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Abstract. Frequent record high temperatures in recent years have led to a rise in both the frequency and intensity of drought

events, while also altered the formation process of drought. The worldwide occurrences of flash droughts during the past decade10
are the evidence that drought may evolve in an unusually rapid manner. Such a change of drought challenges existing drought

monitoring and early warning systems typically designed for monthly-scale purposes. This leads to a query that to what extent the

formation process of drought would be accelerated under high temperatures. Based on the reanalysis product, we identified

historical drought events across China during 1950－2021, and defined a new drought characteristic, the duration of drought

onset (DDO, defined as the time period taken for moisture transition from a normal state to below-average condition) to measure15
how rapid the drought develops. Then a two-stage experimental framework was designed to establish the relationship between

DDO and antecedent soil moisture, precipitation, and air temperature, and to estimate the impacts of high temperatures with

different warming scenarios and varied hitting time (pre-, and post-drought onset) on DDO. Results showed that DDO would

shorten by 10~50 days under 35℃ (high temperatures in meteorology) in relative to that of annual mean temperature scenarios.

Overall, the impacts of high temperatures were greatest during the week of drought onset. High temperatures of pre-drought and20
post-drought onset exhibited asymmetrical effects on DDO. In high NDVI areas, pre-drought high temperatures presented a

leading role for accelerating the formation of drought, while in low NDVI areas, high temperatures after drought onset were

favorable for the ongoing development of drought. Findings in this study may supplement the process understanding of drought

in the future warming environment.

1 Introduction25

Climate change have led to high temperatures more likely. The unusual warmth in 2022 and 2023 are the recent fingerprints of

the warming climate, where many countries in the Northern Hemisphere experienced the hottest summer (e.g., parts of western

and northern Europe, and the Yangtze River basin in China) and the warmest September (e.g., North America) on record (van der

Woude et al., 2023; Liu et al., 2023a). Such consecutive high temperatures have caused devasting impacts to human health and

the welfare of the society, meanwhile, they were conducive to other climate extremes such as the wildfires and droughts (Miralles30
et al., 2019; Hao et al., 2022).

Much efforts have been devoted to the analysis of how drought will change in a warming climate. For example, based on the

long-term historical observational data, reanalyses, and the general circulation models (GCMs) projections, a variety of studies

suggested an increase in terms of the frequency, intensity, and affected area of individual drought events both at the global and

regional scales (Dai, 2012; Vicente-Serrano et al., 2020). Focused on the causative linkages between high temperatures and35
droughts, numerous studies analyzed the characteristics of concurrent droughts and heat waves, including the frequency, trends,
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magnitude, hotspot locations, and associated socioeconomic and environmental impacts of such compound events (Hao et al.,

2018; Alizadeh et al., 2020; Zscheischler et al., 2020; Mukherjee and Mishra, 2021; Zhou et al., 2023), and the cascading

interactions between dry and hot extremes (Mukherjee et al., 2023). The patterns of compound climate extremes can be strongly

different due to the varied land-atmosphere coupling strength in different climate regions, underlying surfaces, and the temporal40
scales considered (Teuling, 2018; Zhou et al., 2019; Schumacher et al., 2022). Moreover, from a perspective of drought

monitoring, the change in the formation process of drought in a warming climate is also challenging. The widespread flash

droughts around the world during the past decade are the evidence that drought may develop in a more quicker pace and strong

intensity (Trenberth, 2014; Mo and Lettenmaier, 2015; Ford and Labosier, 2017; Christian et al., 2019; Qing et al., 2022; Yuan et

al., 2023). Such a change in drought challenges the existing drought monitoring systems typically designed for slowly-evolved45
drought (Otkin et al., 2022; Liu et al., 2023b). Taking the 2022 Yangtze River summer drought as an example, it only took ten

days for moisture status to transfer from a normal state to severe drought (Liu et al., 2023a). Previous studies also showed the

increased probability of flash droughts aggravated by the internal climate variability and anthropogenic forcings (Yuan et al.,

2019; Nguyen et al., 2020; Parker et al., 2021; Qing et al., 2022). However, efforts for unraveling the formation process of

drought under high temperatures, particularly for the changes during the onset stage of drought, are generally rare.50
For the sake of improving drought early warning capabilities and facilitating drought management and adaption strategies, it is

crucial to figure out to what extent the drying process would be changed under high temperatures. The influences of record high

temperatures can be strongly different given the timing of their occurrence, e.g., the boosted temperature may be favorable for

drought during pre-drought periods when the moisture is in a surplus state, while the roles may be changed when transferring into

a water stress condition. Moreover, vegetation may modulate these interactions given the coupling nature of water, energy, and55
vegetation. With these in mind, in this study, we apply a modeling framework to establish the relationship between the main

driving factors and the onset of drought. On this basis, comprehensive quantification on the change rate of drought onset under

varied temperature scenarios were conducted. These include record high temperatures with varied timing of occurrence (pre-, and

post-drought onset within two months), and sensitive tests of DDO to temperature. Finally, the modulating effects of vegetation

on the patterns of drought onset under varied high temperature conditions were investigated.60

