation, and model error covariance matrices respectively. Initial 275 

deterministic guess for state variables and parameters are also respectively represented by x",' and 276 

Θ. h and ℳ represent the observation and model operators. y. and u. are the observation and 277 

forcing data at time step k. To initialize the system, the error covariance matrices are calculated as 278 

follows: 279 

R. = (max	((λ × y.), 1))0													(2) 280 

B = diag	8(Ω × x",')0:																			(3) 281 
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Q. = Γ × diag	8(π × x",')0:									(4) 282 

where 𝜆 is the error percentage in observations. Ω represents the error percentage in initial state 283 

variables x",'. π is the error percentage in model structure and Γ is the model error covariance 284 

inflation (Γ ≥ 1) or deflation factor (Γ ≤ 1). Since here the model covariance error is assumed to 285 

be static and does not vary in time, therefore in equation 1, Q. becomes Q. The initial guess for 286 

the model parameters is obtained using the Latin Hypercube Sampling (LHS) approach. Since the 287 

minimum and maximum values of the model parameters are predefined (Abbaszadeh et al., 2018), 288 

the ensemble members of model parameters θ1 can be generated using the LHS. Here, the 4DVAR 289 

cost function is executed in a deterministic way, therefore it requires an ensemble mean of θ1, 290 

which is calculated using the equation (5). N is the ensemble size.  291 

Θ =
1
N<θ1

2

1$-

																			(5) 292 

The linearization of observation h and model ℳ operations is required for performing 293 

variational data assimilation approaches. This hinders their use in hydrological applications 294 

because such linearizations are not usually feasible. To address this problem, we minimize the 295 

4DVAR cost function and find the optimal solution x! using the Nelder-Mead algorithm (Nelder 296 

and Mead, 1965), which is a derivative-free optimization method. 4DVAR seeks the initial 297 

condition such that the forecast best fits the observations within the assimilation interval. We 298 

specify the model parameters Θ at each time step within the assimilation interval. We then find the 299 

best initial state variables (also known as analysis) 𝑥3 by minimizing the 4DVAR cost function. 300 

Up to this point, the optimal initial condition x! within the first assimilation window is 301 

obtained. To perform the particle filtering DA within the same assimilation window, we use x! as 302 

an initial guess (prior information) with some error that follows a Gaussian distribution. In 303 
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equation (6), x"1  is the initial state ensemble members and B is the prior error covariance matrix 304 

used in the 4DVAR cost function.  305 

x"1 = x! + ε1										ε1~N(0, B)																(6)     306 

To ensure that an appropriate initial condition 𝑥"4  is replicated for cycle 𝜏, which later leads 307 

to better estimation of the posterior distributions in that window interval, we run the forward model 308 

for cycle 𝜏 using two initial ensemble scenarios: (1) 𝑥"4  and (2) state posterior distribution obtained 309 

in the last time step (𝑘 = 𝐾) of assimilation cycle 𝜏 − 1 (𝑥%4 ). Under these two initial conditions, 310 

we calculate 𝑦#4  for ensemble members within the assimilation interval [𝑡", 𝑡%], and based on their 311 

discrepancies from the observations 𝑂𝑏𝑠#, one can decide to preserve the particles 𝑥"4  or replace 312 

them with those already available from the previous cycle 𝜏 − 1. 313 

Here, we describe the implementation of the Evolutionary Particle Filter with Markov 314 

chain (EPFM) data assimilation approach (Abbaszadeh et al., 2018). EPFM is a sequential data 315 

assimilation technique based on the combination of particle filtering, MCMC (Markov chain 316 

Monte Carlo), and GA (Genetic Algorithm). EPFM is performed within the assimilation window 317 

for which the initial condition was obtained from the 4DVAR approach. Her,e we provide a brief 318 

overview of the EPFM algorithm and for more information, we refer the readers to the original 319 

article (Abbaszadeh et al., 2018).  320 

Equations 7 and 8 describe the generic nonlinear dynamic system, where x5 ∈ ℝ6 and θ ∈321 

