Reviewer #1

We would like to sincerely thank the reviewer for their constructive and thoughtful
comments.

Below, we provide our responses to each of the reviewer’s comments, along with line
references to indicate where the changes have been made in the revised manuscript. The
added text is shown in italics here and highlighted in yellow in the revised manuscript.

In the abstract, the authors can add some quantitative results to show how much this data
assimilation approach significantly improves hydrologic model’s ability to forecast extreme
river flows.

To address this comment, we have added a paragraph to the abstract. Please refer to lines
45-52 in the revised version. The added text is also included below for your reference:

“The study found that data assimilation improved streamflow forecasting during Hurricane
Harvey, enhancing the SAC-SMA model’s accuracy across most USGS stations on the peak
flow day. However, data assimilation had little effect on streamflow forecasting for Hurricane
Rita. In Rita, the streamflow surged dramatically in a single day (from 28 m¥s to 566 m¥s),
causing the model to miss the high flow event despite accurate initialization the day before.
For Hurricanes Ivan and Matthew, data assimilation improved peak flow forecasts by 21% to
46% in Mobile and 5% to 46% in Savannah, with improvements varying by station location.”

How the different sources of uncertainties are considered in HEAVEN should be mentioned.

The data assimilation method employs the weak-constraint 4DVAR cost function (Eq. 1),
which incorporates three covariance matrices: B, R, and Q. These matrices represent errors
in the initial condition, observations, and model structure, respectively. Additionally, the
uncertainty associated with the forcing data is considered within the sequential assimilation
process. In EPFM, we assume that there is an error in the forcing data. Based on this
assumption, we add white noise to the forcing variables, creating an ensemble of forcing
data that is then used to drive the hydrological model. As a result, this data assimilation
method accounts for all sources of uncertainty.

To address this comment, we have incorporated the above text with some modifications to
align it with the revised version. Please refer to lines 350-363 in the revised version. The
added text is also included below for your reference:

“The DA method utilizes the weak-constraint 4DVAR cost function (Eq. 1), which accounts
for multiple sources of uncertainty by incorporating three key covariance matrices: B, R, and
Q. These matrices represent different types of errors: B accounts for errors in the initial
condition, R represents observational errors, and Q captures model structural errors. By
explicitly modeling these errors, the method provides a more comprehensive and realistic



representation of the uncertainty in the system. In addition to these sources of uncertainty,
the method also considers the uncertainty associated with the forcing data. In the context of
the EPFM approach, itis assumed that errors exist in the forcing data, which can significantly
affect model predictions. To account for this, we introduce white noise to the forcing
variables, effectively perturbing the forcing data. This process generates an ensemble of
forcing data, which is then used to drive the hydrological model. Thus, the DA method is
designed to account for all major sources of uncertainty—initial condition errors,
observational errors, model structural errors, and errors in the forcing data. By incorporating
these uncertainties into the assimilation process, the method enhances the accuracy and
reliability of the model predictions.”

It would be better to introduce figure 2 in the beginning of section 2.4.

Thank you for your comment. It would have been ideal to include this figure at the beginning
of Section 2. However, since the figure is designed to summarize the methodology with
references to equations and detailed explanations of the method, we felt it was more
appropriate to place it toward the end of Section 2.4. This placement allows the figure to
effectively summarize the approach discussed in this section.

In figure 4, the validation accuracy in terms of R is higher than that during calibration in
Savanah, but the validated RMSE is also higher than the latter. Why?

Thank you for your comment. We used two distinct time periods for model calibration and
validation, and we have double-checked the results to confirm their accuracy. While the
correlation coefficient (R) during the validation period is slightly higher than during
calibration, the simulated values in the validation period exhibit a higher bias. Therefore, we
cannot conclude that the model validation outperforms the calibration results.

In figures 6-7, Streamflow forecast improved by data assimilation during peak flow
conditions across the USGS stations are demonstrated. The POI ranges from 0-100%. Is
there any negative value?

No —there was not any negative values.

It would be better to draw a scatter plot to demonstrate the streamflow forecast skills during
peak flow conditions with/without data assimilation.

Thank you for the suggestion. We have already presented this result in Figure 7, as well as in
supplementary Figures S2 and S3. Therefore, generating an additional figure would not have
any added value.