2 Materials and Methods

2.1 Data

The soil moisture data is from an enhanced global dataset for the land component of the fifth-generation of European reanalysis

(ERA5-Land) produced by the European Center for Medium-Range Weather Forecasts (ECMWF) (Muñoz-Sabater et al., 2021).

This dataset has been shown improved accuracy both for the surface layer and root zone compared with other reanalysis products65
(Beck et al., 2021). The ERA5-Land provides hourly soil moisture estimates of four layers, i.e., 0-7 cm, 7-28 cm, 28-100 cm, and

100-289 cm, at a spatial resolution of 9 km. Meanwhile, other integrated products of varied spatial and temporal resolutions are

also available. In this study, daily estimates of top three layers (depth of 1 m) during 1950 to 2021, at a spatial resolution of 0.25°

were employed to represent the root zone soil moisture. In addition, the actual evapotranspiration (AET) and vapor pressure

deficit (VPD) derived from the ERA global reanalysis product were also collected to detect the land-atmosphere coupling70
strength during a drought period.

The meteorological data including daily mean precipitation (P), and the maximum, air temperature (Tmax) of 2479 national

meteorological stations, were collected from the China Meteorological Administration (http://data.cma.cn/). The data span from

1961 to 2021, and they were interpolated into a spatial resolution of 0.25° using the Kriging method by taking account of the

https://doi.org/10.5194/hess-2024-199
Preprint. Discussion started: 9 July 2024
c© Author(s) 2024. CC BY 4.0 License.



3

influence of elevation. These data were employed to analyze the mean precipitation and maximum temperature conditions during75
drought process.

The third-generation Normalized Difference Vegetation Index (NDVI3g) dataset is derived from the Advanced Very High

Resolution Radiometer (AVHRR) sensor operated by the National Oceanic and Atmospheric Administration (NOAA) and is

made available by the Global Inventory Modeling and Mapping Studies (GIMMS) group (https://ecocast.arc.nasa.gov/-

data/pub/gimms). This dataset is available from 1982 to 2022, at a time interval of 16 days and a spatial resolution of 0.083°. The80
NDVI data were employed to distinguish densely vegetation covered, low vegetation covered regions, and bare soils.

2.2 Methods

2.2.1 Drought Index Based on Soil Moisture Percentile

In this study, the soil moisture percentile (SMP) was employed to identify drought events. Given the notable geographic

differences and seasonality of soil moisture over China, the volumetric soil moisture content was converted to percentile value.85
For each grid cell, the daily soil moisture series from 1950 to 2021 were assigned to 12 subsets based on the calendar months

(SMi, i=1, 2, …, 12). For each subset, thirteen candidate theoretical probability distribution functions (available in MATLAB

2019a, including Beta, Gamma, Loglogistic, Generalized extreme value, Loglog, Weibull, Exponential, Generalized pareto,

Nakagami, Birnbaum-Saunders, Normal, Ray, and Rici distributions) were employed to fit soil moisture series. The optimal

theoretical probability distribution was chosen when the lowest value of root-mean-square error is achieved and also passes the90
Kolmogorov-Smirnov test at a 95% significance level. Selection of the optimal distribution among the 13 candidate distributions

is referred to Liu et al. (2023b). Drought classification is based on the United States Drought Monitoring drought classification

criterion (Svoboda et al., 2002; Ford et al., 2017), where drought is classified into five categories: abnormally dry, moderate

drought, severe drought, extreme drought, and exceptional drought, corresponding to the threshold of 40th, 20th, 10th, 5th, and

2th soil moisture percentile, respectively.95

2.2.2 Identification of drought events and duration of drought onset

In this study, a drought event is recognized when all the following conditions are met: (i) the SMP during a drought episode is

less than the 40th percentile, and the first day that SMP falls below the 40th percentile represents the initiation time (denoted as t0)

of the drought event, whereas the termination time (denoted as te) of the event is recognized when the SMP returns to or exceeds

the 40th percentile; (ii) to ensure the identified event really to be a drought, the drying process must contain the interval that SMP100
falls below the 20th percentile; (iii) short-term drought events with duration (from the initiation time to the termination time) less

than one month were excluded given their limited effects on agricultural production and ecological system.