ℝ7 are vectors of uncertain state variables and model parameters, respectively. 𝑢8 represents the 322 

uncertain forcing data, y5 ∈ ℝ9indicates a vector of observation data, ω5	and υ5 are the model and 323 

measurement errors, respectively, which are assumed to be independent and follow white noises 324 

with mean zero and covariance Q5 and R5.  325 

https://doi.org/10.5194/hess-2024-209
Preprint. Discussion started: 21 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 16 

x5 = ℳ(x5,-, u5, θ) + ω5											ω5~N(0, Q5)										(7) 326 

y5 = h(x5) + υ5																													υ5~N(0, R5)												(8) 327 

The following formula is used to calculate the posterior distribution of the state variables at time 328 

t.   329 

p(x5|y-:5) = p(x5|y-:5,-, y5) =
p(y5|x5)p(x5|y-:5,-)

p(y5|y-:5,-)
=

p(y5|x5)p(x5|y-:5,-)
∫ p(y5|x5)p(x5|y-:5,-)dx5

										(9) 330 

p(x5|y-:5,-) = kp(x5, x5,-|y-:5,-)dx5,- = kp(x5|x5,-)p(x5,-|y-:5,-)dx5,- 																	(10) 331 

where	p(y5|x5) is the likelihood at time step t, p(x5|y-:	5,-) is the prior distribution, and 332 

p(y5|y-:5,-) is the normalization factor. The marginal likelihood function p(y-:	5) and the 333 

normalization factor p(y5|y-:	5,-) can be calculated using equations 11 and 12, respectively.  334 

𝑝(𝑦-:8) = 𝑝(𝑦-)m𝑝(𝑦8|𝑦-:8,-)																				(11) 335 

p(y5|y-:5,-) = kp(y5, x5|y-:5,-)dx5 = kp(y5|x5)p(x5|y-:5,-)dx5 														(12) 336 

In hydrologic data assimilation based on particle filtering, the posterior distribution is 337 

approximated using a set of particles with associated weights. 338 

p(x5|y-:5) ≈ <w1<δ8x5 − x51:
2

1$-

										(13) 339 

where w1<, δ and N denote the posterior weight of the i-th particle, Dirac delta function, and the 340 

ensemble size, respectively.  The posterior weight is normalized as follows: 341 

w1< =
w1,. p8y5rx51 , θ51:

∑ w1,. p8y5rx51 , θ51:2
1$-

										(14) 342 
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where w1, is the prior particle weights, and the p8y5rx51 , θ51: can be computed from the likelihood 343 

L8y5rx51 , θ51:. To calculate this, for simplicity, a Gaussian likelihood is used as follows: 344 

L8y5|x51 , θ51: =
1

u(2π)9|R5|
exp w−

1
2 xy5 − h8x5

1:y
+
R5,- xy5 − h8x51:yz										(15) 345 

Within this data assimilation method, GA evolutionary cycle is used to shuffle the particles. 346 

The particles’ weights (w1<) are considered as the fitness value. The particles (population) are 347 

sorted in descending order of their fitness values to perform the roulette wheel selection method 348 

and select the parent particles for crossover operation and generate offsprings (new particles). 349 

Crossover probability refers to a portion of particles that is used for crossover operation. To further 350 

increase the diversity of the offspring particles, a mutation operator with a probability is executed. 351 

For more information about the crossover and mutation operators and their equations, we refer the 352 

readers to Abbaszadeh et al. (2018). The MCMC approach is used to either accept or reject the 353 

new offspring particles (proposal state variables). This process requires re-running the model from 354 

t − 1 to t using x5,-1  (state variables before using GA operators) and x5,-
1,=  (state variables after 355 

using GA operators). To accept or reject the proposal states, the metropolis acceptance ratio α is 356 

calculated using equation 16.  357 

α = min }1,
p8x5

1,=, θ51,ry-:5:
p8x51,, θ51,ry-:5:

~ = min}1,
p8y-:5rx5

1,=, θ51,:. p8x5
1,=rθ51,, y-:5,-:

p8y-:5rx51,, θ51,:. p8x51,rθ51,, y-:5,-:
~																					(16) 358 

where p8x5
1,=, θ51,ry-:5: is the proposed joint probability distribution.  359 

p8x5
1,=, θ51,ry-:5: ∝ p8y5rx5

1,=, θ51,:. p8x5
1,=rθ51,, y-:5,-:. p8θ51,ry-:5,-:										(17) 360 

x5
1,= = ℳ8x5,-

1,= , u51 , θ51,:												(18) 361 
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where p8y5rx5
1,=, θ51,: is computed using equation 15 and the proposal state Probability Density 362 