Based on the aforementioned criteria, a complete process of drought typically comprises the following stages: prior to drought

onset, the onset time when SMP reaching a threshold for the first time, the development process (or refers to the onset stage), and

the recovery period. For each stage, the SMP may present different variation patterns in response to meteorological conditions.105
As shown in Fig. 1, for the onset phage, the SMP overall exhibits continuous reduction until reaches to the lowest value (e.g.,

from 25th May to 4th June). Tiny variation of the rate of water depletion may also be found in response to the current water

supply and energy condition. For instance, a rapid intensification process of soil moisture can be expected under persistent high

temperatures and precipitation deficits, while SMP may also show transient rise as a result of tiny precipitation. Previous

researches mostly examined drought duration, intensity, or severity, while overlooked the evolution of drought during the onset110
stage. Such information is more valuable for drought monitoring, early warning, and adaption strategies. In this study, we focus

on the behavior of SMP during the onset stage to explore to what extent the drying process would be accelerated under varied
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meteorological forcings. Given the category of drought severity, the duration of drought onset (DDO) is defined as the time

interval between the initiation time of a drought (referred to as t0) and the time when the moisture condition falls into moderate,

severe, or extreme drought (referred to as td), denoted as DDOm, DDOs, and DDOe for short, respectively.115

Figure 1. A schematic graph of the development process of drought. Data are from the grid cell (Beijing, 39.8°N 116.4°E). DDOm, DDOs, and

DDOe represent the time consumed for soil moisture percentile to reach categories of moderate, severe, and extreme drought, respectively.

2.2.3 Random Forest

Random forest (RF) is a machine learning technology based on a bootstrap aggregation of classification and regression trees120
(Cutler et al., 2012; Belgiu et al., 2016). It can be applied for classification, regression, and other tasks, with preferable ability of

handling with big and high-dimensional datasets. The model generates a bootstrap sample from the original data, and trains a

decision tree. All the decision trees make up a forest, and each tree in the forest has a predicted value. The final outputs of the RF

method are produced by the aggregation of prediction values of all the individual trees. Compared with other machine learning

techniques, RF is fast, robust to noise in the predictor variables, and capable of capturing the complex nonlinear interactions125
between predictors and dependent variables, especially for soil moisture (Liu et al., 2022). In this study, the RF model is

employed to construct the relationship between the characteristics of drought events and meteorological conditions (i.e., the

explanatory variable) during the onset stage as follows:

 nk XXXFY ,,, 21  (1)

where Yk can be the duration for moisture transition from abnormally dry to moderate, severe, or extreme drought, or the130

intensification rate of soil moisture corresponding to DDOm, DDOs, or DDOe. X1, ……, Xn are explanatory variables relevant to Yk.

In this study, the preceding soil moisture percentile at the time t0 (refers to SMP (t0-1)), average precipitation (P, in unit of mm),

and the maximum air temperature (Tmax, in unit of ℃) were employed as model inputs. The time period for P and Tmax are flexible,

and their average/accumulated values over a certain time period can be used as model inputs to explore the individual role or

accumulated effects of such variables on the formation of a soil moisture drought.135

2.2.4 Experimental Design
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Air temperatures of different value ranges, the occurrence time (e.g., prior to or after drought onset time), as well as their

persistence may have different effects on the formation of a soil moisture drought. We designed two numerical simulation

experiments to investigate the change of drought onset under varied temperature scenarios (Fig. 2). The first sets were to

establish the functional relationship between DDO (i.e., the predictand Y) and predictor matrix X (consist of preceding soil140
moisture, average precipitation, and Tmax of varied values) during the onset stage of a drought. For the second experimental sets,

we focused on the impact of high temperatures with varied timing of occurrences, i.e., pre-, at-, and post-drought onset time.

① Experimental scenario Ⅰ

We first evaluated the performance of RF model for simulating DDO. The data were separated into two parts, i.e., two thirds of

the data for model training, and the remaining one third for model performance evaluation by using the correlation coefficient145
and root-mean-square error (RMSE). In this study, the tree size and the number of features were set as one thousand and three,

respectively, according to the sensitivity tests of model parameters in Zhang et al. (2022). On this basis, we established a

functional relationship between DDO (including DDOm, DDOs, and DDOe) and preceding soil moisture, precipitation, and Tmax as

follows:

 max10 ,),( TPtSMPfDDO  (2)150

where SMP (t0-1) represents soil moisture percentile at 1-week prior to drought onset. P refers to the average precipitation during

t0~td. Although precipitation during a drought event could be negligible, there are still exceptional cases, for instance in humid

regions, a drizzle may occur during a drought. Tmax is the mean value of daily maximum air temperature during t0~td.

For experimental modeling, 400 samples of Tmax were generated within the range of 0~40℃ at a 0.1℃ interval, to represent

different temperature scenarios. Considering the antecedent moisture condition corresponding to a soil moisture drought can also155
be different, 1000 sets of SMP(t0-1) were randomly sampled within the range of 40th~60th percentile (representing the mildly wet

condition) and 70th~90th percentile (representing the severely wet condition), respectively. Based on the probabilistic

distribution of average precipitation corresponding to historical drought events, 1000 precipitation samples during the onset stage

were generated by using the probability sampling method. The combination of Tmax, SMP(t0-1), and P samples constitute a

400×1000×1000 data matrix, then they were input into the RF model to explore the impacts of temperatures with different value160
ranges on DDO.

② Experimental scenario Ⅱ

The second experimental sets aimed to explore the specific roles of high temperatures occurring in fourteen (i.e., prior to drought

onset from t-7 to t0, and after drought onset from t1 to t7) adjacent weeks of drought onset on DDO. Sampling of SMP(t0-1) and P

were same as did in the experimental scenario I, while for Tmax, its emergence time can be any interval from t-7 to t7. For example,165
the first group aimed to explore the role of high temperatures from t-1 to t0. Accordingly, 100 samples within the range of

30~40 ℃ (the sample mean was 35 ℃, which is a threshold of high temperature employed by the China Meteorological

Administration) at a 0.1 ℃ interval were generated by the random sampling method for Tmax from t-1 to t0, while the remaining

weeks (i.e., from t-7 to t-1 and from t1 to t7) of Tmax were set as non-high temperature conditions. On this basis, we define the

change ratio of DDO to quantify the effect of high temperatures as follows:170

%100



mean

meani

DDO
DDODDORatio (3)
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where DDOi is the simulated results of the i-th group, in other words, Tmax(t0~ti) is set to the scenario of high temperature.

DDOmean refers to the condition that air temperatures are of normal value from the period of t-7 to t7 without high temperatures

involved.

175

Figure 2. The flow chart of the experimental design for estimating the duration of drought onset under different temperature scenarios. DDO is

the duration of drought onset, P is the average precipitation during the osnet stage of drought, SMP(t0-1) represents the antecedent soil moisture,

Tmax represents the maximum air temperature, and RF is the random forest model.

2.3 Performance evaluation

Fig. 3 shows the correlation between drought duration (i.e., DDOm, DDOs, and DDOe) during the onset stage against P, SMP(t0-1),180
and Tmax. For all three variables, higher absolute values of correlation coefficient (CC) indicate larger influences of corresponding

variables on drought onset. As expected, precipitation was negatively correlated with the DDOm, DDOs, and DDOe, with larger

impacts in the north than in the south. Especially in the northwestern arid region, the absolute values of CC were as high as 0.6

(Fig. 3a). The antecedent soil moisture condition (i.e., SMP(t0)) on the contrary, played a positive role in influencing DDOm,

DDOs, and DDOe, suggesting that the time period for moisture development from non-drought to drought could be long if185
antecedent soil moisture is sufficient. Spatially, the SMP(t0-1) mainly influenced the northeastern China, northern China, northern

Qinghai-Tibet Plateau, and the middle and lower reaches of the Yangtze River (Fig. 3b). While for other regions, the impacts of

SMP(t0-1) could be very limited given the low values of CC (no more than 0.5). Among three variables, the Tmax showed the

highest correlation with duration of drought onset. The CC values ranged between -0.4 and -0.9, with the strongest correlation in

northeastern China, northern China, Qinghai-Tibet Plateau, and parts of southern China (Fig. 3c). The negative correlation190
suggests that the duration of drought onset is likely to be shorten under high temperatures.
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Figure 3. The spatial distribution of the CC between the DDOs against (a) P, (b) SMP(t0-1), and (c) Tmax, and the boxplots shows the CC

between the DDOm, DDOs, and DDOe against P, SMP(t0-1), and Tmax, respectively.

195
We further evaluated the performance of the framework for modeling the duration of drought onset. P, SMP(t0-1), and Tmax were

employed as inputting variables, and we simulated the DDOm, DDOs, and DDOe respectively by using the RF model (the derived

results were referred to as simulated duration). The performance of the RF model was evaluated by comparing simulated results

with the duration derived from the ERA5-Land data (thereafter referred to as the calculated duration). Fig. 4a shows there was a

good agreement between calculated duration and the RF based simulations, where the CC values were above 0.8, and the average200
RMSE values for DDOm, DDOs, and DDOe were 1 day, 3 days, and 6 days, respectively. Fig. 4b shows the spatial distribution of

the mean errors of DDOs. The lowest simulation errors (1-3 days) were found in the southern region, followed by the northern

region and northeastern regions (3-5 days), and the estimation errors were of 10 days in the northwestern region.