Function (PDF) p8x5
1,=rθ51,, y-:5,-: is calculated with the assumption that it follows the marginal 363 

Gaussian distributions with mean µ5 (Eq. 20) and variance 	σ50 (Eq. 21). To calculate the proposal 364 

PDF, the weighted mean and variance of the Gaussian distribution are calculated as follows:  365 

x51, = ℳ8x5,-1< , u51 , θ51,:												(19) 366 

µ5 =<w5,-
1< x51, 											(20)	 367 

σ50 =<w5,-
1< 8x51, − µ5:

0 									(21) 368 

Using the accepted proposal state variables, the posterior weights are recalculated using 369 

equation 14 and used to compute effective sample size. The resampling step within the sequential 370 

data assimilation approach has been already explained in our previous article (Moradkhani et al., 371 

2012), we refer the readers to this publication for more information. Here, we explain how and 372 

what information we collect during the sequential filtering process to update the prior 373 

(background) error covariance matrix B, which is used in the next assimilation cycle within the 374 

4DVAR cost function. Using equation 22, the best estimates of the model state variables and 375 

parameters are acquired as the expected values of their posterior distributions at each time step 376 

within the assimilation window.  377 

x�.< =
1
N<x.1<

2

1$-

					and				θ�.< =
1
N<θ.1<

2

1$-

						∀k = 1, 	 … , 	K													(22) 378 

η. = x�.< −ℳ.,-→.(x�.,-< , θ�.<, u.	)																																																								(23) 379 

q =
1
K<η.

&

.$-

																																																																																														(24) 380 
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B7 =
1

K − 1<
[η. − q][η. − q]+

&

.$-

																																																								(25) 381 

B> = B																																																																																																										(26) 382 

B = (γ × B>) + (1 − γ) × B7																0 ≤ γ ≤ 1																													(27)  383 

𝜂# and 𝑞 represent the estimate of model error and model error bias at each time within the 384 

assimilation window. In this approach, we operate the EPFM filter within the assimilation window 385 

for which the best initial condition is estimated by 4DVAR method. In doing so, the question arises 386 

as how to use the deterministic (single) initial condition achieved by 4DVAR method to initialize 387 

the EPFM filter, which is an ensemble-based approach. To cope with this problem, we define a 388 

prior error covariance 𝐵, which involves two components: dynamic (𝐵?) and static (𝐵@) prior error 389 

covariances, to perturb the deterministic solution of 4DVAR approach and generate best initial 390 

condition for the EPFM filter.  B7 is the dynamic prior error covariance matrix in the assimilation 391 

cycle introduced by Shaw and Daescu (2016). B is the prior error covariance matrix from the 392 

previous assimilation cycle. B> is the static prior error covariance matrix at the current assimilation 393 

cycle. The prior error covariance matrix B is updated using equation 27. γ is a tuning factor, which 394 

determines the contribution of model error within the current assimilation cycle. To facilitate the 395 

reproduction of HEAVEN, Figure 2 presents a schematic summarizing all the processes involved 396 

within this approach.  397 
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 398 

Figure 2: A schematic summarizing all the processes in HEAVEN. 399 

2.5 Model Calibration and Validation   400 

Figure 3 illustrates the model calibration and validation periods used for all three 401 

watersheds. As depicted in the figure, the validation period was chosen to encompass the time 402 

frame of extreme flooding events in all study regions. This ensures the applicability of the 403 

calibrated model for predicting future events. In this study, we employ the SAC-SMA model to 404 

simulate flooding events triggered by hurricanes occurring post-2001, as the MODIS-derived PET 405 

data necessary to drive the hydrologic model is available starting from 2001. Recent studies 406 

(Bennett et al., 2019; Bowman et al., 2017) showed that using MODIS PET as input to the SAC-407 

SMA model results in more reliable streamflow simulations compared to traditional 408 

evapotranspiration (ET) demand. For the hydrologic model calibration, we used the Shuffled 409 

Complex Evolution (SCE-UA) optimization technique introduced by Duan et al. (1992). In this 410 

study, we do not provide a detailed explanation of the SCE-UA method; instead, we refer the 411 

readers to the original articles for further information (Duan et al., 1992, 1993). We calibrated 14 412 
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parameters within the SAC-SMA model using 10-years historical USGS streamflow observations, 413 

consistent with the calibration period suggested by the NOAA/National Weather Service (Smith 414 

et al., 2003). The optimal parameter values at each USGS station were found by maximizing Nash 415 