Figure 4. (a) The boxplots of CC and RMSE between calculated (from original ERA5-Land data) and simulated (by RF) DDOm, DDOs, and205
DDOe, and (b) the spatial distribution of mean errors for simulated duration of drought onset.
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3 Results

3.1 Spatiotemporal characteristics of historical drought events

Fig. 5 shows the spatial distribution of the number of drought events, mean duration, DDOm, and DDOs during 1950-2021 by

using the ERA5-Land reanalysis data. Drought occurred more frequently (more than 500 drought events occurred) in the southern210
parts of the Yangtze River Basin, with peak values in the upper reaches (Chongqing and Sichuan province) where approximately

1000 drought events occurred during the past 72 years (Fig. 5a). For drought duration, drought persisted longer in the north than

the south, especially for the northeastern and northwestern regions, the drought duration were 60 days or more. In contrast, the

mean duration were less than 40 days in the central and southern China, especially for the Yangtze River basin, drought duration

were less than 20 days (Fig. 5b). In addition, we also analyzed the duration of drought onset, i.e., the time period of moisture215
transition from normal to moderately dry (DDOm) or severely dry (DDOs). As shown in Figs. 5c and 5d, the spatial patterns of

DDOm and DDOs were similar as in Fig. 5b, and DDOs were approximately 5-20 days longer than DDOm. For example, in the

northeastern and northern China it on average took 15 days for the transition from a drought-free state to moderate drought (i.e.,

DDOm), and the time interval doubled (more than 30 days) for DDOs. To explore how the duration of drought onset varies over

time, taking the case of DDOs as an example, Fig. 6 presents the time series of DDOs for all grid cells over China during 1950-220
2021. The boxplots show that there exists spatial heterogeneity of DDOs over China, ranging between 5 days and 35 days, and

such gaps were overall narrowed after 2002. Moreover, an evident downward pattern was found for the annual average values of

DDOs over China (blue dots in Fig. 6). This suggests that the process for the transition from drought-free status to drought on

average was shorten.

225

Figure 5. The spatial distribution of (a) the frequency of droughts, (b) the average duration of droughts, (c) the average time taken for reaching

moderately dry (DDOm), and (d) for reaching severely dry (DDOs) of all drought events during 1950-2021.
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Figure 6. Boxplots of the time taken for reaching severely dry (DDOs) of drought events for all grid cells over China during 1950-2021. The230
blue dots are the average values for each year.

3.2 Duration of drought onset under varied temperature scenarios

Given the evidence of accelerated formation process of drought as in Fig. 6, in this section, we make comprehensive analysis on

the changes of the duration of drought onset under extreme heat conditions. The scenarios include temperature of varied values

during drought onset, and the high temperatures in fourteen adjacent weeks of drought initiation. The duration of drought onset235
conditioned on different temperature scenarios were estimated, combined with analysis of the intervals that soil moisture is

sensitive to the changes of temperature. Moreover, the timing of high temperatures, e.g., prior to or after the initiation time of

drought, may have different effects on the drying of soil. We also analyzed the contribution of high temperatures in fourteen

adjacent weeks of drought initiation.

3.2.1 Impacts of high temperatures and sensitive intervals240

We used the RF model to explore the possible changes of the duration of drought onset by altering forcings of temperature. Fig. 7

shows the spatial distributions of the DDO under scenarios of annual mean temperature and temperature of 35℃ (this value is

employed as a threshold of recognizing high temperature days by the China Meteorological Administration), respectively. The

DDOm, DDOs, and DDOe were 10-20 days, 30-50 days, and 60 days in the northern region under scenarios of annual mean

temperature, while the values ranged between 10 and 30 days for south China. As expected, drought duration of different drought245
categories all significantly decreased under extreme heat conditions. For instance, DDOm were less than 10 days in majority of

China, especially for the southwestern region, DDOm were less than 5 days. Likewise, the time period starting from abnormally

dry to severe or extreme drought also decreased. The DDOs were no more than 15 days, and DDOe were less than 20 days except

for the northwestern region. This suggests the process of soil drying could be shorten by half or one third under extreme heat

conditions in relative to that of annual mean temperature scenarios.250
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Figure 7. The spatial distribution of DDOm, DDOs, and DDOe under (a~c) annual mean temperature and (d~f) temperature of 35℃.

We further explored the sensitive intervals that temperature variation may lead to marked changes for the duration of drought

onset. Experimental simulations were conducted for each grid cell, and the temperature scenarios were randomly sampled from255
the range of 0~40℃ at a 0.1℃ step. As shown in Fig. 8, the colored shades show the 25th, 75th, 95th, and 99th percentiles of

drought duration under different temperature scenarios, and the white dashed lines show the average values. A general downward

pattern was found for the curve of onset duration along with the temperature rises. Especially for temperature intervals of

10~15℃, the onset duration over China was shorten by 15 days on average. When temperature increased to 25℃, the DDO in

most regions were less than 20 days, meanwhile, the change rates of onset duration also slowed down (Fig. 8a). Regional patterns260
were similar as that of the nationwide, but their sensitive ranges of temperature were different. For instance, the sensitive

intervals for the northeastern region were between 5℃ and 25℃, where the DDO decreased from 50~100 days to 10~30 days

(Fig. 8b). In North China, the curve presented no obvious changes till temperature reached 8℃, and the onset duration

approximately decreased by two thirds (from 30~50 days to 10~20 days) under temperature scenarios of 8~15℃ (Fig. 8c). Such

https://doi.org/10.5194/hess-2024-199
Preprint. Discussion started: 9 July 2024
c© Author(s) 2024. CC BY 4.0 License.



11

sharp drops of onset duration were also found in Southwest China and the southern parts of Tibet-Plateau, ranged between265
intervals of 15~25℃ (Fig. 8e), and 6~17℃ (Fig. 8f), respectively. The onset duration in South China on the whole was shorter

than other regions, and evident decreases of onset duration were found at intervals between 20℃ and 35℃ (Fig. 8d). These

suggest that high temperatures may accelerate the formation process of soil moisture drought, meanwhile, its role may also be

finite and would not influence the drying process a lot when exceeding the sensitive intervals in different regions.region, and the

white dashed lines show the average values of the duration of drought onset.270

Figure 8. The change rate of drought onset under different temperature scenarios (a) over China and in (b) Northeast: 115°E-126°E, 42°N-51°N;

(c) Northern: 109°E-121°E, 32°N-39°N; (d) Southern Tibet: 81°E-91°E, 28°N-34°N; (e) Southwest: 99°E-106°E, 25°N-32°N; (f) Southern:

106°E-118°E, 21°N-25°N China. The colored shades show the 25th, 75th, 95th, and 99th percentiles of the duration of drought onset under

temperature scenarios for grid cells in each region, and the white dashed lines show the average values of the duration of drought onset.275

3.2.2 Impacts of varied timing of high temperatures

The timing of high temperatures is also crucial for drought development. Before drought initiation, the soil is typical in a normal

or wet state, which allows for a higher rate of evapotranspiration to meet the atmospheric demands. In this circumstance,

predrought high temperatures are expected to play a positive role in accelerating the formation process of drought. As the drought

proceeds, the role of high temperatures may also change along with a transition from water surplus to water deficit (Budyko,280
1974; Roderick et al., 2009). On these grounds, we analyzed the change rate of DDO under high temperatures occurring in

fourteen adjacent weeks of drought initiation. As shown in Fig. 9, the probability distribution curve refers to the change ratio of
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DDO caused by high temperatures randomly sampling within the range of 30~40°C during the period of T0~Ti for all grid cells

over China. Positive change rates of DDO indicate that high temperatures promote the drying process of soil profile, namely the

DDO becomes less compared to those under normal temperature condition, and vice versa for negative values. Overall, high285
temperatures in fourteen adjacent weeks of drought initiation (namely T0) all show a positive role for drying the soil with the

mean change rates of DDO above 15%. Specifically, for periods before drought initiation, the DDO on average would be shorten

by 25% with high temperatures occurring in four consecutive weeks (namely from T-4 to T0) prior to drought initiation. Then the

change rate of DDO generally decreases as the period of high temperatures shortens, and drops to 15% when high temperatures

exactly occur in T0. In contrast, more prominent effects of high temperatures were found for periods after drought initiation. For290
example, the DDO on average would be shorten by 30% with high temperatures during T0~T1, and such effects of promoting soil

drying would be further enhanced with continuously lengthened time intervals of high temperatures from T0 to T4 (the mean

change rate was approximately 55%). For periods of one month after drought initiation, the DDO would no longer change as the

time intervals of high temperatures lengthened.

295

Figure 9. The change rate of DDO caused by high temperatures occurring at different time intervals (from T0 to Ti, and i≠0 and is an integer

ranging from -7 to 7), which was averaged over all grid cells in China. The probability distribution curve for i-th time refers to the change rate

of DDO caused by high temperatures randomly sampling within the range of 30~40°C during the period of T0~Ti. The dark gray stripe

represents the 25th to 75th percentiles of each probability distribution, and the black solid dots show the means of the probability distribution.