Sutcliffe Efficiency (NSE) objective function that simultaneously considers mean, low, and high 416 

flows (Samuel et al., 2011). 417 

   418 

Figure 3. The calibration and validation periods considered in this study for three watersheds, 419 
along with the hurricane events and their respective durations. 420 

3. Results and Discussions   421 

This study aims to account for all sources of uncertainties involved in hydrologic model 422 

predictions and their impact on improving hurricane-induced extreme river discharges across 423 

different regions in the SEUS. This section summarizes the performance of the SAC-SMA 424 

hydrologic model during both the calibration and validation periods. It then explains the data 425 

assimilation settings along with the streamflow simulation capability of the SAC-SMA model with 426 
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and without data assimilation. The study is conducted in multiple locations across three watersheds 427 

in the southeastern US during hurricane events. 428 

3.1 SAC-SMA Model Calibration and Validation  429 

Figure 4 illustrates the performance of the SAC-SMA model during both the calibration 430 

and validation periods across all study regions utilized in this research. As previously mentioned, 431 

for parameter calibration of the SAC-SMA model, we utilized ten years of historical USGS 432 

streamflow observation data, while model validation was conducted over a four-year period 433 

encompassing flooding from various hurricane events (as shown in Figure 3). Within this figure, 434 

the correlation coefficient (R), bias, and root mean square error (RMSE) represent the statistical 435 

measures of the relationship between simulated and observed streamflow values. We remind that 436 

in this study, we run the hydrologic model over those USGS locations that have not been affected 437 

by the backwater effect of the downstream flow and the streamflow observations have always been 438 

positive. These USGS locations are shown in Figure 1 with black dots. The results confirm that 439 

although the SAC-SMA model was calibrated over the periods for which the river networks within 440 

the watersheds have not experienced flow as much as the validation periods, the model parameters 441 

were properly calibrated to simulate the streamflow. The temporal resolution of streamflow 442 

simulation is hourly, aligning with the requirements for flash flood inundation mapping and 443 

forecasting. However, data assimilation occurs at a daily time scale to match the output frequency 444 

of the SAC-SMA model. This strategy aims to minimize the impact of instantaneous streamflow 445 

changes on parameter updates during the assimilation process. While assimilating streamflow at 446 

sub-daily intervals could be advantageous for adjusting model state variables such as soil moisture 447 

storage, it is not anticipated to significantly contribute to updating model parameters, which 448 

typically vary at coarser time scales.     449 
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 450 

Figure 4. The performance of the SAC-SMA model during the calibration and validation 451 
periods over three watersheds in the southeast US.  452 

 453 

Figure 5 illustrates the model performance (i.e., correlation coefficient and RMSE) across 454 

the USGS stations within the Galveston watershed. Figure S1 in the supplementary file shows the 455 

same results for the other two watersheds, Mobile and Savanah. The results for the Galveston 456 

watershed show that the calibrated SAC-SMA model accurately simulates the streamflow across 457 

almost the entire region except the two USGS stations located downstream of the Lake Livingston 458 

Dam. The primary function of this dam is flood control. Further analysis revealed that the lower 459 

performance of the model at these locations is attributed to the heavy rainfall of Hurricane Harvey 460 

that forced the Trinity River authority to release a record 110,600 ft3/s from Lake Livingston Dam 461 

(The Seattle Times, 2021), which resulted in significantly increasing the river flow. A similar event 462 

happened in the case of Hurricane Rita that led to the significant flow increase in the Trinity River 463 
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and severe flooding (TPWD, 2021). Although the SAC-SMA hydrologic model successfully 464 

simulated river flow across all the USGS stations within the Galveston watershed, it could not 465 

provide reliable streamflow simulation along the Trinity River due to the water release from Lake 466 

Livingston Dam during the Hurricanes Rita and Harvey. For the Mobile watershed, as shown in 467 

Figure S1 in the supplementary file, there is a good agreement between the simulated and observed 468 

river discharge values across all USGS stations except station #02428400. Further investigations 469 

revealed that the river discharge at this location is computed based on flow through the Claiborne 470 

Dam (for more information, please see USGS, 2021b). During Hurricane Ivan, the flow at this 471 

USGS station reached more than 2800 m3/s probably due to water release from the Claiborne Dam 472 

that consequently resulted in higher downstream river discharge.   473 

 474 
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 475 

Figure 5. SAC-SMA model performance over the validation period across the USGS stations 476 
within the Galveston watershed.   477 

 478 

3.2 Improving Streamflow Forecasting using Data Assimilation 479 

The primary goal of this research is to employ a data assimilation technique to account for 480 

all sources of uncertainty in SAC-SMA model simulation and provide a more accurate and reliable 481 

streamflow prediction. The data assimilation approach used in this study was developed recently 482 

by the authors of this study and is used here for the first time to predict streamflow values during 483 

multiple hurricane events with heavy rainfall across different locations in the Southeast US. As 484 

previously stated, the primary objective of our study is to assess the degree to which the developed 485 
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data assimilation technique improves the prediction of extreme river flow caused by hurricanes. 486 

This section summarizes the performance of the SAC-SMA model after using the data 487 

assimilation. The meteorological forcing data including precipitation and PET are assumed to have 488 

log-normal and normal error distributions with a relative error of 25% in the DA setting (DeChant 489 

and Moradkhani, 2012). This assumption ensures that the meteorological observations’ errors due 490 

to spatial heterogeneity inherent in these variables and sensor errors are accounted for. The model 491 

error is assumed to follow a normal distribution with a relative error of 25%. Unlike the other data 492 

assimilation techniques, HEAVEN enables characterizing, quantifying, and taking into account 493 

the model structural uncertainty using an explicit form of model error covariance matrix within 494 

the data assimilation process. This feature of our developed data assimilation method is 495 

specifically more important in this study as we simulate the peak streamflow during hurricane 496 

events. As we discussed in our previous paper (Abbaszadeh et al., 2019), in this data assimilation 497 

technique, the background error covariance matrix B gets adaptively inflated when the model 498 

attempts to simulate extreme values. This error covariance matrix inflation not only helps the 499 

4DVAR objective function to find the optimal initial condition within the assimilation window 500 

(Cheng et al., 2019; Liu et al., 2008; Trémolet, 2007), but also ensures exploring the larger feasible 501 

solution space when the model states are being corrected within the particle filtering process, 502 

which results in a more complete representation of posterior distributions.   503 

Here, we report the performance measures (i.e., correlation coefficient and RMSE) based 504 

on an ensemble size of 100 for one-day ahead streamflow forecasting. Figures S2 and S3 show the 505 

model performance after using data assimilation across all USGS stations located within the study 506 

regions. It should be noted that these results are based on an ensemble size of 100, but of course, 507 

larger ensemble sizes would have resulted in better posterior estimates and more accurate and 508 
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reliable streamflow forecasts. We realized that while data assimilation improved the SAC-SMA 509 

model performance across the majority of stations, in some locations the results remained 510 

suboptimal. Further investigation revealed that these are the same locations previously identified 511 

as being heavily influenced by upstream dam water release during hurricane events. These 512 

locations can not be used as upstream boundary conditions for hydrodynamic modeling (which is 513 

part of our future study) as they are heavily influenced by water release policy during the hurricane 514 

events that altered the natural flow of the river, where hydrologic models most often fail to 515 

perform. Given that the ensemble streamflow forecasts produced in this study are commonly 516 

utilized to drive hydrodynamic models for flood inundation forecasting and mapping, our focus is 517 

specifically directed towards assessing the impact of data assimilation on improving streamflow 518 

forecasts during peak flow conditions resulting from hurricane events. Figure 6 depicts how data 519 

assimilation improved streamflow forecasting during peak flow conditions across USGS stations 520 

in the Galveston watershed during Hurricane Harvey. A similar analysis is also shown in Figure 7 521 

for other watersheds and hurricane events, including Galveston-Rita, Mobile-Ivan, Savanah-522 

Matthew, and Savanah-Irma. The findings revealed that, while data assimilation improved the 523 

SAC-SMA streamflow forecasting skill almost across the entire USGS station networks on the 524 

peak flow day of Hurricane Harvey, its contribution to improving streamflow forecasting in 525 

Hurricane Rita is marginal. Unlike Hurricane Harvey where streamflow reached a peak gradually 526 

over the course of a few days (USGS, 2021a), in the case of Hurricane Rita, the streamflow jumped 527 

from less than 28 m3/s (September 23) to more than 566 m3/s (September 24) in a single day 528 