The colored probability distributions show the effective time intervals of high temperatures on the formation process of drought.300

3.3 Drought onset under varied vegetation conditions

The formation processes of drought under different high temperature scenarios are subjected to the water and energy exchanges

between the atmosphere and land surface (Durre et al., 2000), and vegetation plays a fundamental role in modifying this physical

process. For example, vegetation is supposed to contribute to the depletion of soil moisture by water uptake from the deep soil for

transpiration under sufficient water supply states, while it may also impede further soil moisture consumption by means of305
stomatal closure when entering into a water stress period (Yang et al., 2018). In addition, the role of vegetation becomes more

complicated on account of vegetation type or density.

We use the NDVI (a comprehensive indicator of vegetation density, class, and health condition) to classify the DDO driven by

high temperatures, and three typical regions with different vegetation greenness were extracted for comparison. As shown in Fig.
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10, the northwest China is characterized by low NDVI values (around 0.1, generally corresponds to barren areas of rock, sand, or310
snow), and high temperatures after drought initiation show positive effects (Fig. 10b). With overall higher NDVI (around 0.4,

corresponding to shrub, grassland, and mixed forest classes of medium vegetation density) in northeast China, the positive effects

of high temperatures on DDO were extended to predrought periods (Fig. 10c). The southwest China (the NDVI is around 0.6,

corresponding to the forest class with high vegetation density) exhibited more stronger positive effects during predrought periods,

where the DDO could be reduced by one-fold under high temperatures from T-7 to T0, meanwhile, the effects of high315
temperatures greatly discounted after a drought initiated (Fig. 10d).

Figure 10. Spatial distribution of (a) NDVI over China and the change rate of DDO as in Fig. 9 but for (b) northwest, (c) northeast, and (d)

southwest regions. The histograms show the distribution of NDVI of all grid cells in Northwest, Northeast, and Southwest China.

320
Similar patterns were also found for the change rates of DDO classified by NDVI values from 0 to 1 at an interval of 0.1 over

China, where the positive effects of high temperatures during predrought periods tends to be weaker as the NDVI decreases (Fig.

11). For instance, in high NDVI areas (0.5≤NDVI<1), predrought high temperatures exhibited an overwhelming role on DDO

(Figs. 11a-d, Fig. 10d). In medium NDVI areas (0.4≤NDVI<0.5), high temperatures exhibited parallel effects during predrought

and after drought periods (Fig. 11e), while for low NDVI areas (0<NDVI<0.4), positive effects of high temperatures emerged325
after drought initiation (Figs. 11f-i).
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Figure 11. As in Fig. 9 but for the change rate of DDO under different NDVI values. The dotted vertical line in each panel shows the initiation

time of a drought, the green dots are the mean change rate of DDO under high temperatures from T0 to Ti, and the green shades show the range

of 25th ~ 75th percentiles of the change rate of DDO.330

To explore the reasons for the different patterns between vegetation conditions, we further compare the anomalies of AET (to

make AET in different regions are comparable) in high and low NDVI areas. As shown in Fig. 12a, the high NDVI regions

exhibited stronger positive AET anomalies than in low NDVI areas at two week leads, suggesting that vegetation of high density

and fraction (roughly corresponds to high NDVI values) may respond more drastically to the elevated temperature and335
evaporative demand, resulted in increased evapotranspiration and the accelerating depletion of root zone soil moisture. A similar

phenomenon was also found in Osman et al. (2022). It is worth noting that such positive effects of vegetation in response to high

temperatures may largely weaken as the moisture status transfers into a water stress condition. This is evident by the sharply

decreased AET anomalies after drought initiation in high NDVI areas. Moreover, the coupling strength between VPD and soil

moisture also indicates the changing role of vegetation within a drying period (Seneviratne et al., 2010). As shown in Fig. 12b,340
high NDVI areas exhibited stronger coupling strength than the low NDVI areas, which implies the important roles of vegetation

in regulating these processes. Meanwhile, in high NDVI areas, the coupling of VDP and soil moisture was stronger during
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predrought (i.e., energy limited) periods than after drought (i.e., water limited) periods. In contrast, there virtually no changes

within a drying period for low NDVI areas. This to some extent explains why predrought high temperatures presented more

prominent effects in high NDVI areas, while the role of vegetation in low NDVI areas were very limited.345

Figure 12. (a) Variation of AET anomalies in high ((NDVI > 0.7) and low (0.2<NDVI<0.3) NDVI areas in fourteen adjacent weeks of drought

initiation (T0). The green and purple shadows in (a) are the 25th percentile to 75th percentile of AET anomalies in high and low NDVI areas,

respectively, and the two circle chains are corresponding means of AET anomalies. (b) Boxplots of the correlation between VPD and soil

moisture during predrought (purple box) and after drought (orange box) periods in high and low NDVI areas.350