(according to station # 08066500 Trinity Rv at Romayor, TX), such that the hydrologic model 529 

failed to detect the unexpected high flow on September 24 despite accurate initialization on 530 

September 23 (USGS, 2021b).  531 
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 532 

Figure 6. Streamflow forecast improved by data assimilation during peak flow conditions 533 
across the USGS stations within the Galveston watershed.    534 

 535 

For Hurricanes Ivan and Matthew in Mobile and Savanah,  the percentage of improvement 536 

in SAC-SMA model peak flow forecasts with data assimilation ranged from 21% to 46% and 5% 537 

to 46%, respectively, depending on the location of USGS stations. Understanding and explicitly 538 

quantifying the degree to which each source of uncertainties, i.e., meteorological forcing, model 539 

parameters, initial condition, model structure, and parametrization, affects the final hydrologic 540 

model outputs is not feasible as they all are connected and collectively contribute to degrading 541 

model performance. Our developed data assimilation technique, HEAVEN, has an explicit form 542 

of covariance error matrix for each source of uncertainty that feeds each other during the 543 

assimilation process representing the interaction between different sources of uncertainties 544 
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involved in different layers of model simulations. This results in a better representation of posterior 545 

distribution and reduction of uncertainty in hydrologic modeling. Due to this reason, we see that 546 

the data assimilation approach used in this study is an effective technique to improve the 547 

streamflow forecasting skill during hurricane events.    548 

 549 

Figure 7. Streamflow forecast improved by data assimilation during peak flow conditions 550 
across the USGS stations within the Galveston, Mobile, and Savanah watersheds.  551 

 552 

Figure 8 illustrates the ensemble streamflow forecasts with and without using data 553 

assimilation across multiple USGS stations in the Galveston watershed. As it is seen in this figure, 554 
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in all locations the ensemble mean is much closer to the observation compared to the streamflow 555 

mean value from the open-loop stimulation. The shaded blue area represents the 95% uncertainty 556 

interval. We also see that in all cases the observations fall within the uncertainty interval. 557 

Therefore, we can conclude that using data assimilation, the hydrologic model results in a more 558 

accurate and precise streamflow forecasts.          559 

 560 

Figure 8. One-day ahead streamflow forecast with and without data assimilation across multiple 561 
USGS stations in the Galveston watershed in TX during Hurricane Harvey. 562 

 563 
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4. Conclusions  564 

This study investigates the advantages of employing a state-of-the-art data assimilation 565 

technique, HEAVEN, to address all sources of uncertainty inherent in different layers of 566 

hydrologic simulations. It studies its impact on enhancing the SAC-SMA's forecasting capability 567 

of extreme river flow caused by hurricanes across different regions in the SEUS. 568 

The results demonstrate that HEAVEN, with its inherent features, is a suitable approach to 569 

complement a hydrologic model, enhancing its forecasting accuracy during extreme events. 570 

Employing simultaneous operations on both batch processing and sequential modes, HEAVEN 571 

facilitates a comprehensive estimation of posterior probabilities for diverse streamflow regimes, 572 

encompassing both low and high flows. Model structural uncertainty is quantified by integrating 573 

an explicit form of the model error covariance matrix (Q) within the 4DVAR cost function. The 574 

prior error covariance matrix (B), comprising a linear combination of static (Bs) and dynamic (Bd) 575 

error covariance matrices, undergoes propagation across successive cycles throughout the 576 

assimilation period. This process effectively addresses a wide spectrum of uncertainties in model 577 

predictions, resulting in the most reliable posterior distributions. By preventing particle degeneracy 578 

and sample impoverishment, HEAVEN ensures the reliablity and accuracy of the model's outputs. 579 

In this study, we optimized the 4DVAR cost function using the Nelder-Mead optimization 580 

algorithm since neither the tangent linear nor adjoint versions of the forecast model were available. 581 

If these were accessible, the model forecasts could have been provided much more quickly, as the 582 

current version of HEAVEN requires solving optimization problem, which is typically 583 

computationally intensive. With the current developements in hydrologic modeling utilizing 584 

Machine Learning (ML) emulators, HEAVEN is anticipated to make a significant contribution to 585 

their forecasting capabilities by effectively characterizing and accounting for uncertainty. 586 
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