4 Discussion and Conclusions

Frequent occurrences of record high temperatures around the world have motivated efforts to the spatiotemporal patterns, causal

analysis, and associated social and ecological impacts of the dry and hot extremes (Mazdiyasni and AghaKouchak, 2015;

Williams et al., 2015; Naumann et al,. 2021; Yin et al., 2023). For the case of drought, the resulting changes in a warming climate

are not confined to typical drought characteristics such as drought frequency and intensity (Otkin et al., 2018; Chiang et al., 2021;355
Lian et al., 2021; Wang et al., 2021), while the change of drought evolution process is also challenging.

In this study, we focused on the development of drought during the onset stage, which was defined as the time period of moisture

transferring from a normal state to moderate, severe, or extreme drought (referred to as the DDO in this study). Comparing to

previous researches that characterize flash drought from a perspective of intensification rate (e.g., Otkin et al., 2022; Liu et al.,

2020), the DDO is operational-friendly by providing more intuitive information on the specific days consumed for the onset of a360
flash drought, which may facilitate policy makers to incorporate such information into the early-warning and drought monitoring

system without additional data processing. Certainly, DDO can also be transformed into the intensification rate as did in previous

researches.

The results suggest DDO on average would be shorten by 10~50 days under 35℃ (a threshold of high temperature in

meteorology) in relative to that of annual mean temperature scenarios, with most evident changes in the middle and eastern parts365
of northeast China, and north China (Fig. 7). This implies with more frequent high temperatures in the future, such as the globally

record-high temperatures in the 2022 and 2023 summer, droughts over China may have faster onset than present (Yuan et al.,

2019). As a result, the northeast and north China which were recognized as low-frequent flash drought regions in previous studies

(e.g., Wang et al., 2016; Liu et al., 2020), also have potential increments of flash droughts under the warming climate. In addition,

it should be noted that DDO does not continuously change as the rising temperature, even for south China which presents highest370

https://doi.org/10.5194/hess-2024-199
Preprint. Discussion started: 9 July 2024
c© Author(s) 2024. CC BY 4.0 License.



16

sensitivity to high temperatures (Fig. 8). This could relate to the limited data samples of temperatures above 35 ℃ or 40 ℃

(generally rare in historical events for most regions over China) for model training, which may reduce the simulation accuracy

and lead to the boundary effect. In addition, the role of temperature could also be very limited when reaching a rather high value,

while other aerodynamic fluxes may be more crucial for the ongoing development of soil moisture drought (Christian et al.,

2024).375
Meanwhile, the role of high temperatures was shown to be strongly different given the timing of their occurrence (Fig. 9). For the

whole China, high temperatures of 1-month leads were most relevant to soil drying, and could be employed as a precursor of

rapid drought onset. As drought evolves, the water and thermal forces also changes, high temperatures after drought onset were

also conductive to the ongoing process of soil moisture drought, and such promoting effects may persist for one month. In other

words, high temperatures at one month interval to drought onset are effective for accelerating soil drying over China.380
During the shift of driving forces from water control to thermal control, vegetation also modulates the water and energy balances

between the atmosphere and land surface (Vanloon, 2015; Warter et al., 2021), leading to different roles of high temperatures

under varied vegetation conditions. In high NDVI areas such as the southwest China, pre-drought high temperatures contributed

to a higher evapotranspiration rate by means of water uptake from soil (Fig. 12), and were conductive to the formation of soil

moisture drought. However, when the soil moisture enters into water deficiency state (after drought initiation), evapotranspiration385
would not continuously increase under high temperatures, rather high temperatures may arise the stomatal closure of vegetation

to impede further water losses from the soil (Seneviratne et al., 2010). This is evident by the sharply decreased AET anomalies

after drought initiation (Fig. 12a) and also weakened coupling of VPD and soil moisture (Fig. 12b). However, in low NDVI areas

such as the northwest China, high temperatures after drought initiation played a leading role in accelerating the development of

soil moisture drought. This shows the asymmetrical effects between pre-drought and post-drought high temperatures on DDO.390
Therefore, it is necessary to take account of regional differences associated with high temperature roles when making local

drought early warning, drought monitoring, and prediction related strategies.

Findings in this study supplement the understanding of the change rate of drought formation in a warming process. Given the

evidence of accelerated drought onset under warming scenarios, it is recommended to incorporate the formation of drought

during the onset stage in future drought assessments, as did for drought intensity and duration.395
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